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Interpolation Hacks and their Efficacy 

Lynne Bloom, FCAS, MAAA 
 ____________________________________________________________________________________________  

Abstract  
Actuaries are consistently faced with the decision of how to interpolate loss development factors. Methods vary 
from linear to more theoretical.  This paper explores how various methods hold up to actual data and each other 
by estimating errors in reserve prediction when using paid loss development, incurred loss development and 
Bornhuetter Ferguson methods.  It also lays out a variety of methods for actuaries to use. Lastly, this paper adds 
an additional process to account for unique situations such as seasonal fluctuations in claims activity.  Along 
with this paper, I have included a practical tool programmed with interpolation formulae and the seasonal 
method. 

 
Keywords. Interpolation, Development, Quarterly Reserving 

 ____________________________________________________________________________________________  

1. INTRODUCTION 

As Actuaries, we are challenged with producing estimates which are assumed to be accurate given 
our vast background and industry knowledge.  In practice, the documentation of our thought 
process is a crucial part of third-party assessment of our work product.  The hindsight accuracy of 
the estimate is something we seldom evaluate. 

One of the crucial assumptions we make is the selection of development factors and how to 
interpolate them.  Although practices vary widely, it is something that in my experience is not well 
documented.  In fact, in many instances, third party software is relied upon to determine the 
interpolated amount. 

Extrapolated development factors, such as those used for a 9 month old accident year, are more 
frequently inconsistent and poorly documented.  Actuarial practice also varies in determining how to 
treat the exposure growth portion of a development factor and how to document this treatment. 

While differences in judgement regarding a loss development selection and ancillary differences 
in judgment due to the nuances of a particular interpolation/extrapolation method may not seem 
material in the context of a reserve review when compared to other more substantial judgments, 
they do have an impact.  More importantly, they impact the quality of our documentation. 

Interpolation is heavily relied upon for interim reserves studies and year-end studies where the 
practicalities of timing only allow for a third quarter in-depth review.  Interpolation is also relied 
upon to form opinions of actual versus expected loss emergence.   

Methodology for interpolation varies from sophisticated curve fits, to shortcut methods, to 
straight linear.  This paper will examine various methods (known to the author) and how they 
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compare to actual results produced with sample data that covers various lines of business.  This 
paper will examine the relative degrees of error each method might be expected to produce and the 
overall effect on reserves estimation. 

In addition, the paper will address a special situation where there is specific knowledge of 
development patterns which are expected to vary on a seasonal basis. 

1.1 Research Context 
These general concepts are covered by other authors (Flannery, Press, Teukolsky and Vetterling) 

in “Numerical Recipes” and more recently in Variance Magazine by Joseph Boor in “Interpolation 
Along a Curve.” 

Richard Sherman also explored these concepts in “Extrapolating, Smoothing and Interpolating 
Development Factors.” 

1.2 Objective 
The objective of this paper is to provide options, easy to follow formulae, and tools for the 

purpose of interpolation, along with context regarding the efficacy of various methods.  The hope 
for this paper is to be a useful reference source for actuaries and students familiarizing themselves 
with actuarial methods and shortcuts. 

1.3 Outline 
The remainder of the paper proceeds as follows: 

Section 2: Background 

Section 3: Interpolation Methods and Formulae 

Section 4: Extrapolation Methods and Formulae 

Section 5:  Handling of Exposure Growth 

Section 6:  Testing of Methods and Results for Interpolation 

Section 7: Testing of Methods and Results for Extrapolation 

Section 8:  Seasonal Adjustment Method 

Section 9: Conclusions 
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2. BACKGROUND 

When we think of the concept of interpolation, it is extremely simple – how will losses paid or 
reported vary over the course of a year (or other specified period)?  The easiest concept to grasp is 
linear interpolation, which assumes development proportional to time over the period.  However, 
sometimes actuaries are more comfortable with the assumption that more will be reported or paid 
earlier rather than later (and sometimes vice versa).  This assumption gives rise to alternative 
methods, including curve fitting methods. 

Since performing a power curve or Weibull regression inside of a spreadsheet can be 
cumbersome, actuaries have developed many “shortcut” methods and formulae which mimic the 
effects of a curve regression and consequently mimic the effect that more losses emerge sooner over 
the interpolation period. We can see this graphically using a simple example.  Suppose annual 

development is as follows: 

 

If we apply various interpolation methods which assume more losses emerge sooner and 
compare the implied development to that indicated by linear interpolation, we would observe the 
following: 

50.00%

55.00%

60.00%

65.00%

70.00%

75.00%

12 18 24

Method 1

Method 2

Method 3

Linear

Ages 12 24 36
12 - 24 24 - 36 36 - 48

Selected Result 1.500    1.200          1.050    
FacToUlt 1.996    1.331          1.109    
Percent of Ult 50.11% 75.16% 90.19%
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The corresponding 18 month development factors would be as follows: 

 

As can be seen above, since linear interpolation assumes steady development, the factor at 18 
months is higher than that given by the other methods (which assume accelerated development 
earlier in the period). These methods are used for illustration and all methods will be given in detail 
in Section 3. 

Although the above demonstrates the general goal of interpolation, in practice, we seldom 
evaluate the results of one method versus others.  The following sections will outline several 
methods.  While the derivations of some of the formulae are quite obvious, some of the shortcut 
formulae have been passed down from actuary to actuary.  It is beyond the scope of this paper to 
understand the derivation of each method; rather this paper will evaluate the efficacy of each given 
certain assumptions, which that individual practitioner might make.  Since the data evaluated in this 
paper is far from exhaustive, the link between assumptions and accuracy of the each method is 
important. The choice of the curve should be driven by what the actuary assumes about the true 
shape of the curve.   This paper will also not explore all possible curve fitting methods, but only 
some of the more common ones to compare to other shorter methods. 

Lastly, based on the same notion that the assumptions about emergence are important, the 
actuary may use these methods for accident year or policy year methods equally.  Some of the 
observation about early maturities made in the sections to follow would obviously apply for a longer 
period of time when using policy year data. 

3. INTERPOLATION METHODS AND FORMULAE 

The following is a list of methods I will explore: 

1. Linear 

2. Inverse Power Curve on Remaining Development (CDF-1) 

Age 18
Method 1 1.522      
Method 2 1.559      
Method 3 1.577      
Linear 1.597      
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3. Weibull 

4. Inverse Power Curve on Total Development (CDF) 

5. Exponential Curve on Remaining Development (CDF-1) 

6. Exponential Curve on Total Development (CDF) 

7. Logarithmic Proportions Shortcut (Shortcut 1) 

8. Exponential Weighted Shortcut (Shortcut 2) 

The formulae included below will contain the following terms.  Since in practice most of these 
formulae will be utilized in Excel, I have used shorthand geared toward excel functions. 

LDFT – Incremental Loss Development Factor at age T 

CDFT – Cumulative Loss Development Factor at age T 

T – Development Age in Months 

PRT or PPT – Percent Reported or Percent Paid or 1/ CDFT 

EXP (Value) – eValue 

* - x or multiplication 

3.1 Linear Method 
The most commonly used method is the Linear Method, which as stated above assumes that the 

percent paid or reported grows at a constant rate with time.  For the purpose of demonstrating the 
methods, I will assume that we are interpolating between 12 and 24month factors in all of our 
examples. I will also use the following Paid Development Factors: 

CDF12 = 1.996 

CDF24 = 1.331 

PP12 = 50.11% 

PP24 = 75.16% 

  I will also suppose I am interpolating to 15 months.  To derive a linear interpolation estimate, I 
use the following formula. 

PP15 = PP12 * (24 – 15)/(24 – 12) + PP24 * (15 – 12) / (24 – 12) =  

CDF15 = 1.774 
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3.2 Inverse Power Curve Regression on Remaining Development (IVP Decay) 

An Inverse Power Curve Regression assumes that development and loss emergence behave in 
such a way that interim CDFs can be expressed as follows: 

CDFT - 1 = a * T –b 

In more qualitative terms, it is assumed that the remaining development at any point in time 
varies inversely with time.   

Translating this into a convenient linear regression results in the following equation: 

ln(CDFT-1) = b * ln(1/T) + ln(a) 
In Excel, the function to find the 15 month CDF would be as follows: 

EXP(TREND(ln(CDF12-1):ln(CDF24-1),ln(1/12):ln(1/24),ln(1/15)))+1 

Using the values stated in the linear example, the resulting value for CDF15 = 1.698 

Note that I do not try to interpolate between points any wider than the two adjacent development 
points, as fitting a large curve is more complex and often results in aberrant values.  The theoretical 
considerations for best fit are outside the scope of this paper.   

3.3 Weibull Method 

The Weibull Method assumes that development and loss emergence behave in such a way that 
interim CDFs can be expressed as follows: 

1 - PPT   = EXP(-a x Tb) 
Translating this into a convenient linear regression results in the following equation: 

ln(-ln(1-%PPT)) = ln(a) + b ln(T) 
In excel, the function to find the 15 month CDF would be as follows: 

1/[1 – EXP{-EXP(TREND(ln(-ln(1-1/CDF12)):ln(-ln(1-1/CDF24)),ln(12):ln(24),ln(15)))}] 

Using the values stated in the linear example, the resulting value for CDF15 = 1.722 

Note the difference between the above curves is merely the form of the equation.  The basic 
principal is the same: remaining development varies inversely with time.  This paper does not lay out 
every possible combination of type of curve and dependent variable, but rather some of the more 
commonly used ones. 

3.4 Inverse Power Curve Regression on Total Development (IVP) 

The Inverse Power Curve Regression on Total Development assumes that development and loss 
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emergence behave in such a way that interim CDFs can be expressed as follows: 

CDFT = a * T –b 

In more qualitative terms, it is assumed that the total development at a point in time varies 
inversely with time.   

Translating this into a convenient linear regression results in the following equation: 

ln(CDFT) = b * ln(1/T) + ln(a) 
In excel, the function to find the 15 month CDF would be as follows: 

EXP(TREND(ln(CDF12):ln(CDF24),ln(1/12):ln(1/24),ln(1/15))) 

Using the values stated in the linear example, the resulting value for CDF15 = 1.752 

Note that this method will not create errors when the CDF is less than or equal to 1.000.  While this 
is an advantage, in practice, I often have formulae default to linear values (and have done so in the 
practical tool) when CDFs are less than one as the differences in small factors are less material.  
When CDFs are large, the method tends to produce much higher values than the regression on 
remaining development. 

3.5 Exponential Curve Regression on Remaining Development (Expo Decay) 

Exponential Regression assumes that development and loss emergence behave in such a way that 
interim CDFs can be expressed as follows: 

CDFT - 1 = a * EXP(bT) 
In more qualitative terms, it is assumed that the remaining development at a point in time varies 

inversely with time.   

Translating this into a convenient linear regression results in the following equation: 

ln(CDFT-1) = b * T + ln(a) 
In excel, the function to find the 15 month CDF would be as follows: 

EXP(TREND(ln(CDF12-1):ln(CDF24-1),12:24,15))+1 

Using the values stated in the linear example, the resulting value for CDF15 = 1.756 

This has some properties of the Weibull curve and some properties of the inverse power curve and 
acts as a variation. 
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3.6 Exponential Curve Regression on Total Development (Expo) 

Exponential Regression assumes that development and loss emergence behave in such a way that 
interim CDFs can be expressed as follows: 

CDFT = a * EXP(bT) 
In more qualitative terms, it is assumed that the total development at a point in time varies 

inversely with time.   

Translating this into a convenient linear regression results in the following equation: 

ln(CDFT) = b * T + ln(a) 
In excel, the function to find the 15 month CDF would be as follows: 

EXP(TREND(ln(CDF12):ln(CDF24),12:24,15)) 

Using the values stated in the linear example, the resulting value for CDF15 = 1.803. 

3.7 Logarithmic Proportions Shortcut (Shortcut 1) 

This shortcut will produce results which are generally about midway between linear results and 
curve fitted results.   

In excel, the formula to find the 15 month CDF would be as follows: 

CDF15 = CDF12^((ln(CDF24)/ln(CDF12))^((15-12)/(24-12))) 

Using the values stated in the linear example, the resulting value for CDF15 = 1.740. 

This formula is easier to program into a spreadsheet than regressions and provides a directionally 
similar result.  Regressions require the logarithm to be made in a separate cell first which is 
cumbersome when dealing with multiple development points. 

3.8 Exponential Weighted Shortcut (Shortcut 2) 

This shortcut will produce results which are generally higher than Shortcut 1, but lower than 
linear.  The results tend to hover near the exponential regression as well. 

In excel, the formula to find the 15 month CDF would be as follows: 

CDF15 = 1/ln(EXP(1/CDF12)*(24-15)/(24-12) + EXP(1/CDF24)*(15-12)/(24-12))) 

Using the values stated in the linear example, the resulting value for CDF15 = 1.755. 

This formula is easier to program into a spreadsheet than regressions and provides a directionally 
similar result. 
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3.9 Summary of Values from Various Methods 
 
The following table summarizes the results of the methods extended out to further maturities: 
 
 

 
 
It is obvious that our choice of method matters less as accident years mature.  In this particular 
example the Exponential regression of total development actually provides a development factor 
that is higher than linear.  This implies that more losses will emerge in the latter part of the year than 
would be indicated proportionally with time.  Later in this paper we will explore how actual data 
relates to this assumption. 

4. EXTRAPOLATION METHODS AND FORMULAE 

Probably the only concept more elusive than interpolation methods is extrapolation methods.  All 
of the methods are either linear or based on shortcuts and the theoretical bases for these methods 
are more tenuous than for interpolation methods.  

Development prior to 12 months or prior to the first known development point is complicated 
by a more rapid rate of growth as well as exposure growth.  An extrapolation formula needs to 
consider both of these factors and the actuary should document each piece separately. All of the 
shortcuts provided mimic the general concept that since more losses are reported or paid closer to 
the time of the accident, the development will be less than linear within the 12 months.  In other 
words, more than half of losses reported by 12 months on losses occurring within the first six 
months will be reported as of six months.  While this may not always be the case, it is the concept 

Development Factor Selection
Ages 12 24 36 48 60 72

12 - 24 24 - 36 36 - 48 48-60 60-72 72-84
Selected Result 1.500    1.200          1.050    1.025    1.020    1.010    
FacToUlt 1.996    1.331          1.109    1.056    1.030    1.010    
Percent of Ult 50.11% 75.16% 90.19% 94.70% 97.07% 99.01%
Interim Ages 15 27 39 51 63
Linear 1.774          1.267    1.095    1.049    1.025    
IVP Decay 1.698          1.239    1.090    1.047    1.022    
Weibull 1.722          1.248    1.092    1.048    1.023    
IVP 1.752          1.262    1.094    1.049    1.025    
Expo Decay 1.756          1.250    1.092    1.048    1.023    
Expo 1.803          1.271    1.095    1.049    1.025    
Logarithimic Proportions Shortcut 1 1.740          1.248    1.092    1.048    1.023    
Exponential Weighting Shortcut 2 1.755          1.264    1.095    1.049    1.025    
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behind these shortcuts. 

 Section 5 will deal more directly with exposure growth and how it should be handled.  

For example, suppose that as of 12 months, we expected reported losses to grow by an additional 
40% or that we have a reported development factor of 1.40.  Assuming that all premium is earned as 
of 12 months in time, the development factors pulled from triangles would not include any exposure 
growth.  When evaluating a development factor as of 6 months, we might assume an extrapolation 
curve that assigns a value of 1.80.  The curve would take into account the expected additional 
development growth, but not necessarily the exposure growth.  Assuming even earning of premium 
throughout the year, the exposure growth factor is 2.00.  Therefore the factor to apply to losses at 6 
months in order to get a full year of losses would be 1.80 x 2.00 or 3.60.  It is beyond the scope of 
this paper to analyze why specific formulae do not account for exposure growth.  In section 7, we 
will test the adequacy against actual data using our assumption that most actuarial shortcuts do not 
include an exposure growth component.  The following formulae all assume extrapolation without 
exposure growth. 

I will explore several shortcut methods in additional to linear extrapolation.  A graph of the 
percent reported implied by the various formulae might look as follows with most methods 
assuming the percent reported (or paid) is greater than that implied by the linear method: 

 

Note, as we see in our examples, that when development factors are very high, the reverse is true 
and shortcut methods produce higher development than linear. 

 -

 0.10

 0.20

 0.30

 0.40

 0.50

 0.60

6 9 12

Method 1

Method 2

Method 3

Linear



Interpolation Hacks and Their Efficacy 
 

Casualty Actuarial Society E-Forum, Fall 2015  11 

4.1 Linear Method 
The easiest method to apply is the Linear Method, which, as stated above, assumes that the 

percent paid or reported grows evenly with time.  For the purpose of demonstrating the methods, I 
will assume that we are extrapolating from a 12 month factor in all of our examples. I will also use 
the following Paid Development Factors: 

CDF12 = 1.996 

PP12 =  50.11% 

  I will also suppose I am interpolating to 6 months.  To derive a linear extrapolation estimate, I 
use the following formula. 

PP6 = PP12 * (6/12)  

CDF6 = 3.992 

4.2 The Plus 12 Method (Method 1) 
This method raises the base development factor to a power which increases as the number of 

months decreases by using subtraction.  The formula is as follows: 

CDF6 = CDF12^((12+12 – 6)/12)  where the first 12 in the exponent represents the age of the 
base factor and the second 12 is always present. 

CDF6 = 2.819. 

4.2 The Power Ratio Method (Method 2) 
This method raises the base development factor to a power which increases as the number of 

months decreases by using a ratio.  The formula is as follows: 

CDF6 = CDF12^(12/6)  

CDF6 = 3.983 

This method tends to reach uncommonly high values when applied to smaller maturities.   

4.3 The Natural Log Method (Method 3) 
This method uses the natural log of the remaining development, applies a ratio based on the 

extrapolation month, and converts it back using Euler’s number, e. 

CDF6 =1/(1-EXP(ln(1-1/ CDF12)*(6/12))) 

CDF6 = 3.405 
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This method tends to be more stable at lower maturities. 

4.4 Summary of Values from Various Methods 
 
The following table summarizes the results of the methods: 
 

 
 

5. HANDLING OF EXPOSURE GROWTH 

As mentioned earlier, varying practices exist with regards to exposure growth and unfortunately 
many actuaries are unaware of whether their extrapolation method accounts for it.  The use of 
reserving software has created, to some degree, a “black box” that obscures the derivation of early 
maturity loss development factors.  To be fair, with the use of exposure based methods such as 
Bornhuetter Ferguson or Cape Cod, most actuaries feel that factors for immature periods are 
immaterial to an analysis.  While this is true, it is preferable to have extrapolation methods explicitly 
used and documented. 

It is difficult to extrapolate a factor for a short accident period.  This is further complicated by 
the existence of exposure growth in exposure based methods.  Essentially, there are two ways to 
look at a short period: it can be viewed as a short period on its own or as a fraction of the full year.  
From the former viewpoint, we would use factors (utilizing the methods above) which do not 
include exposure growth.  From the latter viewpoint, we would adjust our factors for exposure 
growth and then scale the final ultimate produced.  For the loss development method, it seems 
arbitrary to make a distinction as the two answers will never be different.  However, for the 
Bornhuetter Ferguson (BF) method, the assumption can make a difference in the final answer 
(sometimes a large one).  

Ages 12
12 - 24

Selected Result 1.500    
FacToUlt 1.996    
Percent of Ult 50.11%
Interim Age 6
Linear 3.992    
Method 1 2.819    
Method 2 3.983    
Method 3 3.405    
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Consider the example and factors from Section 4.  Suppose we chose Method 3.  Further 

suppose that earned premium for the full year is 100 and that paid losses as of 6 months are 10.  As 
mentioned above, the assumption of partial year or full year makes no difference to the Loss 
Development Method (LDM): 

 

Now assume that the Initial Expected Loss Ratio is 60%.  The following shows the results of the 
BF Method under each assumption: 

 
In the second example, the differences in loss ratio are not due to inaccuracies in either method.  

The difference is driven by the assumed maturity of the year.  The BF method assigns more weight 
to the loss development method based on the maturity of the accident year as measured by the 
inverse of the loss development factor.  Since the partial year method uses a smaller development 
factor, the loss development method receives more weight.  Given the shortened period relative to 
the full year, one could argue that it is more mature (i.e., that the average accident date is earlier than 
a full year) and that the partial year method is therefore preferable.  In reality, the relative weighting 
assigned to the ELR and the loss development method is subjective and many actuaries prefer to 
give less weight to a loss development method based on highly leveraged and extrapolated factors.  
In any event, awareness is important as the weighting can have material effects on results. 

6. TESTING OF METHODS AND RESULTS FOR INTERPOLATION 

The sample data was based on actual triangles from two different insurance companies.  The lines 
of business underlying the data include 30 different lines and sublines with a mix of property and 
casualty.  Lines were matched into groups based on their development properties (using 12 month 
factor and length of tail to group them).  I began with quarterly loss triangles for many lines of 
business on a paid and incurred basis.  Accident years within our data span from 2003 to 2014.  For 
some lines the latest evaluation is December 31, 2014 and for others is June 30 or September 30 of 

Earned 
Premium

Paid 
Losses CDF LDM Proration Ultimate

Loss 
Ratio

Partial Year Method 50 10 3.405      34.05       100% 34.05    68.1%
Full Year Method 100 10 6.811      68.11       50% 34.05    68.1%

Earned 
Premium

Paid 
Losses CDF IELR BF Proration Ultimate

Loss 
Ratio

Partial Year Method 50 10 3.405      60.0% 31.19       100% 31.19    62.4%
Full Year Method 100 10 6.811      60.0% 61.19       50% 30.60    61.2%
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2014.  First, I calculated quarterly development factors using several averages including simple, 
weighted, and simple excluding high and low.  Then I created 4 separate annual triangles, incepting 
at 3, 6, 9 and 12 months respectively.  Since only the weighted average ties back between quarterly 
and annual triangles and since I wanted to isolate the error solely due to interpolation method, I 
made the selections for these triangles equal to their quarterly triangle equivalent (by type of 
average).   

I applied the interpolation methods to each triangle as described in Section 3.  Then I projected 
the quarterly results by accident year using the most recent data and evaluation.  Each result was 
then compared to the interpolated result based on various annual triangles.  I evaluated the 
interpolated results using interpolations from 3, 6, and 9 months prior to the latest quarterly date.  
To illustrate, if the latest data was evaluated as of 12 months, I would use factors from my 3 month 
annual triangle to determine the 9 months prior interpolation error.  The 6 month annual triangle 
interpolated to 12 months gave the 6 month prior error and the 9 month annual triangle gave the 
three month prior error.  The errors were also calculated on a paid and incurred basis and for all 
three averages. 

Error was measured in terms of IBNR for the incurred triangles and total reserves for the paid 
triangles.  The percent error was calculated as a percent of total IBNR or reserve.  Therefore percent 
error for paid losses would equal: 

[Ultimate losses derived from Interpolated method – Ultimate losses derived from quarterly 
triangle factors] / [Ultimate losses derived from quarterly triangle factors – Paid losses at latest 
evaluation]. 

 

6.1 Results for Short Tailed Lines of Business 
 

I grouped lines where the incurred development factor at 12 months was not greater than 2.0.  
These lines were primarily various types of personal auto business.  The average incurred loss 
development factor at 12 months was roughly 1.09 and typical development dropped off at about 84 
months.  The average paid loss development factor at 12 months was approximately 1.5. 
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6.1.1 The Factors 

Looking at the group as a whole, the following table displays the actual and estimated incurred 
factors from various methods measured on interpolating from various points during the year (using 
weighted average factors).  

 

An examination of actual quarterly incurred factors between 12 and 24 months for a typical line 
in this group reveals the differences between actual factors and our interpolation methods. 

 

 

Short Tailed Lines - Incurred Development Factors

Accident 
Year Age

From 
Quarterly 
"Actual" Linear IVP Decay Weibull IVP

Expo 
Decay Expo Shortcut 1 Shortcut 2

Using factors interpolated from 9 months prior to date

2006 108 1.000        1.000        1.000        1.000        1.000        1.000        1.000        1.000        1.000        
2007 96 1.000        1.001        1.001        1.001        1.001        1.001        1.001        1.001        1.001        
2008 84 1.002        1.001        1.001        1.001        1.001        1.001        1.001        1.001        1.001        
2009 72 1.002        1.002        1.002        1.002        1.002        1.002        1.002        1.002        1.002        
2010 60 1.006        1.005        1.005        1.005        1.005        1.005        1.005        1.005        1.005        
2011 48 1.005        1.004        1.004        1.004        1.004        1.004        1.005        1.005        1.004        
2012 36 1.012        1.012        1.011        1.011        1.011        1.011        1.012        1.012        1.012        
2013 24 1.029        1.032        1.027        1.028        1.030        1.028        1.032        1.029        1.031        
2014 12 1.090        1.096        1.063        1.067        1.079        1.077        1.105        1.076        1.090        

Using factors interpolated from 6 months prior to date

2006 108 1.000        1.000        1.000        1.000        1.000        1.000        1.000        1.000        1.000        
2007 96 1.000        1.001        1.001        1.001        1.001        1.001        1.001        1.001        1.001        
2008 84 1.002        1.001        1.001        1.001        1.001        1.001        1.001        1.001        1.001        
2009 72 1.002        1.002        1.002        1.002        1.002        1.002        1.002        1.002        1.002        
2010 60 1.006        1.005        1.005        1.005        1.005        1.005        1.005        1.005        1.005        
2011 48 1.005        1.005        1.004        1.004        1.004        1.004        1.005        1.005        1.005        
2012 36 1.012        1.012        1.012        1.012        1.012        1.012        1.013        1.012        1.012        
2013 24 1.029        1.033        1.028        1.029        1.031        1.029        1.033        1.028        1.032        
2014 12 1.090        1.097        1.061        1.067        1.083        1.077        1.103        1.077        1.093        

Using factors interpolated from 3 months prior to date

2006 108 1.000        1.000        1.000        1.000        1.000        1.000        1.000        1.000        1.000        
2007 96 1.000        1.000        1.000        1.000        1.000        1.000        1.000        1.000        1.000        
2008 84 1.002        1.001        1.001        1.001        1.001        1.001        1.001        1.001        1.001        
2009 72 1.002        1.002        1.002        1.002        1.002        1.002        1.003        1.002        1.002        
2010 60 1.006        1.006        1.006        1.006        1.006        1.006        1.006        1.006        1.006        
2011 48 1.005        1.005        1.004        1.005        1.005        1.005        1.005        1.005        1.005        
2012 36 1.012        1.012        1.011        1.012        1.012        1.012        1.012        1.012        1.012        
2013 24 1.029        1.031        1.029        1.030        1.031        1.030        1.032        1.030        1.031        
2014 12 1.090        1.098        1.071        1.078        1.090        1.083        1.100        1.082        1.096        
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Note that the shape of the curve of methods indicates that most methods anticipate more losses 
emerging in the beginning of the period versus the latter part of the period.  Also all methods are 
higher than linear in terms of percent reported.  The actual data agrees with the majority of the 
methods in the accelerated emergence of losses.  This would suggest that linear interpolation 
overstates estimates for short tailed lines.  Early maturities are shown in these graphs because 
visually it is easier to see the shape.  From the table above, one can see that choice of method 
matters less once factors are less than 1.05.  

However looking further back at the period between 3 and 15 months we see the following 
results: 
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Although the methods are interpolating along the same general curve, the actual results are much 
nearer to linear.  Note to avoid confusion about these factors, these factors are not extrapolated 
even though they are lower than 12 months.  These are interpolated factors from a 3, 15, 27, etc. 
triangle.  They use the same methods as other interpolated factors.  They are added here to show 
how the shapes may differ during this time period. 

The table of paid factors (using weighted average factors) is as follows:  

 

Short Tailed Lines - Paid Development Factors

Accident 
Year Age

From 
Quarterly 
"Actual" Linear IVP Decay Weibull IVP

Expo 
Decay Expo Shortcut 1 Shortcut 2

Using factors interpolated from 9 months prior to date

2006 108 1.002        1.002        1.002        1.002        1.002        1.002        1.002        1.002        1.002        
2007 96 1.003        1.003        1.003        1.003        1.003        1.003        1.003        1.003        1.003        
2008 84 1.005        1.005        1.005        1.005        1.005        1.005        1.005        1.005        1.005        
2009 72 1.009        1.009        1.009        1.009        1.009        1.009        1.009        1.009        1.009        
2010 60 1.017        1.018        1.017        1.017        1.018        1.017        1.018        1.017        1.018        
2011 48 1.033        1.036        1.033        1.034        1.036        1.034        1.037        1.034        1.036        
2012 36 1.074        1.080        1.073        1.075        1.079        1.075        1.082        1.075        1.078        
2013 24 1.175        1.193        1.176        1.183        1.195        1.189        1.212        1.183        1.185        
2014 12 1.502        1.419        1.372        1.389        1.420        1.485        1.570        1.428        1.396        

Using factors interpolated from 6 months prior to date

2006 108 1.002        1.002        1.002        1.002        1.002        1.002        1.002        1.002        1.002        
2007 96 1.003        1.003        1.003        1.003        1.003        1.003        1.003        1.003        1.003        
2008 84 1.005        1.005        1.005        1.005        1.005        1.005        1.005        1.005        1.005        
2009 72 1.009        1.009        1.009        1.009        1.009        1.009        1.009        1.009        1.009        
2010 60 1.017        1.018        1.017        1.017        1.018        1.017        1.018        1.017        1.018        
2011 48 1.033        1.037        1.033        1.034        1.036        1.034        1.037        1.034        1.036        
2012 36 1.074        1.081        1.072        1.075        1.080        1.075        1.083        1.074        1.079        
2013 24 1.175        1.194        1.174        1.182        1.195        1.188        1.210        1.182        1.187        
2014 12 1.502        1.414        1.365        1.390        1.429        1.470        1.550        1.410        1.385        

Using factors interpolated from 3 months prior to date

2006 108 1.002        1.002        1.002        1.002        1.002        1.002        1.002        1.002        1.002        
2007 96 1.003        1.003        1.003        1.003        1.003        1.003        1.004        1.003        1.003        
2008 84 1.005        1.005        1.005        1.005        1.005        1.005        1.005        1.005        1.005        
2009 72 1.009        1.009        1.009        1.009        1.009        1.009        1.009        1.009        1.009        
2010 60 1.017        1.018        1.017        1.017        1.018        1.017        1.018        1.017        1.018        
2011 48 1.033        1.036        1.033        1.034        1.036        1.034        1.036        1.034        1.036        
2012 36 1.074        1.079        1.073        1.075        1.078        1.075        1.080        1.074        1.078        
2013 24 1.175        1.189        1.174        1.180        1.188        1.183        1.196        1.179        1.184        
2014 12 1.502        1.447        1.408        1.434        1.467        1.479        1.532        1.442        1.421        
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Looking at the paid factors for the 3 – 15 month period for a typical line, the curve reverses itself: 

 

Both the method results and the actual data support the notion that prior to 15 months on a paid 
basis, less losses are paid earlier in the period and more losses are paid later in the period.   

6.1.2 The Errors 

The actual errors in each method for all years combined are as follows for incurred factors:  
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In this graph, S – 3 represents the method performed on simple average factors 3 months prior to 
evaluation date.  W represents weighted factors and X represents simple average excluding high and 
low factors.  Seemingly the most appealing method for short tailed incurred business based on this 
graph would be Shortcut 2.  Many of the curves understate reserves and the linear method 
overstates reserves.  

Looking at the latest year only, the pattern is more exaggerated:  

For paid development, the error in all years is illustrated in the following graph.  Where the 
factors are higher, in this case, the exponential method seems to work best:  

A complete set of graphs pertaining to short tailed lines is provided in Appendix A. 
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6.2 Results for Medium Tailed Lines of Business 
 

The medium tailed business had an average 12 month incurred development factor of 
approximately 7.00 and paid development factor of approximately 25.00.  It consists primarily of 
claims made liability.  The pattern becomes negligible after 96 months.  

6.2.1 The Factors 
 

The following table displays the results for weighted average factors:  

Similar to our short tailed paid curve, the incurred curve for 3 – 15 months shows development 
higher than linear (or percent incurred lower than linear interpolation would suggest): 

Medium Tailed Lines - Incurred Development Factors

Accident 
Year Age

From 
Quarterly 
"Actual" Linear Regression Weibull IVP Whole Expo

Expo 
whole Shortcut 1 Shortcut 2

Using factors interpolated from 9 months prior to date

2006 102 1.006        1.007        1.006        1.006        1.007        1.006        1.007        1.006        1.007        
2007 90 1.016        1.028        1.021        1.022        1.028        1.021        1.028        1.021        1.028        
2008 78 1.121        1.099        1.091        1.093        1.099        1.092        1.100        1.092        1.098        
2009 66 1.191        1.214        1.209        1.210        1.213        1.211        1.215        1.211        1.213        
2010 54 1.335        1.347        1.338        1.341        1.345        1.342        1.349        1.341        1.345        
2011 42 1.609        1.582        1.571        1.574        1.579        1.579        1.587        1.576        1.578        
2012 30 2.092        2.065        2.035        2.053        2.077        2.076        2.125        2.053        2.043        
2013 18 4.014        3.962        3.953        3.997        4.047        4.249        4.375        4.089        3.902        
2014 6 40.322       -           -           -           -           -           -           -           -           

Using factors interpolated from 6 months prior to date

2006 102 1.006        1.004        1.004        1.004        1.004        1.004        1.004        1.002        1.004        
2007 90 1.016        1.037        1.021        1.025        1.037        1.022        1.038        1.022        1.037        
2008 78 1.121        1.110        1.102        1.104        1.110        1.103        1.111        1.103        1.110        
2009 66 1.191        1.209        1.202        1.204        1.208        1.204        1.210        1.203        1.208        
2010 54 1.335        1.351        1.340        1.344        1.349        1.345        1.354        1.344        1.349        
2011 42 1.609        1.581        1.565        1.570        1.577        1.575        1.588        1.572        1.576        
2012 30 2.092        2.128        2.087        2.107        2.133        2.134        2.181        2.111        2.104        
2013 18 4.014        3.953        3.932        4.000        4.076        4.268        4.426        4.081        3.855        
2014 6 40.322       -           -           -           -           -           -           -           -           

Using factors interpolated from 3 months prior to date

2006 102 1.006        1.006        1.006        1.006        1.006        1.006        1.006        1.004        1.006        
2007 90 1.016        1.059        1.041        1.047        1.058        1.043        1.059        1.042        1.058        
2008 78 1.121        1.123        1.119        1.120        1.122        1.120        1.123        1.119        1.122        
2009 66 1.191        1.216        1.210        1.211        1.215        1.212        1.216        1.211        1.215        
2010 54 1.335        1.361        1.353        1.355        1.359        1.356        1.362        1.355        1.359        
2011 42 1.609        1.584        1.573        1.577        1.582        1.581        1.588        1.578        1.581        
2012 30 2.092        2.184        2.152        2.168        2.186        2.186        2.218        2.170        2.167        
2013 18 4.014        4.096        4.059        4.109        4.162        4.266        4.360        4.160        4.019        
2014 6 40.322       31.981       35.997       36.814       37.648       54.642       56.336       46.673       30.635       
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The actual data falls closer to linear.  On a paid basis, the actual data follow the curves but only to 
a limited degree: 
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The following is a table of paid weighted average results: 

 

 

6.2.2 The Errors 

The errors for all years on an incurred basis are fairly small except for the exponential curves 
which overestimate the liability: 

Medium Tailed Lines - Paid Development Factors

Accident 
Year Age

From 
Quarterly 
"Actual" Linear IVP Decay Weibull IVP

Expo 
Decay Expo Shortcut 1 Shortcut 2

Using factors interpolated from 9 months prior to date

2006 102 1.062        1.071        1.069        1.070        1.071        1.070        1.071        1.070        1.071        
2007 90 1.104        1.120        1.115        1.117        1.120        1.116        1.121        1.116        1.120        
2008 78 1.215        1.240        1.231        1.234        1.240        1.233        1.243        1.232        1.238        
2009 66 1.442        1.430        1.427        1.428        1.429        1.429        1.431        1.429        1.430        
2010 54 1.618        1.634        1.620        1.626        1.636        1.629        1.646        1.624        1.627        
2011 42 2.214        2.246        2.232        2.242        2.254        2.256        2.281        2.242        2.233        
2012 30 3.718        3.643        3.669        3.699        3.734        3.785        3.861        3.701        3.603        
2013 18 10.286       9.291        10.176       10.280       10.389       11.561       11.854       10.558       9.183        
2014 6 438.308     -           -           -           -           -           -           -           -           

Using factors interpolated from 6 months prior to date

2006 102 1.062        1.070        1.065        1.066        1.069        1.065        1.070        1.065        1.070        
2007 90 1.104        1.134        1.129        1.130        1.134        1.130        1.135        1.130        1.134        
2008 78 1.215        1.242        1.233        1.236        1.241        1.235        1.244        1.234        1.240        
2009 66 1.442        1.403        1.394        1.397        1.402        1.398        1.406        1.397        1.401        
2010 54 1.618        1.614        1.605        1.608        1.612        1.612        1.619        1.609        1.612        
2011 42 2.214        2.069        2.044        2.059        2.077        2.071        2.105        2.056        2.052        
2012 30 3.718        3.474        3.493        3.541        3.594        3.632        3.737        3.527        3.408        
2013 18 10.286       9.171        10.401       10.565       10.735       11.931       12.310       10.780       8.954        
2014 6 438.308     -           -           -           -           -           -           -           -           

Using factors interpolated from 3 months prior to date

2006 102 1.062        1.064        1.062        1.062        1.063        1.062        1.064        1.062        1.063        
2007 90 1.104        1.137        1.130        1.132        1.137        1.131        1.138        1.131        1.137        
2008 78 1.215        1.206        1.204        1.204        1.205        1.205        1.206        1.205        1.206        
2009 66 1.442        1.403        1.388        1.394        1.403        1.393        1.408        1.390        1.399        
2010 54 1.618        1.620        1.614        1.616        1.618        1.618        1.623        1.617        1.619        
2011 42 2.214        2.168        2.147        2.160        2.176        2.169        2.197        2.156        2.154        
2012 30 3.718        3.703        3.703        3.735        3.769        3.795        3.857        3.731        3.653        
2013 18 10.286       9.616        10.309       10.422       10.537       11.135       11.345       10.561       9.403        
2014 6 438.308     121.292     565.378     572.677     580.003     1,448.769  1,471.631  851.796     118.463     
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Note that the reason the errors are smaller when estimated from 9 months prior is because the 
latest year is not estimated in the 9 month prior (or 6 month prior) scenario due to data limitations 
and therefore errors are smaller than the 3 month prior scenario. 

Paid data shows a similar effect: 

 

Note that values that were extraordinarily high (greater than 50% error) are shown as blank so as 
not to distort the graph.  These types of large errors only occur with overestimation and in this case 
with the exponential methods. 

Graphs which isolate the latter years are included in Appendix A. 
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6.3 Results for Long Tailed Lines of Business 
 

The long tailed business had an average 12 month incurred development factor of approximately 
15.00.  Paid data was unavailable.  The pattern has a tail of 1% at 126 months.  It is mainly 
comprised of high layer property lines. 

6.3.1 The Factors 

The incurred factors based on weighted averages were as follows: 

 

Long Tailed Lines - Incurred Development Factors

Accident 
Year Age

From 
Quarterly 
"Actual" Linear IVP Decay Weibull IVP

Expo 
Decay Expo Shortcut 1 Shortcut 2

Using factors interpolated from 9 months prior to date

2006 105 1.117        1.112        1.109        1.110        1.112        1.110        1.112        1.110        1.112        
2007 93 1.203        1.196        1.189        1.191        1.196        1.191        1.198        1.190        1.195        
2008 81 1.359        1.346        1.342        1.343        1.345        1.343        1.347        1.343        1.345        
2009 69 1.522        1.506        1.500        1.502        1.505        1.503        1.509        1.502        1.504        
2010 57 1.773        1.767        1.759        1.762        1.767        1.766        1.775        1.763        1.764        
2011 45 2.305        2.276        2.264        2.273        2.285        2.286        2.309        2.273        2.265        
2012 33 3.679        3.532        3.531        3.549        3.569        3.605        3.648        3.560        3.507        
2013 21 7.146        6.874        6.928        6.960        6.995        7.307        7.391        7.118        6.826        
2014 9 32.831       -           -           -           -           -           -           -           -           

Using factors interpolated from 6 months prior to date

2006 105 1.117        1.110        1.107        1.108        1.110        1.108        1.110        1.108        1.110        
2007 93 1.203        1.205        1.194        1.198        1.205        1.196        1.207        1.195        1.203        
2008 81 1.359        1.350        1.344        1.346        1.349        1.346        1.352        1.346        1.349        
2009 69 1.522        1.526        1.518        1.521        1.526        1.523        1.530        1.521        1.524        
2010 57 1.773        1.797        1.786        1.790        1.796        1.795        1.805        1.791        1.792        
2011 45 2.305        2.336        2.318        2.330        2.345        2.346        2.374        2.329        2.320        
2012 33 3.679        3.615        3.610        3.634        3.662        3.703        3.757        3.647        3.578        
2013 21 7.146        6.923        6.996        7.042        7.092        7.430        7.533        7.212        6.846        
2014 9 32.831       28.282       33.502       33.905       34.318       53.458       54.753       43.627       27.802       

Using factors interpolated from 3 months prior to date

2006 105 1.117        1.108        1.105        1.106        1.108        1.105        1.109        1.105        1.108        
2007 93 1.203        1.198        1.192        1.194        1.197        1.193        1.199        1.193        1.197        
2008 81 1.359        1.334        1.328        1.330        1.334        1.330        1.336        1.329        1.333        
2009 69 1.522        1.510        1.504        1.507        1.510        1.508        1.513        1.506        1.509        
2010 57 1.773        1.764        1.756        1.759        1.763        1.762        1.768        1.759        1.761        
2011 45 2.305        2.290        2.275        2.283        2.293        2.293        2.310        2.283        2.280        
2012 33 3.679        3.635        3.630        3.654        3.679        3.701        3.746        3.655        3.599        
2013 21 7.146        7.036        7.089        7.126        7.166        7.373        7.443        7.231        6.968        
2014 9 32.831       30.369       33.421       33.700       33.981       40.888       41.407       37.789       29.838       
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 As seen below, the curve of percent reported between 3 and 15 months shows a reverse arc with 

actual results falling between this arc and the linear method: 

 

6.3.2 The Errors 

The graph of results shows that Shortcut 1 behaves closest to actual data: 
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6.4 Results for Very Long Tailed Lines of Business 
The very long tailed business had an average 12 month incurred development factor greater than 

20.00 and an average paid development factor nearing 90.00.  The age to age paid factors are around 
3% at 120 months.  This data set is mainly comprised of casualty lines.    

6.4.1 The Factors 

 The factors for weighted averages on an incurred basis were as follows: 

 

 

 

Very Long Tailed Lines - Incurred Development Factors

Accident 
Year Age

From 
Quarterly 
"Actual" Linear IVP Decay Weibull IVP

Expo 
Decay Expo Shortcut 1 Shortcut 2

Using factors interpolated from 9 months prior to date

2006 105 1.064        1.029        1.020        1.022        1.029        1.020        1.030        1.020        1.029        
2007 93 1.138        1.125        1.110        1.114        1.125        1.111        1.127        1.110        1.123        
2008 81 1.313        1.310        1.305        1.307        1.310        1.307        1.312        1.307        1.309        
2009 69 1.479        1.476        1.471        1.473        1.475        1.474        1.478        1.473        1.474        
2010 57 1.753        1.714        1.703        1.708        1.715        1.712        1.724        1.707        1.709        
2011 45 2.388        2.277        2.264        2.274        2.286        2.286        2.309        2.273        2.265        
2012 33 3.884        3.536        3.535        3.553        3.574        3.611        3.654        3.565        3.510        
2013 21 7.367        7.130        7.363        7.416        7.473        7.900        8.040        7.559        7.060        
2014 9 47.131       -           -           -           -           -           -           -           -           

Using factors interpolated from 6 months prior to date

2006 105 1.064        1.040        1.023        1.027        1.040        1.023        1.041        1.023        1.040        
2007 93 1.138        1.134        1.121        1.125        1.134        1.123        1.136        1.122        1.132        
2008 81 1.313        1.294        1.281        1.286        1.295        1.284        1.298        1.282        1.291        
2009 69 1.479        1.480        1.475        1.476        1.479        1.478        1.482        1.477        1.479        
2010 57 1.753        1.749        1.734        1.741        1.750        1.745        1.761        1.739        1.742        
2011 45 2.388        2.342        2.323        2.336        2.352        2.352        2.380        2.335        2.326        
2012 33 3.884        3.653        3.651        3.677        3.706        3.748        3.805        3.687        3.614        
2013 21 7.367        7.713        8.124        8.211        8.302        8.830        9.023        8.359        7.580        
2014 9 47.131       37.923       40.563       40.828       41.097       59.057       59.851       51.933       37.528       

Using factors interpolated from 3 months prior to date

2006 105 1.064        1.051        1.051        1.051        1.051        1.051        1.051        1.051        1.050        
2007 93 1.138        1.127        1.121        1.123        1.126        1.122        1.127        1.122        1.126        
2008 81 1.313        1.276        1.264        1.268        1.276        1.267        1.278        1.265        1.274        
2009 69 1.479        1.454        1.448        1.450        1.453        1.451        1.456        1.450        1.452        
2010 57 1.753        1.755        1.743        1.749        1.755        1.751        1.763        1.747        1.750        
2011 45 2.388        2.332        2.317        2.326        2.336        2.336        2.355        2.325        2.321        
2012 33 3.884        3.805        3.809        3.835        3.863        3.887        3.939        3.833        3.764        
2013 21 7.367        8.406        8.676        8.739        8.804        9.127        9.245        8.844        8.286        
2014 9 47.131       40.685       45.744       46.044       46.345       56.352       56.912       52.049       40.113       
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As seen below, the curve of percent reported between 3 and 15 months shows a reverse arc with 
actual results falling between this arc and the linear method: 

 

Paid Factors are as follows: 
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Accident 
Year Age

From 
Quarterly 
"Actual" Linear IVP Decay Weibull IVP

Expo 
Decay Expo Shortcut 1 Shortcut 2

Using factors interpolated from 9 months prior to date

2006 105 1.105        1.123        1.116        1.118        1.123        1.117        1.124        1.116        1.122        
2007 93 1.225        1.244        1.239        1.241        1.243        1.241        1.245        1.240        1.243        
2008 81 1.371        1.397        1.390        1.393        1.398        1.393        1.401        1.391        1.395        
2009 69 1.684        1.694        1.683        1.689        1.697        1.690        1.705        1.686        1.688        
2010 57 2.265        2.280        2.272        2.282        2.293        2.289        2.312        2.277        2.269        
2011 45 3.561        3.497        3.512        3.528        3.547        3.563        3.601        3.522        3.475        
2012 33 6.944        6.549        6.682        6.711        6.743        6.883        6.952        6.735        6.507        
2013 21 23.245       16.879       18.972       19.078       19.186       21.128       21.404       19.488       16.771       
2014 9 369.532     -           -           -           -           -           -           -           -           

Using factors interpolated from 6 months prior to date

2006 105 1.105        1.126        1.118        1.120        1.126        1.119        1.127        1.119        1.126        
2007 93 1.225        1.231        1.225        1.227        1.231        1.227        1.232        1.226        1.230        
2008 81 1.371        1.386        1.376        1.380        1.386        1.380        1.390        1.378        1.383        
2009 69 1.684        1.670        1.656        1.664        1.673        1.665        1.682        1.660        1.664        
2010 57 2.265        2.260        2.246        2.261        2.280        2.269        2.304        2.250        2.241        
2011 45 3.561        3.489        3.496        3.516        3.538        3.554        3.597        3.511        3.460        
2012 33 6.944        6.343        6.512        6.556        6.602        6.752        6.845        6.570        6.273        
2013 21 23.245       17.116       20.421       20.595       20.772       23.056       23.445       20.948       16.886       
2014 9 369.532     139.914     217.088     217.822     218.561     411.127     413.753     315.033     139.326     

Using factors interpolated from 3 months prior to date

2006 105 1.105        1.108        1.095        1.099        1.108        1.096        1.109        1.096        1.107        
2007 93 1.225        1.229        1.221        1.224        1.228        1.223        1.230        1.222        1.227        
2008 81 1.371        1.372        1.366        1.368        1.371        1.368        1.373        1.368        1.370        
2009 69 1.684        1.664        1.651        1.658        1.666        1.658        1.672        1.654        1.658        
2010 57 2.265        2.272        2.259        2.271        2.284        2.276        2.300        2.263        2.258        
2011 45 3.561        3.496        3.499        3.516        3.535        3.542        3.576        3.509        3.470        
2012 33 6.944        6.612        6.752        6.790        6.829        6.927        6.999        6.789        6.542        
2013 21 23.245       19.497       22.361       22.504       22.649       24.103       24.374       22.717       19.208       
2014 9 369.532     157.185     272.604     273.555     274.508     382.104     384.055     326.841     155.917     
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6.4.2 The Errors 

The error pattern is similar to long tailed lines for incurred losses: 

 

Paid results are more erratic particularly for simple averages, which do not seem to perform well 
with interpolation: 
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A graph of the latest accident year shows that only Shortcut 1 performs reasonably well in terms 
of being close to zero error and not underestimating amounts: 

6.5 The Impact of using Exposure Based Methods 
It is well known that many actuaries use exposure based methods, such as Bornhuetter Ferguson 

(BF) in the more recent accident years.  To the extent that this is true, the magnitude of errors might 
be less significant.  To test this effect, I used an all year initial expected loss ratio for my data based 
on a Cape Cod calculation and tested the differences between using this method with the quarterly 
data versus using it with the interpolated annual data.  Note that I used the same initial expected loss 
ratio for both quarterly and annual data in order to isolate the reserves changes that would be caused 
by interpolation alone.  It is assumed that the practitioner has a reasonable initial expected loss ratio 
estimate that does not rely on interpolation. 

As can be expected the use of the BF method has very little impact on the shorted tailed and 
medium tailed lines of business.  Percent errors decreased very little and sometimes even increased 
for all years since the latest year had the most impact.  I tested the BF on the very long tailed lines of 
business since there was no exposure data for the long tailed line.  The BF method reduced the 
errors to nearly zero for both paid and incurred data: 
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7. TESTING OF METHODS AND RESULTS FOR EXPTRAPOLATION  

Using the annual triangles as described above, I extrapolated factors from the 6, 9 and 12 month 
triangles using the earliest CDF.  Each one was used to estimate earlier quarters such that the 12 
month factor was used to estimate a 3, 6 and 9 month factors and so forth. 

I applied the interpolation methods as described in Section 4.  Then I projected the quarterly 
results by accident year using the most recent data and quarterly factors.  Each result was then 
compared to the extrapolated estimate.   The errors were also calculated on a paid and incurred basis 
and for all three averages.   

Error was measured in terms of IBNR for the incurred triangles and total reserves for the paid 
triangles.  The percent error was calculated as a percent of total IBNR or reserve.  Therefore percent 
error for paid losses would equal: 

[Ultimate losses derived from Extrapolated method – Ultimate losses derived from quarterly 
triangle factors] / [Ultimate losses derived from quarterly triangle factors – Paid losses at latest 
evaluation]. 
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7.1 Results for Short Tailed Lines of Business 
Results were extremely volatile, particularly for the Linear method and Method 3 (which tends 

toward linear).  Note in the graph below “12-3” indicates a 3 month factor estimated from a 12 
month factor and “6-3” indicates a 3 month factor estimated from a 6 month factor and so on. 

 

The 12-9 factors in general tend to be more accurate across all methods.  Paid results are more 
volatile (results over +500% not shown) but once again the 12-9 gives better results than other 
maturities:  
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The overall factors for weighted averages looked as follows:  

 

Using the BF approach as described in Section 6, incurred and paid results become much more 
stable with Methods 1 and 2 having error close to zero: 
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Short Tailed Lines
Paid Development Factors Incurred Development Factors

Accident 
Month

From 
Quarterly 
"Actual" Linear Method 1 Method 2 Method 3

From 
Quarterly 
"Actual" Linear Method 1 Method 2 Method 3

Using factors interpolated from 12 months

9 2.163        2.508        2.168        2.290        2.143        1.497        1.931        1.486        1.499        1.726        
6 3.523        5.205        3.321        4.827        3.588        2.319        4.314        2.264        2.398        3.470        
3 8.458        19.204       6.432        127.700     9.753        4.975        17.168       4.615        6.930        12.642       

Using factors interpolated from 9 months

6 3.523        4.368        5.065        4.261        3.588        2.319        3.342        2.448        2.386        2.966        
3 8.458        15.684       11.087       62.655       9.689        4.975        13.310       5.138        6.390        10.550       

Using factors interpolated from 6 months

3 8.458        12.008       86.524       23.925       8.977        4.975        9.179        6.562        5.661        7.614        
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7.2 Results for Medium Tailed Lines of Business 
Results are more volatile on paid and incurred bases as the development factors increase.  In this 

case the Linear method and Method 3 perform better but underestimate the liability. 
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Once again, the 12-9 factors generally tend to be more accurate across all methods.  

The overall factors looked as follows: 

 

Using the BF approach as described in Section 6, incurred and paid results become much more 
stable with all methods having error close to zero: 

 

 

-1.50%

-1.00%

-0.50%

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

12-3 12-6 12-9 9-3 9-6 6-3

Medium Tail Lines - <12 Months BF Method-
Percent Error In IBNR

Linear

Method 1

Method 2

Method 3
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Paid Development Factors Incurred Development Factors

Accident 
Month

From 
Quarterly 
"Actual" Linear Method 1 Method 2 Method 3

From 
Quarterly 
"Actual" Linear Method 1 Method 2 Method 3

Using factors interpolated from 12 months

9 67.597       48.971       84.143            110.923          48.746       13.753       12.768       15.676       18.475       12.536       
6 438.308     110.185     289.149          1,517.584        109.175     40.322       28.727       38.493       103.157     27.690       
3 10,674.545 440.739     1,324.852        2,303,061.379  434.693     196.797     114.909     126.029     10,641.442 108.722     

Using factors interpolated from 9 months

6 438.308     152.094     1,388.929        721.963          151.591     40.322       30.944       97.749       66.253       30.429       
3 10,674.545 608.375     10,281.108      521,230.571    604.357     196.797     123.774     425.557     4,389.411  119.684     

Using factors interpolated from 6 months

3 10,674.545 1,753.233  2,844,029.625  192,114.122    1,751.231  196.797     161.289     7,300.351  1,625.874  159.263     
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7.3 Results for Long Tailed Lines of Business 

Results are very similar to medium tailed lines of business with a higher degree of error.   
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The factors for weighted averages looked as follows: 

 

7.4 Results for Very Long Tailed Lines of Business 
Results are very similar to medium and long tailed lines of business with a higher degree of error.  

In fact, the paid graph has very few points.  All Graphs are shown in Appendix A. 
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Incurred Development Factors

Accident 
Month

From 
Quarterly 
"Actual" Linear Method 1 Method 2 Method 3

Using factors interpolated from 12 months

9 32.831       27.002       39.980       50.154            26.776       
6 94.059       60.756       118.391     461.404          59.739       
3 590.278     243.022     467.445     212,894.074    236.937     

Using factors interpolated from 9 months

6 94.059       73.869       416.804     244.366          73.363       
3 590.278     295.476     2,425.167  59,714.879      291.439     

Using factors interpolated from 6 months

3 590.278     376.236     60,671.471 8,847.073        374.225     
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Factors for weighted averages were as follows: 

 

Once again, BF methods render the errors in development factors immaterial: 
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Very Long Tailed Lines
Paid Development Factors Incurred Development Factors

Accident 
Month

From 
Quarterly 
"Actual" Linear Method 1 Method 2 Method 3

From 
Quarterly 
"Actual" Linear Method 1 Method 2 Method 3

Using factors interpolated from 12 months

9 369.532     159.124     367.080            533.846              158.901     47.131       37.181       59.634              76.829              36.955       
6 1,165.974  358.029     1,693.623         16,023.066         357.026     131.394     83.657       191.290            874.810            82.645       
3 7,125.067  1,432.115  10,418.643        256,738,649.772  1,426.101  502.602     334.628     818.151            765,292.557      328.566     

Using factors interpolated from 9 months

6 1,165.974  831.447     23,562.370        9,227.840           830.947     131.394     106.045     761.457            420.324            105.541     
3 7,125.067  3,325.789  307,246.366      85,153,035.921   3,321.785  502.602     424.180     4,998.025         176,671.942      420.155     

Using factors interpolated from 6 months

3 7,125.067  4,663.895  32,825,164.845  1,359,494.738     4,661.894  502.602     525.578     139,935.418      17,264.505        523.570     
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3Q 2014 4Q 2014  

Accident Year

Maturity 
in 

Months

Paid CDF 
2nd 

Quarter Maturity
Interpolated 
Paid CDF

Incremental 
Percent 

Paid Maturity
Interpolated 
Paid CDF

Incremental 
Percent 

Paid
(1) (2) (3) (4) (5) (6) (7) (8)

1/(4) - 1/(2) 1/(7) - 1/(4)

2004 126 1.001       129 1.000       0.001       132 1.000       -          
2005 114 1.003       117 1.002       0.001       120 1.002       0.001       
2006 102 1.008       105 1.006       0.002       108 1.005       0.001       
2007 90 1.018       93 1.015       0.003       96 1.012       0.003       
2008 78 1.038       81 1.032       0.006       84 1.026       0.005       
2009 66 1.064       69 1.057       0.007       72 1.050       0.006       
2010 54 1.108       57 1.095       0.011       60 1.083       0.010       
2011 42 1.191       45 1.165       0.019       48 1.143       0.017       
2012 30 1.334       33 1.290       0.026       36 1.252       0.024       
2013 18 2.068       21 1.780       0.078       24 1.580       0.071       
2014 6 2.843       9 2.596       0.033       12 2.390       0.033       

2014 Full Year 6 5.686       9 3.462       0.113       2.390       0.130       

8. SEASONAL ADJUSTMENT METHOD  

This section deals with the situation where the actuary has specific knowledge of company 
practices which may change the view of how interpolation should occur.  For this example we will 
assume that the company has unusually high payments during the fourth quarter of every year due to 
extra efforts to close claims in that quarter.  To start we will assume that the company knows that 
payments are 50% higher in Q4 than they would be without such efforts.  An alternative assumption 
will be addressed following the main scenario. 

Any of our interpolation methods can be used and adapted for this situation.  In this example, I 
use Shortcut 1.  I start by interpolating factors to each quarter as usual, but I extend the calculations 
to each quarter of the year even though I am most interested in the CDF at fourth quarter after the 
unusually high payments since I don’t want ultimate losses to be overstated or fluctuate wildly from 
quarter to quarter. 

Using the selected interpolation method I set up a table (more detail given in Appendix B):  

 

For the next step, I calculate the percentage of total yearly payments assumed paid in each 
quarter by the selected interpolation method.  I use the relative values from columns (5), (8), (11) 
and (14) above. 
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I then “restate” these percentages by assuming that the 4th quarter will be 50% higher than what 
is shown above.  The other three quarters are renormalized to the new remainder. For example 

Column 15 would be restated as follows. 

(15)/ [(15)+(17)+(18)]*[1-(16)*1.5] 

The restated percent paid for Q4 would be simply: 

(16) *1.5. 

Finally, the restated CDF for Q4 is given as: 

Percent of Year Paid in  

Accident Year  3Q2014 4Q 2014 1Q 2015 2Q 2015 Total
(15) (16) (17) (18) (19)

2004
2005 36.0% 27.4% 20.8% 15.8% 100.0%
2006 34.7% 27.2% 21.3% 16.7% 100.0%
2007 32.9% 27.0% 22.1% 18.1% 100.0%
2008 32.1% 26.8% 22.4% 18.7% 100.0%
2009 29.6% 26.3% 23.3% 20.7% 100.0%
2010 29.4% 26.3% 23.4% 20.9% 100.0%
2011 29.4% 26.3% 23.4% 20.8% 100.0%
2012 28.7% 26.1% 23.7% 21.5% 100.0%
2013 29.4% 26.7% 23.6% 20.3% 100.0%
2014 25.3% 25.2% 24.9% 24.5% 100.0%

1Q 2015 2Q 2015     

Accident Year Maturity
Interpolated 
Paid CDF

Incremental 
Percent 

Paid Maturity
Interpolated 
Paid CDF

Incremental 
Percent Paid

(9) (10) (11) (12) (13) (14)

1/(10) - 1/(7) 1/(13) - 1/(10)

2004 135 1.000       -          138 1.000       -            
2005 123 1.001       0.000       126 1.001       0.000        
2006 111 1.004       0.001       114 1.003       0.001        
2007 99 1.010       0.002       102 1.008       0.002        
2008 87 1.022       0.004       90 1.018       0.004        
2009 75 1.044       0.005       78 1.038       0.005        
2010 63 1.073       0.009       66 1.064       0.008        
2011 51 1.124       0.015       54 1.108       0.013        
2012 39 1.219       0.021       42 1.191       0.019        
2013 27 1.438       0.063       30 1.334       0.054        
2014 15 2.216       0.033       18 2.068       0.032        

2014 Full Year 2.216       0.033       2.068       0.032        
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1/[Percent paid at 2Q 2014 +sum(restated percent in 3Q and 4Q 2014)*[expected paid for 
full calendar year]] 

This method can be adapted for other seasonal situations using paid or incurred losses.  In 
addition, in the situation where the percent increase is a rough estimate, the company’s own Q4 data 
can be used to calibrate a percentage that fits.  More detail is provided in Appendix B. 

However, if the knowledge about fourth quarter payments reflects a percentage higher than 
the payments in other quarters as opposed to simply a percentage higher than it would be otherwise, the 
last restated percent paid for Q4 should be given as: 

(16)/[(16)*1.5 + 1 – (16)] x (1.5) 

In reality, the percentage increase and the choice of which assumption is more appropriate will be 
very hard to ascertain.  However, using actual emergence to calibrate the adjustment over time in the 
absence of full quarterly triangles should add more value to the interpolated factors. 

 

9. CONCLUSIONS 

The appropriateness and accuracy of various interpolation and extrapolation methods varies 
greatly with the development characteristics of the line of business.  Sophisticated methods don’t 
seem to provide much advantage over simple shortcuts.  For short tailed lines or lines with 
development factors less than 2.00 at 12 months, Shortcut 2 seems to perform relatively well, 
whereas Shortcut 1 seems to perform better on paid data or once development is greater than 2.00 
at 12 months.  Shortcut 1 also seems to perform well once the second year of development is 
reached.  Exponential curves seem to regularly overstate reserves by large amounts. 

Weighted average development factors also seem to work much better and are not prone to 
unusual swings which may distort interpolation methods.  However, in practice development factors 
are often selected judgmentally so this may be hard to follow when interpolating. 

Extrapolated values, especially for long tailed lines, are predictability overstated and distorted.  
However the BF method seems to mitigate this risk almost entirely.  For the Development method, 
Methods 1 and 2 seem to perform the best without understating reserves on shorter tailed lines 
whereas Method 3 performs well on longer tailed lines. 

Since the data used is not exhaustive but more a sampling of typical quarterly triangles, the 
practitioner can use this paper to decide how each of these formulae are applicable to the underlying 
characteristics of individual company data.  
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The graphs in the body of the paper as well as some additional graphs are included in this 
appendix. 
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Short Tail Line Paid Graphs Appendix A
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Medium Tail Line Incurred Graphs Appendix A
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Medium Tail Line Paid Graphs Appendix A
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Long Tail Line Incurred Graphs Appendix A
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Very Long Tail Line Incurred Graphs Appendix A

Sheet 6

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

3 6 9 12 15

Very Long Tailed Line Percent Incurred 3 - 15 Months

Linear

IVP Decay

Weibull

IVP

Expo Decay

Expo

Shortcut 1

Shortcut 2

Actual

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

12 15 18 21 24

Very Long Tailed Line Percent Incurred 12 - 24 Months

Linear

IVP Decay

Weibull

IVP

Expo Decay

Expo

Shortcut 1

Shortcut 2

Actual

Interpolation Hacks and their Efficacy

Casualty Actuarial Society E-Forum, Fall 2015 47
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Medium Tail Lines Incurred Error Appendix A
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Long Tail Lines Incurred Error Appendix A
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3Q 2014 4Q 2014 1Q 2015 2Q 2015

Accident Year
Maturity

in Months

Paid CDF
2nd

Quarter Maturity
Interpolated
Paid CDF

Incremental
Percent Paid Maturity

Interpolated
Paid CDF

Incremental
Percent Paid Maturity

Interpolated
Paid CDF

Incremental
Percent Paid Maturity

Interpolated
Paid CDF

Incremental
Percent Paid

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

1/(4) - 1/(2) 1/(7) - 1/(4) 1/(10) - 1/(7) 1/(13) - 1/(10)

2004 126 1.001 129 1.000 0.001 132 1.000 - 135 1.000 - 138 1.000 -

2005 114 1.003 117 1.002 0.001 120 1.002 0.001 123 1.001 0.000 126 1.001 0.000

2006 102 1.008 105 1.006 0.002 108 1.005 0.001 111 1.004 0.001 114 1.003 0.001

2007 90 1.018 93 1.015 0.003 96 1.012 0.003 99 1.010 0.002 102 1.008 0.002

2008 78 1.038 81 1.032 0.006 84 1.026 0.005 87 1.022 0.004 90 1.018 0.004

2009 66 1.064 69 1.057 0.007 72 1.050 0.006 75 1.044 0.005 78 1.038 0.005

2010 54 1.108 57 1.095 0.011 60 1.083 0.010 63 1.073 0.009 66 1.064 0.008

2011 42 1.191 45 1.165 0.019 48 1.143 0.017 51 1.124 0.015 54 1.108 0.013

2012 30 1.334 33 1.290 0.026 36 1.252 0.024 39 1.219 0.021 42 1.191 0.019

2013 18 2.068 21 1.780 0.078 24 1.580 0.071 27 1.438 0.063 30 1.334 0.054

2014 6 2.843 9 2.596 0.033 12 2.390 0.033 15 2.216 0.033 18 2.068 0.032

2014 Full Year 6 5.686 9 3.462 0.113 2.390 0.130 2.216 0.033 2.068 0.032
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(a) 4th quarter increase factor 50%

Percent of Year Paid in Restated Percent Restated Pattern

Accident Year 3Q2014 4Q 2014 1Q 2015 2Q 2015 Total 3Q2014 4Q 2014 1Q 2015 2Q 2015 3Q2014 4Q 2014 1Q 2015 2Q 2015

(15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26) (27)

2004

2005 36.0% 27.4% 20.8% 15.8% 100.0% 29.2% 41.1% 16.9% 12.8% 1.002 1.002 1.001 1.001

2006 34.7% 27.2% 21.3% 16.7% 100.0% 28.2% 40.8% 17.3% 13.6% 1.007 1.005 1.004 1.003

2007 32.9% 27.0% 22.1% 18.1% 100.0% 26.8% 40.4% 18.0% 14.7% 1.015 1.011 1.009 1.008

2008 32.1% 26.8% 22.4% 18.7% 100.0% 26.2% 40.2% 18.3% 15.2% 1.033 1.025 1.021 1.018

2009 29.6% 26.3% 23.3% 20.7% 100.0% 24.3% 39.5% 19.2% 17.0% 1.058 1.048 1.043 1.038

2010 29.4% 26.3% 23.4% 20.9% 100.0% 24.2% 39.4% 19.3% 17.2% 1.097 1.080 1.072 1.064

2011 29.4% 26.3% 23.4% 20.8% 100.0% 24.2% 39.4% 19.2% 17.1% 1.170 1.137 1.121 1.108

2012 28.7% 26.1% 23.7% 21.5% 100.0% 23.6% 39.2% 19.5% 17.7% 1.297 1.241 1.214 1.191

2013 29.4% 26.7% 23.6% 20.3% 100.0% 24.1% 40.0% 19.3% 16.6% 1.826 1.529 1.418 1.334

2014 25.3% 25.2% 24.9% 24.5% 100.0% 21.1% 37.9% 20.7% 20.4% 2.635 2.329 2.189 2.068

2014 Full Year 3.513 2.329 2.189 2.068

Notes:

(15) (5)/ [(5)+(8)+(11)+(14)] (24) 1/[1/(2)+(20)*{1/Prior(2)-1/(2}]

(16) (8)/ [(5)+(8)+(11)+(14)] (25) 1/[1/(2)+sum(20:21)*{1/Prior(2)-1/(2}]

(17) (11)/ [(5)+(8)+(11)+(14)] (26) 1/[1/(2)+sum(20:22)*{1/Prior(2)-1/(2}]

(18) (14)/ [(5)+(8)+(11)+(14)] (27) 1/[1/(2)+sum(20:23)*{1/Prior(2)-1/(2}]

(20) (15)/ [(15)+(17)+(18)]*[1-(21)]

(21) (16)/ [1 + (a)]

(22) (17)/ [(15)+(17)+(18)]*[1-(21)]

(23) (17)/ [(15)+(17)+(18)]*[1-(21)]
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Abstract 
 
While traditional actuarial reserving methods assume that development patterns are stable over time, changes are 
often observed in practice.  This paper explores the reasons for these changes and surveys the most relevant 
literature on methods that address the changes in development patterns.  Finally, the paper suggests possible 
research for further improvements in reserving techniques. 
 
Keywords.  Loss Reserving, Interaction Terms 
________________________________________________________________________ 
1.  INTRODUCTION 

1.1 Research Context 
Common reserving methods, such as Chain-Ladder and Bornhuetter-Ferguson, rely upon an 

assumption that loss development patterns are stable over time.  That is, loss development patterns 
do not change from one accident year1 to the next.  In practice, however, reserving actuaries observe 
changes in these patterns and make adjustments in the use of their methods to account for the 
changes. 

When the loss data is summarized in a triangular format, it can be analyzed from three directions: 
accident year (AY), development year (DY), and payment/calendar year (CY).  Most reserving 
methodologies assume that the AY and DY directions are independent.  However, many factors can 
create dependencies between the three directions and violate this assumption.  In the actuarial 
literature, these dependencies are sometimes referred to as “CY effects”, reflecting the fact that 
frequently they are caused by CY trends or shocks.  A more general way to describe these effects is 
to say that there is some interaction between the AY and DY variables, or that there is some other 
confounding variable that we have not accounted for. The main danger from ignoring these changes 
is “omitted variable bias” in our estimated reserves. 

Recently, this danger has been highlighted empirically through the test of common reserving 
methods on a sample of actual triangles.  The Casualty Actuarial Society (CAS) has made available a 
database of loss triangles from Schedule P to test common reserving methods.  These methods were 
applied mechanically, generally using all-year averages to select patterns.  The results showed some 

                                                           
1 The discussions and techniques presented in this paper can be easily applied to a policy/underwriting year triangle.        
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systematic biases in the estimates, confirming in many cases, that patterns were not unchanged over 
even a ten year period. 

Practicing reserving actuaries have always been aware of this phenomenon, and would not naively 
apply an all-year weighted average without looking for changes in the pattern.  Various practical 
approaches are used when changing patterns are observed.  The simplest approach is to base the 
selected pattern only on the latest diagonals, ignoring the upper left portion of the triangle. This 
method is clearly not the optimal option, but it is an easy solution. Other practical techniques have 
been created, which generally try to adjust the historical data such that the triangle of adjusted losses 
will have consistent patterns by year and therefore allow the analyst to use more diagonals or even 
the whole triangle.   

This call paper will survey the actuarial literature for the methods that address AY/DY 
interactions and will give a brief description of each of these techniques, including some numerical 
examples.  The purpose, however, is to communicate only the major concepts.  The relevant papers 
will be referenced so that the interested reader can find the specific calculations needed to 
implement the techniques.  There are also more advanced statistical models which will be described 
in much less depth.  

All of the methods presented have some limitations that will be discussed in this survey. A 
common theme is that the methods generally assume that there is a single cause for the changing 
development pattern, and that an adjustment to the triangle can be made that will make the patterns 
consistent over time “all else being equal.”  The difficulty is that often multiple types of changes 
have taken place over the experience history, and the practical methods may not satisfactorily handle 
changes from multiple causes. 

1.2 Objective 
The purpose of the present paper is to explore the reasons for the changes in development 

patterns, survey some of the relevant literature on methods that address the changes in development 
patterns, and suggest future research. 

1.3 Outline 
The remainder of the paper proceeds as follows. 

Section 2 will discuss the basic reasons as to why loss development patterns are different from 
one year to the next. 



Accident Year / Development Year Interactions 

Casualty Actuarial Society E-Forum, Fall 2015  3 

Section 3 will provide some diagnostics for evaluating whether or not a development pattern is 
changing over time. 

Section 4 will survey the actuarial literature for the most common methods to account for 
changing patterns. 

Section 5 will present opportunities for future research for practical and advanced methods.  

Section 6 will present our conclusions. 

 

2.  BACKGROUND  

Many factors can cause the loss development patterns to change from one accident year to the 
next.  They can be internal (e.g., shift in the mix of business, change in claim settlements procedures) 
or external (e.g., law changes, inflation) to the company. They can also occur alone or 
simultaneously, making the identification of the real cause of the change more challenging.   

2.1 Internal Changes Impacting the Patterns 

Internal changes impacting the loss development patterns often relate to changes in the 
company’s business and processes that directly or indirectly impact the loss data.   

The change in the mix of business, for example, can manifest itself as a change in the 
geographical distribution, frequency or severity level of the claims, the retention limits, the 
deductible levels and others.  For reinsurance companies, a change in the mix of business can come 
from a change in virtually every clause of the reinsurance contract: program type (excess vs. quota 
share), quota share percentage, attachment points, excess retention and limits, special features 
(corridors, caps), coverage of expenses, statute of limitation, and others.  The type of marketing 
(direct vs. broker) may cause a shift from regional accounts, that are dominant when direct 
marketing is used, to national accounts, which rely more on brokers. Consequently, the actuary may 
observe a change in attachment points, limits and reporting lags.  Additionally, changes in 
underwriting guidance can shift the focus from a profit seeking portfolio to a growth strategy, from 
small to large risks, or simply to a new type of risk with different development characteristics.   

Changes in a company’s procedures are also a major source for pattern distortion.  The change 
can be related to the way the initial case reserves are established or the way claims are settled.  For 
example, the settlement of claims can be impacted by a desire to fight claims, a change in guideline 
on whether to prioritize large claims or small claims, or other factors that cause a speed up or a delay 
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in claim payments or reserve re-evaluation.  A period of time with an understaffed claim department 
may create artificial changes in paid and reported loss development patterns.  Expense related 
changes impacting the patterns can come from a simple change in the definition of allocated loss 
adjustment expenses, a shift from internal handling of claims to a Third Party Administrator (TPA), 
or a change in the TPA.  This also creates opportunities for errors and delays in the claim 
processing.   

Commutations can create one of the most significant pattern distortions for Schedule P loss 
triangles.  In a typical commutation, the reinsurer transfers its current and future liability from 
particular ceded contracts back to the original insurer, along with an agreed upon payment.  The 
reinsurer’s loss triangles will no longer show any development for losses related to these commuted 
contracts.  Any related reserves will be taken down and the final lump sum (or periodic payments) of 
the commutation “price” will be recorded as a paid loss.  As a result, the ceding company will now 
start recording the reporting, payment, and development of these losses.  Actuaries usually restate 
the historical loss triangles so that such transactions do not affect the development patterns.  
However, many industry studies and comparisons are done using Schedule P data, which is not 
restated for commutations.  Thus, extra care must be used when applying reserving methods to 
Schedule P data.   

Missing or incomplete loss data is a common issue for insurance and reinsurance companies.  
Whether due to a switch in data processing systems, a desire to start organizing the data differently 
(example: distinguish the medical and indemnity piece of a workers’ compensation claim), or a 
significant delay in claim reporting, the missing or incomplete loss data compromise the reliance on 
historical patterns.  In that case, actuaries usually exclude parts of the triangle from the analysis or try 
to find alternative methods to overcome this problem.     

2.2 External Changes Impacting the Patterns 

There are several external changes affecting the loss development patterns. One of them is related 
to changes in law and more specifically tort reforms.  As discussed by Kerin and Israel (1998), most 
often, tort reforms limit the amount of damages that can be paid in total, restrict the conditions 
under which a damage is paid, modify the rule of evidence and change the litigation behavior.  Their 
impact on loss payments and reserves is not easily predicted and it is also difficult to restate the 
historical data when significant changes occur.  Examples of such reforms include no fault repeal in 
auto liability, caps in damage awards in medical malpractice, revised interpretation of coverage 
provisions and changes in workers compensation benefit laws. 
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 Another major external factor impacting the development pattern is the change in inflation.  
Payments are impacted by an increase in the cost of goods and services, medical costs, attorneys’ 
fees and jury awards.  Other economic and social influences may also distort the patterns.  Examples 
include the increased workers compensation claim frequency after the 2007-2009 recession period 
and the reduced delays in claim reporting due to new technology.   

Knowing the variety of factors that can create pattern distortions, the actuary’s goal is 1) to 
explore the loss triangle data and identify if such distortions exist; 2) to identify what caused them; 
and 3) to find the appropriate reserving method to overcome these distortions.  The following 
section provides a discussion of practical techniques that can help the actuary detect and analyze 
changes in loss development patterns.   

 

3.  LOSS DEVELOPMENT PATTERN DIAGNOSTICS 

3.1  Examples of Practical Diagnostic Techniques 
The first step in the identification of any change in the AY development pattern consists of an 

analysis of the triangular data.  The analysis can start with a review of ratios of available loss data.   

The changes in patterns can be detected directly in the loss development factor (LDF) triangle.  A 
review of the incremental paid loss, reported loss or claim count triangles may also be helpful in 
identifying the effects of changes in business mix, missing data and others forces.  The actuary can 
also look at ratio diagnostics.  Cicci, Banerjee, and Jha (2011) and Friedland (2010) list the following 
examples of diagnostic tests:  

• Paid loss to reported loss ratios 

• Paid loss to on-level earned premium (or other on-leveled exposure measure) 

• Reported loss to on-level earned premium (or other on-leveled exposure measure) 

• Reported loss to reported counts (reported severity) 

• Paid loss to closed with payment counts (paid severity) 

• Case reserve to open counts (average case outstanding) 

• Closed with payment counts to reported counts ratios 

• Closed without payment counts to reported counts ratios 
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• Open counts to reported counts ratios 

The ratio diagnostics are useful in identifying any of the pattern shifts discussed earlier.  For 
example, the average case outstanding and paid loss to reported loss ratios could indicate changes in 
case reserve adequacy; changes in settlement rate could be revealed by any ratio involving paid losses 
and claim counts or the paid loss to reported loss ratio; other changes could be indicated by the 
closed to reported claim counts.  As noted by Friedland (2010), when the diagnostic is a ratio, a 
signal for a change in the pattern can come from the numerator or from the denominator and it may 
not always be clear what is causing it.  Also, a lack of a signal could be due to offsetting changes in 
the numerator and the denominator.   

Here is an example of paid loss to reported loss ratios indicating a change in the most recent 
diagonals:   

Table 1: Example for Ratio Diagnostics 

 

 

This example was constructed so that the two most recent diagonals show lower paid loss to 
reported loss ratios compared to prior diagonals.  However, the reason for the shift is different for 
each diagonal.  CY 8 was impacted by an increase in reported loss (i.e. increase in the denominator 
of the ratio diagnostic) that could be an indication of a case reserve strengthening.  CY 9 

AY 12 24 36 48 60
1 0.33        0.67        0.91        0.98        1.00        
2 0.33        0.67        0.91        0.98        1.00        
3 0.33        0.67        0.91        0.98        1.00        
4 0.33        0.67        0.91        0.98        0.95        
5 0.33        0.67        0.91        0.94        0.95        
6 0.33        0.67        0.80        0.94        
7 0.33        0.60        0.80        
8 0.27        0.60        
9 0.27        

Paid Loss to Reported Loss Ratios

AY 12 24 36 48 60 AY 12 24 36 48 60
1 159 413 677 775 791 1 477 620 744 791 791
2 154 401 656 778 793 2 462 601 721 793 793
3 145 389 615 769 785 3 434 584 677 785 785
4 151 394 644 755 788 4 454 591 709 770 830
5 146 399 620 762 770 5 437 598 682 811 811
6 161 411 626 739 6 482 617 783 786
7 158 412 556 7 473 687 695
8 150 367 8 556 612
9 113 9 420

Paid Loss Triangle Reported Loss Triangle 
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experienced a decrease in payments (i.e. decrease in the numerator of the ratio diagnostic) that could 
be an indication of a slowdown in payments.  In cases like this, a review of several ratio diagnostics 
can help isolate the effect of simultaneous changes and will provide more direction in identifying the 
real cause for the pattern instability. 

3.2  Heatmaps 
A practical tool for identifying patterns in any type of data is the heatmap, which is just a visual 

representation of the data, where the values are emphasized with colors.  Its purpose is to reveal 
patterns or clusters that may not be visible without additional analysis.  For example, a heatmap may 
be very helpful in the analysis of a large triangle with more than 20 accident and development 
periods, where changes in patterns may be difficult to spot through visual inspection.  Heatmaps are 
convenient because they are easily created in an excel spreadsheet using conditional formatting.   

The tables below provide examples of heatmaps.  Let’s take a look again at the paid and reported 
loss triangles from Table 1.  Even without calculating the paid loss to reported loss ratio diagnostic, 
it is clear that both loss triangles experienced some changes.  The paid triangle has a very light 
colored last diagonal indicating lower payments and the reported triangle has a bright colored 
diagonal for CY 8.     

Table 2: Heatmaps of Paid and Reported Triangles 

 

AY 12 24 36 48 60
1 0.33 0.67 0.91 0.98 1.00
2 0.33 0.67 0.91 0.98 1.00
3 0.33 0.67 0.91 0.98 1.00
4 0.33 0.67 0.91 0.98 0.95
5 0.33 0.67 0.91 0.94 0.95
6 0.33 0.67 0.80 0.94
7 0.33 0.60 0.80
8 0.27 0.60
9 0.27

Paid Loss to Reported Loss Ratios
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When starting an analysis, the actuary may not know in advance if there will be any data 
distortions.  A heatmap can save time and effort by immediately focusing the actuary’s attention to 
the problem area.  Table 3 first shows a paid loss development factors triangle with changing 
patterns and then shows the heatmap of the same triangle.  The heatmap immediately identifies that 
in CY 8, all AYs have larger payments when compared to other calendar years.  This could be due to 
a speed up of payments or payments on larger number of claims that were reported with a delay.  
Also, the heatmap shows that the latest diagonal exhibits a much lower loss development. 

   
  Table 3: Heatmap of a Loss Development Triangle 

  
 
 

AY 12 24 36 48 60 AY 12 24 36 48 60
1 159 413 677 775 791 1 477 620 744 791 791
2 154 401 656 778 793 2 462 601 721 793 793
3 145 389 615 769 785 3 434 584 677 785 785
4 151 394 644 755 788 4 454 591 709 770 830
5 146 399 620 762 770 5 437 598 682 811 811
6 161 411 626 739 6 482 617 783 786
7 158 412 556 7 473 687 695
8 150 367 8 556 612
9 113 9 420

Paid Loss Triangle Reported Loss Triangle 

AY 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120
1 2.209 1.416 1.140 1.090 1.049 1.038 1.021 1.056 1.011
2 2.050 1.313 1.180 1.095 1.058 1.040 1.061 1.014
3 2.553 1.338 1.146 1.087 1.048 1.088 1.014
4 2.159 1.326 1.158 1.084 1.101 1.019
5 2.247 1.270 1.165 1.161 1.033
6 2.395 1.311 1.375 1.025
7 2.295 1.895 1.028
8 4.517 1.031
9 1.054

 Paid Age-to-Age Factors
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3.3 Limitations of the Diagnostics 
These diagnostic tests are useful in identifying whether a problem exists in the triangle, either 

from changing patterns or due to missing data.  Often the diagnostics cannot identify exactly what 
the problem is (as seen in the example with the paid loss to reported loss ratio).  Some of the 
changes listed in Section 2 do not create sharp changes in the triangle, but rather gradual shifts over 
time.  This makes it difficult for the analyst to hone in on the problem, or even to determine which 
dimension (e.g., accident year versus payment year) is involved. 

For example, if our triangle is actually a combination of two types of risks – one with quick 
development and a second with slow development – and the mix is changing over time, then a 
changing development pattern will be observed.  Our diagnostic tests will be unable to distinguish 
this mix problem from other possible causes such as, say, calendar year trend or changes in claim 
settlement practices. 

  

AY 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120
1 2.209 1.416 1.140 1.090 1.049 1.038 1.021 1.056 1.011
2 2.050 1.313 1.180 1.095 1.058 1.040 1.061 1.014
3 2.553 1.338 1.146 1.087 1.048 1.088 1.014
4 2.159 1.326 1.158 1.084 1.101 1.019
5 2.247 1.270 1.165 1.161 1.033
6 2.395 1.311 1.375 1.025
7 2.295 1.895 1.028
8 4.517 1.031
9 1.054

Heatmap of Paid Age-to-Age Factors
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Table 4: Example of Diagnostic Limitations 

 

 

 

AY 12 24 36 48 60
1 100 200 250 275 290
2 300 600 750 825
3 500 1000 1250
4 700 1400
5 900

AY 12-24 24-36 36-48 48-60
1 2.000 1.250 1.100 1.055
2 2.000 1.250 1.100
3 2.000 1.250
4 2.000

Loss Triangle 
Slow Developing Policies with Growing Volume

Age-to-Age Factors

AY 12 24 36 48 60
1 900 1350 1395 1395 1395
2 700 1050 1085 1085
3 500 750 775
4 300 450
5 100

AY 12-24 24-36 36-48 48-60
1 1.500 1.033 1.000 1.000
2 1.500 1.033 1.000
3 1.500 1.033
4 1.500

Quick Developing Policies with Shrinking Volume
Loss Triangle 

Age-to-Age Factors

AY 12 24 36 48 60
1 1000 1550 1645 1670 1685
2 1000 1650 1835 1910
3 1000 1750 2025
4 1000 1850
5 1000

AY 12-24 24-36 36-48 48-60
1 1.550 1.061 1.015 1.009
2 1.650 1.112 1.041
3 1.750 1.157
4 1.850

All Policies Combined
Loss Triangle 

Age-to-Age Factors
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This is an example of Simpson’s Paradox, as described in more detail in Stenmark and Wu (2004).  
The “paradox” is that the sub-portfolios each have patterns that are unchanging and perfectly stable 
over time, but the changing mix gives an appearance of a changing pattern for the combined 
business.  This phenomenon occurs frequently in insurance applications because data are aggregated 
to produce more credible volumes, and that aggregation means that the data are no longer truly 
homogeneous; conversely, when data is broken out into smaller homogeneous pieces, it is no longer 
easy to see the signal hidden in the noise. 

A practical example is US Workers’ Compensation loss development.  The development patterns 
are different for medical and indemnity coverages, with medical coverage generally having a longer 
development tail.  Over time, the portion of losses in the medical coverage has been growing.  Even 
if the patterns for medical and indemnity were each stable on their own, the combined triangle 
would, all else being equal, show a slowing development pattern. 

The triangle may therefore show that something is changing, but at an aggregated level the 
actuary will be unable to identify the nature of that change.  This is sometimes referred to as the 
problem of “lurking” or a “confounding” variable.  The unidentified confounding variable is not 
explicit in the model and manifests as an AY/DY interaction. 

3.4  Communication 
Once the actuary has detected a change in the pattern, he or she needs to investigate what caused 

it.  Knowing the source of the problem is important because it provides a better insight into what 
pattern to expect in the future.  It tells us what data we can trust and what data we need to adjust 
(example: if the paid loss to reported loss ratio is distorted it is necessary to know whether it is the 
paid or the reported data that experienced a change).  Finally, it helps the actuary decide which 
reserving method to use.   

As we have seen the diagnostics may be misleading.  Even in the most obvious case of distortion, 
the actuary needs to confirm his or her findings with other parties involved in the data processing 
who may be closer to the source of change.  Berquist and Sherman (1977) and Friedland (2010) 
provide questions that can help the actuary investigate and confirm the change in data through 
communication with other departments of the (re)insurance firm.  For example, the actuary can ask 
a claim executive if there have been any recent significant changes in the guidelines for setting and 
reviewing the unpaid case reserves.  A question for the underwriters could focus on the shift of 
business by territory or by type of distribution (direct vs. brokerage distribution).  These types of 
conversations can provide insights into the causes of the pattern distortion. More importantly, they 
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can lead to additional information that can help quantify the total impact of the pattern change.   

The important note to keep in mind is that, even with the best intention to collaborate, the other 
party may not have noticed the change or may not be willing to recognize an event as the source for 
pattern distortion (e.g.,  a case reserve weakening may not be easy to admit to the auditing actuary).  
In a presentation at the CAS 2007 Casualty Loss Reserving Seminar, Richard Sherman cautioned the 
audience to “beware of quick, slick answers” that are designed to bias the investigation of the cause 
of pattern changes.  He also raised awareness of the importance of carefully selecting parties who 
will be able to provide the actuary with the most valuable information. Benefits could be found in a 
conversation with the most knowledgeable party (for example the department executive) or with the 
less biased party (for example a middle level staff). 

 

4.  CURRENT METHODS TO ACCOUNT FOR CHANGING 
PATTERNS 

The fact that patterns can change over time due to a variety of reasons is well-known.  A number 
of practical approaches are used by reserving actuaries to account for these changes. 

Some of these approaches consist solely of data rearrangements and no method changes.  They 
rely on additional data that can eliminate or explain the changes in the patterns.  Berquist and 
Sherman (1977) discuss two means of obtaining data that is relatively unaffected by a given problem: 

1) Data substitution – for example: the use of earned exposure in place of claim count 
when count data is disrupted.  Earlier, it was noted that net data patterns can be easily 
distorted by changes in the reinsurance structure.  In this case, the actuary may use the 
data substitution technique and rely on gross data.  This approach relies on the 
assumption that the substitute data is available.   

2) Subdivision of data into homogeneous groups of exposures – for example: when there 
have been changes in the mix of business.  The actuary must be careful however of the 
decrease in credibility associated with the data split.   

The most common approach currently used by actuaries is to eliminate distorted data. For 
example, when the actuary observes changing age-to-age factors down the columns of a triangle, he 
or she will make use of the latest few diagonals and ignore the earlier factors in the upper left corner 
of the triangle.  This may be considered a default “only the latest diagonals” (OLD) method.  This 
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approach not only diminishes the statistical accuracy of LDF averages (they will be based on only a 
few points) but it will also affect the credibility of any reserve variability estimates.  In other words, 
the actuary should be looking to use more data, not less. 

The methods described in the five sections below improve on this in several ways.  This survey of 
the actuarial literature will briefly describe methods for handling CY trends, changes in case reserve 
adequacy, changes in settlement rates, and missing data problems.  Finally, statistical models will be 
discussed at a high level. 

4.1  Calendar Year Trends 
As noted above, a basic assumption of the Chain-Ladder method is that the columns of a 

development triangle are proportional to each other.  Taylor (1977) notes that this assumption holds 
when “exogenous influences” such as monetary inflation and mix of business are relatively stable.  
But he also notes that: 

“It is crucial to the logic underlying the Chain-Ladder method that the ‘exogenous 
influences’ should not be too great.  If this assumption does not hold, then the conclusion, 
that the columns of the run-off triangle are proportional, goes away too, and the Chain-
Ladder method can give misleading results.” 

Taylor provides a “separation” method to isolate the calendar year effects from the development 
year effects.  In order to apply this method, we need a development triangle of paid losses and an 
exposure base of claim counts by accident year.  As Taylor states, getting a good estimate of ultimate 
counts by year can be “problematic” but we will assume here that it is available. 

The separation method as outlined by Taylor requires that we distinguish the frequency and 
severity components within each accident year, so that changes along the diagonal can be assumed 
to be due to severity effects only.  This requires that the triangle be adjusted such that each row 
represents the average severity rather than the aggregate loss dollars.  To make this adjustment, we 
divide each row by an estimate of its ultimate frequency. 

The accuracy of the separation method depends upon getting quality claim count information.  
For the example below, we will assume that all numbers have been adjusted to a common level, but 
in practice this assumption needs care. 
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Table 5: Separation Model – Example 

 

Taylor gives a direct algebraic method for calculating a CY or payment year trend factor from this 
data.  The method does not require any iterative optimization routines or special software, so it can 
be performed in a simple spreadsheet. 

The implied trends by payment year are 1.0%, 5.0%, 10.0%, and 20.0%, which apply to 
incremental payments in the triangle.  In this example, we have deliberately made sharply increasing 
trends so that the resulting increasing age-to-age factors in each column are obvious.  If the payment 
year trend is constant, then no change in age-to-age factors would be observed. 

 

Table 6: Separation Model – Example (cont.) 

 

 

 These CY Index factors are used to de-trend the incremental losses in the nominal triangle.  The 

AY 12 24 36 48 60
1 500    1,106    1,530   1,764       1,903       
2 505    1,141    1,608   1,888       
3 530    1,230    1,790   
4 583    1,423    
5 700    

AY 12-24 24-36 36-48 48-60
1 2.212 1.384 1.152 1.079
2 2.260 1.409 1.174
3 2.320 1.455
4 2.440

Cumulative Payments

Age-to-Age Factors

AY Trend CY Index
1 1.000
2 1% 1.010
3 5% 1.061
4 10% 1.167
5 20% 1.400
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de-trended incremental losses are then accumulated by accident year to produce an inflation-free 
triangle.  In the idealized example, this inflation-free triangle produces age-to-age factors that are 
constant down each column. 

Table 7: Separation Model – Example (cont.) 

 

Future losses, estimated by completing the lower right portion of the data, then need to be put 
onto a nominal basis using an assumption about the future inflation. 

Taylor notes that this method gives a good estimate so long as the change in patterns is due to a 
payment year effect, which is “particularly appropriate when claim costs are dominated by high rates 
of inflation.”  He goes on to caution that there may be other causes of changing patterns that would 
not be appropriately addressed by this method: “It is not so appropriate in respect of influences 
such as changing mix of business within a risk group, which is related rather to policy year.”  As we 
noted earlier, it is not easy to diagnose from the data what is causing the patterns we see, so 
investigation beyond the triangle is needed. 

This method does have limitations though.  We need a reliable measurement of counts as well as 
dollars, and the reserve estimate is dependent upon our ability to forecast the CY trend index into 
the future.  In addition, this method applies only to paid loss data, and is not directly applicable to 
case incurred losses.  Even with these limitations, however, it is an improvement over the OLD 
method, because it uses the entire triangle and not only the latest diagonals. 

The use of calendar year trends has been advanced in several papers in the actuarial literature.  
Butsic (1981) produced a similar model to that of Taylor, adding interest rate discounting in the 
reserve.  Barnet and Zehnwirth (2000) show how a calendar year trend can be estimated in a log-

AY 12 24 36 48 60
1 500 1100 1500 1700 1800
2 500 1100 1500 1700
3 500 1100 1500
4 500 1100
5 500

AY 12-24 24-36 36-48 48-60
1 2.200 1.364 1.133 1.059
2 2.200 1.364 1.133
3 2.200 1.364
4 2.200

Cumulative Payments

Age-to-Age Factors
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linear regression model.  Gluck and Venter (2009) give a survey of the literature to 2009, especially 
with regard to more advanced statistical models. 

4.2 Case Reserve Adequacy  
When an actuary sees changes in reported losses, it is important to investigate what the real cause 

for these changes is.  Given that the consistency of the reported incurred loss data depends not only 
on stable average case reserve, but also on stable claim reporting, and stable average payments, we 
can easily see that a pattern distortion may be due to changes in any (possibly multiple) of these 
three elements.  Depending on what the real source of the disruption is, different data adjustments 
may be appropriate.   

When faced with changes in case reserve adequacy, the actuary may be able to perform exact 
adjustments to the case reserves if they are set by formula (e.g., workers’ compensation indemnity 
tabular reserves).  In these cases, the system can re-evaluate the case reserves using current 
assumptions on mortality or interest rates and produce an “as if” triangle using the more recent 
assumptions. 

In situations for which we are uncertain of the reasons for changes in case reserve adequacy, 
Berquist and Sherman (1977) provide a method for making an appropriate adjustment.  That 
approach is nicely described by Duvall (1993), as follows: 

“Given a shift in reserving practices, the Berquist-Sherman adjustment for the shift begins 
by obtaining the rate of inflation in average closed claims.  Next, the average reserve at the 
most recent valuation date is calculated for each year.  These average reserves are trended 
back to earlier valuation dates at the estimated trend rate to obtain the average reserve at 
each age for each year in the experience period.  The computed average reserves are then 
multiplied by the number of open claims at each age to get the estimated cost of open 
claims.  Cumulative claim payments are then added to get an estimate of incurred losses on a 
basis that is consistent with current reserving practice.” 

Thorne’s (1978) discussion of the Berquist and Sherman method points out the difficulty and 
actuarial judgment involved in the selection of the severity trend used to trend back the most recent 
average reserves.   

One way to determine, or at least confirm, the severity trend selection is to use Duvall’s (1992) 
regression technique.  Duvall’s model has two purposes: 1) to detect shifts and trends in the loss 
development factor parameters and, if a change is observed, 2) to provide an objective way to restate 
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the reported incurred losses for early valuations on a basis that is consistent with recent valuations.  
The first step in his model is to present the reported incurred loss as a function of the number of 
claims, the average claim cost and the loss development factor at each valuation date.  Next, for each 
of these factors, Duvall specifies a regression function and estimates the parameters using the 
triangular data.  He states:  

“The LDF function is central to the objective of this paper.  Changes in reserving 
practices must be manifest in changes in the parameters of this function if they are to be 
detected.  Therefore, it is important that the function be capable of providing an excellent fit 
to the observed development patterns.”   

The estimates from this regression model can be used as an objective way to determine a severity 
trend and restate the recent reported incurred losses to earlier valuations on a basis that is consistent 
with the current valuations.  This approach can also be applied in cases where we have a change in 
settlement rates.   

4.3 Changing Settlement Rates  
Berquist and Sherman (1977) also present a method for reducing the impact of changes in 

settlement rates by adjusting the cumulative closed claim and paid loss triangles.   

The method starts with a review of disposal rates.  The disposal rate can be seen as a type of ratio 
diagnostic.  It is defined as the cumulative closed claim counts for each accident year and maturity, 
divided by the ultimate claim counts.  A change in the disposal rate pattern is an indication of a 
change in the rate of claim settlement.  Next, a representative disposal rate pattern is selected (for 
example the most recent diagonal) and it is assumed to be valid for all accident years.  The adjusted 
closed claim counts are obtained by multiplying the selected disposal rate by the ultimate claim 
counts.  The method approximates the relationship between the paid losses and the closed claim 
counts, before any adjustments, with a function.  It then uses this relationship to obtain the adjusted 
paid losses based on the adjusted closed claim triangle.  

Thorne’s (1978) comments on this technique are that “lack of recognition of the settlement 
patterns by size of loss can be an important source of error” and “it may be necessary to modify the 
technique to apply to size of loss categories adjusted for ‘inflation’ ”.  Exhibit I of his discussion 
paper provides an example of how a shift in claim settlement (from small to large claims) increases 
the error in the reserves estimates.   
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Fleming and Mayer (1988) propose a variation of the Berquist-Sherman method where the 
adjustment is made not only to the paid losses but also to the outstanding losses.  The procedure is 
described in pages 196 -199 and an example is given in Exhibit 5 of their paper.  

As with the other methods described, this method can only be applied if reliable count data is 
available.  This can be a challenge because counts can be compiled differently over time (e.g., the 
treatment of closed-without-pay claims).  Counts can also be distorted by accident year changes.  
For example, a small increase in deductibles can greatly reduce claim counts, giving the appearance 
of a slow-down in settlements.  Similarly in Workers’ Compensation, a change in the states or 
industries covered can alter the mix of “medical only” versus “lost time” claim counts, giving a 
misleading impression of claims handling practices.  These types of “confounding variable” need to 
be investigated before the methods are applied. 

The change in settlement rates can be also addressed with a Bayesian model.  More details of this 
technique will be provided in Section 4.5.4.   

4.4 Incremental Development 
Often, when data are missing for older accident years or when changes in definitions or mix of 

business have made it inappropriate to combine the data in a cumulative triangle for the purpose of 
the reserve estimation, the general practice is to “cut” the triangle and work only with accident years 
that are not distorted but contain data for all maturities.  Throwing away the data is not an optimal 
solution.  Instead, the actuary can make use of any non-distorted incremental data from old accident 
years.   

The Sherman-Diss (2004) paper describes the Mueller Incremental Tail (MIT) method that can 
help achieve this goal.  This method works for triangles that are missing values in the upper left 
corner, but have incremental amounts for the more mature years. The method consists of three 
steps:  

1) Calculation of incremental age-to-age factors for all available data. This is done by taking the 
ratio of incremental paid at age n+1 to incremental paid at age n 

2) Calculation of an anchored decay factor representing the incremental payments made in year n 
relative to payments made in an anchor year.  For example, it calculates the payments for years 16 to 
37 relative to the incremental payments in year 15.  The sum of the decay factors for years 16 to 37 
can be viewed as a “cumulative decay factor” relative to year 15;  

3) Calculation of a tail factor:  The cumulative decay factor is then combined with a traditional 
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age-to-age factor for year 14 to 15, based on more recent data, to create a full cumulative loss tail 
factor.   

Figure 1: Graphical representation of the MIT method 

 
 

The MIT method was originally created for incremental payments on long-tailed Workers’ 

Compensation losses in a database that did not include payments for early periods (the upper left 

triangle).  In this case, the data was missing because it was not available to the analysts.  However, 

the technique could also be applied if the early payments were missing because they were below a 

self-insured retention.  This suggests that the incremental method may be useful when there is a 

changing mix of primary and excess business in a portfolio or when commutations are not excluded 

from the data.  

 An interesting application of this method could be made in situations where the mix of business 

is different by accident year.  To illustrate this, we can look at two triangles from consolidated 

industry Schedule P.  The loss triangles and the calculation of the “normal” and anchored loss 

development patterns are provided in Appendix I.  The development patterns for Other Liability 

(occurrence) and Commercial Multiple Peril (CMP) are quite different.  Other Liability includes 

monoline, ground-up losses along with some losses from excess and umbrella policies.  CMP 

includes losses from property as well as from liability.  As we would expect, a much larger 

percentage of total losses are reported within the first few years for CMP.  This early loss reporting 

acts as a ballast to reduce the age-to-age factors. 

Standard 
Triangle 

Incremental Values 
Only 
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Figure 2: CMP vs Other Liability Loss Development  

 
 

However, if we use the Mueller Incremental Tail (MIT) concept, then instead of age-to-age 

factors on cumulative losses, we anchor the factors at a later age.  Figure 3 shows the incremental 

reported amounts relative to the amount incurred in the fifth year.  These patterns look much more 

similar, implying that the losses contributing to the “tail” may be similar in both triangles. 

 

Figure 3: CMP vs Other Liability Relative Incremental Loss Development 

 
 

This approach is not recommended as an alternative to segregating the data into homogeneous 

groups.  However, it does suggest that the incremental method may be useful on triangles where the 
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changing mix of business cannot be fully identified in the historical triangle, or where the credibility 

of the data will be significantly impaired by the split of the data.   

4.5  Statistical Models 
The methods listed above have been designed so that the actuary can adjust the development 

triangle and make selections from the data without the need for special software.  The transparency 
of assumptions and ease of calculation are clear advantages. 

The methods do not make explicit assumptions about the variances or shape of the random 
variables that give rise to the observed data.  For this reason, it is difficult to evaluate the results in 
terms of whether the final estimates are “best” (unbiased, minimum variance) estimates, or whether 
the adjustments are based on significant signals or could have been produced by random noise.  
Assumptions that are never made explicit are, by definition, untestable. 

The main hurdle to implementation of a statistical model is the learning curve required to master 
the concepts and software.  The statistical models listed below are roughly in order of difficulty in 
the learning curve required. 

4.5.1  Generalized Linear Models (GLM) 

Generalized Linear Models (GLM) are a generalization of linear regression models that allow for 
much greater flexibility in the relationship between the explanatory variables and the response 
variable being forecast, and in the variance structure of that response variable.  The recent text 
“Predictive Modeling Applications in Actuarial Science” includes a good description of GLM (Dean 
2014), along with the connection to reserving (Taylor 2014). 

The use of GLMs for reserving was first suggested by Wright (1990), but was given very clear 
exposition by Renshaw and Verrall (1998).  The initial observation was that the traditional Chain- 
Ladder method was actually a GLM model, and therefore making that explicit allowed for statistical 
tests and variance calculations to be performed easily.  The GLM framework also allows for the 
introduction of exposure measures, market cycles, and calendar year effects to be included.  Taylor’s 
“separation method” discussed above, as well as the MIT incremental method, are special cases in 
the same GLM. 

Perhaps the greatest benefit of a GLM perspective is that interactions between the accident years 
and development years can be explicitly recognized and included in the model.  Taylor (2014) gives a 
good introduction to the use of GLMs in reserving, including the introduction of interaction terms. 
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4.5.2  Hierarchical or “Mixed” Models 

Generalized Linear Models can also be helpful to account for changes in the mix of business 
because they allow us to look at multiple triangles simultaneously.  For example, two triangles may 
represent different businesses that both include general liability exposures; they may have different 
development patterns but share the same sensitivity to inflation changes.  A GLM can estimate some 
parameters separately for each data set and some parameters which are common across data sets. 

However, if the data is split into many triangles, then it may be impractical to estimate parameters 
for all of the components separately.  This is where hierarchical models (also known as mixed or 
multi-level models) can be introduced. 

A good example of the application of mixed models is given by Schmid (2012).  He was looking 
at residual market triangles for Workers’ Compensation.  These pools are segregated by state and 
can have very different volumes by policy year as business shifts between voluntary and involuntary 
placement, resulting in several triangles with similar – but not identical – patterns.  The hierarchical 
approach allows for separate parameters to be estimated for each state pool, but also controlled such 
that the parameters for any one state could not be too far apart from some overall average.  This 
“total credibility” approach allows reserving for each pool, while also borrowing strength from the 
larger sample of triangles. 

Guszcza (2008) introduces the use of hierarchical models for reserving, allowing individual 
accident year patterns to deviate from some overall average pattern. 

4.5.3  Models Using Detailed Data 

A more extreme case of segregating the reserving data is to go down to the individual claim level 
detail.  Guszcza and Lommele (2006) describe the advantage of this approach because it would 
automatically capture the mix of coverages, types of losses, and changes in policy limits.  They note 
that “A danger of using summarized loss triangles is that they can mask heterogeneous loss 
development patterns.” 

The danger that Guszcza and Lommele describe is another form of Simpson’s Paradox, and is a 
result of using the highly aggregated data provided in the traditional development triangle. 

This point has been made by England and Verrall (2002): 

“…it has to be borne in mind that traditional techniques were developed before the 
advent of desktop computers, using methods which could be evaluated using pencil and 
paper.  With the continuing increase in computer power, it has to be questioned whether it 
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would not be better to examine individual claims rather than use aggregate data.” 

In many cases, however, the individual claim data may not be readily available.  Reinsurers, for 
example, would not have access to the individual claim-level data from ceding companies.  A 
compromise between complete aggregation and micro-level reserving might be a model that uses 
treaty-level data. 

The use of individual claim level data also introduces the problem that late reported or “incurred 
but not yet reported” (IBNYR) claims must be modeled separately. 

4.5.4  Bayesian Models 

Some of the recent literature on statistical modeling in loss reserving has proposed the use of 
Bayesian models. 

Bayesian models allow (in fact, require) the user to specify prior knowledge of development 
factors and variables influencing the development patterns.  The prior knowledge takes the form of 
a distribution of model parameters that is revised as actual loss data is observed.  Increased 
computer speed and the availability of Markov Chain Monte Carlo (MCMC) simulation techniques 
have made the models more accessible to actuaries. 

The key advantage of these models is that even very complex non-linear interactions between 
accident year and development year dimensions can be evaluated.  If the prior distributions are set 
meaningfully, the models can also work with relatively sparse data sets and still produce useful 
information.  Meyers (2015) shows that a non-linear “growth” function can include a non-linear 
interaction term, which he termed the “Changing Settlement Rate” (CSR) model, and found that it 
was able to correct bias in some of the data sets he reviewed. 

There are still challenges to making Bayesian models fully accessible to reserving actuaries.  First, 
they require “prior knowledge” about patterns to be explicitly incorporated as multivariate 
distributions of parameters.  These prior distributions are not trivial to create.  Second, the MCMC 
algorithm needs to be calibrated and monitored by the user to ensure that the results have truly 
converged to approximate the posterior distribution. 
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5.  OPPORTUNITIES FOR FUTURE RESEARCH 

This call paper has been intended as a brief survey of existing literature on methods addressing 
changes in development patterns over time. 

We have seen that most of the methods are limited in that they assume “all else being equal” 
from other effects.  In other words, the techniques may not be reliable if more than one type of 
change is taking place simultaneously.  If policy limits written are changing, or business mix is 
shifting from manufacturing to service industry risks, and at the same time case reserve adequacy is 
changing, then we have no available methods for correctly adjusting the data.  In technical language, 
this is an example of a misspecified model and can lead to biased results. 

The way forward is to recognize that all of the factors that cause patterns to change can be 
viewed as different types of interaction terms.  Viewed in terms of a regression model, our 
explanatory variables are the accident year and development year indices; the traditional Chain-
Ladder model assumes that these two variables act independently.  Instead, we need to include 
models that allow for interactions between these two explanatory variables.  The exact form of this 
interaction may be different based on the cause of the change (mix of business, CY inflation, 
reserving practices, etc.), but they all fall under this concept. 

We have also seen that identification of the cause of changing patterns is problematic when only 
highly aggregated triangles are available.  More data such as information about the mix of business 
may be needed to help understand how and why the accident year and development year dimensions 
are not independent.  In most cases this is done judgmentally with few practical suggestions in the 
literature as to how it can be quantified objectively. 

While “technical” models such as GLM or Bayesian MCMC have begun to move in this 
direction, they have yet to allow for full flexibility in the types of interactions or – more importantly 
– to provide a friendly user interface for the average reserving analyst. 

Some concrete suggestions on moving this forward: 

1) Identify the types of additional data needed for evaluating pattern changes, such as 

a) Historical policy limit and risk profiles 

b) Historical rate change indices 

c) Inflation and benefit change indices 
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2) Advance research on models that can look at multiple triangles, potentially down to the 
individual claims level; focus on practical implementation. 

3) Create a library of the form of interactions appropriate for different factors, such as 

a) Calendar year trend is the simplest interaction term as in GLM 

b) Glenn Myers monograph on the speed-up is a good start on settlement patterns. 

 
6.  CONCLUSIONS 

In this call paper we have seen that there are a number of reasons that development patterns can 
be different from one accident year to the next.  These include calendar year trends, changing 
settlement patterns, changing case reserve adequacy, changing mixes of business, and others.  All of 
these produce triangles in which the AY and DY dimensions are not independent, but instead show 
interactions.  This violates a basic assumption of the Chain-Ladder method. 

We have surveyed several practical methods for addressing these interactions.  The methods can 
be as simple as ignoring portions of the triangle, or adjusting the historical data for known changes. 
These methods have proven useful to reserving actuaries because they are easy to implement, but 
also because they are tied to the reasons that patterns are changing, and therefore, help to give a 
more complete story for the reserve estimate. 

However, most of these tools depend upon knowing a priori what adjustments need to be made 
to the data, and then restating the development triangles to current cost levels (or case reserve 
adequacy, or settlement rate) using a reliable measure of claim counts.  Having reliable counts is 
necessary, but it is the assumption that we know the cause of the changing patterns that is most 
critical.  If multiple changes are happening simultaneously – for example, a change in policy limits as 
well as a change in case reserve adequacy – then the methods will fail. 

The long-term improvement in reserving models points us to the use of more data: including 
more detailed loss statistics, policy limit profiles, measures of exposure, and external indices such as 
cost inflation.  Statistical modeling is the recommended framework for bringing in additional 
information. 

For those building statistical models, the challenge is to make the models more accessible to the 
practicing actuary, including the flexibility to allow clear intervention points where the 
knowledgeable actuary can adjust the intermediate results when needed.  Statistical models may be 
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better absorbed by practicing actuaries if they can easily incorporate adjustments such as changes in 
case reserve adequacy or claim closure rates. 
 
 

Abbreviations and notations: 
AY, accident year (row dimension of triangle) GLM, generalized linear models 
BF, Bornhuetter-Ferguson method GLMM, generalized linear mixed models 
CL, Chain-Ladder method MIT, Mueller Incremental Tail method 
CY, calendar year OLD, only the latest diagonal(s) method 
DY, development year (column dimension of triangle) TPA, Third Party Administrator 
 
Acknowledgment 

The authors gratefully acknowledge the helpful reviews and feedback from Ira Robbin, Brian Archdeacon, 
Caroline Ferrara, Tho Ngo, Andy Kirtland, Kenneth Easlon, Chad Schlippert, and Arlie Proctor.  All errors remain 
the responsibility of the authors. 

 
Biographies of the Authors 

David R. Clark is a senior actuary with Munich Reinsurance America Inc., working in the Actuarial Research and 
Modeling team.  He is a Fellow of the CAS and a member of the American Academy of Actuaries.  He received the 
2003 Reserves Call Paper prize for the paper “LDF Curve-Fitting and Stochastic Reserving: A Maximum Likelihood 
Approach.” 

Diana Rangelova is a senior actuarial manager with Munich Reinsurance America Inc., working in Corporate 
Reserving.  She is an Associate of the CAS and a Member of the American Academy of Actuaries.  She is also a 
Member of the French Institute of Actuaries.   

  



Accident Year / Development Year Interactions 

Casualty Actuarial Society E-Forum, Fall 2015  27 

Appendix I-A 

 
1. The average age-to-age loss development factors were used in Figure 2 
2. The anchored age-to-age loss development factors were used in Figure 3 

 

12 24 36 48 60 72 84 96 108 120
1974
-
2003

2004 10,062,877 12,019,810 13,120,330 13,800,717 14,048,563 14,228,194 14,343,555 14,483,141 14,548,973 14,631,706
2005 10,807,279 13,426,225 14,338,169 15,034,751 15,342,112 15,537,527 15,597,310 15,688,265 15,790,959
2006 9,497,881 11,602,993 12,651,289 13,302,004 13,668,841 13,806,668 13,938,202 14,051,374
2007 10,595,875 12,728,205 13,930,135 14,601,754 14,888,062 15,094,464 15,193,434
2008 14,050,047 16,969,555 18,106,007 18,766,853 19,210,347 19,408,707
2009 11,339,648 13,883,191 14,991,666 16,232,739 16,558,188
2010 12,302,948 14,937,969 16,189,574 16,944,556
2011 15,602,014 18,354,523 19,759,192
2012 13,342,603 16,316,017
2013 11,939,724

12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120
All Year 

Weighted Avg 1.232 1.100 1.058 1.026 1.017 1.010 1.008 1.006 1.005

Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7 Year 8 Year 9 Year 10
1974
-
2003

2004 10,062,877 1,956,933 1,100,520 680,387 247,846 179,631 115,361 139,586 65,832 82,733
2005 10,807,279 2,618,946 911,944 696,582 307,361 195,415 59,783 90,955 102,694
2006 9,497,881 2,105,112 1,048,296 650,715 366,837 137,827 131,534 113,172
2007 10,595,875 2,132,330 1,201,930 671,619 286,308 206,402 98,970
2008 14,050,047 2,919,508 1,136,452 660,846 443,494 198,360
2009 11,339,648 2,543,543 1,108,475 1,241,073 325,449
2010 12,302,948 2,635,021 1,251,605 754,982
2011 15,602,014 2,752,509 1,404,669
2012 13,342,603 2,973,414
2013 11,939,724

Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7 Year 8 Year 9 Year 10
1974
-
2003

2004 1.000 0.725 0.465 0.563 0.266 0.334
2005 1.000 0.636 0.195 0.296 0.334
2006 1.000 0.376 0.359 0.309
2007 1.000 0.721 0.346
2008 1.000 0.447
2009 1.000

Year 5 Year 6 Year 7 Year 8 Year 9 Year 10
All Year 

Weighted Avg 1.000 0.656 0.384 0.314 0.239 0.203

Age-to-Age Loss Development Factors1

Incremental Triangle

Age-to-Age Loss Development Factors Anchored to Year 5 

Anchored Loss Development Factors2

Commercial Multiple Peril

…

…

…

Cumulative Incurred Loss+ALAE

          DATA SOURCE: SNL FINANCIAL LC. CONTAINS COPYRIGHTED AND TRADE SECRET MATERIAL DISTRIBUTED UNDER LICENSE FROM SNL. FOR RECIPIENT’S INTERNAL USE ONLY.

0.465 = Incremental Loss in Year 7 (115,361) /
Incremental Loss in Year 5 (247,846)
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Appendix I-B 

 
1. The average age-to-age loss development factors were used in Figure 2 
2  The anchored age-to-age loss development factors were used in Figure 3 

 

12 24 36 48 60 72 84 96 108 120
1974
-
2003

2004 4,490,851 6,542,233 8,412,758 9,851,474 10,929,582 11,596,339 11,830,132 12,126,474 12,415,106 12,510,225
2005 4,314,808 6,802,700 8,537,640 10,029,125 10,959,584 11,312,724 11,735,144 12,152,153 12,429,060
2006 4,442,035 7,156,625 9,360,538 10,885,689 11,757,797 12,400,293 13,002,514 13,236,483
2007 4,555,135 7,646,174 9,975,072 11,537,284 12,772,506 13,788,485 14,272,563
2008 4,068,513 7,126,421 9,490,827 11,206,561 12,664,704 13,367,708
2009 4,096,903 7,034,898 9,119,711 10,963,616 12,109,594
2010 3,752,463 6,649,357 9,213,646 10,933,500
2011 3,670,262 6,637,029 9,098,742
2012 3,571,801 6,543,045
2013 3,584,497

12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120
All Year 

Weighted Avg 1.686 1.305 1.167 1.090 1.051 1.035 1.023 1.016 1.012

Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7 Year 8 Year 9 Year 10
1974
-
2003

2004 4,490,851 2,051,382 1,870,525 1,438,716 1,078,108 666,757 233,793 296,342 288,632 95,119
2005 4,314,808 2,487,892 1,734,940 1,491,485 930,459 353,140 422,420 417,009 276,907
2006 4,442,035 2,714,590 2,203,913 1,525,151 872,108 642,496 602,221 233,969
2007 4,555,135 3,091,039 2,328,898 1,562,212 1,235,222 1,015,979 484,078
2008 4,068,513 3,057,908 2,364,406 1,715,734 1,458,143 703,004
2009 4,096,903 2,937,995 2,084,813 1,843,905 1,145,978
2010 3,752,463 2,896,894 2,564,289 1,719,854
2011 3,670,262 2,966,767 2,461,713
2012 3,571,801 2,971,244
2013 3,584,497

Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7 Year 8 Year 9 Year 10
1974
-
2003

2004 1.000 0.618 0.217 0.275 0.268 0.088
2005 1.000 0.380 0.454 0.448 0.298
2006 1.000 0.737 0.691 0.268
2007 1.000 0.823 0.392
2008 1.000 0.482
2009 1.000

Year 5 Year 6 Year 7 Year 8 Year 9 Year 10
All Year 

Weighted Avg 1.000 0.620 0.468 0.319 0.230 0.178

Age-to-Age Loss Development Factors Anchored to Year 5 

…

Anchored Loss Development Factors2

Other Liability
Cumulative Incurred Loss+ALAE

…

Age-to-Age Loss Development Factors1

Incremental Triangle

…

          DATA SOURCE: SNL FINANCIAL LC. CONTAINS COPYRIGHTED AND TRADE SECRET MATERIAL DISTRIBUTED UNDER LICENSE FROM SNL. FOR RECIPIENT’S INTERNAL USE ONLY.

0.217 = Incremental Loss in Year 7 (233,793) /
Incremental Loss in Year 5 (1,078,108)
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The Actuary’s Role in a Risk-Focused Statutory 
Examination   

Alan M. Hines, FCAS  

 

__________________________________________________________ 

Abstract:   This paper is being written for the benefit of company actuaries to help them prepare for 

their statutory financial examination and for consulting actuaries who assist state regulators with the 

examination of actuarial areas. 

 

States have recently changed the way they perform statutory examinations. The National 

Association of Insurance Commissioners (NAIC) adopted a risk-focused examination approach as 

the accreditation standard for statutory examinations. One enhancement of the risk-focused 

approach is that regulators now leverage more work performed by independent auditors and 

evaluate company controls to gain comfort in areas that present less financial risk.  This change 

allows regulators to spend more time testing areas with greater risk of material misstatement and 

assess prospective risk.  As a result, many areas that involve the use of actuarial estimates are now 

getting more scrutiny.   

 

By gaining a better understanding of how examiners assess risk, company actuaries will be better 

prepared for the examination and be more effective at demonstrating that company controls mitigate 

risk.  This may result in a more efficient examination process by reducing the testing procedures 

required by the examination team.  The information presented in this paper will prepare actuaries to 

expand their role assisting the examiner-in-charge (EIC) with all phases of the examination.  An 

enhanced understanding of the risk-focused examination process will allow actuaries to assist with 

the risk assessment process, develop risk-focused testing plans for loss reserves, and add value in 

other actuarial areas of the examination.    
________________________________________________________________________ 

 

1. INTRODUCTION 

The risk-focused exam is now the NAIC standard for insurance company statutory 

financial examinations.  Companyi actuaries and actuaries on the examination team have seen 

their role in the examination process expand.  The risk-focused examination goes beyond 

evaluating the adequacy of loss reserves and auditing the financial statement for the 

examination year.  Regulators are spending more time during the examination evaluating 

company controls over the actuarial areas, considering operational risks, and determining 

whether there are prospective risks that threaten the future financial stability of the insurer. 

Before developing a testing plan to evaluate loss reserves, the examination team 

evaluates all risks associated with the reserving process, beginning with the process to gather 

                                                           
i
 Company Actuary is being used in this paper to refer to the actuary providing the analysis company 
management relies on for making decisions on reserves, rate levels, and other areas of work commonly 
performed by actuaries.   
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and organize the claim data, and ending with the recording of management’s best estimate. 

In addition, the examination actuary may collaborate with other members of the examination 

team to assess other areas of risk, including pricing and underwriting risk, concentration of 

exposure, reinsurance, and other activities that could impact financial results or insurer 

solvency.  As a result, company actuaries working in pricing areas and involved in other 

enterprise risk management functions may be involved in the examination process.   

One of the expected benefits of risk-focused examinations was to create efficiencies 

in the examination process.  Using a risk-focused approach, regulators evaluate the work 

being performed by the company, the company’s auditors, and third party consultants to 

identify risk and evaluate the effectiveness of controls used to mitigate risk.  A testing plan is 

usually developed to evaluate all areas deemed to have high inherent risk and areas where the 

company’s documented controls and mitigation techniques are not effective at reducing risk 

to a low level.  However, if the company can demonstrate that its controls are effective at 

mitigating the risk to a low residual level, no additional testing procedures may be required 

by the examination team.  By gaining an understanding of how examiners assess risk, 

company actuaries will be better prepared for the examination and will know the type of 

information to provide to the examination team that could result in reduced testing 

procedures.   

The sections that follow provide an overview of the NAIC risk-focused examination, 

with a concentration on areas of the exam where actuaries may be involved.  The role of the 

actuary during a state exam will be addressed from two perspectives: the role of the 

examination actuary and the role of the company actuary.  This paper provides an example 

of the risk-focused assessment and includes a sample template for documenting the risk 

assessment and testing plan. The paper will identify actuarial activities creating risk and the 

common mitigation strategies used by some companies that the examination team may 

evaluate during the risk assessment process.  The paper will also provide a process for 

developing an efficient testing plan for loss and loss adjustment expense reserves using a 

risk-focused approach.  Many sections of the paper conclude by addressing how the 

company actuary can better prepare for the statutory exam and providing suggestions to 

facilitate an efficient examination. 
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2. OVERVIEW OF RISK-FOCUSED STATUTORY EXAMINATIONS 

While some states have been using a risk focused approach since 2007, as of January 

1, 2010, the risk-focused surveillance and examination approach became the standard for 

NAIC accreditation.  The main purpose of the surveillance process is to detect (a) financially 

troubled companies and (b) noncompliance with statutory requirements.  The NAIC refers 

to the risk-focused regulatory process as a surveillance cycle since each element of the 

process feeds into other steps on a continuous basis.  The surveillance cycle is described in 

detail in the National Association of Insurance Commissioners Financial Condition 

Examiners Handbook (the NAIC Handbook)ii and depicted in the graphic below.   

       

     Regulatory Surveillance Cycle       

              

              

              

              

      

 

Insurer       

      

Profile 

Summary       

              

              

              

              

              

For each insurance company in its jurisdiction, state regulators create an insurer 

profile summary.  Regulators use the insurer profile summary to develop a priority system 

and supervisory plan for financial solvency.  Regulators analyze the company’s quarterly 

statements and calculate key financial ratios to update the company’s profile and priority 

score.  Regulators also monitor significant changes in company management, changes in 

company operations, and reports from external sources.  They use the company’s priority 

score to determine how often the statutory exam will be performed.  However, to maintain 

                                                           
ii
 1976-2014 National Association of Insurance Commissioners, Financial Condition Examiners Handbook, 

2014 Edition, pages 11-14.  Future references of this publication will be denoted “NAIC Handbook, page xx”.  
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NAIC accreditation, all companies under a state’s jurisdiction must be examined at least 

once every three to five years.  The information in the insurer profile summary is used by the 

EIC to develop an examination plan focused on the areas that represent the company’s 

greatest risk.  The examination findings are then used to update the supervisory plan.   

The NAIC Handbook, page 183, has nine branded areas of risk that must be 

considered during the examination: 

 Credit Risk 

 Market Risk 

 Pricing/Underwriting Risk 

 Reserving Risk 

 Liquidity Risk 

 Operational Risk 

 Legal Risk 

 Strategic Risk 

 Reputational Risk 

 

Just as the role of the company actuary continues to expand across many operations 

of the typical property/casualty insurance company, the EIC is now asking examination 

actuaries to collaborate with other members of the examination team to assess the NAIC 

branded risks in several areas of the insurance company’s operationsiii.  While the EIC is 

ultimately responsible for the design and execution of the examination, once the examination 

actuary develops a strong understating of the risk focused approach, the actuary may be 

asked to take a leadership role in the efforts to evaluate reserving risk and 

pricing/underwriting risk.  In addition, on some examinations, the actuary plays a critical 

role in evaluating the company’s reinsurance programs and assessing whether they effectively 

mitigate the company’s liquidity risk.  The role of the actuary and the risk considerations in 

these areas will be described below for each phase of the exam. 

                                                           
iii The EIC develops procedures specifically for the company being examined.  Some of the procedures 
described in this paper may not be incorporated into an examination since the EIC may determine that a 
targeted examination of specific areas is most appropriate.  It is the author’s experience that the risk-focused 
examination approach has required the EIC to seek actuarial expertise to effectively assess the variety of risk 
that exists in insurance companies today.     
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Similar to an independent audit, an examination is organized into key functional 

areas of an insurance company’s operation.iv  For each of these functions, a risk assessment 

is performed to evaluate the nine types of risk.  The NAIC Handbook, page 573, includes a 

template to document the risk assessment, listing all “risk activities”v and mitigation 

strategies, and documenting the testing plan.  The examination team will usually develop a 

matrix for each functional area.  To facilitate the sharing of informationvi and ensure that the 

phases of an examination are documented in a consistent manner, many states use an 

electronic repository system called TeamMate to compile examination workpapers and track 

the progress of each phase of the exam.  The NAIC Handbook identifies sub-activities for 

each of the key functional areas and lists common risks, best practice controls, and potential 

tests of the controls for the examination team to consider.  The following is a list of key 

functional areas for property/casualty insurance companiesvii; the bolded areas listed below 

are those in which actuaries are most commonly involved: 

 Premium 

 Claims 

 Reinsurance 

 Reserves 

 Investments 

 Taxes 

 Expenses 

 Other Liabilities and Surplus 

 Underwriting 

 

The NAIC Handbook, page 14, depicts the steps for the risk-focused examination. 

The examination process includes seven separate and distinct phases.   Each phase is 

performed sequentially by the examination team and must be completed and approved by 

the EIC in the following order: 

                                                           
iv Auditors may refer to these as cycles or significant business processes. 
v In this paper “risk activity” is used to describe the steps inherent in a business process that may result in a risk 
of material misstatement or other significant business risk. 
vi Many times, regulators from multiple states will participate in a company’s exam when a company has 
affiliates domiciled in other states.  While the EIC for the lead state has the ultimate responsibility for the 
examination process, state regulators will collaborate to ensure all areas of risk important to their state are 
addressed during the exam. 
vii See NAIC Handbook, page 299, for Reinsurance - Ceding Insurer; page 333, for Reserves; and page 421, for 
Underwriting. 
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 Phase 1 - Understand the company and identify key functional activities to be 

reviewed 

 Phase 2 - Identify and assess inherent risk in activities 

 Phase 3 - Identify and evaluate risk mitigation strategies/controls 

 Phase 4 - Determine the residual risk 

 Phase 5 - Establish/conduct examination procedures 

 Phase 6 - Update prioritization and supervisory plan 

 Phase 7 - Draft examination report and management letter based upon findings 

 

The first two phases are considered the planning phases.  During Phase 1, the 

examination team gains an understanding of the company’s business and operational 

procedures through interviews with the company’s management and “walk-throughs” of the 

company’s operational processes.  In Phase 2, the examination team reviews information 

gathered from Phase 1 and identifies the risk activities.  All areas with significant risks are 

initially listed in the matrix and the examination team assesses the inherent risk related to 

those activities.  During the Phase 3 procedures, the examination team identifies the 

company’s controls and risk mitigation strategies and begins to evaluate the effectiveness of 

these controls at reducing risk.  In Phase 4, the examination team determines a residual risk 

rating for each risk listed in Phase 2viii.  The residual risk rating reflects both the inherent risk 

identified in Phase 2 and the degree to which the controls and risk mitigation strategies 

reduce the potential impact of these risks.  In Phase 5, the examination team determines a 

testing plan commensurate with the residual risks assigned in Phase 4.  In general, areas with 

high residual risk require more substantive testing, while abbreviated testing procedures may 

be used for areas with moderate residual risk.  No additional testing procedures may be 

required for areas with low residual risk.  The testing results are then used by the EIC to 

update the Insurer Profile Summary, the insurer’s priority and supervisory plan in Phase 6.   

The final examination report and, if necessary, a comment letter to company management, 

are issued in Phase 7. 

A more detailed description of the activities performed by the actuary in each phase 

of the exam follows. 

 

                                                           
viii Some EICs may eliminate risk activities with low residual risk from the risk assessment matrix if no 
examination testing procedures are deemed necessary. 
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2.1 Phase 1 – Understand the Company and Identify Key Functional 

Activities to be Reviewed 

The examination team needs to have a complete understanding of the company’s 

operations in order to identify risk activities and the company’s risk mitigation strategies.  

The examination actuary’s first step in understanding the company is to gather and evaluate 

relevant public information and review the findings from prior examinations.  The 

examination actuary may want to review the company’s Annual Report, the 10-K, and 10-Qs 

and search for relevant press releases.  The EIC will usually provide the examination actuary 

with copies of the company’s statutory financial statements, actuarial opinions and actuarial 

opinion summaries, and discuss the areas of significant risk from the prior exam. 

A review of the company’s statutory financial statements will allow the actuary to 

identify areas of risk.  The actuary may want to note changes in premium volumes, loss 

ratios, and the one-year and two-year runoff statistics shown in the Five-Year Historical 

Data section of the annual statement.  A preliminary review of Schedule P will allow the 

examination actuary to better understand the company’s mix of business and determine if 

there has been a recent shift in the insured exposure.  Loss ratios and reserve balances by 

accident year shown in Schedule P, Part 1 and the change in prior year estimates shown in 

Schedule P, Part 2 may provide the examination actuary with a basic understanding of the 

inherent reserving risk.   A review of Schedule F, Part 3 will provide the examination actuary 

with a preliminary understanding of the amount and quality of the reinsurance placements.   

The purpose of the initial review is to develop a broad list of questions and issues that will 

be discussed during the company interviews. 

The examination actuary may benefit by attending the examination’s initial kick-off 

meeting, during which company management provides a high level overview of its 

operations and highlights changes, or issues that have emerged, since the prior exam.  The 

examination team also uses this meeting to provide an overview of the scope and timing of 

the exam.   A series of “C-suite” meetings are held with the company’s Chief Executive 

Officer (CEO), Chief Financial Officer (CFO), Chief Risk Officer (CRO), Chief Information 

Officer (CIO), Appointed Actuary and other company leadershipix to allow the examination 

team to gain a better understanding of the company’s operations and any significant business 

activities.   

                                                           
ix  It should be noted that the corporate structure does not include all of the “Chief” officers designated in this 
list for some insurance companies.   During the kick-off meeting the company will usually identify the person 
responsible for each of the designated areas.  The examination team usually schedules interviews with the 
company’s leadership in each of these areas. 
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During the C-suite meetings, the examination team begins to develop a basic 

understanding of how the company manages its business, its governance, and the controls 

management uses to mitigate risk.  These meetings allow the examination team to gain a 

better understanding of the “tone from the top” related to the company’s controls.  The 

examination actuary may use the C-suite meetings to ask the CFO to explain how 

management establishes its best estimate for the recorded reserves and how management 

documents the rationale for reserves that differ from the actuarial central estimate.   The 

examination actuary may use the meeting with the CRO or CEO to inquire how the 

company establishes its risk tolerances, evaluates its catastrophe exposure, and establishes 

retention levels for its reinsurance programs.  Finally, the examination actuary may want to 

inquire how the company manages its underwriting and pricing activities.  The responses 

from these inquiries will allow the examination team to organize the next level of meetings 

to gain a detailed understanding of the company’s processes. 

The actuary will usually work with the EIC and collaborate with other members of 

the exam team to coordinate meetings with the chief actuary, the actuary in charge of 

reserving, the actuary or executive in charge of pricing and product development, the head 

of the claims department, and the actuary or executive who develops and places the 

reinsurance program.  While other members of the examination team usually attend 

meetings with the company actuaries, the examination actuary usually prepares an agenda 

and questions related to the actuarial aspects of the exam.   Following these meetings, 

separate meetings are scheduled with the company auditor to evaluate the audit testing plans 

in the actuarial areas.    

During this phase of the exam, the examination team may perform a “walk-though” 

of the company’s processes.  The findings from the walk-throughs can be used in Phase 2 to 

identify risk activities and evaluate inherent risk and can also be used in Phase 3 to evaluate 

the company’s risk mitigation techniques.  The “walk-through” is similar to the process used 

by auditors during the Sarbanes-Oxleyx testing of internal controls, required for public 

companies.  The examination team usually reviews the documentation supporting the 

company’s internal controls and may be able to leverage the company’s flow-charts and the 

Sarbanes-Oxley control matrices to identify risk activities and company controls.    

Phase 1 documentation usually includes the company’s responses to the examination 

team’s questions, the agendas, and minutes of the meetings.   

                                                           
x The federal Sarbanes-Oxley Act of 2002 established corporate governance and risk management standards 
that required public companies to document internal controls. 
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2.1.1 Notes for the Company Actuary on Phase 1    

Understanding the risk-focused exam procedures and the examination team’s scope 

and objectives for the examination meeting will allow the company actuary to be better 

prepared.  Since one of the examination team’s objectives is to perform a risk assessment of 

the actuarial process, the company actuary may want to gather and prepare information 

regarding the company’s procedures, oversight, controls, and other risk mitigation 

techniques inherent in the actuarial process.  One of the goals for the company actuary, as it 

relates to the risk assessment process, is to demonstrate that the level of oversight for the 

process is commensurate with the inherent risk.  If the company actuary is successful at 

demonstrating that the company controls are effective at mitigating risk, then less testing 

may be required by the examination team, resulting in a more efficient exam.  

Using the reserving process as an example, the company actuary in charge of the 

reserves may want to demonstrate that data controls are performed at various stages of the 

review and quality controls are built into the actuarial analysis, allowing the actuary to easily 

identify material errors.  Quality documentation of the actuarial review may allow the 

examination team to leverage more of the company’s work.  Additionally, showing evidence 

of a robust peer review of key actuarial judgments and a formal process to evaluate changes 

in prior estimates may reduce the examination team’s assessment of residual risk, which can 

result in a more narrowly-focused testing plan.  Prior to meeting with the examination team, 

the company actuary may want to review and update the documentation of the company’s 

actuarial reserving process and ensure that the report supporting the actuarial opinion 

includes text that memorializes the key actuarial judgments and assumptions.  The company 

actuary may want to schedule a preliminary meeting with the auditor to ensure that the 

auditor’s actuaries are prepared to discuss all of their oversight activities and audit testing 

plan.  The company actuary may supplement these discussions with the procedures the 

company uses to reconcile the company’s estimates with those produced by the auditor.  

Showing the examination team how the two independent estimates have performed over 

time may be an effective way to convince the examination actuary to leverage more of the 

work performed by the auditor’s actuary.     

To be better prepared for the meetings, the company may request that the 

examination team provide an agenda and list of questions in advance of the meeting.  The 

organization and quality of the information provided during these initial meetings influence 

the examination team’s assessment of inherent risk and the effectiveness of the company’s 

controls.  Advanced preparation by the company actuary will usually result in a more 
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efficient and effective meeting, with the examination team gaining a better understanding of 

the company’s controls. 

2.2 Phase 2 – Identify and Assess the Inherent Risk  

During Phase 1, the examination team gains an understanding of the company’s 

operational procedures and begins to identify the activities that will be evaluated for inherent 

risk.  For each of the key functional areas, the NAIC Handbook identifies major activities 

and common risks for the examination team to consider.  As noted above, three of the key 

functional areas have a significant actuarial component.  The reserving function and the 

underwriting/pricing function are directly tied to an NAIC branded risk, and the reinsurance 

function is tied to liquidity risk.  This section will specifically address the actuarial aspects of 

the reserving process, the underwriting process and reinsurance.  It should also be noted that 

all functional areas also include many other risk activities that are not considered “actuarial” 

in nature.  For example, the examination of the reserving function may begin with the risk 

activities related to information systems and the process to accumulate the data used in the 

actuarial analysis and may end with the activities to record reserve changes or other financial 

reporting activities performed by the accounting department.  The complete spectrum of 

risk activities included in the risk assessment matrix is not the focus of this paper.  Even 

though the EIC may ask the examination actuary to collaborate with other members of the 

examination team on other areas, the focus of the discussion that follows is related to areas 

that are most often reviewed by the examination actuary. 

As noted above, for each of the key functional areas, the NAIC Handbook lists 

general activities, common risks, and best practice controls to be considered for inclusion in 

the documentation matrixxi.  However, because of the diversity in organizational structure 

among property/casualty insurers and unique nature of the risk activities that exist for each 

company, the documentation matrices used in practice are developed specifically for each 

company being examined.  For smaller insurers, the general activities listed in the NAIC 

Handbook may be sufficient and the examination team may simply include the risks that are 

appropriate for the company being examined.  However, a large, more complex insurance 

company may have unique processes that require a more detailed listing of risk activities or 

sub-activities to identify the risks associated with the process.     

The organizational structure within the company being examined may necessitate 

multiple risk matrices for each key functional area.  Some property/casualty companies use 

                                                           
xi See NAIC Handbook, page 299, for Reinsurance - Ceding Insurer; page 333, for Reserves; and page 421, for 
Underwriting. 
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different processes for various business units within the company.  For example, the process 

used by a company for its personal lines exposure may differ from the process used for its 

commercial business.  Some companies may also use different processes for subsidiary legal 

entities or branch offices, and others may have a separate and distinct process for unique 

types of businesses written in the company.  If the inherent risk and controls to mitigate 

risks differ within the company, the examination team may consider performing separate risk 

assessments and documenting the results in separate matrices. Since the risk assessment may 

result in a different residual risk, the associated testing plan developed for each area may also 

differ.     

2.2.1 Activities related to reserving risk  

Many risk activities for the reserving process cross all lines of business (or reserving 

segments).  Even if the company uses a best practice reserving process and has strong risk 

mitigating controls, the risk inherent in the exposure for some reserving segments (or for 

certain activities within the reserving process) may be sufficiently high that risk mitigation 

techniques will not effectively reduce the reserve risk to a low level.  Different levels of 

inherent risk for the various reserving segments may create situations where certain activities 

and controls result in a high or moderate residual risk for one review segment but low 

residual risk for another.  To develop a testing plan that is directly tied to the risk assessment 

process, it may be appropriate to perform a risk assessment at the reserve segment level.  An 

example of a risk assessment performed at the reserve segment level is contained in 

Appendix B.   

The first step of the risk assessment process is to develop the framework of activities 

to be considered in the risk assessment matrix.  The reserving process may begin with the 

process to aggregate data for the actuarial review, but many times, the examination actuary’s 

process begins with ensuring that the data used in the actuarial analysis is appropriate for 

estimating the unpaid claim liabilities. The system activities related to the claims and 

exposure data and the other detailed data quality controls are important elements in the 

reserving process, but these activities are usually evaluated by other members of the 

examination team.  However, since risks associated with the underlying data may impact the 

actuary’s risk assessment and testing plan for the reserve risk, the EIC may want to review 

the risk assessment and consider the testing results for the related claims systems prior to the 

examination actuary’s providing a conclusion on the actuarial aspects of the reserving risk.   

The following is a sample of risk activities associated with the reserving process and 

examples of risks that may be considered by the examination actuary.   
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 Data aggregation and reconciliation – The actuarial data is inaccurate, incomplete 

or otherwise inappropriate for estimating the unpaid claims.    

 Segmentations used in the actuarial reviews – Improper segmentation of 

underlying actuarial data may inhibit the detection of loss trends, development 

patterns, or shifts in types of loss. 

 Environmental or operational changes impacting the actuarial analysis – 

Changes in the company’s policies, written exposure, claim processing, or 

environment are not adequately contemplated in the actuarial estimates. 

 Consideration of reinsurance – Historical changes in the reinsurance program are 

not properly reflected in the estimation of net or ceded reserves.    

 Consideration of special policy provisions – The actuarial estimates of unpaid 

claims do not adequately consider unique risks related to special policy provisions.  

Examples of special policy provisions include retrospective premium reserves, credit 

risk from large deductible policies, and long duration contracts that may require 

unearned premium reserve testing. 

 Actuarial methods and techniques used – The company’s actuarial reserving 

software does not include adequate or appropriate actuarial methods and techniques 

to evaluate the exposure.  This assessment may include an evaluation of the 

company’s reserving software and the system and spreadsheet controls related to the 

actuarial reserving process.  

 Quality controls and oversight – Inadequate quality controls and oversight may 

result in material errors in the estimates, a bias in the actuarial assumptions, or 

unreasonable selections resulting in inadequate estimates of unpaid claims.  

Management’s influence on the actuarial estimates may be evaluated in this area of 

the process.     

 Loss Adjustment Expense (LAE) considerations – The actuarial process to 

estimate unpaid allocated loss adjustment expense (ALAE), or defense and cost 

containment (DCC) expense, does not adequately address changes in defense 

strategies or trends in legal defense costs.  The process used by the company to 

estimate unpaid unallocated loss adjustment expense (ULAE), or adjusting and other 

payments (AOP), does not adequately reflect the company’s average cost to settle 

claims or the expected duration of the remaining open claims.  For some companies 

the reserving risks for loss and LAE are similar and a separate risk assessment may 
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not be required.  However, differences in the company’s process for estimating LAE 

reserves or unique risks related specifically to LAE may necessitate separate 

consideration.     

 Recording differences between Actuarial Central Estimate (ACE) and 

Management’s Best Estimate (MBE) – The recorded reserves based on the MBE 

are inadequate or have been selected in a manner that distorts reported earnings 

resulting in a material reputational risk for the company.  The examination actuary 

may need to consider the risks and controls related to management’s selection 

process if the recorded reserve differs from the company’s actuarial central estimate. 

2.2.2 Activities related to underwriting risk 

The examination actuary’s review for underwriting risk is usually focused on the 

actuarial ratemaking process, management’s oversight of rate level changes, and the 

interaction between the ratemaking and actuarial reserving functions.  The examination 

actuary may be asked to evaluate areas considered to have elevated underwriting risk.  This 

may include segments of business with significant growth, newly emerging markets, 

segments with a high concentration of exposure, segments with perpetually high loss ratios, 

or lines with significant variability.  Underwriting/pricing risk is more of an operational risk 

than a financial reporting risk.  It is also more prospective in nature since the examination 

actuary is evaluating whether current or future policies may be written at inadequate rate 

levels, resulting in a future drain on surplus.   

The following is a summary of some specific risks that may be evaluated by the 

examination actuary related to underwriting risk:   

 Inappropriately selected ratemaking methods, resulting in inadequate rate levels;   

 Inadequate actuarial expertise, impacting the quality and timeliness of rate adequacy 

reviews and rate filings;  

 Significant growth in new markets, resulting in books of business with optimistic or 

inadequate pricing that may not be detected and corrected in a timely manner; 

 Improper use of predictive modeling or other underwriting tools, leading to poor 

risk selection, adverse selection, and inadequate rate levels; 

 Inadequate monitoring of rate levels and use of flexible pricing adjustments, leading 

to inadequate rate levels and underwriting deterioration; and 
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 Material unreconciled differences between the ultimate loss estimates derived for 

ratemaking and those estimated for reserving, resulting in inadequate rate levels and 

unfavorable underwriting results. 

For well-established companies, many of the risks noted above may have a moderate 

to low inherent risk, which may be further mitigated by company controls. However, many 

well-established companies do acquire less successful companies or expand their operations 

to achieve growth objectives.  The integration of new business or expansion plans may 

increase a company’s underwriting risk.  A walk-through of the company’s product 

development and ratemaking process will allow the examination actuary to identify other risk 

activities that may require further review.  

2.2.3 Activities related to liquidity risk and reinsurance  

One of the more common areas the EIC asks the actuary to review for liquidity risk 

is the process used by the company to develop its company’s reinsurance program.  For 

property insurers, this may also involve evaluating the company’s catastrophe exposure.  

However, under certain circumstances, the examination actuary may be asked by the EIC to 

evaluate company’s payment patterns and perform cash flow testing to evaluate whether 

there is sufficient liquidity in invested assets.   

To evaluate the company’s reinsurance program, the examination team usually begins 

by gaining an understanding of the company’s stated risk tolerances and procedures to 

establish the reinsurance program to mitigate fluctuation in the company’s retained losses.  

The examination actuary usually reviews a history of the per-occurrence retention, the limits 

of coverage, and quality of placements for the company’s reinsurance covers.  The actuarial 

risk assessment may include reviewing variability studies supporting the company’s per-

occurrence retention or the exposure modeling used to evaluate the company’s 

concentration of property risk.   Some of the risks that the examination actuary may include 

in the assessment of the reinsurance program include:    

 Inadequate actuarial expertise or system capabilities to perform exposure modeling 

and evaluate concentration of risk, leading to retained exposure that exceeds the 

company’s stated risk tolerances. 

 Inadequate process to monitor and manage new business writings, leading to excess 

exposure or inadequate rate levels due to increased reinsurance costs. 

 Inadequate governance of risk tolerances by the company’s Board or Enterprise Risk 

Management (ERM) committee, resulting in retained risk that exceeds rating agency 

risk tolerance levels. 
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 Inadequate management controls over the reinsurance program, leading to policy 

provisions or a design that does not effectively limit the company’s exposure. 

 Inadequate underwriting controls, resulting in the issuance of primary policies that 

do not meet retention levels or coverage limitations required by the company’s 

reinsurance programs. 

2.2.4 Determining inherent risk  

Once the risk activities are identified, the examination team must assess the inherent 

risk for each risk.  For most activities, the risk assessment is usually performed at the 

company level since the inherent risk defined in the NAIC Handbook relates to the 

frequency and magnitude of risk at the company level.  If the risk assessment is performed in 

greater detail, the risk assessments for the individual segments must be aggregated to 

determine the company’s total inherent risk for that activity.  

In the example shown in Appendix B, the risk assessment is performed at the reserve 

review segmentation level.  By approaching the risk assessment at this level of granularity, 

the resulting residual risk and recommended testing plan for each review segment may be 

tied directly to the risk assessment process.  If risks are evaluated at the reserve segment 

level, both the magnitude of risk and the aggregation of risk with other segments need to be 

considered when assigning the inherent risk at the company-wide level.  For some risks, such 

as random (independent) calculation errors, it would be less likely that multiple smaller 

errors would occur and aggregate to the magnitude required to be classified as a High Risk 

for the company.  However, for highly correlated risks, such as errors in a reserving template 

impacting all review segments or a bias in actuarial judgment for a long tailed line of 

business, the aggregation of smaller risks in multiple reserve segments may result in a high 

risk for the company.  Therefore, actuarial judgment must be applied when considering the 

appropriate magnitude of risk for each segment.  If magnitude and aggregation are 

considered in assigning the inherent risk ratings for each segment, an averaging technique 

may be appropriate to determine the inherent risk for the company.     

The NAIC Handbook, pages 185 – 188, includes a framework and a rating system 

for determining the three classifications of inherent risk.  The NAIC Handbook suggests 

that a “High” inherent risk be assigned to risk activities that are large (in relation to the 

company’s financial strength) and that could result in significant and harmful financial 

and/or reputational loss to the organization.   A “Moderate” inherent risk is considered 

significant (moderate in size in relation to the company’s financial strength) and the loss to 

the insurer could be absorbed in the normal course of the business.  A “Low” inherent risk 
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results in an error that would have an insignificant negative impact on the insurer’s financial 

strength and reputation. 

The NAIC Handbook recommends the use of a frequency and severity approach to 

evaluate both the likelihood of an occurrence and the magnitude of the impact for each 

inherent risk.  If the event being evaluated is likely to occur “most of the time”, the risk is 

assigned a “High” frequency rating.  If the event only rarely occurs, the risk is assigned a 

“Low” frequency rating.  Events that will probably occur some of the time are assigned a 

“Moderate-High” rating and events that could occur some of the time are assigned a 

“Moderate-Low” rating.  To develop the ratings, both qualitative and quantitative 

assessments are used, along with actuarial judgment.   

The NAIC Handbook, pages 185-188, four classifications for the magnitude, or 

severity, of the impact: 

 Threatening - The risk is classified as threatening if the event could result in an 

impact greater than 5% of surplus or material rating agency downgrade, or could 

otherwise give rise to financial solvency concerns. 

 Severe - The risk is classified as severe if the event could result in an impact between 

3% and 5% of surplus, have a serious impact on shareholder value and reputation 

with adverse publicity, or result in board and senior management attention. 

 Moderate - The risk is classified as moderate if the event could result in an impact 

between 1% and 3% of surplus, have an impact on shareholder value and/or 

reputation, or result in senior and middle management attention. 

 Immaterial - The risk is classified as immaterial if it results in an impact less than 

1% of surplus, has no potential impact on shareholder value and/or the reputation 

of the company, and is expected to be addressed and resolved by the company’s 

middle management.  

The NAIC Handbook suggests the overall inherent risk assessment be determined by 

considering both the frequency and severity components as shown in the table on the 

following page: 
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Overall Inherent Risk Rating Scale 

Likelihood of 

Occurrence 

Magnitude of the Impact 

Threatening Severe Moderate Immaterial 

High High High High Moderate 

Moderate-High High High Moderate Moderate 

Moderate-Low High Moderate Moderate Low 

Low Moderate Moderate Low Low 

 

Phase 2 is completed once the inherent risk assigned to the list of risks is approved by the 

EIC.  The effectiveness of the company’s risk mitigation techniques is evaluated in Phase 3. 

2.3 Phase 3 – Identify and Evaluate Risk Mitigation Strategies 

The examination actuary will learn about the company’s risk mitigation techniques 

during the Phase 1 meetings, review of the company’s documented Sarbanes-Oxley or 

Model Audit Rule (MAR)xii controls, and walk-throughs of the processes being evaluated.  

However, while many company actuaries naturally incorporate risk mitigation techniques in 

their processes, they may not think about the various quality control checks and balances as 

“risk mitigation strategies.”  The following sections are intended to identify some of the risk 

mitigation techniques commonly used by companies.      

2.3.1 Reserving risk mitigation techniques 

The loss and LAE reserve estimates are inherently a high risk area for most 

property/casualty insurance companies.  However, most companies have a number of 

controls and risk mitigation strategies imbedded in their actuarial reserving process.  These 

include controls that are built into the actuarial analyses (or models) underlying the estimates 

of the unpaid claims, as well as management controls over the change in estimates. The 

company’s auditor (or a third party actuary) may also produce independent estimates that 

serve as a control over the reserve estimates.   

  

                                                           
xii The Model Audit Rule is the common name for the NAIC Annual Financial Reporting Model Regulation 
(#205).  MAR requires large non-public insurance companies to document their assessment of internal 
controls.  For smaller companies, professional auditing standards, established by the American Institute of 
Certified Public Accountants (AICPA) requires the auditor to document and review the company controls. 
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Potential risk mitigation strategies that may be used by companies include: 

 The existence of data controls and reconciliations performed before and after the 

actuarial review to ensure the data provided for actuarial analysis reconciles to the 

financial statements.   

 The use of procedures to verify that prior valuations of claims data have not 

changed.  

 Robust discussions between the reserving actuary and management, the claims 

department, and key personnel in other operational areas to identify potential 

changes in business and other industry trends to be incorporated into the reserving 

process. 

 An adequate team of actuarial experts assigned to develop the actuarial central 

estimate and range of reasonable estimates of unpaid claims.   

 The use of a protected loss reserving system that includes multiple actuarial 

techniques and the application of appropriate methods to evaluate the exposure. 

 Adequate actuarial oversight of the methods and assumptions, with documented 

peer reviews. 

 A formal process to monitor and respond to changes in prior estimates.  

 Detailed reconciliations and analysis of differences between company estimates and 

those developed by the independent auditor’s actuary or other third party. 

 The inclusion of claim diagnostics and other statistical controls to evaluate 

environmental or operational changes that may impact the actuarial estimates of 

reserves. 

 Proper procedures in place to estimate ceded reserves. 

 Documentation of management’s best estimate for the recorded reserves, with 

sufficient rationale for differences with the appointed actuary’s central estimates.  

 The existence of a functional reserve committee that meets regularly and documents 

meeting minutes.  

 A well-written actuarial opinion identifying risk of material adverse deviation and a 

complete actuarial report with text memorializing the key assumptions inherent in 

the estimates.  
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 Sufficient interaction between the appointed actuary and the Board or Audit 

Committee.   

These and other mitigation techniques may effectively reduce the risk inherent in 

developing estimates of unpaid claims.  However, just as the inherent risk may differ by 

reserving segment, so may the effectiveness of risk mitigation strategies at reducing the risk.  

Therefore, once the mitigation strategies are identified, the actuary needs to determine if the 

effectiveness of the mitigation technique can be evaluated at the company level or whether it 

may be more appropriate to evaluate the effectiveness of the controls for each reserving 

segment.   

As noted above, the example provided in Appendix B was prepared at the reserve 

segment level, and the effectiveness of the risk mitigation techniques was evaluated for each 

segment individually. This process allows the examination actuary to develop a testing plan 

commensurate with the residual risk for each reserving segment.  However, to determine the 

overall effectiveness of controls, an aggregation of the results by segment is needed to 

complete the risk assessment at the company level.  Similar to assessing the inherent risk, the 

effectiveness of the control may be assigned at the reserving segment level in consideration 

of the aggregation technique to be applied.  Once completed, the aggregation of the results 

for each segment is used to determine the overall rating documented in the company’s risk 

assessment matrix.  

2.3.2 Underwriting risk mitigation techniques  

Many of the mitigation techniques listed above for reserving risk may also be considered 

mitigating controls for underwriting risk.  Some of the common mitigation techniques for 

underwriting risk are: 

 An adequate number of experienced actuaries overseeing the rate review process. 

 The involvement of actuaries in product development and evaluating the costs of 

coverage changes. 

 The existence of a robust planning process and comparison of plan to actual results. 

 A process to reconcile differences between projected (budgeted) premiums and 

actual premium.  

 A process to monitor rate level changes, flexible pricing changes, and the use of 

pricing tiers. 

 A process to determine profitability by line, branch office, agency, and geographical 

region. 
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 A process for integrating newly acquired businesses and entry into new markets. 

 A process to compare company loss costs and rate levels with industry benchmarks 

or key competitor rates. 

 A well-defined and documented process to develop and review underwriting models.   

For many well-established companies, underwriting risks have a low inherent risk 

and the assessment of the effectiveness of the controls may be performed on a company-

wide basis. However, variability in operating results and change in business operations may 

elevate the inherent risk.  Larger companies may have separate personal and commercial 

units, and very large companies may have a regional organizational structure.  During Phase 

1, the examination team may want to perform a walk-through for each unit to determine if 

the underwriting process is more appropriately evaluated on some basis other than at the 

overall company level.   

2.3.3 Liquidity risk mitigation techniques 

The most common liquidity-related risk mitigation technique evaluated by the 

examination actuary is the design and placement of the reinsurance program.   Therefore, the 

examination actuary may need to understand how the company’s risk tolerances were 

established and how those risk tolerances compare to targets established by rating agencies.  

The examination actuary may also be asked by the EIC to evaluate whether the reinsurance 

program is designed to meet the specific thresholds established by the Risk Based Capital 

requirements. 

For companies with a large property insurance exposure, the EIC may ask the 

examination actuary to review the results of the company’s catastrophe modeling and 

evaluate how the company manages its concentration of risk.  The examination actuary may 

want to compare the catastrophe model results reported to the rating agencies to the results 

produced by the reinsurer in underwriting the exposure.  The type and quality of the model 

used and the abilities of the company actuaries to evaluate the exposure are important 

elements in the risk assessment.   If there has been a recent change in the company’s per risk 

retention, the examination actuary may also want to evaluate any actuarial variability studies 

performed to evaluate the change in retained risk.  Common liquidity risk mitigation 

techniques used by companies include: 

 An adequate amount of actuarial expertise involved in the design and development 

of the reinsurance program.  

 An active program to measure and monitor concentration of risk.    
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 The use of appropriate catastrophe models and documentation of the company’s 

catastrophe results. 

 An annual presentation to the company’s Board, ERM committee, or other 

governing committee. 

 Documentation of the company’s historical reinsurance placements with quality 

reinsurers. 

2.3.4 Determining the effectiveness of the control  

Phase 3 requires an assessment of the effectiveness of the mitigation strategy for 

each risk.  The NAIC Handbook considers a risk control “strong” when it is deemed to be 

effective at reducing the assessed risk, “moderate” when it is only partially effective at 

reducing risk or will reduce the risk some of the time, and “weak” when there are no risk 

mitigation procedures in place or if there is material weakness identified during the controls 

testing.   Under certain circumstances, a weak risk control may actually increase the risk for 

the activity, and the examiner may revise the rating of the inherent risk and recalculate the 

residual risk.    

2.3.5 Notes for the company actuary on risk mitigation strategies    

The effectiveness of the company controls impacts the amount of testing to be 

performed by the examination team.  If the company actuary is able to show the 

examination team there are strong risk mitigation techniques in place and provide evidence 

to demonstrate that these controls are effectively reducing the company’s risk, less testing 

may be required by the examination team.  However, it may not be adequate for company 

actuaries, or other staff, to show that they perform risk mitigation activities on an informal 

or periodic basis.  To be considered an effective control, many examination teams request to 

see documentation of the process and evidence to demonstrate that the process is 

consistently executed by the company.  The company actuary will benefit by developing a 

strong understanding of the activities considered “risk mitigation techniques” and 

documenting these processes as part of the company’s internal controls.  Maintaining 

organized files and documentation of the risk mitigation procedures will facilitate the risk 

assessment process and may ultimately result in fewer testing procedures. 

One of the controls the examination actuary may consider is the company’s peer 

review process and the oversight of the actuarial estimates.  When the company’s peer 

reviews are not adequately documented, or there is not adequate evidence to validate that the 

peer reviewer has actually performed a robust review of the key actuarial assumptions and 

judgments, the examination team may not be able to place strong reliance on this control.  
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Some company actuaries maintain separate peer review files where the second reviewer adds 

comments, questions, and suggestions.  These files may demonstrate that there has been a 

thorough peer review and robust professional discussion about the underlying assumptions 

used in the final estimates.  This documentation also provides the examination actuary with 

additional insight on the final selections.  

Another control that may be considered by the examination actuary is the quality of 

the auditor’s actuarial review and the consistency between the auditor’s estimates and the 

company’s actuarial estimates.  If the company actuary does not maintain a history of the 

auditor’s estimates in their files or does not maintain documentation of their assessment of 

the difference in estimates, the examination team may need to perform additional procedures 

to evaluate both sets of estimates.  Company actuaries that maintain a history of how the 

company estimates compared to the auditor estimates, or other independent actuarial 

estimates, are able to more efficiently identify and address the difference in assumptions that 

produced the estimates.  It is also effective when the company actuary is able to show the 

examination team how the company’s prior actuarial estimates have run off compared to 

those selected by the auditor’s actuary and discuss the rationale for changes in prior reserve 

estimates. If the company actuary is able to provide this level of detail, the examination 

actuary may be able to place a greater reliance on the auditor’s independent estimates as an 

effective control.      

2.4 Phase 4 – Residual Risk Assessment 

The residual risk for each identified risk activity is determined in Phase 4.  The 

residual risk is based on both the inherent risk assigned in Phase 2 and the effectiveness of 

the controls assigned in Phase 3.  The NAIC Handbook, page 198, includes the table shown 

on the following page to depict the process used to determine residual risk.  The examining 

actuary may want to review the resulting residual risk assigned to each activity and apply 

sound actuarial judgment to reconsider the inherent risk and effectiveness of the risk 

mitigation strategy if the residual risk is not appropriate.  For areas in which the company 

has weak controls or testing has identified a material weakness in the execution of the 

company controls, the inherent risk may be elevated to reflect the increased residual risk. 

  



The Actuary’s Role in a Risk-Focused Statutory Examination 
 

 

Casualty Actuarial Society E-Forum, Fall 2015 23 

Calculating the Residual Risk 

 

Inherent Risk 

Assessment 

Control Risk Assessment 

Strong Control Moderate 

Control 

Weak Control 

High Moderate to High Moderate to High High 

Moderate Low to Moderate Moderate Moderate* 

Low Low Low Low* 

                * The inherent risk may be reassessed in light of the control weakness 

The risk assessment is documented and the resulting residual risk is approved by the 

EIC.  If the examination actuary issues a memo to describe the risk assessment process, it is 

usually referenced in Columns 3b and Column 4b of the NAIC Risk Assessment Matrix 

shown in Appendix A. 

2.5 Phase 5 – Establish and Conduct Examination Testing Procedures   

Under a risk-focused approach, the examination testing plan is developed based on 

the level of residual risk. No additional testing procedures may be required for areas with 

low residual risk, but the EIC may ask the examination actuary to perform additional 

analytical procedures to document the risk assessment.  Testing procedures are required for 

moderate and high residual risks unless the rationale is documented and approved by the 

EIC.  More robust independent testing procedures are required for areas with high residual 

risk.  For areas with moderate residual risk, the examination team may leverage more of the 

testing procedures performed by the company or the company’s auditors in its testing plan.   

For most insurance companies, the reserving risk poses the greatest risk of material 

financial misstatement.  Even if the company uses appropriate actuarial estimation 

techniques and uses best practice mitigation techniques, it is unlikely the risk assessment will 

result in a low residual reserving risk.  As a result, a Phase 5 testing plan is usually required to 

be developed and approved by the EIC.  

Tying the testing plan back to the NAIC Risk Assessment Matrix is sometimes a 

challenge.  Many risks in the reserving Risk Assessment Matrix are related to company 

procedures for developing reserve estimates.  While some testing procedures may be 

designed to evaluate specific risksxiii, many reserving risks are interrelated.  Some examination 

                                                           
xiii For example, data reconciliations can be performed and data testing procedures may be designed to evaluate 
the accuracy and completeness of the data used in the actuarial analysis. 
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teams simply default to performing an actuarial analysis to evaluate the reasonableness of the 

recorded reserves.  However, performing independent testing to validate that the company’s 

recorded reserves are reasonable does not necessarily provide insight on the appropriateness 

of company’s reserving process or the effectiveness of the company’s controls.  The 

examination actuary may want to consider testing procedures to evaluate the company’s 

processes and controls in order to leverage the company’s or the auditor’s actuarial 

estimates.    

Even though a testing plan will likely be required to evaluate the company’s reserving 

risk, it is not readily apparent how to develop an efficient testing plan.  If a risk assessment is 

performed at the reserve segment level, it will likely show that the estimates have different 

residual risk.  This risk assessment will allow the examination actuary to develop a testing 

plan for each reserving segment that is commensurate with the residual risk.    

For reserve segments with lower residual risk, diagnostic statistics may allow the 

examination actuary to determine that the company’s reserve balances are not materially 

misstated.  The examination actuary may compare the company’s estimates of the unpaid 

claims to the auditor’s actuarial estimates and conclude the reserves are reasonable based on 

the proximity of the company’s and auditor’s current estimates, the consistency of the 

estimates over time, and the runoff of prior year estimates.  The examination actuary may 

also calculate and evaluate other diagnostic statisticsxiv using Schedule P data to reach a 

similar conclusion. 

For moderate risk segments, the testing approach may include a methods and 

assumptions reviewxv of the actuarial analysis supporting the company’s estimates or the 

analysis performed by the auditor.  A methods and assumptions review of an actuarial 

analysis can take many formsxvi.  When documenting the peer review approach used in the 

exam, the author sometimes finds it useful to differentiate between a methods and 

assumptions review and a technical peer review where the differences in actuarial judgments 

are quantified.  For the former, the reviewing actuary generally reviews the work papers, 

methods and key assumptions in the analysis.  If the analysis is deemed reasonable, the 

actuary adopts the reserve estimates as the examination estimate with little modification.  For 

the latter, a more robust peer review is performed, and differences in actuarial judgment are 

                                                           
xiv  Various ratios may be compared to industry benchmark ratios and the company’s ratios from prior 
statement years. Accident year ratios that may be considered include IBNR to case reserve ratios, the implied 
paid and reported development factors, various reserve to premium ratios, and ultimate LAE to loss ratios.     
xv A methods and assumptions review is sometimes referred to as a peer review. 
xvi The reader may want to review Balester, Jennifer Lynn and Kirschner, Gerald S. Casualty Actuarial Society 
Forum Casualty Actuarial Society - Arlington, Virginia 2013: Fall, Vol. 1 1-30  Structured Tools to Help 
Organize One’s Thinking When Performing or Reviewing a Reserve Analysis 
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quantified.  For this procedure, the selected ultimate losses and key parameters of the 

company’s actuarial analysisxvii are entered into a spreadsheet allowing the reviewing actuary 

to independently select his parameters and quantify the difference in actuarial estimates.  

Other testing procedures may also be appropriate for segments with moderate 

residual risk.  These may include: tests to evaluate a specific aspect of the estimate, 

supplemental tests not included in the company’s procedures, and re-performing selected 

actuarial methods to validate the results.  

If these abbreviated testing procedures indicate there is elevated risk of a significant 

difference in estimates, the examination actuary may need to perform additional testing 

procedures or revert to developing independent estimates in order to quantify the amount of 

the potential misstatement.      For segments with high residual risk, the examination actuary 

may need to develop independent estimates to efficiently evaluate the reasonableness of the 

company’s reserve.   

When using a detailed risk assessment to develop a testing plan, the examination 

actuary may need to consider the aggregation of many small to moderate differences in 

reserve estimates that may result in a material misstatement.  For some companies, it may be 

appropriate to independently test a sample of low and moderate risk lines to evaluate if there 

is a bias in the company’s estimates.  Similarly, for some companies, it may be appropriate to 

include a mix of testing procedures for segments with a high residual risk rating.   

When a mix of testing procedures is used, it is usually helpful for the examination 

actuary to develop a summary showing the distribution of the reserves by testing procedure 

as shown in the table below.  This will allow the EIC to efficiently evaluate the mix of testing 

procedures by level of residual risk.    

  

                                                           
xvii The key parameters will depend on the analysis, but loss development factors, expected losses, and weights 
assigned to each of the methods are elements that may be included. 
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Residual Risk Assessment vs Review Testing Approach 

Carried Reserves in $000 

 

Residual Risk Assessment   

Review Approach Low Moderate High Total 

Independent Estimates        1,222  1%        6,667  6%      53,333  48% 55% 

Technical Peer Review or 

Supplemental Procedures        1,100  1%      10,000  9%        8,889  8% 18% 

Peer Review        1,111  1%      10,889  10%        4,441  4% 15% 

Diagnostic/Non-Review      10,000  9%        3,556  3%           333  0% 13% 

Total      13,433  12%       31,111  28%      66,997  60% 100% 

 

The example provided in Appendix B demonstrates how a risk assessment process 

can be structured to evaluate the residual risk for each review segment and used to develop 

an efficient testing plan.   

To complete the Phase 5 testing procedures for reserving risk, the actuary will be 

required to evaluate whether recorded reserves are reasonable or quantify the resulting 

differences for the EIC.  Examination testing procedures and results are usually documented 

in an actuarial report, consistent with actuarial standards of practice.  

2.5.1 Testing procedures for underwriting/pricing risk and liquidity risk  

The level of actuarial involvement in testing the underwriting risk and liquidity risk 

varies significantly by exam.  To evaluate the underwriting risk, the EIC may ask the 

examination actuary to perform testing procedures to validate the quality of the company’s 

rate reviews or underwriting models.  To evaluate liquidity risk, the testing plan may include 

an actuarial review of the company’s catastrophe model or an analysis to ensure that the 

reinsurance program is designed to meet the company’s stated risk tolerances.  Detailed 

descriptions of the testing procedures used by the examination actuary in these areas are 

beyond the scope of this paper.  
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2.6 Phase 6 and Phase 7  

The examination results are used by the EIC in Phase 6 to update the Insurer Profile 

Summary and prioritization plan.  Once the examination actuary’s report is approved, the 

EIC may schedule meetings to discuss the examination results with the company actuaries.  

The actuary’s examination findings will be incorporated into the EIC’s final examination 

report in Phase 7.  Any significant findings in the examination actuary’s report related to the 

company’s actuarial process or the company’s risk mitigation strategies may be addressed in 

the EIC’s final report or the management letter issued by the EIC at the conclusion of the 

exam.   

3. CONCLUSION  

Developing a detailed understanding of the risk-focused examination process will 

allow the company actuary to facilitate a more efficient examination of the company’s 

actuarial processes, and allow examination actuaries to add value to the EIC in more phases 

and operational areas of the exam.  The risk-focus examination encourages examination 

actuaries to develop targeted testing plans and concentrate their efforts in the areas that 

represent the greatest risk for the company. 
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Appendix – Example Risk Assessment 

 

This is an example risk assessment for Sample Company’s reserving risk.  The NAIC Risk 

Assessment Matrix is shown in Appendix A.  A sample of actuarial risk activities begins in 

activity 3.1 and ends with activity 5.1.  The risk assessment for Sample Insurance Company 

was performed on a reserve segment basis and is shown in Appendix B.   

 

Sample Company reviewed their reserves by legal entity and separately for commercial and 

personal lines.  To account for these differences, the detailed risk assessment was performed 

at the company and reserving segmentation level (Appendix B, Sheets 2-3). Due to space 

limitations, only a selection of segments is actually shown in the exhibits.   In Appendix B, 

Sheet 1, a weighted average of the risk assessments for each reserve segment was used along 

with actuarial judgment to aggregate the risk assessments to a company level.  The 

aggregated company risk ratings in this summary are used to complete the reserving risk 

matrix shown in Appendix A.  However, there is not a one-to-one correspondence between 

the detailed risk assessment performed on a reserving segment basis in Appendix B and the 

risks for the actuarial reserving process shown in Appendix A. The assessments shown in 

Appendix A may also include a review of procedures and controls that would be referenced 

in columns 3B and 4B.  Due to space limitations, the text and reference to key documents in 

the database would be entered in the Reserving Risk Matrix for Phase 3 through Phase 7 are 

not shown.   By considering the residual risk at the review segment level, a testing plan can 

be selected for each reserve review segment based on the risk characteristics and 

effectiveness of the mitigation techniques for that specific segment.  The testing method is 

shown in Appendix B, Sheets 2-3.   

The factors considered in the detailed risk assessment included the following: 

 Quality of the Company’s Actuarial Reserve Analyses – The quality and 

completeness of the actuarial review process and the documentation supporting the 

estimates was considered.  The types of methods used and the specific diagnostics 

evaluated in the actuarial reserving package were considered, including: settlement rates, 

case reserve adequacy, frequency, severity, runoff of prior estimates, and other 

supporting analysis to support the estimates of unpaid claims.   

 Management’s Differences – The variances between the actuarial central estimate 

(ACE) and management’s best estimate (MBE), which is the basis for the held reserves, 

were considered in the risk assessment.  The larger the variation, the higher the assessed 

risk. 

 Results of Auditor’s Reserve Analyses – The type of review performed by the auditor 

and comparison of the auditor’s estimates with the company’s estimates were 

considered.  Lines of business or review segments where the auditor showed larger 
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variances to the company’s actuarial central estimate were assigned higher risk.  Lines of 

business where the auditor did not test the reserves may also have elevated the risk 

assessment, considering other factors. 

 Prior Results – The historical change in ultimate losses from prior years was used as an 

indication of the inherent risk in the estimate.     

 Inherent Risk of Particular Line of Business/Segment – The unpaid claims for 

some segments are inherently difficult to estimate.  Longer-tailed casualty lines, lines 

with large concentrations of reserves and/or lines of business where the loss 

development patterns or loss ratios demonstrate significant variability were considered 

higher risk.   
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Risks Other than Financial 
Reporting

1.1

The Company Board of Directors are not involved 
in establishing and/or reviewing the insurer’s 
overall reserving policy and methodology.

ST, RV Moderate-Low Severe Moderate

1.2

The Company is not following the reserving policy 
and methodology that has been adopted and 
reviewed by the Board of Directors.

OP, RV, ST Moderate-Low Severe Moderate
Financial Reporting Risks

Accumulation of Data for Reserving 2.1
Claims data maintained by the Company is not 
complete, accurate (including line of business 
classification) and properly cut off. OP, RV CO, AC Moderate-Low Moderate Moderate

Accumulation of Data for Reserving 2.2

The claims data utilized by the actuary to estimate 
reserves does not correspond to the data in the 
Company’s claims system and to the data in the 
insurer’s accounting records.  OP, RV CO, AC Moderate-Low Moderate Moderate

Accumulation of Data for Reserving 2.3
Loss adjustment expense data is not properly 
classified as defense and cost containment (DCC) 
or adjusting and other (AO). OP AC Low Moderate Low

Reserving Assumptions and 
Methodologies 3.1

The methodologies used by the insurer to estimate 
loss and LAE reserves are not performed using 
standard actuarial techniques or are not 
appropriate for the exposure. RV VA, AC, PD

Moderate-
High Severe High See note below

Strong Risk 
Controls

Moderate 
or High

Moderate-
High

Reserving Assumptions and 
Methodologies 3.2

Changes in the legal environment or changes in the 
insurer’s underwriting, case reserving, or claims 
handling processes are not appropriately 
considered within the insurer’s reserving 
assumptions and methodologies. OP, RV, ST VA, PD, AC Moderate-Low Moderate Moderate

Moderate 
Risk Controls Moderate Moderate

Performance of Reserve Calculations 4.1

The company does not use year end data to 
estimate its reserves.  Errors may occur when the 
actuarial estimates are rolled forward to adjust to 
the reporting date reserves.  The actuary does not 
reconcile data used in the loss development 
analysis with the financial statements.

 RV
AC, VA, 

CO Moderate-Low Moderate Moderate
Moderate 

Risk Controls Moderate
Moderate-

High

Performance of Reserve Calculations 4.2

The actuarial calculations are not accurate or the 
actuarial assumptions and judgements are not
appropriate, or selected estimates are not 
reasonable. OP, RV AC, VA, PD

Moderate-
High Severe High

Moderate 
Risk Controls

Moderate 
or High High

SAMPLE INSURANCE COMPANY RISK ASSESSMENT MATRIX

Key Activity

Phase Four

1b – Overall Risk Statement

P&C Reserving

1c – Analytical Assessment:

The risk that reserve accounts are not properly reported, misstated, or improperly valued.

Refer to analytical procedures performed as part of phase 1 for further information.

Residual Risk AssessmentRisk Identification Inherent Risk Assessment

Phase Two

Risk Mitigation Strategy/Control Assessment

Phase Three

Note:  Column 3b includes references to the actuarial risk assessment memo, the analysis shown in Appendix B, and other company documents reviewed to assess the specific risks and controls for each row.
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Phase Four

Residual Risk AssessmentRisk Identification Inherent Risk Assessment

Phase Two

Risk Mitigation Strategy/Control Assessment

Phase Three

Performance of Reserve Calculations 4.3

The computation of ceded reinsurance credits 
within loss and LAE reserves for internal and 
external reinsurance programs are not performed 
correctly or are not reasonable.

CR, RV AC, VA Moderate-Low Moderate Moderate See note below
Moderate 

Risk Controls Moderate Moderate

Performance of Reserve Calculations 4.4

The defense and cost containment loss adjustment 
expense (DCC or ALAE) estimates for direct 
business are not estimated using standard actuarial 
techniques, are not performed correctly, or the 
selected estimates are not reasonable.

CR, RV
AC, VA, 

CO
Moderate-

High Severe High
Moderate 

Risk Controls
Moderate 
or High

Moderate-
High

Performance of Reserve Calculations 4.5

The unallocated loss adjustment expense (AOE, or 
ULAE) estimates are not estimated using standard 
actuarial techniques, are not performed correctly, 
or the selected estimates are not reasonable.

CR, RV
AC, VA, 

CO
Moderate-

High Moderate Moderate
Strong Risk 

Controls
Low or 

Moderate Moderate

Performance of Reserve Calculations 4.6

New business may result in a development patterns 
that are different from the historical data.  The 
actuarial methods and assumptions used to 
estimate reserves may contain a bias resulting in a 
build-up of differences across many years.  
Significant growth or expansions into new areas 
make it difficult to estimate the initial loss 
reserves.   OP, RV VA

Moderate-
High Severe High

Moderate 
Risk Controls

Moderate 
or High

Moderate-
High

Recording and reporting of loss 
reserves 5.1

Management books reserves that are materially 
different than the actuary’s best estimate.

OP, ST, LG VA, PD
Moderate-

High Moderate Moderate
Moderate 

Risk Controls Moderate Moderate

Recording and reporting of loss 
reserves 5.2

Loss reserves and loss adjustment expenses are not 
properly distributed and recorded amongst insurers 
in the reinsurance pooling arrangement. 

OP
OB/OW, 
AC, CM

Moderate-
High Moderate Moderate

Strong Risk 
Controls

Low or 
Moderate Low

Recording and reporting of loss 
reserves 5.3

Unauthorized changes could be made to adjuster 
limit's within the system allowing unauthorized 
changes in case basis claim reserves.

OP AC, VA Moderate-Low Moderate Moderate
Strong Risk 

Controls
Low or 

Moderate Low

Recording and reporting of loss 
reserves 5.4

Reserves are not properly monitored within 
management expectations.

OP, ST, LG VA, PD Moderate-Low Moderate Moderate
Moderate 

Risk Controls Moderate Moderate

          Highlighted risks are documented by the examination actuary.  Other items completed by other members of the examination team after collaboration with examination actuary.
Note:  Column 3b includes references to the actuarial risk assessment memo, the analysis shown in Appendix B, and other company documents reviewed to assess the specific risks and controls for each row.
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Appendix B

Sample Insurance Company Aggregated Risk Assessment Sheet 1

Reserve  Risk Assessment
Risk 5.1    Includes Risks 3.1, 3.2, 4.2, 4.3, 4.4, 4.5 Risk 4.6
MBE Auditor vs ACE Inherent Runoff Overall 

Difference Difference Variability Risk Residual Risk
1 Loss Moderate Moderate Moderate Moderate-High Moderate-High   (1)
2 Personal Company 1 High Moderate Moderate High Moderate-High
3 Personal Company 2 Low Moderate-High Moderate-High Moderate-High Moderate-High
4 Commercial Company 1 Moderate Moderate Moderate Moderate Moderate-High
5 ALAE Moderate Moderate Moderate Moderate-High Moderate-High   (2)
6 Personal Company 1 Moderate Moderate Moderate Moderate-High Moderate-High
7 Personal Company 2 Low Moderate-High Moderate-High Moderate-High Moderate-High
8 Commercial Company 1 Moderate Moderate Moderate Moderate-Low Moderate-High
9 ULAE Low Moderate Moderate Low Moderate   (3)
10 Personal Company 1 Low-Moderate Moderate Moderate Low Moderate
11 Personal Company 2 Low Moderate Moderate Low Moderate
12 Commercial Company 1 Low Moderate Moderate Low Moderate
13 Assumed Low Low Low Low Low
14 Personal Company 1 Low Low Low Low Low
15 Personal Company 2 Low Low Low Low Low
16 Commercial Company 1
17
18 Ceded Moderate Moderate Moderate Moderate Moderate   (4)
19 Personal Company 1 Moderate Moderate Moderate Moderate Moderate
20 Personal Company 2 Low Low Low Low Low
21 Commercial Company 1 Low Low Low Low Low
22
21 All Segments Moderate  (5) Moderate  (7) Moderate  (7) Moderate  (6) Moderate

The ratings on Sheets 2-3 are based on our review of the inherent risk and the effectiveness of the company controls applied to a reserve segment basis.
The ratings by reserving segment are aggregated to the company level on Sheet 1, using a weighted average with reserve balances as weights.
The average residual risk represents a composite of many reserving risks identified in the Reserving Risk Matrix - Appendix A

(1) This represents a composite residual risk for the direct loss reserves.  This rating is used to evaluate risks 3.1, 3.2, and 4.2 in Appendix A.
(2) This represents a composite residual risk for ALAE reserves.  This rating is used to evaluate risks 4.4 in Appendix A.
(3) This represents a composite residual risk for ULAE reserves.  This rating is used to evaluate risks 4.5 in Appendix A.
(4) This represents a composite residual risk for ceded reserves.  This rating is used to evaluate risks 4.3 in Appendix A.
(5) This represents a composite residual risk for MBE-ACE differences.  This rating is used to evaluate risks 5.1 in Appendix A.
(6) This represents a composite residual risk for actuarial bias and reserve runoff.  This rating is used to evaluate risks 4.6 in Appendix A.
(7) This is a composite residual risk for all loss and LAE reserves.  This rating is adjusted if the aggregation of small differences in estimates have increased the risk.
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Appendix B

Sample Insurance Company   Company 1:  Personal Lines - Risk Assessment on an Actuarial Review Segment Basis Sheet 2

Examination Team Risk Assessment

Estimates as of 12/31/2013 Runoff Risk 5.1         Risks 3.1, 3.2, 4.2, 4.3, 4.4, 4.5 Risk 4.6 Phase Five

Company $ Difference % Difference % Difference Change in R = Auditor MBE Auditor vs ACE Inherent Runoff Overall Test
Line of Business     MBE           ACE      Difference $ Difference % Select to Booked to Booked to ACE Estimate Reviewed Difference Difference Variability Risk Residual Risk Plan

DIRECT

TOTAL LOSS 431,630 458,666 (27,036) -5.9% 472,321 (40,691) -8.6% -2.9% High Moderate Moderate High Moderate-High
PPA BI/UM Liability 305,000 330,000 (25,000) -7.6% 342,100 (37,100) -10.8% -3.5% 16,301 R High Moderate Moderate High High Ind
PPA Prop. Damage Liability 21,500 21,636 (136) -0.6% 22,450 (950) -4.2% -3.6% R Low Moderate Low Low-Moderate Moderate Peer
PPA PIP/NF Liability 15,800 16,800 (1,000) -6.0% 17,300 (1,500) -8.7% -2.9% R High Moderate Moderate High Moderate Ind

Homeowners 38,110 38,110 (0) 0.0% 37,948 162 0.4% 0.4% 953 R Low Low Low-Moderate Low-Moderate Low-Moderate M&A
Umbrella 12,950 12,950 0 0.0% 13,353 (403) -3.0% -3.0% R Low Moderate Moderate Low-Moderate Low-Moderate Peer
Dwelling Fire 2,450 2,450 0 0.0% 2,450 0 0.0% 0.0% Low Low Low Low-Moderate Low Diag
Inland Marine 420 420 0 0.0% 420 0 0.0% 0.0% Low Low Low Low-Moderate Low Diag

TOTAL ALAE 42,382 39,855 2,527 6.3% 42,862 (480) -1.1% -7.0% Moderate Moderate Moderate Moderate-High Moderate-High
PPA Liability 33,289 30,844 2,445 7.9% 33,755 (466) -1.4% -8.6% 4,000 R Moderate Moderate Moderate High Moderate-High Ind
PPA Physical Damage 333 333 0 0.0% 333 0 0.0% 0.0% Low Low Low Low Low Diag

Homeowners 6,800 6,713 87 1.3% 6,809 (9) -0.1% -1.4% 844 R Low Low-Moderate Low-Moderate Moderate Low-Moderate Peer
Umbrella 1,500 1,512 (12) -0.8% 1,512 (12) -0.8% 0.0% High Low Low Low Low Diag
Dwelling Fire 450 445 5 1.1% 445 5 1.1% 0.0% Low Low Low Low Low Diag
Inland Marine 10 8 2 24.8% 8 2 24.8% 0.0% Low Low Low Low Low Diag

Auditor
ULAE 43,000 44,000 (1,000) -2.3% 43,000 0 0.0% 2.3% Accepted Low-Moderate Moderate Moderate Low Moderate Ind

Booked!
TOTAL DIRECT LOSS & LAE 517,012 542,521 (25,509) -4.7% 558,183 (41,171) -7.4% -2.8%

TOTAL ASSUMED Low Low Low Low Low

FAIR Plan/Other Pools 6,428 6,428 0 0.0% 6,428 0 0.0% 0.0% Low Low Low Low Low Diag

TOTAL DIRECT & ASSUMED 523,440 548,948 (25,509) -4.6% 564,611 (41,171) -7.3% -2.8%

CEDED Moderate Moderate Moderate Moderate Moderate

Auto Liability 29,125 26,200 (2,925) -11.2% 29,125 0 0.0% 10.0% Auditor Moderate Moderate Moderate Moderate Moderate Ind
Homeowners 17,426 16,250 (1,176) -7.2% 17,426 0 0.0% 6.8% Accepted Moderate Moderate Moderate Moderate Moderate Ind
Fair Plan 2,800 2,800 0 0.0% 2,800 0 0.0% 0.0% Booked! Low Moderate Low Low Low Diag

TOTAL CEDED LOSS & LAE 49,351 45,250 (4,101) -9.1% 49,351 0 0.0% 8.3%

TOTAL NET LOSS & LAE 474,089 503,699 (29,610) -5.9% 515,261 (41,171) -8.0% -2.2%

Auditor Estimates as of 12/31/2013
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Sample Insurance Company   Company 2:  Personal Lines - Risk Assessment on an Actuarial Review Segment Basis Appendix B

Note *   Detail for only two segments of business are shown in the example.  Loss, ALAE and ULAE Total represent sum of all segements. Sheet 3

Examination Team Risk Assessment

Estimates as of 12/31/2013 Runoff Risk 5.1              Risks 3.1, 3.2, 4.2, 4.3, 4.4, 4.5 Risk 4.6
Phase 
Five

Company $ Difference % Difference % Difference Change in R = Auditor MBE Auditor vs ACE Inherent Runoff Overall Test
Line of Business     MBE           ACE      Difference $ Difference % Select to Booked to Booked to ACE Estimate Reviewed Difference Difference Variability Risk Residual Risk Plan

DIRECT

Loss 113,875 114,750 (875) -0.8% 121,345 (7,470) -6.2% -5.4% Low Moderate-High Moderate-High Moderate-High Moderate-High
PPA BI 66,000 66,400 (400) -0.6% 72,242 (6,242) -8.6% -8.1% 1,406 R Low High High High High Ind
PPA PIP 5,000 5,100 (100) -2.0% 5,853 (853) -14.6% -12.9% 1,600 R Low High Moderate High Low All
*

ALAE 26,000 26,005 (5) 0.0% 27,972 (1,972) -7.0% -7.0% Low Moderate-High Moderate-High Moderate-High Moderate-High
PPA BI 14,500 14,650 (150) -1.0% 16,115 (1,615) -10.0% -9.1% 1,743 R Low Moderate-High High High High Ind
PPA PIP 4,250 4,130 120 2.9% 4,632 (382) -8.3% -10.8% 1,030 R High Moderate-High High High Moderate All
*
Total Loss & ALAE 139,875 140,755 (880) -0.6% 149,317 (9,442) -6.3% -5.7%

ULAE 9,000 9,000 0 0.0% 9,450 (450) -4.8% -4.8% Low Moderate Moderate Low Moderate Ind
*
TOTAL DIRECT Loss & LAE 148,875 149,755 (880) -0.6% 158,767 (9,892) -6.2% -5.7%

ASSUMED 8,950 8,950 0 0 8,950 0 0.0% 0.0% Low Low Low Low Low Diag

TOTAL DIRECT & ASSUMED 166,775 167,655 (880) -0.5% 176,667 (9,892) -5.6% -5.1%

TOTAL CEDED 575 575 0 0.0% 575 0 0.0% 0.0% Low Low Low Low Low Diag

TOTAL NET 166,200 167,080 (880) -0.5% 176,092 (9,892) -5.6% -5.1%

Sample Insurance Company   Company 1:  Commercial Lines - Risk Assessment on an Actuarial Review Segment Basis Appendix B

Note *   Detail for only two segments of business are shown in the example.  Loss, ALAE and ULAE Total represent sum of all segements. Sheet 4

Examination Team Risk Assessment

Estimates as of 12/31/2013 Runoff Risk 5.1             Risks 3.1, 3.2, 4.2, 4.3, 4.4, 4.5 Risk 4.6
Phase 
Five

Company $ Difference % Difference % Difference Change in R = Auditor MBE Auditor vs ACE Inherent Runoff Overall Test

Line of Business     MBE           ACE      Difference $ Difference % Select to Booked to Booked to ACE Estimate Reviewed Difference Difference Variability Risk Residual Risk Plan

DIRECT

Loss 661,438 674,194 (12,756) -1.9% 681,626 (20,188) -3.0% -1.1% Moderate Moderate Moderate Moderate Moderate-High
CMP 291,724 291,724 0 0.0% 292,099 (376) -0.1% -0.1% (2,169)        R Low Low Moderate Low Low- Moderate Peer
Commercial Auto Liability 101,761 101,761 0 0.0% 105,268 (3,507) -3.3% -3.3% (500)           R Low Moderate Moderate Low Moderate Peer
*
ALAE 83,806 85,899 (2,092) -2.4% 89,614 (5,808) -6.5% -4.1% Moderate Moderate Moderate Moderate-Low Moderate-High
CMP 32,090 32,090 0 0.0% 32,987 (897) -2.7% -2.7% 871             R Low Moderate Moderate Moderate Moderate Ind
Commercial Auto Liability 9,667            9,667 0 0.0% 9,905 (238) -2.4% -2.4% (40)             R Low Moderate Moderate Low Low- Moderate Peer
*
Total Loss & ALAE 745,245 760,093 (14,848) -2.0% 771,240 (25,995) -3.4% -1.4%

ULAE 79,373 80,903 (1,531) -1.9% 80,903 (1,531) -1.9% 0.0% Low Moderate Moderate Low Moderate Ind
*
TOTAL DIRECT Loss & LAE 824,617 840,996 (16,379) -1.9% 852,143 (27,526) -3.2% -1.3%

TOTAL CEDED 5,546 5,546 0 0.0% 5,546 0 0.0% 0.0% Low Low Low Low Low Diag

TOTAL NET 819,071 835,450 (16,379) -2.0% 846,597 (27,526) -3.3% -1.3%

Auditor Estimates as of 12/31/2013

Auditor Estimates as of 12/31/2013
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Premium Deficiency Reserve Evaluation for Mortgage 
Insurers 

David Kaye, FCAS, MAAA 
 
______________________________________________________________________________ 

Abstract  
This paper will provide practical guidance for the actuary evaluating premium deficiency reserves for mortgage 
insurers.  The paper includes a brief discussion of the premium deficiency accounting considerations for mortgage 
insurance, and introduces a practical deterministic approach for evaluating whether a premium deficiency reserve is 
necessary for mortgage insurers.   

 
Keywords. Mortgage insurance; premium deficiency reserve; PDR. 

______________________________________________________________________________ 

1. INTRODUCTION 

Beginning in 2007 and continuing for several years, the mortgage insurance (MI) industry 
experienced significant increases in losses, driven by the deterioration of several interrelated 
macroeconomic factors, principally, negative home price appreciation (HPA) and elevated 
unemployment levels.  Given the prolonged period of elevated MI losses, mortgage insurers, their 
auditors and insurance regulators placed greater emphasis on the importance of evaluating whether 
a premium deficiency reserve (PDR) should be recorded on mortgage insurers’ balance sheets. 

The meaningful differences that exist between MI and short duration insurance products (e.g., a 
workers’ compensation policy) require a specialized framework when evaluating MI PDR. 

1.1 Objective 
This objective of this paper is to provide the practicing actuary with: 

• Sufficient background on the MI accounting requirements to understand the evaluation 
of premium deficiency reserve; and 

• A simple deterministic framework for evaluating MI PDR. 

This paper uses a simulated data set to familiarize the practicing actuary with the MI loss and 
premium process and provides a basic deterministic framework for analyzing PDR for MI 
companies.  It should be noted, however, that there are various macroeconomic factors (principally, 
home price appreciation, unemployment and interest rates) that have a significant impact on MI 
claim and premium experience; these factors are not explicitly addressed in this paper but should be 
considered when evaluating PDR.  These factors result in claim and premium processes that are 
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more complex than the simulated data utilized to demonstrate the methodology presented in this 
paper. 

1.2 Outline 
The remainder of the paper proceeds as follows:  Section 2 provides MI background including a 

brief discussion regarding MI accounting framework with particular emphasis on PDR 
requirements and a description of common terminology used throughout this paper1; Section 3 
provides a deterministic framework for evaluating MI PDR and discusses limitations and potential 
enhancements of the model presented herein. 

2. BACKGROUND  

2.1 Background on Mortgage Insurance 
MI policies differ from typical short duration products familiar to most P&C actuaries in one 

key way:  mortgage insurance policies have effectively unlimited terms and generate premium and 

losses for many years (in contrast to typical short duration contracts which generally remain in 

effect for one year or less).  The implication for PDR for MI exposure is that the practitioner must 

project future premium and losses for loans originated on or before the evaluation date for many 

years into the future. Over the projection period, however, macroeconomic factors that influence 

claims and policy persistency can change significantly and result in significant deviation between 

historical performance and performance over the projection period.  

 

Additional key features of MI policies include the following2: 

 

• MI policies are issued at the time that the mortgage is issued and can either be paid 

by the borrower (most common) or lender (less common). 

 

                                                           
1 This paper presumes a level of familiarity with MI.  For a more detailed primer on MI, see reference [1]. 
2 Reprinted from [1]. 



Premium Deficiency Reserve Evaluation for Mortgage Insurers 

Casualty Actuarial Society E-Forum, Fall 2015 3 

• Premiums are paid on either a monthly (most common) or single up-front (less 

common) basis.  The premium associated with monthly pay policies is typically paid as 

part of the monthly mortgage payment.   

 

• The collected monthly premiums are generally recognized as income in the period 

in which they are collected (that is, the monthly premiums are written and earned at the 

same time) meaning that there is typically a very small (or no) unearned premium reserve 

associated with monthly paid MI policies.  There is an unearned premium reserve 

associated with single up-front premium policies, which is amortized over the life of the 

MI contract as losses associated with the contract is expected to emerge; however 

monthly pay policies are more common than up front policies. 

 

• MI coverage is typically expressed as a percentage of a loan’s unpaid principal 

balance (“UPB”).  These coverage percentages vary from loan to loan, but a typical 

average coverage percentage is around 25%. 

   

• MI policies provide lenders coverage for a portion of the UPB stipulated in the 

contract (generally around 25%).  In addition, the MI policy generally reimburses the 

coverage beneficiary for lost interest payments and certain foreclosure-related expenses.   

 

• Unlike typical Property and Casualty insurance policies, which are generally in force 

for one year and have defined termination dates, MI policies often generate premiums 

and losses for a number of years and there is uncertainty with regard to how long each 

policy will remain in force.  The MI policy holder may exit the insured population for a 

number of reasons, including defaulting on the mortgage (i.e., becoming a claim), 

refinancing the loan, or paying down the principal on the loan to the point that the loan 

no longer requires MI. 
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• MI losses are highly correlated with macroeconomic factors such as home price 

appreciation and unemployment.  As was highly evident in 2007-2011, MI company 

results were adversely affected by a steep drop in home prices followed by rising levels of 

unemployment.  Not surprisingly, the states with the sharpest decreases in home prices –

CA, FL and NV – were significant drivers of adverse loss experience for the MI industry. 

 

• As explained further below, MI loss reserves are recorded at the time when a 

borrower is “delinquent” in paying their mortgage. This results in an unusual accounting 

construct where the timing of premium earning and loss accrual are not matched.  In 

other words, premium revenue from MI policies is recognized (i.e., earned) prior to the 

associated losses being recognized.   

 

• For a cohort of monthly paid MI policies issued during a year, the premium revenue 

generated by the policies is the greatest during the first year and then decreases over the 

next ten years as policies exit the population.  Those that exit the population through 

delinquency, thereby giving rise to the recording of MI loss reserves tend to rise through 

third or fourth year after loan origination.  After peaking, incremental losses tend to 

decrease as policies continue to exit the population.   

2.2 Accounting for Mortgage Insurance Losses 
   The accounting framework for MI results in a departure of one of the principal objectives of 

accounting: revenue and expense matching.  For typical, single-year (or shorter duration) P&C 
insurance products, both revenue (premium) and expense (claim costs) are recognized uniformly 
through the period the policy is effective3.  For the majority of MI policies written in the U.S., 
premium is earned on a monthly basis, while losses on MI policies are not recognized until the 
borrower stops paying the  monthly mortgage payment and the lender or loan servicer notifies the 
MI company that the borrower is delinquent.  The result of this accounting framework is that 
premiums are highest during the first year following the loan origination for a cohort of policies 
                                                           
3 This description is generally accurate, although there are exceptions such as property catastrophe cover where 
premium and loss might not be recognized uniformly through the policy period. 
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while losses generally rise through the first few years after origination, peak around the third or 
fourth year and then decline over time as loans from the cohort exit the population.  Graph 1 
demonstrates this relationship for a cohort of loans written during the same calendar year4: 

Graph 1 
MI Premium and Loss Recognition 

 
 
   While MI companies follow the general framework described above for general premium and loss 
accounting, Statement of Statutory Accounting Principle (SSAP) 58 provides statutory accounting 
guidance for PDR5. SSAP 58, paragraph 23 states: 

 
When the anticipated losses, loss adjustment expenses, commissions and other acquisition 
costs, and maintenance costs exceed the recorded unearned premium reserve, contingency 
reserve, and the estimated future renewal premium on existing policies, a premium 
deficiency reserve shall be recognized by recording an additional liability for the deficiency 
with a corresponding charge to operations. Commissions and other acquisition costs need 
not be considered in the premium deficiency analysis to the extent they have not been 

                                                           
4 In this paper, we refer to years in which loans are underwritten as “book year”. 
5 GAAP accounting guidance does not specifically address MI, therefore, MI companies typically utilize statutory 
accounting guidance in preparing the GAAP accounting statements.  A primary difference between statutory and 
GAAP accounting statements is the existence of a contingency reserve required by statutory accounting guidance, but 
not allowed under GAAP. 
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expensed. If an insurer utilizes anticipated investment income as a factor in the premium 
deficiency calculation, disclosure of such shall be made in the financial statements6. 

A key point to note is that a PDR is only required when the sum of projected future losses and 
expenses (outflows) exceeds the sum of projected future premiums (inflows), unearned premium 
reserves, and contingency reserves; nothing is recorded in the event that the opposite of a PDR (a 
“premium sufficiency”) is estimated.  In practice, when estimating PDR, MI companies project 
cash payments related to all loans in the portfolio as of the measurement date inclusive of cash 
payments related to loans that are delinquent (and therefore included in the recorded loss reserves) 
at the evaluation date (facilitating discounting of the projected cash flows).  The recorded loss 
reserves are deducted from the projected cash flows to avoid double counting the outflows related 
to loans making up the recorded loss reserves at the financial statement date. 

2.3 Terminology and Organization of Data 
Before providing a framework for estimating MI PDR, it is important to introduce several 

additional terms as well as to lay out the key characteristics used to organize the data.  

2.3.1 Terminology  
 

Although the terminology below is not necessarily universal, it is used throughout the remainder 
of this paper.  

 
• Book year (and book half year):  The year (or half year) in which a cohort of MI policies is 

issued.  For example, MI policies written during 2014 will be referred to as “book year 2014 
policies”. In Section 3, we organize the data by book half year with the format 20XX-1 
representing loans originated during the first six months of 20XX and 20XX-2 representing 
loans originated during the second six months of 20XX7. 

• Risk in force (“RIF”):  The exposure to loss faced by MI companies.  The RIF is calculated 
by multiplying the MI’s coverage percentage by the loan’s UPB.  In addition to the coverage 
percentage multiplied by the UPB, the MI company may also be required to pay lost interest 

                                                           
6 MI companies typically recognize investment income by discounting projected cash flows at an appropriate 
discount rate.  The selection of an appropriate discount rate is beyond the scope of this paper; for illustrative 
purposes, a 2% discount rate has been used in the calculations shown in the Appendix. 
7 Although we use book half year in the Appendix, we note that the actuary could consider book year or book 
quarter. 
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and certain foreclosure expenses; for this reason, the ratio of claim payments to RIF may be 
greater than 100%. 

• Policies in force (“PIF”):  The total number of policies in force as of a particular evaluation 
date. 

• Policy persistency (persistency):  The portion of policies that remain in force from one 
period of time to the next.   

• Submitted claim:  A delinquent loan where the borrower has not made mortgage payments, 
the lending institution has foreclosed on the subject property, and a claim has been 
submitted to the MI company.  Within this paper we will consider both claim payments 
(dollars) and claim counts. 

• Outstanding delinquency:  A loan reported to the MI company when the borrower has 
fallen two mortgage payments behind (note, there is some variance about when a loan is 
identified as delinquent in the MI industry, here we are assuming the MI company has set 
the definition as the borrower being behind two or more payments). 

2.3.2 Data organization  
 

For purposes of the method described in Section 3, the data will be organized by book half year 
with semi-annual evaluations.  Further segmentation of the data in the Appendix is not addressed; 
however, in practice, the actuary should consider how to best segment the data for use in the model 
described in Section 38.  There are several items that an actuary might consider when determining 
appropriate segmentation for the data within the PDR analysis as described below: 

• Unemployment:  Varying levels of unemployment can have significant impacts on MI claim 
activity.  States or regions with higher levels of unemployment are more likely to also 
experience elevated claim activity which might have a meaningful impact on the PDR 
analysis. 

• Credit worthiness of borrowers:  The credit worthiness of borrowers can be a significant 
predictor in determining borrower behavior.  FICO score9 or distinguishing between Prime 
and Subprime loans in developing estimates can result in better data stratification. 

                                                           
8 Actuarial literature contains a number of papers written about effective data segmentation.  For example, see [2]. 
9 FICO is a common credit scoring mechanism developed originally by the Fair Isaac Corporation.  The FICO score is 
a numerical representation of the credit worthiness of a borrower. 
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• Home price appreciation or depreciation:  Different states or regions might have different 
levels of home price appreciation that can impact both claim behavior and policy 
persistency. 

During the 2008 housing market downturn, MI companies observed elevated MI claim 
submissions from states that had significant increases in home prices prior to the housing market 
downturn followed by significantly elevated unemployment levels resulting from the subsequent 
recession.  For this reason, during the last market downturn, some MI companies chose to 
separately analyze California, Florida, and Nevada; these “sand states” were particularly hard hit by 
the combination of a significant housing market collapse and elevated unemployment and displayed 
similar, elevated claim characteristics. 

Accounting principles require that the need for a PDR be evaluated at the level at which the MI 
company manages its insurance portfolio; the actuarial evaluation of PDR may or may not coincide 
with the level at which the MI company manages the insurance portfolio so the actuarial analysis 
may need to be aggregated in order to align with the Company’s required PDR segmentation. 

3. DETERMINISTIC FRAMEWORK FOR MI PDR 

As described in the previous section we will estimate PDR by comparing:  

a) the net present value of expected future losses and policy maintenance expenses for 
the MI company's business in force and 

b) the net present value of expected future premiums, existing unearned premium 
reserves, unpaid claim reserves, DAC (if any), and contingency reserves (if any). 
  

If, in our evaluation a) exceeds b), then the MI company should record a PDR. 

We note that the focus of this paper is on the estimation of the present value of cash flows 
related to future premiums, policy maintenance expenses and losses.  The financial statement items 
(unearned premium reserves, unpaid claim reserves and contingency reserves) are presumed to be 
known by the actuary at the financial statement date and their estimation is beyond the scope of 
this paper. 

3.1 Estimating the Cash Flows for PDR 
In developing the cash flows used to assess whether a PDR is necessary, we will separately 

estimate premiums (adding a provision for policy maintenance expenses) and losses and then 
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consider the financial statement items to determine whether a PDR is necessary.  Sections 3.1.1 
through 3.1.3 below provide a description of the PDR calculations and Section 3.1.4 provides a 
highly simplified sample PDR calculation.  The Appendix includes a more realistic example based 
on simulated MI data (the sections below provide references to the calculations detailed in the 
Appendix). 

3.1.1 Estimating future premiums 
To estimate the future premiums, we will organize historical PIF data into a triangular data 

format familiar to P&C actuaries, with the rows representing book half year exposure periods and 
the columns representing semi-annual evaluation periods.  The PIF data gathered to create the data 
triangle represents the remaining PIF at the end of each evaluation date, therefore, the PIF data 
decreases over time as the MI portfolio unwinds. 

Estimating the future premiums as described in this paper is a three step process (the 
calculations are detailed in Appendix, Exhibit 3): 

1. First, we evaluate the decline in PIF over time as the MI portfolio unwinds by estimating 
PIF persistency (“persistency”).  The persistency is developed by calculating ratios of 
PIF at each evaluation period, i+1, divided by the PIF at the preceding evaluation 
period, i.  The triangle of PIF is completed by selecting a persistency factor for each 
evaluation period and then applying the selected decay factor at each period to the PIF 
observed (or projected) at the end of the prior evaluation period.  Performing these 
calculations allows the actuary to estimate the PIF for each exposure period at each 
future evaluation period. 
 
As an example, Appendix Exhibit 3, Table 1 indicates that at the end of December 2015, 
there are 6,923 policies in force for loans written during the second half (July 1 – 
December 31) of 2015 (the 2015-2 cohort).  By using historical relationships of PIF 
decay (see Appendix Exhibit 3, Table 2), we estimate that 90.7% of policies will remain 
in force at the end of the next evaluation period.  Therefore, we project 6,283 (=6,923 x 
90.7%) policies in force at June 30, 2016 from the 2015-2 cohort.  Proceeding in this 
manner for all projection periods, we can project PIF for each future period as shown in 
Appendix Exhibit 3, Table 4. 

2. Based on the projected PIF, we calculate the average PIF for each future evaluation 
period as shown in Appendix Exhibit 3, Table 5.  Note, that we have shifted the triangle 
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in Appendix Exhibit 3, Table 5 so that each column represents a future calendar half 
year; shifting the projections in this manner facilitates discounting of the projected 
premium cash flows (related to this point, below Appendix Exhibit 3, Table 5, discount 
factors are calculated assuming on average, premiums are collected in the middle of each 
projection period10). 

3. Using the projected average PIF, we calculate the projected future premium by 
multiplying the average monthly premium for each book half year by the average PIF 
over each projection period and multiply the result by 6 (the premiums are monthly 
average premiums while each projection period represents 6 months of exposure).  The 
calculations and results are shown in Appendix Exhibit 3, Table 6. 

Note that Appendix Exhibit 3, Table 6 utilizes the discount factors calculated in 
Appendix Exhibit 3, Table 5 to determine the discounted projected future premium 
necessary for the PDR calculation.  For illustrative purposes, the cash flows are 
discounted using a 2% discount rate assumption. 

3.1.2 Estimating future claims and loss adjustment expenses 
In order to estimate the future claim payments, we begin with a triangle of paid claim counts, 

which we will utilize to perform two standard actuarial methodologies – a traditional “chain ladder” 
development method (referred to in this paper and exhibits as Claim Development Method, or 
CDM and a Bornhuetter-Ferguson method, or BFM).  The future claim estimates are outlined in 
Exhibit 2 of the Appendix.   

The CDM should be recognizable by P&C actuaries.  In preparing our estimates, we calculate a 
triangle of claim count development factors (Appendix Exhibit 2, Table 2), compute average 
development factors, select claim development factors and apply the calculated cumulative 
development factors to latest evaluation of the claim count triangle in order to develop an estimate 
of ultimate claim counts11.  The claim count estimate represents the projected ultimate claims for 
each book half year.   

The CDM results are shown in Appendix Exhibit 2, Table 3, Column 4.  We utilize the CDM 

                                                           
10 Given that the policies are declining over the future periods, assuming the middle of each projection period results in 
slightly higher discount than what would be calculated using a more refined assumption (i.e., factoring in the declining 
portfolio).  The mid-period assumption is utilized here for simplicity, although enhancements to the calculation could 
be made if the actuary chooses to do so. 
11 See [3] for a more detailed discussion of the CDM and BFM 
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results to provide guidance in developing expected loss estimates for use in the BFM by first 
dividing the CDM results by the number of loans originated in each half year and then selecting an 
expected claim count per loan count rate.  The expected count per loan count and the claim 
development pattern underlying the CDM to develop a BFM as in Appendix Exhibit 2, Table 3, 
Column 7.   

We select paid claims based on the results of the CDM and the BFM and then multiply the 
estimate by the expected average claims size.  The expected average claim size, in turn, is calculated 
by dividing the claim dollars paid to date by the count of claims paid to date.  In general, the claim 
severity tends to be more stable and predictable as claim payments are closely aligned with RIF and 
RIF tends to be stable over time, although the actuary should pay attention to observed or expected 
shifts in future claim severity relative to recent historical severity experience12.   

The estimate of ultimate claim costs is calculated by multiplying the ultimate claim count 
estimate by the projected average claim size; subtracting the claims paid as of the evaluation date 
results in the forecasted unpaid claims.  The forecasted unpaid claims are discounted using the 
development factors underlying the CDM and a LAE factor is added to represent the total 
projected discounted loss and LAE cash flows. 

3.1.3 PDR estimates 
We use the discounted premium and loss cash flow projections to determine whether a PDR is 

necessary at the evaluation date.  A PDR is recorded if the estimated net discounted loss and LAE) 
exceeds discounted premiums net of policy maintenance expenses plus financial statement items 
related to premiums and losses (unearned premium reserves, and recorded loss and LAE 
reserves)13.  If the cash flows are negative and the absolute value of the cash flows is greater than 
the financial statement items related to premiums and losses, then we record a PDR (nothing is 
recorded if the conditions are not met).  In the Appendix, Exhibit 1 displays the determination of 
whether a PDR is necessary at the evaluation date (in the example in the Appendix, no PDR is 
necessary). 

                                                           
12 For mortgage insurance, separate estimation of frequency and severity is often preferable since severity tends to 
be closely tied to RIF and is therefore generally more stable and easier to estimate than frequency. 
13 On a statutory basis, we also include contingency reserves. 
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3.1.4 A Simplified PDR Example 
The Appendix to this paper contains a detailed sample calculation showing the PDR estimation 

framework described above, however a simplified sample is presented in this section to facilitate 
understanding of the process described herein. 

The following data and assumptions are provided for this simple example (note, in this example, 
we are determining whether a PDR is necessary for a single cohort of policies written during a 
single calendar period, which is not consistent with actual practice where we would determine 
whether a PDR is necessary across a portfolio of MI policies): 

A. During 2015, 1,100 MI policies are written.  At year-end 2015 (the financial statement 
date), 1,000 of the 1,100 policies remain. 

B. All of the policies are monthly pay premium and there is no unearned premium reserve 
related to single-pay policies. 

C. We expect 250 policies to exit the population during each subsequent calendar year (i.e., 
750 policies remain at year-end 2016, 500 policies remain at year-end 2017, etc.) until all 
policies exit the population by year-end 2019. 

D. During 2015, the average monthly policy premium was $100 / policy / month. 
E. The contingency reserve recorded at year-end 2015 for the loans in the cohort is 

$300,000. 
F. At year-end 2015, there are 50 delinquent loans with average RIF on the loans of 

$40,000 and a recorded loss and LAE reserve of $400,000.  The projected average 
payment date for the loss reserves is June 30, 2016.  Further, we assume that $40,000 is a 
reasonable estimated severity for claims paid during subsequent calendar years. 

G. Using historical claim data, we have projected 10 claims to be paid during 2017, 25 in 
2018, 20 in 2019 and 5 in 2020.  We assume the average payment date is June 30 for the 
paid claims. 

H. Policy maintenance expenses are assumed to be 3% of the forecasted premiums and loss 
adjustment expenses are assumed to be 5% of the forecasted paid losses.  Both items 
(policy maintenance expenses and loss adjustment expenses) are assumed to be expenses 
in the period in which the premiums and losses are paid. 

I. The illustrative discount rate selected for the example is 1.5% / annum. 

Table 1 outlines the methodology used to develop the projected and discounted premium flows 
over the projection period.  Note that the notes referenced in Table 1 reference data provided in 
the assumptions and data list directly above. 
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Table 1:  Projected and discounted premiums 
    Note / formula 12/31/15 12/31/16 12/31/17 12/31/18 12/31/19 Total 
(1) PIF Given in (A) & 

(C) 1000 750 500 250 0 N/a 

(2) Average PIF Average of CY 
values in (1)  875 625 375 125 N/a 

(3) Premium / 
policy / month 

Given in (D) 
 100 100 100 100 N/a 

(4) Projected 
annual 
premium 

(2)x(3)x12.0 

 1,050,000 750,000 450,000 150,000 2,400,000 

(5) Discount years   
 0.5 1.5 2.5 3.5  

(6) Discount 
factor 

1.0 /1.015 ^ (5) 
 0.993 0.978 0.963 0.949  

(7) Discounted 
premium 

(4)x(6) 
 1,042,213 733,436 433,558 142,384 2,351,590 

 

Note that the premium presented in item D is presented as an average per policy per month, 
therefore in Table 1, item 4, the calculation is multiplied by 12 to represent a full year of premium 
for the average number of policies in force in each calendar year.  The resulting discounted 
premium shown in the total column of line 7 of $2,351,590 is used in Table 3 below to determine if 
a PDR is needed at year-end 2015. 
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Table 2 outlines the methodology used to develop the projected and discounted loss cash flows 
over the projection period.   

Table 2:  Projected and discounted paid losses 
  
    Note / formula 6/30/16 6/30/17 6/30/18 6/30/19 6/30/20 Total 
(1) Paid claim counts Given in (G) N/a 10 25 20 5 60 
(2) Average size per 

claim Given in (F) 40,000 40,000 40,000 40,000 40,000 N/a 

(3) Paid claim dollars 2016 from (F), 
other (1)x(2) 400,000 400,000 1,000,000 800,000 200,000 2,800,000 

(4) Discount years  0.5 1.5 2.5 3.5 4.5  
(5) Discount factor 1.0 / 1.015 ^ (4) 0.993 0.978 0.963 0.949 0.935  
(6) Discounted paid 

claim dollars (4)x(6) 397,033 391,166 963,463 759,379 187,039 2,698,081 

The resulting discounted paid claim dollars shown in the total column of line 6 of $2,698,081 is 
used in Table 3 below to determine if a PDR is needed at year-end 2015. 

Table 3 uses the premium and paid claim amounts from Tables 1 and 2 to along with other 
amounts from the data and assumptions presented above to determine whether a PDR is necessary 
at year-end 2015. 

Table 3:  PDR Calculation 

  Note / formula Statutory 
Basis GAAP Basis 

(1) Discounted premium Table 1, Line (7) 2,351,590 2,351,590 
(2) Policy maintenance costs 3% x (1), 3% given in (H) 70,548 70,548 
(3) Discounted paid claim dollars Table 2, Line (6) 2,698,081 2,698,081 
(4) Loss adjustment expense 5% x (3), 5% given in (H) 134,904 134,904 
(5) Net cash flows (1)-(2)-(3)-(4) (551,942) (551,942) 
(6) Contingency reserve Given in (E) 300,000 - 
(7) Recorded loss & LAE reserve Given in (F) 400,000 400,000 
(8) Unearned premium reserve Given in (B) - - 

(9) Total - Financial Statement 
Items (6)+(7)+(8) 700,000 400,000 

(10) Net Cash Flows Plus Financial 
Statement Items (5)+(9) 148,058 (151,942) 

(11) Premium deficiency reserve ABS{Min(0,(10)} - 151,942 

Table 3 presents the PDR calculation using U.S. GAAP and U.S. statutory accounting principles.  
Because contingency reserves are not permissible under U.S. GAAP, the calculations outlined in 
Table 3 indicate a PDR of $151,942 on a GAAP basis, but no PDR on a statutory basis.   
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3.2 Benefits and Limitations of the Methodology Described in Section 3.1 
 The triangular methods for estimating premium and claim cash flows should have an appeal for 

actuaries since the triangular arrangement of the data is familiar to all actuaries and the mechanics 
of the model are intuitive and straightforward.  The methodology is also appealing because it is 
more straightforward to describe to a non-actuarial audience than methods that require an 
understanding of statistical concepts (e.g., regression).  Statistical methods are often referred to by 
non-technical audiences as “black box” methods because the inputs and outputs of the model are 
easy to describe, but the actual model mechanics are difficult to describe; the deterministic model 
described in this paper does not have this limitation. 

In addition to being straightforward to describe to a non-actuarial audience, the organization of 
the data as outlined above and in the Appendix allows the actuary and management to estimate and 
monitor loss ratios for book years through time.  Monitoring current and historical book year loss 
ratios can give actuaries and management insight on changes in underwriting, claims experience or 
portfolio persistency that drives the profitability of the MI company’s insurance portfolio. 

The key limitations of the deterministic framework are: 

• Using aggregate data does not allow the actuary to explicitly model the factors that are 
most correlated with persistency and claim behavior.  For example, persistency is highly 
correlated with interest rates; if interest rates fluctuate significantly during the historical 
experience period, but are not expected to fluctuate over the projection period, then the 
historical experience may not be representative of future performance. Conversely, 
regression models can be developed that utilize interest rates as an explanatory variable, 
which allows the actuary to quickly develop alternative estimates assuming different 
future interest rate paths. 

• Related to the first point, the deterministic model does not allow for explicit sensitivity 
testing of the results to changes in macroeconomic factors.  For example, if the MI 
company is concerned about the effect of an increase in unemployment on the 
Company’s results, the effect cannot be explicitly incorporated into the framework; such 
modeling may be required by Government Sponsored Entities (GSE’s)’s to determine 
the MI company’s capital requirements.   

Statistical regression models have the distinct advantage over the method described in this paper 
in that they allow for direct modeling of premium and losses in different macro-economic 
environments.  However, the deterministic methods utilized in this paper could be enhanced by 
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looking at the impact of historical macroeconomic “shock” events on MI claim and persistency and 
using those historical relationships to calculate “stressed” scenarios of future performance. 

4. CONCLUSIONS 

The actuary who prepares premium and loss forecasts for MI companies must understand the 
unique MI accounting framework, including the evaluation of whether a PDR is required.  
Although the accounting for MI differs from traditional P&C insurance products, deterministic 
triangular methods commonly used to develop estimates for P&C products can help actuaries 
project delinquent loan behavior.  After the actuary has a strong grasp of MI data, the accounting 
model and persistency and claim behavior, more complex regression or generalized linear model 
procedures can be utilized to further enhance MI premium and loss forecasts. 
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Cash Flows
(1) Discounted Premium Net of Policy Maintenance Flows 115,202,033     
(2) Discounted Loss & LAE Flows 92,714,955       
(3) Net Cash Flows (1)-(2) 22,487,077       

Financial Statement Items
(4) Recorded Loss and LAE Reserves 42,153,568       
(5) Unearned Premium Reserve 7,515,352         
(6) Statutory Contingency Reserve 111,251,356     
(7) Total - Financial Statement Items Sum (4) - (6) 160,920,276     

(8) Net Cash Flows Plus Financial Statement Items (3)+(7) 183,407,353     

(9) Premium Deficiency Reserve Abs{Min[0,(8)]} -                       
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Table 1:  Cumulative Paid Claim Count Data

Book Half Year 1 2 3 4 5 6 7 8 9 10 11
2004-1 1 8 15 22 29 36 43 50 80 125 147
2004-2 1 8 15 22 29 36 43 50 78 120 141
2005-1 4 11 18 25 32 39 53 60 81 123 137
2005-2 4 11 18 25 32 39 54 61 98 120 135
2006-1 3 10 17 24 31 38 45 52 79 106 127
2006-2 3 10 17 24 31 38 45 59 80 101 122
2007-1 5 12 19 26 33 40 54 61 82 117 138
2007-2 5 12 19 26 33 40 55 70 100 145 175
2008-1 1 8 15 22 29 36 51 66 88 133 163
2008-2 1 8 15 22 29 36 43 50 86 108 130
2009-1 3 11 19 27 35 43 51 66 89 119 149
2009-2 3 10 17 24 31 38 52 59 95 138 152
2010-1 4 11 18 25 32 39 54 69 106 136 166
2010-2 5 12 19 26 33 40 47 61 95 116 130
2011-1 5 12 19 26 33 40 55 62 99 143
2011-2 5 12 19 26 33 40 55 70 100
2012-1 1 8 15 22 29 36 50 64
2012-2 3 10 17 24 31 38 45
2013-1 5 12 19 26 33 40
2013-2 4 11 18 25 32
2014-1 3 10 17 24
2014-2 2 9 16
2015-1 1 8
2015-2 2



Premium Deficiency Reserve Evaluation for Mortgage Insurers Appendix
Exhibit 2

Casualty Actuarial Society E-Forum,  Fall 2015 19

12 13 14 15 16 17 18 19 20 21 22 23 24
162 177 184 191 198 205 212 219 224 227 228 229 229
162 176 190 197 204 211 218 225 230 233 234 235
165 172 179 186 193 200 207 214 219 222 223
157 164 171 178 185 192 199 206 211 214
154 168 175 182 189 196 203 210 215
143 157 171 178 185 192 199 206
152 159 173 180 187 194 201
197 204 219 226 233 240
178 185 200 207 214
145 152 167 174
164 179 187
181 195
188
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Table 2:  Paid Claim Count Development Factors
Book Half Year 2/1 3/2 4/3 5/4 6/5 7/6 8/7 9/8 10/9 11/10 12/11

2004-1 8.000 1.875 1.467 1.318 1.241 1.194 1.163 1.600 1.563 1.176 1.102
2004-2 8.000 1.875 1.467 1.318 1.241 1.194 1.163 1.560 1.538 1.175 1.149
2005-1 2.750 1.636 1.389 1.280 1.219 1.359 1.132 1.350 1.519 1.114 1.204
2005-2 2.750 1.636 1.389 1.280 1.219 1.385 1.130 1.607 1.224 1.125 1.163
2006-1 3.333 1.700 1.412 1.292 1.226 1.184 1.156 1.519 1.342 1.198 1.213
2006-2 3.333 1.700 1.412 1.292 1.226 1.184 1.311 1.356 1.263 1.208 1.172
2007-1 2.400 1.583 1.368 1.269 1.212 1.350 1.130 1.344 1.427 1.179 1.101
2007-2 2.400 1.583 1.368 1.269 1.212 1.375 1.273 1.429 1.450 1.207 1.126
2008-1 8.000 1.875 1.467 1.318 1.241 1.417 1.294 1.333 1.511 1.226 1.092
2008-2 8.000 1.875 1.467 1.318 1.241 1.194 1.163 1.720 1.256 1.204 1.115
2009-1 3.667 1.727 1.421 1.296 1.229 1.186 1.294 1.348 1.337 1.252 1.101
2009-2 3.333 1.700 1.412 1.292 1.226 1.368 1.135 1.610 1.453 1.101 1.191
2010-1 2.750 1.636 1.389 1.280 1.219 1.385 1.278 1.536 1.283 1.221 1.133
2010-2 2.400 1.583 1.368 1.269 1.212 1.175 1.298 1.557 1.221 1.121
2011-1 2.400 1.583 1.368 1.269 1.212 1.375 1.127 1.597 1.444
2011-2 2.400 1.583 1.368 1.269 1.212 1.375 1.273 1.429
2012-1 8.000 1.875 1.467 1.318 1.241 1.389 1.280
2012-2 3.333 1.700 1.412 1.292 1.226 1.184
2013-1 2.400 1.583 1.368 1.269 1.212
2013-2 2.750 1.636 1.389 1.280
2014-1 3.333 1.700 1.412
2014-2 4.500 1.778
2015-1 8.000

Sel. Claim Development Factor 4.271 1.701 1.409 1.289 1.225 1.293 1.212 1.493 1.389 1.179 1.143
Cumulative DF 100.801 23.601 13.874 9.850 7.639 6.237 4.824 3.981 2.666 1.920 1.628
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13/12 14/13 15/14 16/15 17/16 18/17 19/18 20/19 21/20 22/21 23/22 24/23
1.093 1.040 1.038 1.037 1.035 1.034 1.033 1.023 1.013 1.004 1.004 1.000
1.086 1.080 1.037 1.036 1.034 1.033 1.032 1.022 1.013 1.004 1.004
1.042 1.041 1.039 1.038 1.036 1.035 1.034 1.023 1.014 1.005
1.045 1.043 1.041 1.039 1.038 1.036 1.035 1.024 1.014
1.091 1.042 1.040 1.038 1.037 1.036 1.034 1.024
1.098 1.089 1.041 1.039 1.038 1.036 1.035
1.046 1.088 1.040 1.039 1.037 1.036
1.036 1.074 1.032 1.031 1.030
1.039 1.081 1.035 1.034
1.048 1.099 1.042
1.091 1.045
1.077

Factor to Ult
1.066 1.065 1.039 1.037 1.036 1.035 1.034 1.023 1.014 1.004 1.004 1.002 1.002
1.424 1.336 1.254 1.207 1.165 1.124 1.086 1.050 1.027 1.013 1.008 1.004 1.002
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Table 3:  Claim Estimates
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

CDM CDM Expected BFM Selected Estimated Claims Forecasted Discounted LAE Discounted
Original Loan Total Paid Development Estimated Estimate / Claims / Estimated Estimated Average Ultimate Paid Unpaid Unpaid Load Loss & LAE

Population Claims Factor Claims Loan Count Loan Count Claims Claims Claim Size Claims A.o. 12/31/15 Claims 2% 5%
(2)x(3) (4)x(1) (A) (8)x(9) (10)-(11) (13)x(14)

2004-1 7,483 229 1.002 229 3.1% 3.3% 229 229 38,952 8,937,848 8,920,008 17,840 17,752 1.05 18,640
2004-2 6,970 235 1.004 236 3.4% 3.3% 236 236 38,996 9,200,753 9,164,060 36,693 36,332 1.05 38,148
2005-1 6,923 223 1.008 225 3.2% 3.3% 225 225 40,050 9,005,735 8,931,150 74,585 73,690 1.05 77,374
2005-2 7,429 214 1.013 217 2.9% 3.3% 217 217 39,764 8,618,319 8,509,496 108,823 107,086 1.05 112,441
2006-1 6,845 215 1.027 221 3.2% 3.3% 221 221 38,862 8,577,167 8,355,330 221,837 218,499 1.05 229,424
2006-2 6,902 206 1.050 216 3.1% 3.3% 217 216 38,758 8,387,099 7,984,148 402,951 396,662 1.05 416,495
2007-1 7,095 201 1.086 218 3.1% 3.3% 220 218 39,146 8,546,174 7,868,346 677,828 666,119 1.05 699,425
2007-2 7,490 240 1.124 270 3.6% 3.3% 267 270 38,980 10,519,708 9,355,200 1,164,508 1,140,386 1.05 1,197,405
2008-1 7,498 214 1.165 249 3.3% 3.3% 249 249 39,647 9,881,804 8,484,458 1,397,346 1,362,634 1.05 1,430,765
2008-2 7,271 174 1.207 210 2.9% 3.3% 215 210 39,812 8,364,555 6,927,288 1,437,267 1,395,264 1.05 1,465,027
2009-1 7,500 195 1.254 245 3.3% 3.3% 245 245 39,564 9,674,521 7,714,980 1,959,541 1,893,593 1.05 1,988,272
2009-2 7,147 195 1.336 261 3.6% 3.3% 254 261 39,957 10,409,576 7,791,615 2,617,961 2,524,411 1.05 2,650,631
2010-1 7,405 188 1.424 268 3.6% 3.3% 261 268 39,218 10,501,088 7,372,984 3,128,104 3,006,236 1.05 3,156,548
2010-2 6,853 130 1.628 212 3.1% 3.3% 217 212 40,004 8,467,601 5,200,520 3,267,081 3,141,251 1.05 3,298,313
2011-1 7,359 143 1.920 275 3.7% 3.3% 259 275 38,868 10,670,000 5,558,124 5,111,876 4,909,406 1.05 5,154,876
2011-2 7,497 100 2.666 267 3.6% 3.3% 255 267 40,026 10,670,538 4,002,600 6,667,938 6,409,401 1.05 6,729,872
2012-1 6,869 64 3.981 255 3.7% 3.3% 234 255 39,138 9,972,839 2,504,832 7,468,007 7,161,251 1.05 7,519,314
2012-2 7,372 45 4.824 217 2.9% 3.3% 238 217 39,173 8,503,687 1,762,785 6,740,902 6,417,332 1.05 6,738,199
2013-1 7,244 40 6.237 249 3.4% 3.3% 241 241 39,931 9,616,498 1,597,240 8,019,258 7,582,637 1.05 7,961,769
2013-2 7,466 32 7.639 244 3.3% 3.3% 246 246 38,786 9,550,314 1,241,152 8,309,162 7,795,886 1.05 8,185,680
2014-1 7,274 24 9.850 236 3.2% 3.3% 240 240 40,049 9,602,935 961,176 8,641,759 8,046,733 1.05 8,449,069
2014-2 6,973 16 13.874 222 3.2% 3.3% 230 230 39,879 9,157,420 638,064 8,519,356 7,874,361 1.05 8,268,079
2015-1 7,027 8 23.601 189 2.7% 3.3% 230 230 38,906 8,955,273 311,248 8,644,025 7,932,295 1.05 8,328,910
2015-2 6,933 2 100.801 202 2.9% 3.3% 229 229 39,652 9,065,762 79,304 8,986,458 8,190,743 1.05 8,600,280

Total 172,825 3,333 5,632 3.3% 5,675 5,704 224,857,215 131,236,108 93,621,107 88,299,958 92,714,955
2004-1 - 2012-2 129,908 3,211 4,289 3.3%

Notes
(A)  (1)x(6)x[1.0-1.0/(3)]+(2)
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Table 1:  Policies in Force (PIF) Data
Evaulation

Book Half Year 1 2 3 4 5 6 7 8 9 10 11
2004-1 7,474 6,951 6,256 5,568 4,956 4,213 3,539 2,831 2,406 2,045 1,575
2004-2 6,965 6,269 5,956 5,360 4,878 4,293 3,692 3,212 2,730 2,321 1,810
2005-1 6,916 6,432 5,724 5,094 4,636 3,941 3,507 3,016 2,413 1,955 1,564
2005-2 7,420 6,678 6,077 5,530 5,088 4,477 3,805 3,158 2,716 2,173 1,717
2006-1 6,839 6,497 5,847 5,262 4,683 4,262 3,708 3,078 2,524 2,070 1,697
2006-2 6,892 6,065 5,459 4,804 4,468 3,842 3,419 2,838 2,242 1,794 1,417
2007-1 7,089 6,238 5,552 5,052 4,547 3,910 3,363 2,690 2,233 1,742 1,446
2007-2 7,485 6,961 6,335 5,575 5,073 4,515 3,838 3,186 2,676 2,221 1,843
2008-1 7,492 6,818 6,477 6,088 5,297 4,555 3,963 3,369 2,864 2,263 1,788
2008-2 7,266 6,467 5,691 5,008 4,357 3,834 3,336 2,669 2,189 1,751 1,383
2009-1 7,490 7,041 6,689 5,953 5,417 4,659 3,820 3,094 2,599 2,183 1,768
2009-2 7,141 6,427 5,977 5,618 4,944 4,499 3,869 3,134 2,539 2,057 1,584
2010-1 7,399 6,585 5,861 5,392 4,637 4,034 3,469 2,845 2,333 1,936 1,588
2010-2 6,847 6,368 6,050 5,385 4,631 3,890 3,190 2,743 2,359 1,982 1,645
2011-1 7,350 6,542 5,888 5,417 5,038 4,282 3,597 3,021 2,507 2,006
2011-2 7,488 6,814 6,405 6,021 5,359 4,823 4,244 3,692 3,175
2012-1 6,864 6,384 5,873 5,521 4,969 4,224 3,675 3,050
2012-2 7,365 6,629 6,298 5,857 5,388 4,849 4,267
2013-1 7,239 6,732 6,261 5,510 5,069 4,309
2013-2 7,457 6,860 6,174 5,433 4,672
2014-1 7,269 6,469 5,887 5,475
2014-2 6,968 6,132 5,825
2015-1 7,021 6,600
2015-2 6,923
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Table 1 (cont'd):  Policies in Force (PIF) Data

12 13 14 15 16 17 18 19 20 21 22 23 24
1,197 886 611 403 258 157 88 53 28 14 7 3 1
1,412 1,031 722 484 329 197 118 65 34 16 8 4
1,189 856 608 413 285 182 111 59 32 15 7
1,322 1,018 743 505 313 194 109 61 35 19
1,290 942 659 468 290 174 110 58 31
1,091 851 604 417 271 173 97 51
1,070 781 547 356 235 143 82
1,456 1,092 819 549 346 225
1,413 1,102 815 554 377
1,106 852 622 429
1,326 1,008 685
1,236 902
1,255
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Table 2:  Incremental PIF Decay
Evaulation

1 2 3 4 5 6 7 8 9 10 11
2004-1 100.0% 93.0% 90.0% 89.0% 89.0% 85.0% 84.0% 80.0% 85.0% 85.0% 77.0%
2004-2 100.0% 90.0% 95.0% 90.0% 91.0% 88.0% 86.0% 87.0% 85.0% 85.0% 78.0%
2005-1 100.0% 93.0% 89.0% 89.0% 91.0% 85.0% 89.0% 86.0% 80.0% 81.0% 80.0%
2005-2 100.0% 90.0% 91.0% 91.0% 92.0% 88.0% 85.0% 83.0% 86.0% 80.0% 79.0%
2006-1 100.0% 95.0% 90.0% 90.0% 89.0% 91.0% 87.0% 83.0% 82.0% 82.0% 82.0%
2006-2 100.0% 88.0% 90.0% 88.0% 93.0% 86.0% 89.0% 83.0% 79.0% 80.0% 79.0%
2007-1 100.0% 88.0% 89.0% 91.0% 90.0% 86.0% 86.0% 80.0% 83.0% 78.0% 83.0%
2007-2 100.0% 93.0% 91.0% 88.0% 91.0% 89.0% 85.0% 83.0% 84.0% 83.0% 83.0%
2008-1 100.0% 91.0% 95.0% 94.0% 87.0% 86.0% 87.0% 85.0% 85.0% 79.0% 79.0%
2008-2 100.0% 89.0% 88.0% 88.0% 87.0% 88.0% 87.0% 80.0% 82.0% 80.0% 79.0%
2009-1 100.0% 94.0% 95.0% 89.0% 91.0% 86.0% 82.0% 81.0% 84.0% 84.0% 81.0%
2009-2 100.0% 90.0% 93.0% 94.0% 88.0% 91.0% 86.0% 81.0% 81.0% 81.0% 77.0%
2010-1 100.0% 89.0% 89.0% 92.0% 86.0% 87.0% 86.0% 82.0% 82.0% 83.0% 82.0%
2010-2 100.0% 93.0% 95.0% 89.0% 86.0% 84.0% 82.0% 86.0% 86.0% 84.0% 83.0%
2011-1 100.0% 89.0% 90.0% 92.0% 93.0% 85.0% 84.0% 84.0% 83.0% 80.0%
2011-2 100.0% 91.0% 94.0% 94.0% 89.0% 90.0% 88.0% 87.0% 86.0%
2012-1 100.0% 93.0% 92.0% 94.0% 90.0% 85.0% 87.0% 83.0%
2012-2 100.0% 90.0% 95.0% 93.0% 92.0% 90.0% 88.0%
2013-1 100.0% 93.0% 93.0% 88.0% 92.0% 85.0%
2013-2 100.0% 92.0% 90.0% 88.0% 86.0%
2014-1 100.0% 89.0% 91.0% 93.0%
2014-2 100.0% 88.0% 95.0%
2015-1 100.0% 94.0%
2015-2 100.0%

Selection 100.0% 90.7% 92.3% 90.5% 90.0% 87.5% 86.7% 85.0% 84.2% 82.0% 80.8%
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Table 2 (cont'd):  Incremental PIF Decay

12 13 14 15 16 17 18 19 20 21 22 23 24
76.0% 74.0% 69.0% 66.0% 64.0% 60.9% 56.1% 60.2% 52.8% 50.0% 50.0% 42.9% 33.3%
78.0% 73.0% 70.0% 67.0% 68.0% 59.9% 59.9% 55.1% 52.3% 47.1% 50.0% 50.0%
76.0% 72.0% 71.0% 67.9% 69.0% 63.9% 61.0% 53.2% 54.2% 46.9% 46.7%
77.0% 77.0% 73.0% 68.0% 62.0% 62.0% 56.2% 56.0% 57.4% 54.3%
76.0% 73.0% 70.0% 71.0% 62.0% 60.0% 63.2% 52.7% 53.4%
77.0% 78.0% 71.0% 69.0% 65.0% 63.8% 56.1% 52.6%
74.0% 73.0% 70.0% 65.1% 66.0% 60.9% 57.3%
79.0% 75.0% 75.0% 67.0% 63.0% 65.0%
79.0% 78.0% 74.0% 68.0% 68.1%
80.0% 77.0% 73.0% 69.0%
75.0% 76.0% 68.0%
78.0% 73.0%
79.0%

78.0% 76.0% 72.5% 67.3% 65.5% 62.4% 58.2% 53.6% 54.3% 49.6% 48.9% 46.4% 33.3%
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Table 3:  Actual and Projected Loan Persistency Factors
Evaulation

1 2 3 4 5 6 7 8 9 10 11
2004-1 100.0% 93.0% 90.0% 89.0% 89.0% 85.0% 84.0% 80.0% 85.0% 85.0% 77.0%
2004-2 100.0% 90.0% 95.0% 90.0% 91.0% 88.0% 86.0% 87.0% 85.0% 85.0% 78.0%
2005-1 100.0% 93.0% 89.0% 89.0% 91.0% 85.0% 89.0% 86.0% 80.0% 81.0% 80.0%
2005-2 100.0% 90.0% 91.0% 91.0% 92.0% 88.0% 85.0% 83.0% 86.0% 80.0% 79.0%
2006-1 100.0% 95.0% 90.0% 90.0% 89.0% 91.0% 87.0% 83.0% 82.0% 82.0% 82.0%
2006-2 100.0% 88.0% 90.0% 88.0% 93.0% 86.0% 89.0% 83.0% 79.0% 80.0% 79.0%
2007-1 100.0% 88.0% 89.0% 91.0% 90.0% 86.0% 86.0% 80.0% 83.0% 78.0% 83.0%
2007-2 100.0% 93.0% 91.0% 88.0% 91.0% 89.0% 85.0% 83.0% 84.0% 83.0% 83.0%
2008-1 100.0% 91.0% 95.0% 94.0% 87.0% 86.0% 87.0% 85.0% 85.0% 79.0% 79.0%
2008-2 100.0% 89.0% 88.0% 88.0% 87.0% 88.0% 87.0% 80.0% 82.0% 80.0% 79.0%
2009-1 100.0% 94.0% 95.0% 89.0% 91.0% 86.0% 82.0% 81.0% 84.0% 84.0% 81.0%
2009-2 100.0% 90.0% 93.0% 94.0% 88.0% 91.0% 86.0% 81.0% 81.0% 81.0% 77.0%
2010-1 100.0% 89.0% 89.0% 92.0% 86.0% 87.0% 86.0% 82.0% 82.0% 83.0% 82.0%
2010-2 100.0% 93.0% 95.0% 89.0% 86.0% 84.0% 82.0% 86.0% 86.0% 84.0% 83.0%
2011-1 100.0% 89.0% 90.0% 92.0% 93.0% 85.0% 84.0% 84.0% 83.0% 80.0% 80.8%
2011-2 100.0% 91.0% 94.0% 94.0% 89.0% 90.0% 88.0% 87.0% 86.0% 82.0% 80.8%
2012-1 100.0% 93.0% 92.0% 94.0% 90.0% 85.0% 87.0% 83.0% 84.2% 82.0% 80.8%
2012-2 100.0% 90.0% 95.0% 93.0% 92.0% 90.0% 88.0% 85.0% 84.2% 82.0% 80.8%
2013-1 100.0% 93.0% 93.0% 88.0% 92.0% 85.0% 86.7% 85.0% 84.2% 82.0% 80.8%
2013-2 100.0% 92.0% 90.0% 88.0% 86.0% 87.5% 86.7% 85.0% 84.2% 82.0% 80.8%
2014-1 100.0% 89.0% 91.0% 93.0% 90.0% 87.5% 86.7% 85.0% 84.2% 82.0% 80.8%
2014-2 100.0% 88.0% 95.0% 90.5% 90.0% 87.5% 86.7% 85.0% 84.2% 82.0% 80.8%
2015-1 100.0% 94.0% 92.3% 90.5% 90.0% 87.5% 86.7% 85.0% 84.2% 82.0% 80.8%
2015-2 100.0% 90.7% 92.3% 90.5% 90.0% 87.5% 86.7% 85.0% 84.2% 82.0% 80.8%
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Table 3 (cont'd):  Actual and Projected Loan Persistency Factors

12 13 14 15 16 17 18 19 20 21 22 23 24
76.0% 74.0% 69.0% 66.0% 64.0% 60.9% 56.1% 60.2% 52.8% 50.0% 50.0% 42.9% 33.3%
78.0% 73.0% 70.0% 67.0% 68.0% 59.9% 59.9% 55.1% 52.3% 47.1% 50.0% 50.0% 33.3%
76.0% 72.0% 71.0% 67.9% 69.0% 63.9% 61.0% 53.2% 54.2% 46.9% 46.7% 46.4% 33.3%
77.0% 77.0% 73.0% 68.0% 62.0% 62.0% 56.2% 56.0% 57.4% 54.3% 48.9% 46.4% 33.3%
76.0% 73.0% 70.0% 71.0% 62.0% 60.0% 63.2% 52.7% 53.4% 49.6% 48.9% 46.4% 33.3%
77.0% 78.0% 71.0% 69.0% 65.0% 63.8% 56.1% 52.6% 54.3% 49.6% 48.9% 46.4% 33.3%
74.0% 73.0% 70.0% 65.1% 66.0% 60.9% 57.3% 53.6% 54.3% 49.6% 48.9% 46.4% 33.3%
79.0% 75.0% 75.0% 67.0% 63.0% 65.0% 58.2% 53.6% 54.3% 49.6% 48.9% 46.4% 33.3%
79.0% 78.0% 74.0% 68.0% 68.1% 62.4% 58.2% 53.6% 54.3% 49.6% 48.9% 46.4% 33.3%
80.0% 77.0% 73.0% 69.0% 65.5% 62.4% 58.2% 53.6% 54.3% 49.6% 48.9% 46.4% 33.3%
75.0% 76.0% 68.0% 67.3% 65.5% 62.4% 58.2% 53.6% 54.3% 49.6% 48.9% 46.4% 33.3%
78.0% 73.0% 72.5% 67.3% 65.5% 62.4% 58.2% 53.6% 54.3% 49.6% 48.9% 46.4% 33.3%
79.0% 76.0% 72.5% 67.3% 65.5% 62.4% 58.2% 53.6% 54.3% 49.6% 48.9% 46.4% 33.3%
78.0% 76.0% 72.5% 67.3% 65.5% 62.4% 58.2% 53.6% 54.3% 49.6% 48.9% 46.4% 33.3%
78.0% 76.0% 72.5% 67.3% 65.5% 62.4% 58.2% 53.6% 54.3% 49.6% 48.9% 46.4% 33.3%
78.0% 76.0% 72.5% 67.3% 65.5% 62.4% 58.2% 53.6% 54.3% 49.6% 48.9% 46.4% 33.3%
78.0% 76.0% 72.5% 67.3% 65.5% 62.4% 58.2% 53.6% 54.3% 49.6% 48.9% 46.4% 33.3%
78.0% 76.0% 72.5% 67.3% 65.5% 62.4% 58.2% 53.6% 54.3% 49.6% 48.9% 46.4% 33.3%
78.0% 76.0% 72.5% 67.3% 65.5% 62.4% 58.2% 53.6% 54.3% 49.6% 48.9% 46.4% 33.3%
78.0% 76.0% 72.5% 67.3% 65.5% 62.4% 58.2% 53.6% 54.3% 49.6% 48.9% 46.4% 33.3%
78.0% 76.0% 72.5% 67.3% 65.5% 62.4% 58.2% 53.6% 54.3% 49.6% 48.9% 46.4% 33.3%
78.0% 76.0% 72.5% 67.3% 65.5% 62.4% 58.2% 53.6% 54.3% 49.6% 48.9% 46.4% 33.3%
78.0% 76.0% 72.5% 67.3% 65.5% 62.4% 58.2% 53.6% 54.3% 49.6% 48.9% 46.4% 33.3%
78.0% 76.0% 72.5% 67.3% 65.5% 62.4% 58.2% 53.6% 54.3% 49.6% 48.9% 46.4% 33.3%
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Table 4:  Actual and Projected PIF
Evaulation

Book Half Year 1 2 3 4 5 6 7 8 9 10 11
2004-1 7,474 6,951 6,256 5,568 4,956 4,213 3,539 2,831 2,406 2,045 1,575
2004-2 6,965 6,269 5,956 5,360 4,878 4,293 3,692 3,212 2,730 2,321 1,810
2005-1 6,916 6,432 5,724 5,094 4,636 3,941 3,507 3,016 2,413 1,955 1,564
2005-2 7,420 6,678 6,077 5,530 5,088 4,477 3,805 3,158 2,716 2,173 1,717
2006-1 6,839 6,497 5,847 5,262 4,683 4,262 3,708 3,078 2,524 2,070 1,697
2006-2 6,892 6,065 5,459 4,804 4,468 3,842 3,419 2,838 2,242 1,794 1,417
2007-1 7,089 6,238 5,552 5,052 4,547 3,910 3,363 2,690 2,233 1,742 1,446
2007-2 7,485 6,961 6,335 5,575 5,073 4,515 3,838 3,186 2,676 2,221 1,843
2008-1 7,492 6,818 6,477 6,088 5,297 4,555 3,963 3,369 2,864 2,263 1,788
2008-2 7,266 6,467 5,691 5,008 4,357 3,834 3,336 2,669 2,189 1,751 1,383
2009-1 7,490 7,041 6,689 5,953 5,417 4,659 3,820 3,094 2,599 2,183 1,768
2009-2 7,141 6,427 5,977 5,618 4,944 4,499 3,869 3,134 2,539 2,057 1,584
2010-1 7,399 6,585 5,861 5,392 4,637 4,034 3,469 2,845 2,333 1,936 1,588
2010-2 6,847 6,368 6,050 5,385 4,631 3,890 3,190 2,743 2,359 1,982 1,645
2011-1 7,350 6,542 5,888 5,417 5,038 4,282 3,597 3,021 2,507 2,006 1,620
2011-2 7,488 6,814 6,405 6,021 5,359 4,823 4,244 3,692 3,175 2,604 2,103
2012-1 6,864 6,384 5,873 5,521 4,969 4,224 3,675 3,050 2,570 2,107 1,702
2012-2 7,365 6,629 6,298 5,857 5,388 4,849 4,267 3,627 3,055 2,506 2,023
2013-1 7,239 6,732 6,261 5,510 5,069 4,309 3,738 3,177 2,676 2,195 1,773
2013-2 7,457 6,860 6,174 5,433 4,672 4,088 3,546 3,014 2,539 2,082 1,682
2014-1 7,269 6,469 5,887 5,475 4,927 4,311 3,740 3,179 2,678 2,196 1,774
2014-2 6,968 6,132 5,825 5,272 4,744 4,151 3,601 3,061 2,579 2,115 1,708
2015-1 7,021 6,600 6,089 5,510 4,959 4,339 3,764 3,199 2,695 2,210 1,785
2015-2 6,923 6,283 5,796 5,245 4,720 4,130 3,583 3,045 2,566 2,104 1,699
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Table 4 (cont'd):  Actual and Projected PIF

12 13 14 15 16 17 18 19 20 21 22 23 24
1,197 886 611 403 258 157 88 53 28 14 7 3 1
1,412 1,031 722 484 329 197 118 65 34 16 8 4 1
1,189 856 608 413 285 182 111 59 32 15 7 3 1
1,322 1,018 743 505 313 194 109 61 35 19 9 4 1
1,290 942 659 468 290 174 110 58 31 15 8 3 1
1,091 851 604 417 271 173 97 51 28 14 7 3 1
1,070 781 547 356 235 143 82 44 24 12 6 3 1
1,456 1,092 819 549 346 225 131 70 38 19 9 4 1
1,413 1,102 815 554 377 235 137 73 40 20 10 4 1
1,106 852 622 429 281 175 102 55 30 15 7 3 1
1,326 1,008 685 461 302 188 110 59 32 16 8 4 1
1,236 902 654 440 288 180 105 56 30 15 7 3 1
1,255 954 691 465 305 190 111 59 32 16 8 4 1
1,283 975 707 476 312 194 113 61 33 16 8 4 1
1,264 960 696 468 307 192 111 60 32 16 8 4 1
1,640 1,247 904 608 398 249 145 78 42 21 10 5 2
1,327 1,009 731 492 322 201 117 63 34 17 8 4 1
1,578 1,200 869 585 383 239 139 75 41 20 10 5 2
1,383 1,051 762 512 336 210 122 65 36 18 9 4 1
1,312 997 723 486 318 199 116 62 34 17 8 4 1
1,383 1,052 762 513 336 210 122 65 36 18 9 4 1
1,332 1,012 734 494 323 202 118 63 34 17 8 4 1
1,392 1,058 767 516 338 211 123 66 36 18 9 4 1
1,325 1,007 730 491 322 201 117 63 34 17 8 4 1
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Table 5:  Average Projected PIF
Evaulation

Book Half Year 1 2 3 4 5 6 7 8 9 10 11
2004-1 1
2004-2 3 1
2005-1 5 2 1
2005-2 14 7 3 1
2006-1 23 11 5 2 1
2006-2 39 21 10 5 2 1
2007-1 63 34 18 9 4 2 1
2007-2 178 101 54 29 14 7 3 1
2008-1 306 186 105 57 30 15 7 3 1
2008-2 355 228 139 78 42 22 11 5 2 1
2009-1 573 381 245 149 84 45 24 12 6 2 1
2009-2 778 547 364 234 142 80 43 23 11 5 2
2010-1 1,104 823 578 385 247 150 85 46 24 12 6
2010-2 1,464 1,129 841 591 394 253 154 87 47 25 12
2011-1 1,813 1,442 1,112 828 582 388 249 152 86 46 24
2011-2 2,889 2,353 1,871 1,443 1,075 756 503 323 197 111 60
2012-1 2,810 2,338 1,904 1,515 1,168 870 612 407 262 159 90
2012-2 3,947 3,341 2,780 2,264 1,801 1,389 1,035 727 484 311 189
2013-1 4,024 3,458 2,927 2,436 1,984 1,578 1,217 906 637 424 273
2013-2 4,380 3,817 3,280 2,777 2,311 1,882 1,497 1,154 860 604 402
2014-1 5,201 4,619 4,026 3,459 2,928 2,437 1,985 1,579 1,218 907 637
2014-2 5,548 5,008 4,448 3,876 3,331 2,820 2,347 1,911 1,520 1,172 873
2015-1 6,344 5,799 5,235 4,649 4,052 3,482 2,947 2,453 1,998 1,589 1,225
2015-2 6,603 6,039 5,520 4,983 4,425 3,857 3,314 2,805 2,335 1,902 1,512

0.25 0.75 1.25 1.75 2.25 2.75 3.25 3.75 4.25 4.75 5.25
Discount Factor 0.995 0.985 0.976 0.966 0.956 0.947 0.938 0.928 0.919 0.910 0.901
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Table 5 (cont'd):  Average Projected PIF

12 13 14 15 16 17 18 19 20 21 22 23 24

1
2 1
6 2 1

12 6 2 1
32 16 7 3 2
48 26 13 6 3 1

107 58 30 15 7 3 2
166 94 50 27 13 6 3 1
259 157 89 48 25 12 6 3 1
424 273 166 94 50 27 13 6 3 1
614 409 263 160 90 49 26 13 6 3 1
913 641 427 275 167 94 51 27 13 6 3 1

1,166 869 611 406 261 159 90 48 25 13 6 3 1

5.75 6.25 6.75 7.25 7.75 8.25 8.75 9.25 9.75 10.25 10.75 11.25 11.75
0.892 0.884 0.875 0.866 0.858 0.849 0.841 0.833 0.824 0.816 0.808 0.800 0.792
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Table 6:  Premium Estimate
(1) (2) (3) (4) (5) (6) (7) (8)

Discounted Policy Discounted
Average Monthly Premium Projected Future Premium Total Projected Future Maintenance Projected Prem.
Policy Premium Scaling Factor Premium A.o. 12/31/15 Premium Premium Expense Ratio Net of Expenses

(3)+(4) (6)x[1.0-(7)]

75 6 450 23,446,397 23,446,847 448 5% 425
75 6 1,807 23,538,827 23,540,634 1,792 5% 1,703
76 6 3,795 23,607,461 23,611,256 3,757 5% 3,569
76 6 11,492 23,694,210 23,705,701 11,360 5% 10,792
76 6 19,897 23,756,921 23,776,818 19,648 5% 18,665
76 6 35,928 23,859,775 23,895,703 35,440 5% 33,668
77 6 60,088 23,931,198 23,991,285 59,220 5% 56,259
77 6 178,270 23,860,998 24,039,268 175,543 5% 166,766
77 6 328,722 23,782,663 24,111,386 323,347 5% 307,180
78 6 411,422 23,820,521 24,231,943 404,192 5% 383,982
78 6 709,735 23,570,671 24,280,407 696,350 5% 661,533
78 6 1,045,062 23,356,747 24,401,809 1,023,843 5% 972,651
78 6 1,627,253 22,847,761 24,475,014 1,591,486 5% 1,511,912
79 6 2,363,358 22,234,031 24,597,389 2,307,077 5% 2,191,723
79 6 3,195,937 21,499,842 24,695,779 3,113,575 5% 2,957,896
79 6 5,539,850 19,254,711 24,794,562 5,385,751 5% 5,116,464
80 6 5,849,567 19,068,968 24,918,535 5,674,436 5% 5,390,715
80 6 8,869,340 16,123,950 24,993,290 8,584,457 5% 8,155,234
80 6 9,719,246 15,324,030 25,043,277 9,385,388 5% 8,916,119
80 6 11,348,862 13,744,501 25,093,363 10,933,164 5% 10,386,506
81 6 14,531,726 10,662,011 25,193,737 13,965,083 5% 13,266,829
81 6 16,708,141 8,535,983 25,244,124 16,015,431 5% 15,214,659
81 6 20,599,330 4,720,526 25,319,857 19,692,463 5% 18,707,840
81 6 22,931,142 2,515,314 25,446,456 21,862,046 5% 20,768,944

126,090,420 460,758,018 586,848,438 121,265,297 115,202,033
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Reserving Styles —  

Are Actuaries In-Sync with their Stakeholders? 

Mark Littmann, FCAS, MAAA 

 ____________________________________________________________________________________________  

Abstract  

Motivation. Reserving actuaries are constantly faced with forming estimates that inherently reflect consideration 
of data and information that spans from initial expectations to actual claims experience.  The actuaries and their 
stakeholders (e.g., members of management) may implicitly or explicitly apply different perspectives on the 
relative merits of projections based on actual experience or initial expectations, or projections that reflect a 
blending of the two.  As an actuary associated with an audit firm, Mr. Littmann encounters these situations 
frequently, primarily in a reserving context.  Apparently subtle differences in perspectives among actuaries and 
among various stakeholders when actual experience diverges from expectations (generating divergent projections 
of unpaid claim estimates) can generate substantial dialogue.  The paper presents an exploration of historical 
progressions of recognizing accident year losses, casts light on certain implications of common actuarial methods, 
and provides insight on the notion of a reserving cycle akin to an underwriting cycle. The investigation provides a 
framework for dialogue among stakeholders to the reserving process, as well as identifies areas where actuaries 
may be able to enhance the technical aspects of, and their communications from, their work processes. 

Method.  The paper provides examples of the historical progression of accident year loss ratios booked by the 
industry in aggregate and for a sample of companies.  A model is presented to demonstrate the extent to which a 
combination of cyclical accident year loss ratios and alternate views from stakeholders on their ‘best estimates’ to 
be adopted at a point in time can create differences in the estimates of unpaid claims liabilities. 

Results. The outcomes are a framework for expressing views on responsiveness to the emerging claims data in 
relation to initial expectations, as well as illustrations that provide actuaries with insights on the implications of 
differing views on loss picks.  The paper identifies matters for actuaries to discuss among themselves and with 
their stakeholders.  Discussions around these concepts and implications in advance of the periodic reserves 
meetings may help the meetings go more smoothly. 

Conclusions. Apparently small differences in styles for making loss picks from among projections that span 
from initial expectations to extrapolations from actual data can yield noticeable differences in reserve estimates.  
Differences in selection approach between stakeholders do matter and create the need for discussion, 
transparency and documentation. 

Keywords.  Reserving Methods.  Management Best Estimate.  Reserve Variability.  Credibility. 

Disclaimer.  Beginning in Section 4, the paper includes commentary, tables, and charts that illustrate a scenario 
where management’s loss picks (for ultimate losses and the associated reserves) are based on the paid 
Bornhuetter-Ferguson (BF) method and an actuary’s loss picks are based on the reported BF method.  Under no 
circumstance should the scenario (or anything else in the paper) be construed as indicative of the author’s nor his 
employer’s view on any insurance company management or actuary, nor the author’s or his employer’s view on 
any preferred actuarial projection method(s) as the basis for loss picks or booked amounts. 

 ____________________________________________________________________________________________  
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1.  Background 

The Casualty Actuarial Society’s (CAS) literature and seminar archives include papers and 
presentations that analyze the performance of loss reserves established by insurance companies in 
terms of how original provisions have fared against the subsequent experience.  Various descriptions 
and potential explanations have been offered for an apparent cyclical pattern to reserve adequacy, 
akin to the commonly regarded cycle of pricing adequacy.  Certain approaches, frequently involving 
statistical metrics, for testing the performance of various actuarial techniques have been described, 
with an apparent purpose to enhance the technical strength of the actuarial estimates. 

This paper takes a different perspective on the matter.  To set the stage for this, I recall the CAS 
Centennial Celebration in New York in November 2014, at which a luncheon speaker offered the 
audience a simple challenge.  If someone tosses a coin 12 times and 3 heads result, what is the 
probability of a head on the next toss?  Of course, we actuaries have been trained to avoid falling 
into the trap of responding quickly with 25%, since we treat the 12 observations as a random sample 
from a population of possible outcomes where we believe that the probability of a head on any toss 
is 50%.  Therefore, we ignore the actual experience and give full consideration to our expectation 
based on external information.  But, if we were informed that the coin-flipper was a con-artist, 
which introduced the possibility that the coin was biased, then that supplemental information might 
influence how we respond to the 12 observations and consequently our view on the likelihood of a 
head on the next toss. 

The example illustrates the dilemma that actuaries and management face when confronted with 
claims data and various actuarial projections of ultimate losses and the corresponding reserves.  For 
medium to long tail lines, initial expectations of ultimate losses are often closely aligned with 
expectations based on pricing.  The dilemma is to know when, and to what extent, to migrate from 
the original expectation to the experience-based projections.  Stated another way, the dilemma is 
how to choose an ultimate loss estimate based on a collection of projections from different methods 
applied to alternate data sets and which reflect certain judgments for key parameters, including initial 
expected losses, development factors, and assessments on the effects of internal operational changes 
or external environmental conditions. 

As multiple personnel are often involved in the analysis of unpaid claims estimates and in 
forming a view as to the level of reserves to be recorded in an entity’s financial statements, 
differences in the perspectives of these personnel on the relative merit of alternate projections can 
drive differences in views as to the relative adequacy of the booked reserves. 
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2.  Historical performance of ultimate loss estimates 

Publicly-available Schedule P data were obtained and analyzed to assess the progression of 
accident year booked ultimate loss ratio estimates from the 12-month valuation to subsequent 
valuations, particularly for medium- to long-tail lines.  For short-tail lines, where a substantial 
portion of ultimate losses are generally paid by the end of the accident period, there is generally 
lesser variation in the booked loss ratio from 12-months to subsequent valuations.  For the longer-
tail lines, insurance company management often books ultimate loss ratios at 12 months that are 
characterized as being “in line with pricing expectations.”  Hindsight often demonstrates that the 
ultimate losses are higher or lower than the amounts booked at 12 months, consistent with the 
historical phenomenon of the cyclical nature of pricing adequacy over time. 

Table 1 shows accident year ultimate loss ratios at 12 months and at 72 months for the P&C 
insurance industry for four lines of business.1 

Table 1 
Comparison of Accident Year Loss Ratios at 12- and 72-months Maturity 

Property/Casualty Insurance Industry 

 

PAL = Private Passenger Auto Liability 
CAL = Commercial Automobile Liability 

CMP = Commercial Multi-Peril 
GL-Occ = General Liability – Occurrence 

Source:  SNL Financial website.  P&C Industry Composite. 
  

                                                           
1  Throughout this paper, amounts are shown in various tables and charts.  The actual amounts contain more digits than 
are displayed, and therefore, some apparent arithmetic may be influenced by rounding. 

2005 2006 2007 2008 2009

PAL at 12 months 67% 66% 69% 69% 73%
at 72 months 63% 63% 67% 67% 70%
Ratio 0.94     0.96     0.97     0.97     0.97     

CAL at 12 months 61% 62% 62% 62% 63%
at 72 months 58% 58% 61% 61% 60%
Ratio 0.95     0.94     0.97     0.98     0.96     

CMP at 12 months 61% 53% 55% 69% 60%
at 72 months 56% 47% 50% 65% 60%
Ratio 0.92     0.90     0.92     0.94     0.99     

GL-Occ at 12 months 66% 64% 66% 67% 69%
at 72 months 55% 54% 60% 61% 61%
Ratio 0.84     0.85     0.91     0.92     0.89     
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The booked ultimate loss ratios demonstrate varying degrees of change from the 12 month 
valuation to the 72 month valuation.  The magnitude of change appears smallest for the automobile 
lines, with changes a bit larger for CMP, with still larger changes for GL-Occurrence.  For these 
accident years, we also note that the changes are favorable, as the booked loss ratios at 72 months 
are less than those booked at 12 months.   

Comparable data as shown in Table 1 are provided in Appendix A for a longer experience period, 
spanning accident years 1996 to 2009.  Over the 14-year period, initial booked loss ratios deviated 
upward and downward with subsequent valuations.  Chart 1 shows the ratios of the 1996 to 2009 
accident year booked loss ratios at the 72-month valuation, in comparison to the loss ratio booked at 
the 12-month valuation. 

Chart 1 
Ratios of Accident Year Booked Loss Ratio at 72-months 

Compared to Booked Loss Ratio at 12-months 
US P&C Insurance Industry 

 

For Personal Auto Liability (PAL), the ratios were in the range from 0.93 to 1.01 over the 14 
accident years, with an average ratio of 0.97 (favorable 3%).  In contrast, the booked loss ratios for 
General Liability – Occurrence at 72-months, on average, were within 1% of the loss ratios booked 
at 12-months.  On an accident year by accident year basis, however, individual years’ ratios were as 
low as 0.80 and as high as 1.24. 

A particular focus area for this paper is assessing the progression of loss ratios from an initial 
valuation to subsequent valuations on the path toward “true” (and final) ultimate.  Charts 2a and 2b 
show the progression for CMP and GL-Occurrence, respectively, for the 2006 accident year, from 
12 months through the 72 month valuation, and continuing to the 108 month valuation at year-end 
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2014 reporting.  The data are shown for the P&C insurance industry (bold/black line) and for four 
companies/groups from among the Top 10 based on market share for each line. 

Chart 2a 
Progression of Booked Ultimate Loss Ratios 

CMP - Accident Year 2006 
P&C Industry (bold/black) & 4 Top-10 Companies 

 

For Commercial Multi-Peril for accident year 2006, the industry booked loss ratio at 12 months 
was 53%, and the booked loss ratio appeared to stabilize at the 72 month valuation at 47%.  Thus, 
with hindsight, the initial booked loss ratio decreased by 10% over subsequent valuations.  For the 
four companies in the sample from the Top 10, initial booked loss ratios decreased by 7% to 19%. 
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Chart 2b 
Progression of Booked Ultimate Loss Ratios 

General Liability - Occurrence -- Accident Year 2006 
P&C Industry (bold/black) & 4 Top-10 Companies 

 

For General Liability – Occurrence for accident year 2006, the industry booked loss ratio at 12 
months (at year-end 2006) was 64%. The booked loss ratio decreased to 54% at the 72 month 
valuation, with further decreases to 52% at the 108 month valuation (at year-end 2014).  With 
hindsight, the initial booked loss ratio decreased by 18% over subsequent valuations.  For the four 
companies in the sample from the Top 10, one company’s initial loss ratio decreased by about 40%, 
while another’s increased by about 10%. 

When the ultimate loss ratio is sufficiently different than the estimate at 12 months, there appears 
to be a tendency for the magnitude of the change to be related to the length of the paid/reported 
loss emergence pattern.  Thus, it is not surprising that larger changes from initial booked loss ratios 
are observed for GL-Occurrence than for CMP, and, that the booked loss ratios for GL-Occurrence 
continue to evolve at valuations beyond 72 months, while CMP’s loss ratio appears to have 
stabilized by that valuation. 

Along the path from an accident year aging from 12 months to 72 months (or beyond), at what 
point was there sufficient claims data or other indicators that the ultimate estimates made at 12 
months would not hold up?  Stated another way, why didn’t the industry (or individual companies) 
get it “right” sooner?  If the early claims experience deviated from initial expectations, why didn’t 
booked loss ratios demonstrate a greater response to the data? 

In this paper, I explore the notion that, along the path of an accident year aging, different 
stakeholders to the reserving process take different positions on the degree of responsiveness to the 
emerging data, as evidenced by differing bases for ultimate loss estimates and the corresponding 
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reserves.  What if actuaries’ estimates respond more quickly to the emerging claims experience than 
management in the formation of the best estimate?  In the next section, the nature and key features 
of common actuarial projection methods are identified and described. 

 

3.  Features of Actuarial Projection Models 

Actuarial analysis of unpaid claims estimates is often performed utilizing multiple methods, which 
can be applied to various types of data.  The table below identifies four common actuarial methods, 
and types of claims data to which the methods can be applied. 

 

Methods Types of Data 
Expected Loss (EL) 
Bornhuetter-Ferguson (BF) 
Benktander (BKT) 
Chain Ladder (CL) (also known as 

loss development) 

Paid losses 
Reported losses (payments plus case 
reserves) 
Claim counts 

 

The key parameters of the methods require that judgments be made for each parameter in the 
application of the methods to a particular set of data.  The table below identifies the parameters for 
each of the methods. 

 Methods 
Parameter EL BF BKT CL 

Initial expected losses • • •  

Loss development 
factors (including a tail 
factor) 

 • • • 

 

By their nature, the four actuarial methods have varying degrees of responsiveness to the actual 
claims experience.  Figure 1 provides a comparison. 
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Figure 1 
Comparative Responsiveness of Actuarial Methods to Actual Experience 

 

In a rare situation where the actual claims experience for an accident period emerges in line with 
expectations (based on initial expected losses and the expected emergence pattern), all methods will 
generate the same (and accurate) projected ultimate losses, and there is no divergence among the 
methods’ projections. 

Actual claims experience inevitably deviates, to some degree, from expectations, whether in the 
level of ultimate losses once all claims are reported, settled, and closed, or in the pattern by which 
the losses emerge, or both.  When actual experience deviates (whether favorably or adversely) from 
expectations, the projections from various methods will diverge, due to the different degree of 
responsiveness of each method to the actual loss experience.  Table 2 shows illustrated BF- and CL-
projections that reflect an initial expected loss of 100, a true ultimate of 92, and actual emerged 
losses being less than expectations at each valuation date, but demonstrating inconsistent deviations 
to expected amounts.  (The assumed loss reporting pattern is shown in Appendix C.) 

Table 2 
Illustration of BF and CL Projections 

when Actual Experience emerges Inconsistently Less than Expected 

 

Accident Period Age
1 2 3 4 5 6 7

Expected 35 55 70 85 90 95 100
Actual 35 52 61 71 78 89 92
% deviation -1% -6% -13% -16% -13% -7% -8%

BF-estimate 100 97 91 86 88 94 92
CL-estimate 99 94 87 84 87 93 92
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In Table 22, the actual reported losses at the 1st valuation are with 1% of expectations, such that 
the BF and CL projections are closely aligned with the initial expected ultimate.  By the 4th valuation, 
the extent of the divergence in cumulative actual versus expected reported losses increased to 16%, 
thereby decreasing the CL projection to 84.  The BF-projection has a tempered response to the 
actual experience, with an estimate of 86 at the 4th valuation.  As the actual experience settles to an 
8% favorable deviation at the 7th valuation, the BF and CL estimates are the same and converge at 
the true ultimate of 92. 

Of course, in a scenario where actual loss emergence is greater than expectations, the relative 
positions of the projections would be reversed, with the CL projection becoming larger than the 
initial expected ultimate, with the BF method yielding a projection higher than the initial expected 
amount, but less than the CL projection. 

For the remainder of this paper, the emphasis is on exploring implications of divergence of 
methods projections in terms of responsiveness to actual emerged claims experience, with an 
assumption that the pattern of actual emergence is in line with expectations, although perhaps on a 
path to a level of ultimate losses that differs from initial expectations.  Therefore, the following 
examples reflect a consistency in the actual and expected pattern of emergence.  Using the same 
assumptions underlying Table 2 above, Table 3 shows a scenario where actual experience deviates 
from expected experience consistently over the valuations. 

 

Table3 
Illustration of BF and CL Projections 

when Actual Experience emerges Consistently Less Expected 

 

                                                           
2  In the example, the BKT projection is deliberately not shown, for ease of presentation. The BKT projection is 
more responsive to the emerged claims experience than the BF, since its algorithm effectively re-cycles the BF 
projected loss as the input for another BF projection.  Thus, the BKT projection generally falls between the BF and 
CL projections. 

 

Accident Period Age
1 2 3 4 5 6 7

Expected 35 55 70 85 90 95 100
Actual 32 51 64 78 83 87 92
% deviation -8% -8% -8% -8% -8% -8% -8%

BF-estimate 97 96 94 93 93 92 92
CL-estimate 92 92 92 92 92 92 92
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Cumulative actual reported losses emerge in the expected pattern, albeit 8% less than expected at 
each valuation date.  The CL projection is consistent at 92 for all valuation dates, since the actual 
emergence pattern is in line with the expected pattern.  The BF projection at the 1st valuation is 
slightly less than the initial expected amount, and it decreases progressively at successive valuations 
by the difference in actual versus expected emerged losses. 

Appendix B contains an exhibit that provides details of the computations included in Table 3, 
including additional calculations for the BKT projection.  With the spectrum of responsiveness to 
emerged data as illustrated in Figure 1 above in mind, the response of the BF is equivalent to the 
reciprocal of the loss development factor to ultimate (that is, the expected loss emergence 
percentage). In this example, the BF response at the 2nd valuation is 55%.  The responsiveness of the 
BKT projection is dependent on both the expected emergence percentage and the degree to which 
actual experience diverges from expectations; in Appendix B, the BKT response at the 2nd valuation 
in this example is 80%. 

Additional projections could be illustrated if the methods are applied to multiple types of data, 
for instance, paid losses and reported losses.  This increases the potential divergence among the 
projections and illustrates another (implicit or explicit) judgment that actuaries and management 
must make in order to form a view on an actuarial central estimate and management’s best-estimate 
for financial reporting. 

The reader may wish to re-visit the charts shown in Section 2 with the progression of booked 
ultimate loss estimates for the industry and four companies.  The progressions tend to follow a 
deliberate migration from initial expectations of ultimate loss at 12 months toward the value accrued 
by the 72-month to 108-month valuations.  Nevertheless, neither I, nor the reader, can infer 
definitively whether the progressions followed an explicit, intentional path, (for instance, a reported-
BF path) or reflected a changing mix of considerations over time. 

 

4.  When Styles Diverge (not just the Projections) 

The implications around differing degrees of responsiveness to emerged claims data become 
apparent in the internal and joint discussions among insurance company actuaries and management, 
their external actuarial consultants, and the external audit firm’s actuarial specialists that support the 
audit of the company’s financial statements.  To illustrate: 

• Company management may form a view that it takes a while for the actual claims experience 
and the related projections to be sufficiently credible for management to deviate from initial 
expectations of ultimate loss for a particular accident period. 
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• A company’s actuary may form a view that a staged approach to selecting ultimate losses is 
appropriate.  For example, for the initial and second valuations, the EL method may be 
chosen (absent any individual large claims or losses arising from catastrophe events).  For 
the third and subsequent valuations, the actuary may choose a BF estimate, and then shift 
toward a BKT- or CL-based estimate at valuations nearing the expected completion of the 
emergence pattern. 

• An external consulting actuary (and/or the actuary supporting the external audit firm) may 
form a view that the ultimate losses for an accident period’s initial period-end valuation are 
best represented by initial expected losses, but then may shift to a BF- or BKT-based 
estimate for subsequent valuations. 

There are differing manners by which the parties may express their views as to the basis for the 
chosen estimate.  These could be based strictly on the passage of time, the magnitude of the 
development factor, or the type of data. 

It can be quite plausible and reasonable that management forms a view for best-estimate ultimate 
losses and the associated reserves that are different than the actuarial indication.  Management may 
have valid and supportable rationale, considering features of the company’s business and operations, 
as well as external trends and conditions, which management believes have not been fully 
incorporated within the actuarially-determined projections.  For instance, for a portfolio that is 
exposed to individual large, late-reported claims, for which there has been an extended period of 
relatively benign claims experience, management may form a best-estimate that is greater than an 
actuarial indication that reflects a stated or unstated degree of response to the benign historical 
development experience. 

Differences in judgments for forming a view on ultimate losses do not fall solely between 
actuaries and personnel from other backgrounds and functional roles.  Indeed, differences in 
estimates arise among multiple actuaries involved in the analysis of unpaid claim liabilities for a 
particular business segment, legal entity, or an insurance company group. 

Differences in how actuaries (whether company or external) and management pick ultimate loss 
estimates will generate differences in estimated unpaid claims liabilities.  The illustrations above have 
shown the relative progression of projections for a single accident period over its successive 
valuations.  Using the same set of assumptions above (where actual emerged losses deviate 
consistently and favorably from expectations), with initial expected losses of 100 and ultimate losses 
of 92, Chart 3 shows the progression of ultimate loss projections from the expected loss, paid BF, 
reported BF, and chain ladder methods. 
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Chart 3 
Comparative Projections of Ultimate Losses 

 

Table 4 shows the array of estimates of ultimate loss by method (as shown in Chart 3), as well as 
the cumulative payments at each age. 

Table 4 
Comparative Projection of Ultimate Losses 

 

The CL-projection is consistently $92 over the valuations, as the claims experience, although less 
than expectations, is following the expected loss emergence pattern.  The EL has a 0% response to 
the emerging data, maintaining the estimate at $100 over time.  The paid and reported BF 
projections reflect a blending of the CL and EL estimates.  Table 5 shows the corresponding 
progressions of estimates of unpaid claims arising from the methods. 

Age EL CL P-BF R-BF Paid
1 100        92          99          97          9            
2 100        92          98          96          18          
3 100        92          97          95          32          
4 100        92          96          93          46          
5 100        92          95          93          55          
6 100        92          95          93          65          
7 100        92          94          92          74          
8 100        92          93          92          83          
9 100        92          93          92          88          
10 100        92          92          92          92          

Estimated Ultimates
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Table 5 
Comparative Projections of Unpaid Claims 

 

In this example, at the 1st valuation, the $8 difference between the CL and EL estimates of 
unpaid claims liabilities represents 9% of the CL estimate ($83).  By the 5th valuation, the $8 
difference between the EL and the CL estimates represents 21% of the CL-estimate of unpaid 
claims ($37) for the accident period.  Maintaining the initial expected losses as the estimated ultimate 
at the 10th valuation yields an unpaid claim estimate of $8, even though the expected payment 
pattern suggests that no further payments are expected.  At some point along the way from accident 
year inception, to initial period-end valuation, and to final settlement of all attendant claims, 
stakeholders need to move off the initial expected loss estimate and respond to the actual claims 
experience.  But when? And to what? 

Extending the investigation to the recognition of the accident year incurred losses in a calendar 
year income statement of an insurance company, Table 6 shows the progression of ultimate loss 
estimates based on the CL and the paid and reported BF methods, along with the calendar year 
recognition. 

Age EL CL P-BF R-BF
1 91          83          90          88          
2 82          74          80          77          
3 68          60          65          62          
4 54          46          50          47          
5 45          37          40          38          
6 35          28          30          28          
7 26          18          20          18          
8 17          9            10          9            
9 12          5            5            5            
10 8            -         -         -         
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Table 6 
Recognition of Accident Year Losses 

 

As illustrated, the CL estimate of ultimate losses for the accident year is accurate at the 1st 
valuation, and so the recognition of incurred losses is fully contained to the corresponding calendar 
year.  For the reported BF projection, which reflects a blending of initial expectations ($100) and 
actual reported emergence over time, the initial recognition is $97.  Subsequent calendar year results 
reflect favorable development, in total of $(5) for the reported BF, until the true ultimate of $92 is 
recognized by the 7th year on a reported basis.  The recognition of the true ultimate losses from the 
paid BF approach is slower, with $99 recognized in the 1st year and favorable development of $(7) in 
subsequent periods. 

The framework and illustrations become more intriguing when the results are compiled from 
successive accident years at successive calendar year-end reporting dates, where there are deviations 
in the emerging experience from initial expectations.  For this illustration, we utilize the notion of an 
underwriting cycle, where the conditions around pricing and loss trends yield a cyclical pattern of 
ultimate loss ratios.  Chart 4 illustrates the cycle used in subsequent examples, in terms of its “peaks 
and valleys” and the time-period from peak-to-valley and valley-to-peak. 

Calendar Year Incurred Losses
Age CL P-BF R-BF Cal Yr CL P-BF R-BF

1 92          99          97          1 92          99          97          
2 92          98          96          2 -         (1)           (2)           
3 92          97          95          3 -         (1)           (1)           
4 92          96          93          4 -         (1)           (1)           
5 92          95          93          5 -         (1)           (0)           
6 92          95          93          6 -         (1)           (0)           
7 92          94          92          7 -         (1)           (0)           
8 92          93          92          8 -         (1)           -         
9 92          93          92          9 -         (0)           -         
10 92          92          92          10 -         (0)           -         

Sum 92          92          92          

Accident Year Ultimates
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Chart 4 
Cycle Assumptions for Accident Year Loss Ratios 
and a Constant Expected Loss Ratio over Time 

 

Over the entire period, we assume that the initial expected loss ratio is a constant 65%, with 
actual loss ratios spanning from 50% to 80% over a 24 year period.  That is, a starting loss ratio of 
65% increases to 80% over a 6-year period, decreases to 50% over a 12-year period, and then returns 
to 65% over the next 6 years.  With a constant premium volume of $154 each year, the expected 
losses are $100, with actual losses ranging from $77 (when the loss ratio is 50%) to $123 (when the 
loss ratio is 80%).  Appendix C shows the assumptions for premium volume and loss ratios by 
accident period, as well as the accident period loss payment and reporting patterns. 

The results that are shown in the following tables and charts reflect a model where company 
management (“Mgmt”) consistently forms a best-estimate of ultimate and the corresponding 
reserves based on the paid BF approach.  This reflects a tempered approach in terms of its 
responsiveness to the emerged claims data from the initial to subsequent valuations.  Management’s 
estimates are compared to an actuary’s estimate, which is consistently based on the reported BF 
approach.  Therefore, the actuary’s estimates reflect a tendency for greater responsiveness to the 
emerging claims experience than management’s.3 

                                                           
3  The reader is reminded of the Disclaimer within the Abstract for this paper.  The author’s use of the illustrative 
preferences for method selection by “management’ and “an actuary” is intended solely to facilitate the description of the 
scenario and the potential implications of different method selections on one stakeholder’s view of the relative position 
of another stakeholder’s estimate for unpaid claims liabilities, rather than referring to the two stakeholders as 
“Stakeholder A” and “Stakeholder B.” 
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Table 7 shows the array of estimates for the first three accident periods for the first three 
calendar periods, in order to provide the reader with a view on the mechanics of the model, before 
showing the overall results once the illustration reaches steady-state in terms of a rolling set of 10 
accident years contributing to a calendar year’s result. 

Table 7 
Projected Ultimate Losses by Method and Selected by Stakeholders 

Accident Years 1 to 3 at Calendar Year-ends 1 to 3 

 

For accident year 1, the assumed expected loss is $100 (65% loss ratio) and the true ultimate is 
assumed to be $104 (68% loss ratio, and indicated by the CL at each age).  At the first valuation, 
management’s pick for ultimate losses is based on the paid BF ($100), which is slightly higher 
(rounding) than the expected losses of $100.  The actuary’s pick ($101) is a bit more responsive to 
the emerging experience. 

At the second valuation for accident year 1, management’s estimate increases to $101, while the 
actuary’s estimate increases to $102.  These changes represent prior year development in the 
calendar year when the change in estimate is made. 

Table 8 shows the progression of the respective estimates, for the current accident period and for 
changes in the estimates for prior periods. 

AY Age EL CL P-BF R-BF Mgmt Actuary

1 1 100 104 100 101 100 101
2 100 104 101 102 101 102
3 100 104 101 103 101 103

2 1 100 108 101 103 101 103
2 100 108 102 104 102 104

3 1 100 112 101 104 101 104
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Table 8 
Progression of Ultimate Loss Estimates by Accident Year by Calendar Year 

 

 

Each estimate of ultimate for the current accident period is shown in the boxed-cells in the left-
portion of the table.  The change in estimates for prior accident periods during a calendar period are 
shown and compiled (shaded cells) in the right-portion of the table. 

Management’s current accident year estimates are less than the actuary’s estimates, due to the 
lesser response of the paid BF approach to emerging claims data than that of the reported BF 
approach.  Thus, relative to the recognition of the ultimate losses from the actuary’s picks, 
management’s recognition of ultimate losses is delayed.  For instance, for accident year 1, ultimate 
losses of $104 will need to be recognized.  By the third valuation, management has recognized $101 
while the actuary’s estimate is $103; management will have subsequent development of $3, while the 
actuary’s estimate will develop by $1. 

Table 9 shows the components of calendar year results over the 1st ten years of the model. 

Calendar Year Calendar Year
AY 1 2 3 1 2 3

Ultimate Prior Year Development

Mgmt 1 100 101 101 0 1
2 101 102 1
3 101

Sum => 0 1

Actuary 1 101 102 103 1 1
2 103 104 2
3 104

Sum => 1 2
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Table 9 
Illustration of Current Accident Year and Calendar Year Incurred Losses 

Years 1 to 10 

 

Over the 1st ten years, the actuary’s loss picks for the current accident year are higher than 
management’s.  (Recall that years 1 to 10 reflect ultimate loss ratios greater than initially expected.)   
Still, both the actuary and management underestimate the true ultimates, as evidenced by the adverse 
development of prior years’ estimates in calendar year results.  Table 10 shows the results as the 
company reaches a ‘steady state’ in years 10 to 20. 

Table 10 
Illustration of Current Accident Year and Calendar Year Incurred Losses 

Years 10 to 20 

 

Ult Ult Ult Ult Ult Ult
Year Mgmt Actuary Mgmt Actuary Mgmt Actuary

1 100 101 0 0 100 101
2 101 103 0 1 101 103
3 101 104 1 2 103 106
4 102 105 3 4 104 109
5 102 107 5 6 107 113
6 102 108 7 8 109 117
7 102 107 10 11 112 118
8 102 105 12 12 114 117
9 101 104 13 12 115 116
10 101 103 14 10 115 113

Current AY Change in Prior Calendar Year

Ult Ult Ult Ult Ult Ult
Year Mgmt Actuary Mgmt Actuary Mgmt Actuary
10 101 103 14 10 115 113
11 100 101 13 9 114 110
12 100 100 12 7 112 107
13 100 99 10 4 110 103
14 99 97 8 2 107 99
15 99 96 5 (1) 103 95
16 98 95 1 (3) 100 91
17 98 93 (2) (6) 96 87
18 98 92 (6) (8) 92 83
19 98 93 (9) (11) 89 82
20 98 95 (12) (12) 87 83

Current AY Change in Prior Calendar Year
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At year 12, true ultimate losses return to 100 (65% loss ratio), and both management and the 
actuary recognize this as their views of current accident year losses.  However, the financial results 
for calendar year 12 are still hurt by adverse development from inadequate funding of prior accident 
years. 

The results at year 15 begin to show favorable development of the actuary’s prior years’ 
estimates; it takes until year 17 for management’s estimates to show favorable development.  
Although the true loss ratio for accident year 18 reaches its low at 50% ($77 ultimate loss), that 
calendar year’s incurred losses of $92 reflect management’s current accident year estimate of $98, 
and favorable $(6) development from prior years.   The actuary’s initial view of the current accident 
year loss ratio at year 18 is $92, giving a bit more recognition to the emerged favorable experience 
than management’s $98, but both still higher of the ultimate emerged loss of $77. 

The relative trends in loss ratios are shown in Chart 5 below.  The chart, based on the 
assumptions underlying the outcomes, conveys the common notion that the cycle of calendar year 
booked loss ratios often reflects a delayed and tempered view of the cycle of ultimate accident year 
loss ratios. 

Chart 5 
Comparison of Calendar Year Loss Ratios 

Based on Alternate Judgments for Ultimate Accident Year Loss Picks 

 

Viewing the model’s results in terms of actuarial indicated and management booked loss reserves 
at successive financial reporting dates provides additional insights as to the potential implications 
from alternate judgments for the basis of ultimate loss picks.  Chart 6 below illustrates the indicated 
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unpaid claim estimates for years 10 to 30 (the ‘steady state’ period of the model) as selected by 
management (based on the paid-BF), by the actuary (based on the reported-BF), and based on the 
(true or hindsight) ultimate. 

Chart 6 
Comparison of Unpaid Claim Estimates 

Based on Alternate Judgments for Ultimate Accident Year Loss Picks 
At end of Years 10 to 30 

 

Once in a steady state, with constant premium volumes and ELR’s, and the paid-BF as the basis 
for management’s picks, the indicated reserves are constant at $390.  The actuary’s estimates of 
unpaid claims liability fall and rise over the period shown, with a partial response in selecting 
ultimates given the deteriorating and improving true claims experience.  The hindsight (true) 
reserves, based on the cyclical accident year ultimates, demonstrate a greater degree of variability, 
driven by the constant premium volume and rising and falling levels of accident period incurred 
losses. 

The implications of these relative reserve estimates at a point in time, and over time, are further 
highlighted in Chart 7, which shows the estimated adequacy of management’s reserves, in relation to 
the actuary’s indicated reserves at the particular financial reporting date (the red line), and in relation 
to ultimate (the black line).  A 0% reserve adequacy position corresponds to the situation when the 
booked reserves are equal to another estimate, whether the actuarial indication or the hindsight 
(true) estimate of unpaid claims.  When management’s reserve is below the actuary’s (or hindsight) 
estimate, a negative percentage is shown. 
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Chart 7 
Relative Reserve Adequacy Position of Booked Reserves over Time 

Based on Alternate Judgments for Ultimate Accident Year Loss Picks 
At end of Years 10 to 30 

 

Adequacy Position vs Actuary = (Booked minus Actuary Indication) / (Actuary Indication) 

Adequacy Position vs Ultimate = (Booked minus Ultimate Indication) / (Ultimate Indication) 

Differences in perspectives for loss picks that may be perceived as ‘small’ can generate 
differences in reserve estimates (at a point in time, not only at ultimate) that are relatively large.  
Management’s reserves at the end of calendar year 10 (four years after the peak true loss ratio for 
accident year 6) are 8% less than the actuary’s indication at that time.  Eleven years later (at the end 
of calendar year 21), after loss ratios have improved, management’s reserves are 10% greater than 
the actuary’s indication. 

A hindsight (ultimate) view of booked reserves is commonly disclosed in a loss reserve runoff 
schedule in a public insurance company’s 10K annual report, or can be derived from manipulations 
of data presented in Schedule P of insurance companies’ statutory-basis annual statement.  In Chart 
7 above, management’s reserves booked at year-end 10 would be ultimately revealed as having been 
12% deficient, and the year-end 20 reserves would be revealed to have been 20% redundant. 

An integrated view of the model, in terms of its assumptions for cyclical accident year loss ratios, 
and the hypothetical management’s approach to booking accident year losses (based on a paid-BF 
method), is shown in Chart 8, including the hindsight view of booked reserve adequacy: 
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Chart 8 
Comparison of Loss Ratios and Hindsight Reserve Adequacy 

 

Chart 8 shows the full range of 30 years in the underlying model, including the first 10 years 
before the steady state is reached in terms of the levels of claim payments and reserves.  The chart 
provides a view on hindsight reserve adequacy over the full range of the assumed cycle. 

• A paid BF approach for selecting loss picks creates a delayed recognition of accident year 
losses, thereby generated a delayed and tempered cycle of calendar year loss ratios, relative to 
the accident year loss ratio cycle. 

• The relative adequacy of loss reserves derived from a paid BF approach, based on the 
scenario illustrated by the model, ranges from 15% deficient to 20% redundant, in relation to 
the unpaid claims liabilities from the true ultimate losses.  The reserve adequacy cycle is 
inverted to the true loss ratio cycle, and, in this example, is lagged by 2 periods (driven by the 
collection of assumptions underlying the model). 

 

5.  So, Now What? 

I close this paper with a collection of observations, questions, and responsive thoughts (not 
answers) regarding potential implications of the content in previous sections. 

1) The model is simplistic in that it reflects a flat initial expected loss ratio.  That is not reality. 

Yes, the model is simplistic when viewed from that vantage point.  I acknowledge that managements consider the 
current accident year’s experience when setting ultimate losses and the associated reserves at the initial annual 
reporting.  The scenario illustrates a tempered response to the initial expected loss ratio, by way of the paid BF at 
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all valuations.  I believe the model is instructive as is; of course, the model could be enhanced to show some 
variation in the initial expected losses, although such variation would likely be less than that manifest by true 
ultimate losses. 

2) What happens if differences in stakeholders’ styles on the basis of loss picks become “large” in 
terms of the differences among unpaid claims estimates?  Stated another way, at what point are 
different styles (and differences in reserve estimates) too large to tolerate from an “actuarial 
reasonability” perspective? 

While a valid and thought-provoking question, it goes beyond the scope of this paper. 

3) If a company’s management books its best estimate that is different than the company’s actuarial 
indication, what are implications on the level of documentation that is expected? 

Standards of practice for the accounting and actuarial professions require that sufficient documentation of the 
analysis supporting booked amounts and actuarial indications exists.  Where the booked amounts are equivalent 
to the actuarial indication, then documentation that meets the actuarial standards should be sufficient.  Where 
management considered the actuarial indication and formed its estimate based on alternate judgments regarding 
assumptions, methods, or basis of picks, management should have sufficient documentation highlighting the areas 
of difference and the basis (evidence, rationale) for such differences. 

4) Is the author suggesting that any rational stakeholder adopt a chain ladder projection at an 
“early” maturity when the development factor to ultimate is “large?” 

Maybe; that would depend on the relative stability of the historical development experience and consistency in 
company underwriting and claims operations.  The author believes that there is opportunity for actuaries to 
enhance their measurement and communication of the degree of certainty that can be associated with actuarial 
indications from different methods and types of data.  “Inherent volatility” or “large LDF’s” are common reasons 
for discounting or outright ignoring chain-ladder projections at early maturities.  But, has the actuary compiled a 
history of the various projections over time to assess which tend to perform better than others?  Has the actuary 
tested the performance of methods?  This was an area of investigation in Claim Reserving: Performance Testing 
and the Control Cycle, by Yi Jing, Joseph Lebens, and Stephen Lowe (CAS, 2009).  Therein they described a 
testing approach for evaluating the “skill” of a method, as a “measure of the amount of variation captured by the 
particular actuarial method.”  They also wrote that “the control cycle should involve an ongoing assessment of the 
estimation skill of the actuarial methods currently being employed, and exploration of opportunities to enhance 
overall estimation skill by implementing better actuarial projection methods.” 

5) Is the author suggesting that, at some point along the path of an accident year maturing, a 
particular projection method could be viewed as “wrong” in relation to another method? 

Many individual judgments are made in the course of a reserving analysis and each of these, individually, could be 
viewed as reasonable, optimistic, conservative, or unreasonable.  Generally, the scope of an actuary’s professional 
opinion regarding reserves is on the appropriateness of methods and reasonableness of assumptions and judgments 
in total (all accident years, all analysis segments), not on individual elements.  This is consistent with the actuarial 
opinion on the loss reserves in aggregate, not for individual claims. 
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So, my response is “No,” in that an individual judgment for a particular method for a particular accident year is 
likely not the subject of a professional opinion.  Still, in this context, consider the following. 

Chart 9 
Comparison of Ultimate Loss Estimates 

Based on Alternate Judgments for Ultimate Accident Year Loss Picks 
With a View on a “Reasonability Interval” of the CL-projection 

 

Chart 9 is similar to Chart 3, showing the progression of ultimate loss projections from four basic methods.  I 
have added a shaded area to illustrate a potential range (“reasonability interval”) of projected amounts from the 
Chain Ladder method.  The range decreases in breadth over time as the accident year matures.  Based on the 
graphic, the Expected loss pick at the 1st or 2nd valuation would be within, albeit at the high-end of the CL-range.  
By the 3rd valuation, the Expected amount would not fall within the CL-range.  At that point, would a pick 
based on Expected loss be “wrong?” 

6) Is the author suggesting that the stakeholders document their styles for how they generally form 
their picks? 

A documented reserving policy for an insurance company is an element of good governance around reserves, as the 
reserves are a significant accounting estimate in the financial statements.  The company actuary, management, and 
the Board (audit committee) should ensure a common understanding of their own, and each other’s, perspectives, 
tendencies, principles, and objectives (that is, styles).  Likewise, company stakeholders and key personnel from the 
external audit firm should ensure understanding of each other’s perspectives. 

A documented reserving policy will help to describe management’s view on “why now?” in terms of a  response to 
the emerging claim experience, whether for reporting on results for a quarter for which detailed actuarial re-
projections are available or not, and also in response to one or more individual large loss events. 

The reserve decision making-process is fluid as internal and external conditions evolve and change over time.  
Therefore, an overly prescriptive policy is not realistic, desirable, or appropriate. 
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6.  Conclusions 

The styles of management and an actuary for selecting loss picks do matter.  An articulated policy 
surrounding how management selects its estimate is good governance to recognize that this selection 
process does matter and is not subject to whim.  Documentation of the selection process of 
management promotes transparency for stakeholders and is a check that the policy has been 
followed.  It also provides, through transparency, a check on the bounds of how large style 
differences can become as quantified by the extent of differences from actuarial loss picks.  Further, 
the actuary should ensure that documentation of the actuarial process is in compliance with actuarial 
standards of practice. 

Actuaries and management should communicate, up front, and share their views on how they 
each think about the degree of responsiveness to the emerging data that their loss picks will likely 
reflect.  When the reserving styles of the various stakeholders are in-sync, the periodic discussions 
around the period’s claims experience and forming views on indications and booked reserves are 
smoother and less contentious, as compared to when the styles are out-of-sync. 
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Appendix A 
 

US P&C Industry Booked Loss Ratios 
Accident Years 1996 to 2009 

At 12-month & at 72-month Valuations 
(plus 108-month valuation for GL-Occurrence) 

 

 

 

Loss ratios for GL-Occurrence demonstrated a degree of further development from the 72-
month valuation to the 108-month valuation. 

For personal auto liability (PAL), the average ratio of the loss ratio at 72-months divided by the 
loss ratio at 12-months) over the 14 accident years was 0.97 (favorable 3%), with observations that 
spanned from 0.93 to 1.01. 

In contrast, the booked loss ratios for General Liability – Occurrence at 72-months, on average, 
were within 1% of the loss ratios booked at 12-months.  On an accident year by accident year basis, 
however, individual years’ ratios were as high as 1.24 and as low as 0.80.  At 108-months, the highest 
and lowest ratios were 1.29 and 0.78. 

  

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 Average

PAL at 12 months 76% 73% 71% 75% 79% 78% 76% 71% 68% 67% 66% 69% 69% 73% 72%
at 72 months 71% 69% 70% 75% 80% 78% 75% 67% 64% 63% 63% 67% 67% 70% 70%
Ratio 0.93     0.94     0.98     1.00     1.01     1.00     0.98     0.95     0.94     0.94     0.96     0.97     0.97     0.97     0.97       

CAL at 12 months 77% 78% 77% 78% 77% 73% 67% 64% 62% 61% 62% 62% 62% 63% 69%
at 72 months 81% 84% 87% 92% 89% 78% 67% 60% 57% 58% 58% 61% 61% 60% 71%
Ratio 1.05     1.08     1.13     1.18     1.15     1.07     1.00     0.95     0.93     0.95     0.94     0.97     0.98     0.96     1.02       

CMP at 12 months 74% 68% 74% 74% 71% 75% 60% 56% 59% 61% 53% 55% 69% 60% 65%
at 72 months 76% 68% 79% 80% 81% 76% 59% 52% 53% 56% 47% 50% 65% 60% 64%
Ratio 1.02     1.01     1.07     1.09     1.13     1.02     0.97     0.92     0.90     0.92     0.90     0.92     0.94     0.99     0.99       

GL-Occ at 12 months 80% 81% 82% 79% 79% 89% 72% 69% 68% 66% 64% 66% 67% 69% 74%
at 72 months 77% 84% 91% 95% 98% 101% 79% 63% 55% 55% 54% 60% 61% 61% 74%
Ratio 0.97     1.04     1.11     1.21     1.24     1.13     1.10     0.91     0.80     0.84     0.85     0.91     0.92     0.89     0.99       

at 108 months 78% 86% 99% 102% 101% 102% 80% 63% 53% 53% 52%
Ratio 0.98     1.07     1.20     1.29     1.27     1.14     1.11     0.90     0.78     0.81     0.82     
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Appendix B 

Numerical Example to Illustrate Degree of Responsiveness 
of Alternate Methods to Actual Loss Experience 

 

 

Item(s) Notes 
A, B Assumed data for the illustration 
C, D Assumptions for the key parameters of the methods. 
E, F Derived from D. 
G A multiplied by C 
H, I Derived from E, F, & G 
J B plus I 
K Equal to J 
L Derived from K & F 
M B plus L 
N B multiplied by D 
O Derived as (Difference of method-estimate to the EL-estimate) divided by the 

(Difference of the EL and the CL-estimate) 
 

  

EL BF BKT CL

A Premium 125              125              125              
B Reported Losses 51                51                51                51                

C IELR 80% 80%
D LDF (to Ultimate) 1.82             1.82             1.82             
E Expected Reported % 55% 55% 55%
F Expected IBNR % 45% 45% 45%

G Expected Loss 100              100              
H Expected Reported Loss 55                
I Expected IBNR Loss 45                

J BF Estimated Ultimate 96               
K Initial Expected Loss for BKT 96                
L Expected IBNR Loss for BKT 43                

M BKT Estimated Ultimate 94               

N CL Estimated Ultimate 92               

O Response to Actual 0% 55% 80% 100%
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Appendix C 

 
Assumptions for Accident Year Premium, ELR’s, and Ultimate Loss Ratios 

and Accident Year Loss Payment and Reporting Patterns 

Supporting the Tables & Charts in Section 4 

 

 

AY Premium ELR Ult LR AY Age Payment Reporting

1 154 65% 68% 1 10% 35%
2 154 65% 70% 2 20% 55%
3 154 65% 73% 3 35% 70%
4 154 65% 75% 4 50% 85%
5 154 65% 78% 5 60% 90%
6 154 65% 80% 6 70% 95%
7 154 65% 78% 7 80% 100%
8 154 65% 75% 8 90% 100%
9 154 65% 73% 9 95% 100%
10 154 65% 70% 10 100% 100%
11 154 65% 68% 100% 100%
12 154 65% 65% 100% 100%
13 154 65% 63% 100% 100%
14 154 65% 60% 100% 100%
15 154 65% 58% 100% 100%
16 154 65% 55% 100% 100%
17 154 65% 53% 100% 100%
18 154 65% 50% 100% 100%
19 154 65% 53% 100% 100%
20 154 65% 55% 100% 100%
21 154 65% 58% 100% 100%
22 154 65% 60% 100% 100%
23 154 65% 63% 100% 100%
24 154 65% 65% 100% 100%
25 154 65% 68% 100% 100%
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Movement Analysis 

Andy Staudt FIA, FCAS, MAAA 
________________________________________________________________________ 

Abstract.  
Consistent with the requirements of Actuarial Standards of Practice (ASOPs) 36 and 41 (paragraphs 4.5 and 
3.5, respectively), this paper derives simple but mathematically sound formulas for explaining differences in 
estimates of ultimate from one period to the next. Specifically, the change in ultimate is decomposed into 
the movement due to loss experience relative to the movement due to changes in assumptions or methods. 
The approach outlined below is for use in common reserving situations where the Bornhuetter-Ferguson 
(BF) or Chain-Ladder (CL) methods are used, but can also be easily extended in other circumstances.  
 
Keywords.  
Reserving; Communication. 

             

1. INTRODUCTION 

In booking the unpaid claims reserve, good governance as well as Actuarial Standards of Practice 
(ASOPs)1,2 require that the actuary clearly communicates any material differences in the estimate of 
ultimate relative to earlier projections. This is so that management has the necessary tools to assess, 
challenge or validate the actuary’s recommendation and make their own determination as to the final 
carried amount.  

In order to do so effectively, the actuary needs to be transparent as to why the estimate of 
ultimate changed. Did it move as a result of loss experience emerging more or less favorably than 
expected or did it move because of changes in the underlying methods or assumptions? And in the 
case of the latter, what impact did these changes have on the final result and why were these changes 
warranted?   

To address these questions, this paper derives simple but mathematically sound formulas for 
explaining differences in estimates of ultimate loss from one period to the next. Here, the change in 
ultimate is decomposed into the movement due to loss experience relative to the movement due to 
changes in assumptions or methods. While most actuaries will already perform this type of analysis 
in some form (typically via successive substitution of new data and new assumptions into new 
methods), the “movement analysis” outlined below offers a consistent approach for communicating 
as well as quantifying change which will work in many practical situations.  

                                                           
1 Explanation of Material Differences – If a later actuarial communication produced by the same actuary, which opines 
on the same issue, includes materially different results or expresses a different opinion from the former communication, 
then the later communication should make it clear that the earlier results or opinion are no longer valid and explain why 
they have changed. [excerpted from ASOP 41: 3.5] 
2 Changes in Opining Actuary’s Assumptions, Procedures, or Methods – If a change occurs in the opining actuary’s 
assumptions, procedures, or methods from those previously employed in providing an opinion on the entity’s reserves, 
and if the actuary believes that the change is likely to have a material effect on the results of the actuary’s reserve 
analysis, then the actuary should disclose the nature of the change. [excepted from ASOP 36: 4.5] 
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1.1 Outline 
The Executive Summary in Section 2 presents the movement analysis in its complete form with 

all the formulas needed to implement this analysis within a practical setting presented in Table 2.  
Section 3 proceeds to develop these formulas iteratively by isolating and quantifying the impact 

of loss experience as well as certain methodological or assumption changes on estimates of ultimate 
where the Bornhuetter-Ferguson (Section 3.1) or Chain-Ladder (Section 3.2) methods are used. For 
readability, the actual derivations of the key formula are contained within a Technical Appendix to 
this paper. While these sections are not exhaustive as to situations that might arise in practical 
reserving settings, they can easily enough be extended to other circumstances as will be discussed in 
Section 3.3. This section should prove useful for understanding the how and why of this analysis 
intuitively.  

Finally, to illustrate this analysis, an example is included in Section 4. Also provided is a 
workbook which includes the necessary formula to implement this analysis in Excel.  

1.2 Notation 
The following notation is used within this paper:  

• kq  is the percentage of loss developed at time k ; 

• kC  is the actual loss at time k ; 

• u  is the initial expected loss ratio (IELR); 
• P  is the premium; and 
• kU  is the estimate of ultimate loss at time k .  

Using this notation, the Bornhuetter-Ferguson (BF) and Chain-Ladder (CL) estimates of 
ultimate loss at time k  can be written as: 

 

Table 1. BF and CL projections of ultimate loss. 
Method Formulation 

BF method ( )kkk quPCU −+= 1  

CL method 
k

k
k q

CU =  

Further, “hats” are used to indicate updated assumptions. For instance, where kq should be taken to 
be the original assumption of the percentage of loss developed at time k , kq̂ would be the revised 
assumption as to the percentage of loss developed at time k .  
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2. EXECUTIVE SUMMARY 

In Section 3, the movement analysis is derived by iteratively considering each of the following: 
• The movement in ultimate as a result of loss experience emerging differently from 

expectations;  
• The movement in ultimate as a result of premiums emerging differently than originally 

anticipated;  
• The movement in ultimate as a result of changes to key assumptions including (i) 

development patterns and (ii) IELRs; and  
• The movement in ultimate by switching between the CL and BF methods.  

That said, the table below provides the complete set of equations for producing the movement 
analysis. As the exact form depends on what the current and prior methods are, the table is split 
across this dimension with dots “ • ” used to indicate where the result is invariant to the method. 
These equations are also programmed into the attached Excel workbook.  
Table 2. Movement Analysis. 

Movement in ultimate due to:  Method  Formulation ( )kk UU −+1  
 Prior Current  

Loss experience                               







 

BF •   ( ) ( )kkkk qquPCC −−−= ++ 11  

CL •   ( ) ( ) 




×





 −−−=

+
++

1
11

1
k

kk
k

k
kk qqqq

CCC  

 
 
Change in method 








 

BF CL 
 ( )1

1
1 111

+
+

+ −−




 −+ k

k
k quPqC  

CL BF 
 ( ) 





 −−−+

+
++ 111

1
11

k
kk qCquP  

 
Change in premium 



  •  BF 

 
( ) ( )11ˆ

+−−+ kquPP  

Change in development pattern 







 

•  BF 
 ( ) ( )[ ]11 1ˆ1ˆ

++ −−−+ kk qqPu  

•  CL 
 












 −−





 −+

++
+ 111ˆ

1
11

1
kk

k qqC  

Change in IELR 


  •  BF 

 
( ) ( )1ˆ1ˆˆ +−−+ kqPuu  
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3. MOVEMENT ANALYSIS 
3.1 The Bornhuetter-Ferguson (BF) Method 

Consider the situation where the estimate of ultimate is set equal to the BF method. Here, the 
estimate of ultimate can change for any of four reasons:  

• Loss experience that emerges more or less favorably than expected;  
• Premium amounts that are restated;  
• Changes in the development pattern; or 
• Changes in the IELR. 

The following considers each of these in turn. 

3.1.1 Movement in ultimate due to loss experience 

Assuming that no assumptions are updated, the change in ultimate kk UU −+1  can be written as:  
Table 3. Decomposition of movement in ultimate for the BF method. 
Movement in ultimate due to: Formulation ( )kk UU −+1  

Loss experience ( ) ( )kkkk qquPCC −−−= ++ 11  

The above should be recognizable as the actual vs. expected (AvE) statistic when using the BF 
method. kk CC −+1  represents actual emergence and ( )kk ppuP −+1  represents expected emergence. 
Indeed, the change in the BF ultimate without any changes in assumptions reduces to the AvE 
statistic with claims emergence that is more or less favorable than expected flowing entirely through 
to the change in ultimate. 

3.1.2 Movement in ultimate due to change in development pattern 

Suppose as a result of loss experience emerging differently from expectations, the development 
pattern is revised. Using “hats” to indicate updated assumptions, the change in ultimate is written as:  
Table 4. Decomposition of movement in ultimate for the BF method. 
Movement in ultimate due to: Formulation ( )kk UU −+1  

Loss experience  ( ) ( )kkkk qquPCC −−−= ++ 11  

Change in development pattern ( ) ( )[ ]11 1ˆ1 ++ −−−+ kk qquP  

While this derivation is less straightforward than above, observe that the change in ultimate is 
decomposed into the AvE statistic from Table 3 and a remainder. In this instance, the remainder is 
just the difference in the estimated reserve at time 1+k  implied by the current and prior selected 
development patterns, or the movement in ultimate due to the change in pattern.  
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It should be noted that while the subscripts k  and 1+k  might indicate points at which the 
development pattern is selected, this method will work equally well in instances where the selected 
development pattern is interpolated. For example, if loss development factors are selected over 
periods from 3-15 months, 15-27 months and so forth, it is no problem to interpolate the pattern as 
at 6, 9 and 12 months in order to apply the movement analysis to the most recent year over the 
subsequent three quarters.  

3.1.3 Movement in ultimate due to change in IELR 

Going one step further, should an adjustment be made to the IELR as well as the development 
pattern, the change in ultimate is written as: 
Table 5. Decomposition of movement in ultimate for the BF method. 
Movement in ultimate due to: Formulation ( )kk UU −+1  

Loss experience  ( ) ( )kkkk qquPCC −−−= ++ 11  

Change in development pattern ( ) ( )[ ]11 1ˆ1 ++ −−−+ kk qquP  

Change in IELR  ( ) ( )1ˆ1ˆ +−−+ kqPuu  

Again, the change in ultimate can be decomposed into the movement in ultimate due to loss 
experience, the movement in ultimate due to change in development pattern and a remainder. Here, 
the remainder is just the difference in the estimated reserve at time 1+k  implied by change in IELR 
(using the current development pattern), or the movement in ultimate due to the change in IELR.  

As an aside, note that the order in which the development pattern and IELRs are considered 
matters. This is obvious from the above as the change in IELR is based on the current development 
pattern. The above order seems reasonable as it might be practice to select the development pattern 
prior to the IELR; however, it is easy enough to consider these changes in reverse order as: 
Table 6. Decomposition of movement in ultimate for the BF method (alternate formulation). 
Movement in ultimate due to: Formulation ( )kk UU −+1  

Loss experience  ( ) ( )kkkk qquPCC −−−= ++ 11  

Change in IELR ( ) ( )11ˆ +−−+ kqPuu  

Change in development pattern  ( ) ( )[ ]11 1ˆ1ˆ ++ −−−+ kk qqPu  
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3.1.4 Movement in ultimate due to change in premium 

The next natural extension is to consider the impact that changes in premiums will have on the 
estimate of ultimate. Similar to the prior subsection, a decision needs to be made as to the order in 
which to consider changes in premium relative to other changes. Although there is an argument to 
consider it prior to loss experience, the below considers it after making an allowance for deviations 
in loss experience relative to expectation but prior to changes in assumptions. This is so that the 
AvE statistic will tie to any prospective estimates of loss emergence computed at prior periods.  
Table 7. Decomposition of movement in ultimate for the BF method. 
Movement in ultimate due to: Formulation ( )kk UU −+1  

Loss experience  ( ) ( )kkkk qquPCC −−−= ++ 11  

Change in premium ( ) ( )11ˆ
+−−+ kquPP  

Change in development pattern ( ) ( )[ ]11 1ˆ1ˆ
++ −−−+ kk qqPu  

Change in IELR  ( ) ( )1ˆ1ˆˆ +−−+ kqPuu  
 

The above equation provides a near-complete decomposition of the movement in ultimate into 
each of the key drivers of change when using the BF method, with Tables 3-6 only representing 
partial solutions. In the next sections, we extend these formulas to consider situations when using 
the CL method, moving between the CL and BF methods and netting down estimates of gross 
ultimate loss for the impact of reinsurance.  
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3.2 The Chain-Ladder (CL) Method 
The formulas from the prior section can be extended in situations where the CL, rather than BF, 

method is used as follows:  
Table 8. Decomposition of movement in ultimate for the CL method. 
Movement in ultimate due to: Formulation ( )kk UU −+1  

Loss experience  ( ) ( ) 




×





 −−−=

+
++

1
11

1
k

kk
k

k
kk qqqq

CCC  

Change in development pattern 




 −+

+

+

+

+

1

1

1

1
ˆ k

k

k

k
q

C
q

C  

In some regards, while this analysis is simpler as there is only one assumption to consider (the 
development pattern), it is important to note that the AvE statistic is expressed slightly differently 
than in the previous section. In contrast to the BF method, deviations between actual and expected 
loss experience under the CL method do not correspond one-to-one to movements in ultimate; 
rather they are leveraged by the expected percentage developed at the future period. This makes 
sense because CL estimates of future losses depend on historical loss experience, whereas BF 
estimates of future losses are invariant to historical loss experience. The table below outlines these 
differences. 
Table 9. AvE Statistic vs. Movement in Ultimate due to AvE Statistic. 
Method AvE statistic Movement in ultimate due to loss experience 

BF method ( ) ( )kkkk qquPCC −−− ++ 11  ( ) ( )kkkk qquPCC −−− ++ 11  

CL method  ( ) ( )kk
k

k
kk qqq

CCC −−− ++ 11  ( ) ( ) 



×



 −−−

+
++

1
11

1
k

kk
k

k
kk qqqq

CCC  
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3.3 Extensions 
There are a number of extensions to the above analysis, some of which are considered below. 

3.3.1 Movement in ultimate due to change in reinsurance recovery rate 

While the above analysis could equally apply to gross or net projections, a common approach to 
netting down gross projections is to assume a recovery rate on the reserves (i.e., the percentage of 
gross reserves that might be recovered from reinsurers). Using r and r̂  to refer to the current and 
proposed recovery rate with kC  referring to net of reinsurance losses (but P , u  and q  all still gross 
of reinsurance), the movement analysis when using the BF method is as follows:  
Table 10. Decomposition of movement in ultimate for the BF method. 
Movement in ultimate due to: Formulation ( )kk UU −+1  

Loss experience  ( ) ( )( )rqquPCC kkkk −−−−= ++ 111  

Change in premium ( ) ( )( )rquPP k −−−+ + 11ˆ
1  

Change in development pattern ( ) ( )[ ]( )rqqPu kk −−−−+ ++ 11ˆ1ˆ
11  

Change in IELR  ( ) ( )( )rqPuu k −−−+ + 1ˆ1ˆˆ 1  

Change in recovery rate  ( ) ( ) ( )[ ]rrqPu k −−−−+ + 1ˆ1ˆ1ˆˆ 1  

Note that the first four formulas in the above are very similar to those shown in Table 7, but 
multiplied by r−1  and with gross losses replaced by net losses. The movement in ultimate due to 
change in recovery rate is then just the gross reserve multiplied by the change in recovery rate.  

3.3.2 Movement in ultimate due to change in method 

Consider the situation of switching between the BF and CL methods, perhaps because losses are 
believed to be sufficiently developed so that historical loss experience, rather than initial 
expectations, is more predictive of future emergence. Again, the question of in which order to 
consider these changes arises. In this situation, as different projection methods utilize different sets 
of data and assumptions, it makes sense to consider the change in method after any changes due to 
loss experience, but before changes in premium or assumptions. And when switching from the BF 
to CL method, this seems logical as the CL method uses neither premiums nor IELRs and thus 
these items are irrelevant to the change in ultimate.  

With that in mind, the change in ultimate is decomposed as: 
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 Table 11. Decomposition of movement in ultimate including change in method (BF to CL). 
Movement in ultimate due to: Formulation ( )kk UU −+1  

Loss experience  ( ) ( )kkkk qquPCC −−−= ++ 11  

Change in method ( )1
1

1 111
+

+
+ −−





 −+ k

k
k quPqC  

Change in development pattern 










 −−





 −+

++
+ 111ˆ

1
11

1
kk

k qqC  

If moving from the CL to BF method, the movement in ultimate due to loss experience in the 
above would be set equal to the leveraged AvE statistic described in the previous section, the order 
of terms in the “change in method” would be reversed and the movement in ultimate due to change 
in premium, development pattern or IELR would all revert to those shown in Table 7. This is 
shown below:  
Table 12. Decomposition of movement in ultimate including change in method (CL to BF). 
Movement in ultimate due to: Formulation ( )kk UU −+1  

Loss experience  ( ) ( ) 




×





 −−−=

+
++

1
11

1
k

kk
k

k
kk qqqq

CCC  

Change in method ( ) 




 −−−+

+
++ 111

1
11

k
kk qCquP  

Change in premium ( ) ( )11ˆ
+−−+ kquPP  

Change in development pattern ( ) ( )[ ]11 1ˆ1ˆ
++ −−−+ kk qqPu  

Change in IELR  ( ) ( )1ˆ1ˆˆ +−−+ kqPuu  

Tables 11 and 12 above provide complete decompositions of the movement in ultimate into each 
of the key drivers of change. Note that these tables are combined into a complete analysis as 
presented in the Executive Summary. 

3.3.3 Other 

There are a number of other common scenarios for which the above can easily be extended 
including changes in data (i.e., relying on paid vs. incurred data), adjustments to the data, changes in 
currency, weighting between projection methods and so forth. That said, in practice the results 
might never be this clean. There could be other adjustments or idiosyncrasies involved (i.e., actuarial 
judgment) in the selection of ultimate loss that do not easily fall into one or another bucket and thus 
would be captured in a remaining catch-all residual which should ideally be minimal and explainable. 
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4. PRACTICAL EXAMPLE 

To illustrate the application of this analysis, consider the following example. Tables A and B 
show exhibits illustrating the projection of ultimate loss at two subsequent year-ends. Here, Items 
(2), (3) and (5) are assumptions with Items (1) and (4) assumed to come from the data. The estimate 
of ultimate is then computed as (4) / (3) for the CL method or (4) + (1) x (2) x [1 – (3)] for the BF 
method. The ultimate loss ratio (ULR) is also shown.  
Table A. Estimate of ultimate as at 31 December 2014. 

     Selected 
Year Premium IELR Pattern Loss Method Ultimate ULR 

 (1) (2) (3) (4) (5) (6) (7) 
2011   100%     
2012 10,000 65% 95% 5,916 CL 6,227 62% 
2013 10,000 65% 85% 5,108 BF 6,083 61% 
2014 10,000 65% 35% 3,337 BF 7,562 76% 
Total 30,000     19,872 66% 

 
Table B. Estimate of ultimate as at 31 December 2015. 

     Selected 
Year Premium IELR Pattern Loss Method Ultimate ULR 

 (1) (2) (3) (4) (5) (6) (7) 
2012 10,000 60% 99% 6,098 CL 6,160 62% 
2013 10,000 65% 98% 6,321 CL 6,450 65% 
2014 9,000 70% 80% 4,961 BF 6,221 69% 
Total 29,000     18,831 65% 

Table C then computes the movement analysis by applying the relevant formulas from Table 2. 
For example, the movement in ultimate due to loss experience for 2014 is solved as: 

( ) ( )
( ) ( )

626,1
%35%85000,10%65337,3961,4

11

−=
−××−−=

−−−= ++ kkkk qquPCC
 

 

While the remaining implementation can be found in the attached Excel workbook, note that there 
is no residual as the analysis described above fully decomposes the change in ultimate into each of 
the key drivers.   
Table C. Movement Analysis. 

 Change in Ultimate  Movement in ultimate due to change in: 
Year Prior Current Change  Experience Method Premium Pattern IELR Residual 
2012 6,227 6,160 (68)  (129) 0 0 62 0 0 
2013 6,083 6,450 367  563 8 0 (204) 0 0 
2014 7,562 6,221 (1,341)  (1,626) 0 (98) 293 90 0 
Total 19,872 18,831 (1,042)  (1,192) 8 (98) 150 90 0 
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5. CONCLUSION 

As actuaries become increasingly influential, there is an additional responsibility to move from 
opaqueness to transparency. By clearly communicating and quantifying the impacts of certain 
decisions, we can ensure that management has the appropriate information to assess, challenge or 
validate our recommendations and make their own determination as to the final carried amount. 

The above presented several simple formulas for doing this on a deterministic and retrospective 
basis in a number of situations that commonly arise in actuarial practice.  

That said, there are two useful and practical extensions of the above that are worth highlighting. 
The first involves moving toward reserve reports that not only isolate the key drivers of change 
between prior estimates, but also provide prospective estimates as to how losses are expected to 
emerge in future periods. This should enhance management information as emergence can then be 
monitored on a regular basis (rather than waiting until the next formal reserve review) and deviations 
from expectations can be flagged and explored in more detail. In regard to the latter, the other useful 
extension is to report not just expected emergence, but also to provide a range around that 
expectation so a determination can be made as to whether or not divergences from expectations are 
statistically significant.  

As an example, consider the below figure which illustrates what this analysis might look like. The 
black line is the expected loss in the next period with the bars indicating the percentile distribution.  

 

In this instance, emergence of 79 might be acceptable as it falls within the 75th percentile, but 
emergence around 125 might not be acceptable as it falls above the 90th percentile. In the former 
instance, the actuary might leave the key assumptions unchanged, but in the latter instance the 
actuary may wish to modify one or more assumptions as the deviation in claims experience relative 
to expectation appears to be statistically significant. This is more or less akin to hypothesis testing.   

This should be especially doable in Europe as the formal implementation of Solvency II draws 
near where insurance risk is measured on a one-year basis and thus emergence profiles of loss as well 
as the distribution around those estimates should be readily available.  

0 20 40 60 80 100 120 140 160

40-60%            60-75%                        75-90%                                90-95%

Expectation

Acceptable                                 Not Acceptable
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A. TECHNICAL APPENDIX 

The following derives some of the key formulas expressed in this paper with the remainder fairly 
straightforward but tedious to derive and thus omitted here for presentation purposes. 

Table (3): ( )[ ] ( )[ ]kkkkkk quPCquPCUU −+−−+=− +++ 11 111  
 

( )[ ] ( )[ ]

( ) ( )kkkk

kkkk

kkkk

qquPCC
uPquPCuPquPC

quPCquPC

−−−=
+−−−+=

−+−−+=

++

++

++

11

11

11 11
 

 
 

Table (4): ( )[ ] ( )[ ]kkkkkk quPCquPCUU −+−−+=− +++ 1ˆ1 111  
 

( )[ ] ( )[ ]

( ) [ ]
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( ) ( )[ ] ( ) ( )[ ]1111

1111
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ˆ
ˆ

1ˆ1

++++

++++

++++

++

++

−−−+−−−=
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kkkk
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qquPqquPCC
uPquPquPqquPCC

uPquPCquPuPC
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Table (5): ( )[ ] ( )[ ]kkkkkk quPCqPuCUU −+−−+=− +++ 1ˆ1ˆ 111  
 

( )[ ] ( )[ ]
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Table (6): ( )[ ] ( )[ ]kkkkkk quPCqPuCUU −+−−+=− +++ 1ˆ1ˆ 111  (alternative formulation of Table 5) 
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Table (7): ( )[ ] ( )[ ]kkkkkk quPCqPuCUU −+−−+=− +++ 1ˆ1ˆˆ 111  
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Abstract 
Under European and Swiss solvency directives, general insurance companies have to calculate a market value 
margin (aka risk margin or MVM) for the prediction uncertainty of reserves over each accounting year and until 
the end of the runoff. The prediction uncertainty is generally split into a process error and an estimation error. In 
the distribution-free chain ladder framework, [10] derived analytical formulas for the prediction uncertainty over 
accounting years and showed that they add up to the total runoff uncertainty as given by the Mack error. We 
suggest a way to modify their methodology in order to account for calendar year uncertainties like a legal reform. 
Further, we derive the minimum and the maximum market value margin that can result with our modification, 
which is useful to quantify model uncertainty. Besides, we highlight the simplifications and omissions of the 
presented ways to infer the MVM. Finally, we discuss aggregating different lines of business. The presented 
formulas can be calculated in a spreadsheet. 
 
Keywords. market value margin, distribution-free chain ladder model, reserving risk, calendar year effects, SST, 
Solvency II 

             

1. INTRODUCTION 

In Europe and Switzerland, insurance companies are regulated by the Solvency II directive 

(scheduled to be in full effect on 1 January 2016) and the Swiss Solvency Test (SST, in use since 

2006). A comparison of Solvency II with the SST can be found in [4]. These two regulatory 

frameworks ask insurance companies to back their liabilities based on a one-year distribution of 

assets and liabilities. In addition, companies have to calculate the market consistent value of 

technical provisions which is defined as best estimate reserves (defined as the expected present value 

of future cash flows) plus the market value margin (MVM). 

The MVM (aka risk margin) of the general insurance runoff (also called the reserve risk) is the 

focus of this paper. In this context, the MVM is a margin for the prediction uncertainty of the 

ultimate claim liabilities. Predictions are usually updated annually when new information is 

incorporated. These updates have an effect on the result of the insurance company and therefore 

need to be taken account of in solvency considerations. The prediction uncertainty is generally split 

into a process error and an estimation error. The process error represents random variations not 

explained by the model of the reserving actuary. The estimation error represents updates in the 

estimates of the model‟s parameters. In [3] and [5] the MVM is defined as the cost of the present 

value of future solvency capital requirements which will have to be put up during the runoff of the 
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portfolio of assets and liabilities for the in-force book of business one year in the future. 

A mathematically consistent calculation of the MVM is a complicated task which usually requires 

the application of numerical methods. Analytical approximations have been proposed, many of 

which rely on Bayesian statistics. [11] and [15], for example, describe how to infer the MVM within a 

Bayesian log-normal model. [13] derived, within a Gamma-Gamma Bayes chain ladder model, three 

approximations for the MVM whereof two can be computed analytically. The one-year view in the 

context of a Bayes chain ladder model was discussed by [1]. 

Bayesian models have the advantage that they include, in a natural way, the estimation error (also 

referred to as parameter uncertainty). Further, they can be similar to a classical chain ladder in the 

sense that the expected ultimate claim is given by a product formula involving factors and the latest 

cumulative payment (or incurred liability). However, Bayesian methods require selecting and 

calibrating prior distributions and justification of these selections is sometimes difficult. This might 

be a reason why the distribution-free chain ladder model, discussed in [6], still is one of the most 

popular reserving methods. Based on the distribution-free chain ladder model, [10] and [12] 

independently derived formulas which can be used to calculate the MVM. These formulas generalize 

the one-year solvency view presented in [9].  

We take the methodology of [10] as a starting point and discuss a modification in order to 

account for calendar year effects like a legal reform or inflation. We propose a straight forward 

correction for the process error. Regarding the estimation error, the reserving actuary might have an 

idea when relevant information about parameters will become available (maybe the timing of the 

legal reform is known) and therefore can judge in which years the estimation error will be high. We 

show how to incorporate this judgment. Further, we provide a result useful to quantify the error of 

the actuary‟s judgment, that is to say we derive the minimum and maximum MVM which can 

possibly result based on different considerations of the estimation error. Finally, we discuss 

aggregating different lines of business.  

The remainder of the paper is organized as follows. Section 2 reviews the classical chain ladder 

assumption, introduces the MVM and contains a literature review. Section 3 discusses our approach 

to accounting year effects, derives the minimum and maximum MVM and provides a numerical 

example. Section 4 treats the issue of aggregating different lines of business. Section 5 concludes. 
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2. BACKGROUND AND METHODS 

2.1 Definitions and Assumptions 

This section introduces the notation, revises the classical chain ladder (CL), aka distribution-free 

chain ladder model, and introduces our assumptions.  

We write Ci,j for the cumulative payments (or incurred liabilities) for accident years   *     + 

and development years   *     + and suppose that there is a J ≤ I such that Ci,J=Ci,J+1=…=Ci,I 

for all i. If we refer to triangle we mean the following set  

   *                        + 

ordered as in Table 1 of Section 3.1. We denote the accounting years by   *     + meaning that 

I refers to today and I+k to the year k years in the future. We use „accounting year‟ and „calendar 

year‟ as synonyms. We define 

     {                          }  

We assume stochastic independence between cumulative claims Ci,j of different accident years i 

and that there exist constants fj>0 and σj>0 and random variables εi,j such that 

                   √            
(2.1) 

where εi,j are conditionally, given S0 = {Ci,0 : 0≤i≤I}, independent with expectation E[εi,j|S0]=0, 

E[εi,j
2|S0]=1 and distribution guaranteeing Ci,j>0 with probability one. These assumptions imply the 

assumptions of the distribution-free chain ladder model, see e.g. [16]. 

We write  ̂ 
    and  ̂ 

    for the estimators of fj and σj given all information up to accounting year 

I+k and define, for k≤ j+1, 

 ̂ 
    

∑       
       
   

∑     
       
   

 
(2.2) 

and  ̂ 
     ̂ 

     
 for k>j+1 (since we focus on the runoff of past accident years only, the 

estimators remain unchanged for k>j+1). We observe that for k=0 the classical chain ladder factors 

are obtained. We obtain the  ̂ 
   s as suggested in [6]. The estimated chain ladder ultimate claim is 

 ̂   
        ∏  ̂ 

 

 

     

 

(2.3) 

 

and we abbreviate 
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   ∑    

 

   

      ̂ 
  ∑ ̂   

  

 

   

 

 

If Ci,j are cumulative payments then the liabilities estimated today to remain outstanding in 

accounting year I+k are, for k=0,…,J-1, 

 ̂ 
  ∑ ( ̂   

   ̂       
 )

 

         

  ̂ 
  ∑ ̂     (       )

 

 

   

  
(2.4) 

Accordingly,  ̂ 
  are the chain ladder reserves estimated in the current accounting year (which equals 

accident year I). 

Finally, the claims development result (CDR) of accident year i in accounting year    *     + 

is  

          [    |    ]   ,           -  (2.5) 

with the sigma-algebras defined before. We have CDRi,k+1=0 for i≤ I+k-J. We write  

     ∑        

 

       

 

(2.6) 

The claims development result reflects how the valuation of the ultimate claim changes over a one 

year period. These changes are due to prediction updates as new information is incorporated. The 

prediction uncertainty is caused by two risk factors: 

1. εi,j in (2.1), referred to as the process error 

2. updates of the chain ladder factors   ̂ 
    in (2.2), referred to as the estimation error. 

The MVM is the cost of the present value of future capital required to back adverse movements 

of the CDR caused by these two risk factors - we introduce its formal definition in the next chapter. 

2.1.1 A Remark About Implicit Assumptions 

We highlight that the CDR as defined in (2.5) does not consider discounting of liabilities. In the 

standard models of Solvency II and the SST adverse changes in discount factors (adverse meaning 

that they lead to higher best estimate reserves) are captured by the market risk (which is not the 

topic of this paper) and, in our understanding, they should also be taken into account in the MVM. 

Ignoring discounting further implies that the timing of the claims payments has no influence on the 

best estimate of discounted ultimate liability. However, the CDR as defined above is analogous to 

how it is defined in existing literature. Indeed, all papers we cite abstract from discounting. We leave 
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it to future research to introduce the missing risk factors like stochastic discount factors, uncertainty 

in claim payments and potential mismatches in asset-liability cash-flows. 

2.2 The MVM of the Runoff 

We next introduce the MVM formally. For this purpose, we first define the following quantities: 

Definition 1 

 deterministic (FI-measurable) discount factors DI,k, k=0,…,J giving the value, in 

accounting year I, of a unit of money received in year I+k 

 a risk measure  () which quantifies the amount of capital needed to back adverse 

movements in the CDR (2.5) 

 the cost c of capital (6% in Solvency II and the SST)  

Assuming, as do [10], that we do not need to put up capital for adverse movements in the MVM 

itself, the MVM in accounting year I is 

      ∑      (    ) 
 
    (2.7) 

We repeat our remark in Section 2.1.1 namely that the MVM as just defined is based on 

variations of the nominal best estimate ultimate liability and therefore neither fluctuations in 

future discount rates nor the timing of the claims payments play a role. The MVM can be 

thought of as the present value of dividends required to compensate an investor for providing 

the risk capital to back the runoff risk. 

 

If we knew the true chain ladder factors fj then the estimation error would be zero. In this case 

we would only have to take care of the process error and we could easily calculate a variance (or 

standard deviation) risk measure for (2.7). We would obtain, for 1≤k≤J, 

   (       )  ∑    (         )  

 

       

∑ ( ,       -)
 
        
         

 ⁄

 ,             -

 

       

 

which can be estimated by 

   ̂(       )  ∑ ( ̂   
 )

 ( ̂       
 ) ( ̂       

 )
 

⁄

 ̂         
 

 

 

       

 

(2.8) 

  

For k=1 this corresponds to the estimator of the process error in [8] and [9]. Taking the sum 

over all k gives the process variance of the total runoff which is one term of the Mack error (the 
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other being the estimation error of the total runoff). Note that it would not matter if instead of 

Var(CDRk|FI) we used E[Var(CDRk|FI+k-1)| FI]  for the risk measure, as we show in the next 

lemma. 

Lemma 1. Suppose the true chain ladder factors are known. The classical CL assumptions imply  

   (       )   ,   (           )   -          

Proof. By independence of the accident years it is sufficient to prove the equality for CDRi,k. The 

total variance formula gives us 

   (      |  )   [   (      |      )   ]     ( [             ]   ) 

   [   (      |      )   ] 

where the second equality follows because definition (2.5) implies  

 [             ]           

Q.E.D. 

Unfortunately, the true chain ladder factors are unknown and the estimation error needs to be 

taken into account. We next review how this has been done in existing literature. 

2.3 A Brief Literature Review 

Instead of the notation of the original papers we use the notation introduced earlier, in particular 

c and  DI,k as given in Definition 1. Indeed, the discount factors DI,k are omitted in the cited literature 

and we introduced them to be consistent with (2.7) which defines the MVM as the present value of 

future dividends.  

As an example of a paper using Bayesian methods (which allows a natural treatment of the 

estimation error) and since it introduces notation, we cite [13]. They employed the standard 

deviation as a risk measure and discussed the following three ways to estimate the MVM. 

A. Regulatory Solvency Proxy 

     ∑    
 ̂ 
 

 ̂ 
 
        (       )

 

   

 

where  ̂ 
  are the reserves (estimated to remain in accounting year k) as obtained with the 

Bayesian methodology of [13],     is a loading and the CDR1 is as defined in (2.6). 

B. Split of Total Uncertainty Approach 
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     ∑            (       )

 

   

  

The name comes from the property that the total uncertainty about the ultimate Ci,J can be split into 

single one-year uncertainties for different accounting years as follows 

   (    )  ∑    (         )

       

   

  

C. Expected Stand Alone Measure 

     ∑        ,     (           )   -

 

   

  

[13] derived analytic formulas for A and B and relied on simulations to solve C. They discussed a 

fourth approach to calculate the MVM for which instead of  (    ) they considered  (     

           ) with MVMk being the MVM calculated in accounting year I+k. This means 

that a markup for the MVM is included. While this approach is certainly more realistic - dividends 

can be thought of as a liability too - the computation becomes complicated and they had to rely on 

simulations. Fortunately, a numerical example in their paper supports B to be a good approximation 

for their fourth approach. As a side note, we remark that Lemma 1 and Jensen‟s inequality imply 

that for the distribution-free chain ladder model with known parameters approach B would yield a 

larger MVM than approach C. 

[10] derived the prediction uncertainties for the CDR in the distribution-free chain ladder model. 

They computed the mean square errors of prediction (MSEP) for the CDRs as defined by 

               ( )   ,(      )
    -         

with CDRk as in (2.6), and derived an estimator for the expected value at time I of the MSEP. They 

then defined the MVM for a variance risk measure given by 

     ∑        [               ( )   ]

 

   

 

 

(2.9) 

and the MVM for a standard deviation motivated risk measure given by  

 

     ∑       √ [               ( )   ]

 

   

 

(2. 
10) 
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where     is a loading. This is a generalization of [9] who suggested to use            ( ) for a 

one-year view of solvency considerations. [10] further showed that 

           ( ̂   
 )  ∑    [                 ( )   ]

     

   

 

(2. 
11) 

 

with   ̂   
  defined in (2.3). The left-hand side is the Mack error as introduced in [6]. Hence, the total 

runoff uncertainty as given by the Mack error splits across accounting years and so their approach is 

similar to B of [13] stated earlier. Both, the Mack error and   ,               ( )   - can be written as a 

sum of two terms corresponding to the process error variance and the estimation error. Not 

surprisingly, the process variance in  ,               ( )   - equals (2.8). 

3. CONSIDERING ACCOUNTING YEAR UNCERTAINTIES 

The distribution-free chain ladder is probably the most popular reserving method. There is 

therefore a good chance that the formulas of [10] for the MVM will become popular, too. Moreover, 

these formulas can be computed in a spreadsheet, simulations are not required, and they are even 

implemented in a new package for the statistical software R, see [2]. There are however situations 

where a modified approach to the MVM is preferable. Suppose, for example, that we are at the dawn 

of a legal reform which will affect the chain ladder factors.  Regarding the process error, a method to 

filter out accounting year effects (as, for example, described in [14] or chapter 3 of [7]) could be 

employed and accordingly modified development factors f j and σjs (potentially depending on 

accident years) could be used in (2.8). A correction of this kind would not be enough for the 

estimation error for the following reason. For any accident year i, the squared estimation error 

associated with accounting year k is proportional to 

 

∑         
   
   

 

 (see (1.4) in [10]) which means that claims of all prior accident years reduce the estimation error. We 

doubt whether this is meaningful when dealing with legal reforms or other uncertain accounting year 

effects. The following algorithm provides an alternative way. 

Algorithm.  

1. Compute an error for the entire runoff given current information FI and taking into 

account the legal reform (a possible solution could involve simulations assuming 

appropriate distributions on the parameter space). We denote the resulting quantity by 
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    ̃∑        
 
       

( ∑  ̂   
 

 

       

)  

2. Compute the total squared estimation error (SEE) according to the difference 

        ̃∑        
 
       

( ∑  ̂   
 

 

       

)  ∑   ̂(       )

 

   

 

using (2.8) for the process error with the mentioned modification for accounting year 
effects. 

3. Split the total estimation error across accounting years according to 

                 (3.1) 

with weights      and ∑   
 
      calibrated in a way to reflect the timing of the 

legal reform (actuarial judgment may be required). 

4. Approximate future „accounting year‟ prediction uncertainties by 

 [               ( )   ]       
̃          ̂(       )        

Use these quantities in (2.9). This is the end of the algorithm. 

We remark the following. 

a) The total uncertainty still splits over accounting years, i.e. 

    ̃        ̃      ̃∑        
 
       

( ∑  ̂   
 

 

       

) 

b) If Ci,j are cumulative payments then 

   
( ̂   

 ) 

∑ ( ̂ 
 )    

   

 
(3.2) 

with   ̂ 
   as defined in (2.4), yields a regulatory solvency proxy similar to how it is defined 

in approach A of [13] (see our literature review). In this case, all coefficients of variation 

given by √     ̂   
 ⁄  are equal. 

c) Instead of doing step 3, the estimation error could be calculated directly for each 

accounting year. However, this might require nested simulations which we expect to be 

computationally more involved than calculating the error for the entire runoff as 

suggested in step 1. 

There is no reason why the regulatory solvency proxy should describe the estimation uncertainty 
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due to reforms. Indeed, suitable weights   might be hard to find and even though the total 

estimation error is unaffected by these weights, the MVM generally depends on them. The next 

proposition highlights this dependency for risk measures as defined in (2.9) and (2.10). 

Proposition 1. Define  

      ∑      (    ̃(  ))

 

   

   *   + 

with 

    ̃(  )        ̂(       )    ( )        ( )   √  

for positive numbers   , a loading     and c and DI,k as given in Definition 1 and 

   ̂(       ) describes the process error given in (2.8) with the mentioned modification for 

accounting year effects. 

The solution to the maximization problem 

   
            

      (3.3) 

     with   being the set of positive numbers    satisfying ∑       
 
    is as follows. 

 Let m=1. Then         where    is the index of the largest DI,k (or one of the largest 

if there is more than one maximum DI,k), and      for all other   solves (3.3).  

 Let m=2. Define, for   *     +, 

  
  

    
 

∑     
  

   

(    ∑   ̂(    |  )

 

   

)     ̂(       )  

If   
    for all   *     + then these   

 s solve (3.3). If    with   
    then  

  
  

    
 

∑     
 

   

(    ∑   ̂(       ) 

   

)     ̂(       )        

and   
    if    , where   is the set of all indices   for which   

   , solves (3.3). 

The solution to the minimization problem 

   
            

      (3.4) 

     with   as in (3.3), is as follows. 

 Let m=1. Then        , where    is the index of the smallest DI,k and      for all 

other   solves (3.4).  
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 Let m=2. Define    to be the index of the smallest 

    

√   ̂(       )
 

Then         and      for all other   solves (3.4). 

Proof. The proof for m=1 is obvious. Consider m=2. Ignoring the positivity constraints 

     , the Lagrangian of the maximization problem is 

   ∑    

 

   

√      ̂(       )   (    ∑  

 

   

) 

Thanks to a negative definite Hessian, the first order conditions, given by 

    

 √      (       )̂
       *     +     ∑  

 

   

  

are sufficient for a maximum and therefore the    s solve (3.3) if they are all positive. If  

this is not the case, the Kuhn-Tucker conditions provide the maximum. The solution to  

(3.4) is obvious. 

Q.E.D. 

 

We think that the previous proposition is useful, be it for reporting purposes if the regulator asks 

about the impact of the selected weights in (3.1) or be it for budget-planning to have an idea how 

much resources should be spent on calculating the MVM. That is to say the actuary can provide to 

the company management a range within which the MVM obtained with a more accurate method 

will fall. The next corollary readily follows from the proposition. 

Corollary 1. Consider the maximization problem (3.3) for the standard deviation risk  

measure (meaning m=2). If all discount factors DI,k are equal to 1 then the resulting  

prediction uncertainties of calendar years with a positive estimation error (where   
   )  

are identical and smaller than the prediction uncertainty of any other calendar year. 

 

We next provide a numerical example before we proceed with the final topic about aggregation. 

3.1 Numerical Example 

We borrow an example from [10] and compare their prediction uncertainties to what we obtain 

based on our Proposition 1 abstracting from discounting, that is to say DI,k=1 for all accounting 
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years k. Our intention is to highlight the impact on the MVM of different weights selected in (3.1) 

and used to split the estimation error across the runoff. We therefore use (2.8) without any 

modification for accounting year effects which means that the process errors are identical across the 

different prediction uncertainties. 

Table 1 contains the data, the estimated chain ladder factors and the sigmas obtained with the 

estimator in [6].  
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Table 2 presents the following quantities: the estimated prediction uncertainties 

√ [               ( )|  ] calculated with the formulas in [10] (column 2), the approximate prediction 

uncertainties √     ̃  obtained with the solvency proxy (3.2) (column 3), √     ̃  resulting from 

solving the optimization problems (3.3) and (3.4) using the standard deviation i.e. m=2 (columns 4 

and 5) -  given that all discount factors are identical the optimization problems would not have 

unique solutions for the variance risk measure - and the rooted process error variance (2.8) (column 

6); in “Total” we find the rooted sums of all squared elements in the respective columns - by 

construction it is identical for columns 1 to 4 and corresponds to the Mack error of the entire 

runoff, for column 6 it corresponds to the rooted process error variance of the entire runoff. The 

squared estimation error of the total runoff is given by (3233.7)2-(2454.7)2=(2105.0)2 and it is this 

quantity that we split across accounting years according to (3.1) in order to obtain the values in 

columns 2 to 4. We observe that the prediction uncertainties obtained with [10] are not very 

different from our solvency proxy. Further, we see that the prediction uncertainties in column 

“Maximum” are identical for accounting years k≥6 and equal to the process error √   ̂(       ) 

for k<6 which is consistent with Corollary 1. Finally, column “Minimum” shows that the minimum 

MVM (for m=2) is obtained if the entire estimation error is attributed to k=1 leaving only the 

process error for the remaining ks. 

In order to quantify the MVM for each approach in Table 2 we assume a cost of capital of c=6% 

and a loading of     (this calibration corresponds to [13]), that is to say we have 
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      ∑ √    ̃ 

 

   

 

The results are in Table 3 where “MVM” shows the monetary values and “Rel. to min.” the 

values relative to the “Minimum.” 

Hence, the error due to wrong weights cannot be larger than 47% of the smallest MVM possible. 

4. AGGREGATING LINES OF BUSINESS 

Before concluding we discuss aggregation. Suppose that we would like to use correlations to 

aggregate lines of business in order to obtain the MVM on a company level. Regarding dependencies 

between lines of business, we need to answer the following questions 

 What are the correlations between the process errors? 

 What are the correlations between the estimation errors? 

 What are the correlations between the estimated claims development results (CDR)? 

 What are the correlations between the ultimate liabilities? 

These questions cannot be answered independently. For example, if we define correlations for 

the yearly process errors and for the estimation errors, then the correlations between the CDRs and 

the correlations between the ultimate liabilities are determined. And it is not difficult to show that 

the correlations between the ultimate liabilities will be smaller, in absolute value, than the 

correlations between the CDRs. Or if we define the correlations between the ultimate liabilities, then 

this will likely imply time-varying correlations for the CDRs. We therefore suggest to reflect well 

before deciding on a dependency structure and be clear when documenting about it - which can only 

help in order to fulfill regulatory reporting requirements.  

As a side note, we remark that if two individual triangles satisfy the classical chain ladder 

assumptions then an aggregated triangle obtained by adding up the individual triangles will, in 

general, no longer satisfy the classical chain ladder assumptions. 
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5. CONCLUSIONS 

We discussed the market value margin (MVM) for a general insurance runoff based on the 

distribution-free chain ladder model and suggested an easy way to modify the approach of [10] in 

order to take accounting year effects into consideration. Further, we showed that different splits of 

the estimation error over the runoff lead to different MVMs even if the estimation error of the total 

runoff is unchanged. We derived the splits which minimize and maximize the MVM which could be 

useful to quantify model uncertainty. Finally, we argued that one has to be careful when estimating 

an aggregated MVM for two lines of business because the correlations between quantities like the 

process errors, the estimation errors, the claims development results and the ultimate liabilities 

depend on each other.  

We believe that our results are helpful in daily actuarial practice. We leave it to future research to 

shed light on how the MVM is affected by risk factors like stochastic discount rates and other 

factors which we mentioned but omitted in our analysis. 
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Complex Random Variables 

Leigh J. Halliwell, FCAS, MAAA 
______________________________________________________________________________ 

Abstract: Rarely have casualty actuaries needed, much less wanted, to work with complex numbers.  One readily 
could wisecrack about imaginary dollars and creative accounting.  However, complex numbers are well 
established in mathematics; they even provided the impetus for abstract algebra.  Moreover, they are essential in 
several scientific fields, most notably in electromagnetism and quantum mechanics, the two fields to which most 
of the sparse material about complex random variables is tied.  This paper will introduce complex random 
variables to an actuarial audience, arguing that complex random variables will eventually prove useful in the field 
of actuarial science.  First, it will describe the two ways in which statistical work with complex numbers differs 
from that with real numbers, viz., in transjugation versus transposition and in rank versus dimension.  Next, it 
will introduce the mean and the variance of the complex random vector, and derive the distribution function of 
the standard complex normal random vector.  Then it will derive the general distribution of the complex normal 
multivariate and discuss the behavior and moments of complex lognormal variables, a limiting case of which is 
the unit-circle random variable ΘieW =  for real Θ uniformly distributed.  Finally, it will suggest several 
foreseeable actuarial applications of the preceding theory, especially its application to linear statistical modeling.  
Though the paper will be algebraically intense, it will require little knowledge of complex-function theory.  But 
some of that theory, viz., Cauchy’s theorem and analytic continuation, will arise in an appendix on the complex 
moment generating function of a normal random multivariate. 
 
Keywords: Complex numbers, matrices, and random vectors; augmented variance; lognormal and unit-circle 
distributions; determinism; Cauchy-Riemann; analytic continuation 

______________________________________________________________________________ 

1. INTRODUCTION 

Even though their education has touched on algebra and calculus with complex numbers, most 

casualty actuaries would be hard-pressed to cite an actuarial use for numbers of the form iyx + .  

Their use in the discrete Fourier transformation (Klugman [1998], §4.7.1) is notable; however, many 

would view this as a trick or convenience, rather than as indicating any further usefulness.  In this 

paper we will develop a probability theory for complex random variables and vectors, arguing that 

such a theory will eventually find actuarial uses.  The development, lengthy and sometimes arduous, 

will take the following steps.  Sections 2-4 will base complex matrices in certain real-valued matrices 

called “double-real.”  This serves the aim of our presentation, namely, to analogize from real-valued 

random variables and vectors to complex ones.  Transposition and dimension in the real-valued 
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realm become transjugation and rank in the complex.  These differences figure into the standard 

quadratic form of Section 5, where also the distribution of the standard complex normal random 

vector is derived.  Section 6 will elaborate on the variance of a complex random vector, as well as 

introduce “augmented variance,” i.e., the variance of dyad whose second part is the complex 

conjugate of the first.  Section 7 derives of the formula for the distribution of the general complex 

normal multivariate.  Of special interest to many casualty actuaries should be the treatment of the 

complex lognormal random vector in Section 8, an intuition into whose behavior Section 9 provides 

on a univariate or scalar level.  Even further simplification in the next two sections leads to the unit-

circle random variable, which is the only random variable with widespread deterministic effects.  In 

Section 12 we adapt the linear statistical model to complex multivariates.  Finally, Section 13 lists 

foreseeable applications of complex random variables.  However, we believe their greatest benefit 

resides not in their concrete applications, but rather in their fostering abstractions of thought and 

imagination.  Three appendices delve into mathematical issues too complicated for the body of 

paper.  Those who work on an advanced level with lognormal random variables should read 

Appendix A (“Real-Valued Lognormal Random Vectors”), regardless of their interest in complex 

random variables.    

2. INVERTING COMPLEX MATRICES 

Let m×n complex matrix Z be composed of real and imaginary parts X and Y, i.e., YXZ i+= .  Of 

course, X and Y also must be m×n.  Since only square matrices have inverses, our purpose here 

requires that nm = .  Complex matrix BAW i+=  is an inverse of Z if and only if nIWZZW == , 

where In is the n×n identity matrix.  Because such an inverse must be unique, we may say that 

WZ 1 =− .  Under what conditions does W exist? 
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First, define the conjugate of Z as YXZ i−= .  Since the conjugate of a product equals the product 

of the conjugates,1 if Z is non-singular, then nn IIZZZZ 11 === −− .  Similarly, nIZZ 1 =− .  

Therefore, Z  too is non-singular, and 1-1
ZZ =

−
.  Moreover, if Z is non-singular, so too are Zni  

and Zni .  Therefore, the invertibility of YX i+ , XY i+− , YX i−− , XY i− ,  YX i− , XY i+ , 

YX i+− , and XY i−−  is true for all eight or true for none.  Invertibility is no respecter of the real 

and imaginary parts. 

 

Now if the inverse of Z is BAW i+= , then ( )( ) ( )( )YXBABAYXI iiiin ++=++= .  

Expanding the first equality, we have: 

( )( )

( ) ( )XBYAYBXA
YBXBYAXA

YBXBYAXA

BAYXI
2

++−=
−++=
+++=

++=

i
ii

iii
iin

 

Therefore, nIZW =  if and only if nIYBXA =−  and nn0XBYA ×=+ .  We may combine the last 

two equations into the partitioned-matrix form: 









=















 −
0
I

B
A

XY
YX n  

Since 0XBYA =+  if and only if 0XBYA =−− , another form just as valid is: 









=







−







 −

nI
0

A
B

XY
YX

 

We may combine these two forms into the balanced form: 

n
n

n
2I

I0
0I

AB
BA

XY
YX

=







=







 −







 −
 

                                                 
1 If Z and W are conformable to multiplication: 

( )( ) ( ) ( ) ( )( ) WZBAYXYAXBYBXAYAXBYBXABAYXZW =−−=+−−=++−=++= iiiiii   
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Therefore, nIZW =  if and only if 







=







 −







 −

n

n

I0
0I

AB
BA

XY
YX

.  By a similar expansion of the 

last equality above, nIWZ =  if and only if 







=







 −







 −

n

n

I0
0I

XY
YX

AB
BA

.  Hence, we conclude 

that the n×n complex matrix YXZ i+=  is non-singular, or has an inverse, if and only if the 2n×2n 

real-valued matrix 






 −
XY
YX

 is non-singular.  Moreover, if 
1

XY
YX −








 −
 exists, it will have the form 








 −
AB
BA

 and 1Z−  will equal BA i+ . 

3. COMPLEX MATRICES AS DOUBLE-REAL MATRICES 

That the problem of inverting an n×n complex matrix resolves into the problem of inverting a 

2n×2n real-valued matrix suggests that with complex numbers one somehow gets “two for the price 

of one.”  It even hints of a relation between the general m×n complex matrix YXZ i+=  and the 

2m×2n complex matrix 






 −
XY
YX

.  If X and Y are m×n real matrices, we will call 






 −
XY
YX

 a 

double-real matrix.  The matrix is double in two senses; first, in that it involves two (same-sized and 

real-valued) matrices X and Y, and second, in that its right half is redundant, or reproducible from 

its left. 

 

Returning to the hint above, we easily see an addition analogy: 








 −
+







 −
⇔+++

22

22

11

11
2211 XY

YX
XY
YX

YXYX ii  
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And if Z1 is m×n and Z2 is n×p, so that the matrices are conformable to multiplication, then 

( )( ) ( ) ( )21212121221121 XYYXYYXXYXYXZZ ++−=++= iii .  This is analogous with the 

double-real multiplication: 









−+
−−−

=






 −







 −

21212121

21212121

22

22

11

11

YYXXXYYX
XYYXYYXX

XY
YX

XY
YX

 

Rather trivial is the analogy between the m×n complex zero matrix and the 2m×2n double-real zero 

matrix 






 −×

00
00 nm , as well as that between the n×n complex identity matrix and the 2n×2n double-

real identity matrix 






 −

n

n

I0
0I

. 

 

The general 2m×2n double-real matrix may itself be decomposed into quasi-real and quasi-imaginary 

parts: 






 −
+








=







 −
0Y
Y0

X0
0X

XY
YX

.  And in the case of square matrices ( nm = ) this extends 

to the form 














 −
+








=







 −
Y0
0Y

0I
I0

X0
0X

XY
YX

n

n , wherein the double-real matrix 








 −
0I
I0

n

n is analogous with the imaginary unit, inasmuch as: 

( ) 







−=








−

−
=







 −







 −
=







 −

n

n

n

n

n

n

n

n

n

n

I0
0I

1
I0
0I

0I
I0

0I
I0

0I
I0 2

 

 

Finally, one of the most important theorems of linear algebra is that every m×n complex matrix 

YXZ i+=  may be reduced by invertible transformations to “canonical form” (Healy [1986], 32-

34).  In symbols, for every Z there exist non-singular matrices U and V such that: 
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nm

r
nnnmmm

×
××× 








=

00
0I

VZU  

The m×n real matrix on the right side of the equation consists entirely of zeroes except for r 

instances of one along its main diagonal.  Since invertible matrix operations can reposition the ones, 

it is further stipulated that the ones appear as a block in the upper-left corner.  Although many 

reductions of Z to canonical form exist, the canonical forms themselves must all contain the same 

number of ones, r, which is defined as the rank of Z.  Providing the matrices with real and complex 

parts, we have: 

( )( )( )
( ) ( )

nm
r

nnnmmm

i

i
i

iii

×

×××

+







=

+=
++−+−−−=

+++=

0
00
0I
BA

QXRPYRQYSPXSQXSPYSQYRPXR
SRYXQPVZU

 

The double-real analogue to this is: 





































=






 −
=







 −







 −







 −

×

×

00
0I

0

0
00
0I

AB
BA

RS
SR

XY
YX

PQ
QP

r
nm

nm
r

 

As shown in the previous section, 






 −
PQ
QP

 is non-singular, or invertible, if and only if 

QPU i+=  is non-singular; the same is true for 






 −
RS
SR

.  Therefore, the rank of the double-real 

analogue of a complex matrix is twice the rank of the complex matrix.  Moreover, the 2r instances of 

one correspond to r quasi-real and r quasi-imaginary instances.  It is not possible for the 

contribution to the rank of a matrix to be real without its being imaginary, and vice versa. 
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To conclude this section, there are extensive analogies between complex and double-real matrices, 

analogies so extensive that one who lacked either the confidence or the software to work with 

complex numbers could probably do a work-around with double-real matrices.2   

4. COMPLEX MATRICES AND VARIANCE 

[ ] ( )( ) 



 ′−−==Σ µµ xxx EVar  is a real-valued n×n matrix, whose jkth element is the covariance of 

the jth element of x with the kth element.  Since the covariance of two real-valued random variables is 

symmetric, Σ must be a symmetric matrix.  But a realistic Σ must have one other property, viz., non-

negative definiteness (NND).  This means that for every real-valued n×1 vector ξ, 0Σξξ ≥′ .3  This 

must be true, because Σξξ′  is the variance of the real-valued random variable xξ′ : 

[ ] ( )( ) ( )( ) ( )( ) ξξξξξξξξξξξ Σ′=



 ′−−′=



 ′−−′=



 ′′−′′−′=′ µµµµµµ xxxxxxx EEEVar  

Although variances of real-valued random variables may be zero, they must not be negative.  Now if 

0Σξξ >′  for all 10ξ ×≠ n , the variance Σ is said to be positive-definite (PD).  Every invertible NND 

matrix must be PD.  Moreover, every NND matrix may be expressed as the product of some real 

matrix and its transpose, the most common method for doing this being the Cholesky 

                                                 

2 The representation of the complex scalar iyxz +=  as the real 2×2 matrix 






 −
xy
yx

 is a common theme in 

modern algebra (e.g., section 7.2 of the Wikipedia article “Complex number”).  We have merely extended the 
representation to complex matrices.  Our representation is even more meaningful when expressed in the Kronecker-

product form Y.
01
10

X
10
01

0Y
Y0

X0
0X

XY
YX

⊗






 −
+⊗








=







 −
+








=







 −
  Due to certain properties 

of the Kronecker product (cf. Judge [1988], Appendix A.15), all the analogies of this section would hold even in the 

commuted form 






 −
⊗+








⊗

01
10

Y
10
01

X .  In practical terms this means that it matters not whether the form 

is 2×2 of m×n or m×n of 2×2. 
3 More accurately, [ ]0Σξξ ≥′ , since the quadratic form Σξξ′  is a 1×1 matrix.  The relevant point is that 1×1 real-
valued matrices are as orderable as their real-valued elements are.  Appendices A.13 and A.14 of Judge [1988] provide 
introductions to quadratic forms and definiteness that are sufficient to prove the theorems used herein. 
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decomposition (Healy [1986], §7.2).  Accordingly, if Σ is NND, then 0ΣAA ≥′  for any conformable 

real-valued matrix A.  Finally, if Σ is PD and real-valued n×r matrix A is of full column rank, i.e., 

( ) rrank rn =×A , then the r×r matrix ΣAA′  is PD. 

 

In the remainder of this section we will show how the analogy between YX i+  and 






 −
XY
YX

 

leads to a proper definition of the variance of a complex random vector.  We start by considering  








 −
XY
YX

 as a real-valued variance matrix.  In order to be so, first it must be symmetric: 








 −
=








′′−

′′
=

′








 −
XY
YX

XY
YX

XY
YX

 

Hence, 






 −
XY
YX

 is symmetric if and only if XX =′  and YY −=′ .  In words, X is symmetric and 

Y is skew-symmetric.  Clearly, the main diagonal of a skew-symmetric matrix must be zero.  But of 

greater significance, if a and b are real-valued n×1 vectors: 

( ) ( ) ( ) YabaYbaYbYbaYbaYba 11 ′−=−′=′′=′′=′=′ ×  

Consequently, if ab = : 

( )
110

2
YaaYaa

2
YaaYaaYaa ×=

′−+′
=

′+′
=′  

 

Next, considering the specifications on X, Y, a, and b, we evaluate the 2×2 quadratic form: 
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


































 −′

























 −′










=









′+′−′+′

′+′−′+′
=









′+′−′+′′+′−

′+′−′+′−′+′
=









′+′−′+′+′++′−
−′+−′−′+′−′+′

=









′+′−′+′′+′+′+′−

′−′+′−′−′+′−′+′
=








 −








′+′′+′−

′−′′+′
=








 −







 −








′′−

′′
=







 −







 −′








 −

b
a

XY
YX

b
a

0

0
b
a

XY
YX

b
a

XbbYbaYabXaa0
0XbbYbaYabXaa

XbbYbaYabXaaXbaXab
XabXbaXbbYbaYabXaa

XbbYbaYabXaa0Xba0Xab
0Xab0XbaXbbYbaYabXaa

XbbYbaYabXaaYbbXbaYaaXab
YaaXabYbbXbaXbbYbaYabXaa

ab
ba

YbXaYaXb
YaXbYbXa

ab
ba

XY
YX

ab
ba

ab
ba

XY
YX

ab
ba

 

Therefore, 






 −







 −′








 −
ab
ba

XY
YX

ab
ba

 is PD [or NND] if and only if 














 −′









b
a

XY
YX

b
a

 is PD 

[or NND]. 

 

Now the double-real 2n×2 matrix 






 −
ab
ba

 is analogous with the n×1 complex vector ba i+ .  Its 

transpose 







′′−

′′
=

′








 −
ab
ba

ab
ba

 is analogous with the 1×n complex vector ba ′−′ i .  Moreover, 

( ) ( ) ( )*bababababa iiiii +=′+=
′

+=′−=′−′ , where ‘*’ is the combined operation of 
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transposition and conjugation (order irrelevant).4  And 






 −
XY
YX

 is analogous with the n×n 

complex matrix YX i+ .  Accordingly, the complex analogue of the double-real quadratic form 








 −







 −′








 −
ab
ba

XY
YX

ab
ba

 is ( ) ( )( )baYXba * iii +++ .  Moreover, since 






 −
XY
YX

 is 

symmetric, ( ) ( ) YXYXYXYX * iiii +=−−=′−′=+ .  A matrix equal to its transposed conjugate 

is said to be Hermetian: matrix Γ is Hermetian if and only if Γ=Γ* .  Therefore, YX inn +=Γ ×  is 

the variance matrix of some complex random variable yxz in +=×1  if and only if Γ is Hermetian 

and 






 −
XY
YX

 is non-negative-definite.5 

 

Because ( ) ( )( ) 














 −′









=⋅+















 −′









=+++

b
a

XY
YX

b
a

0
b
a

XY
YX

b
a

baYXba * iiii , the definiteness 

of  YX i+=Γ  is the same as the definiteness of 






 −
XY
YX

.  Therefore, a matrix qualifies as the 

variance matrix of some complex random vector if and only if it is Hermetian and NND.  Just as the 

variance matrix of a real-valued random vector factors as nn×′=Σ AA  for some real-valued A, so too 

the variance matrix of a complex random vector factors as nn×=Γ AA*  for some complex A.  

Likewise, every invertible Hermetian NND matrix must be PD.  Due to the skew symmetry of their 

                                                 
4 The transposed conjugate is sometimes called the “transjugate,” which in linear algebra is commonly symbolized with 
the asterisk.  Physicists prefer the “dagger” notation A†, though physicist Hermann Weyl [1950, p. 17] called it the 

“Hermetian conjugate” and symbolized it as A~ . 

5 It is superfluous to add ‘symmetric’ here.  For YX i+=Γ  is Hermetian if and only if 






 −
XY
YX

 is symmetric. 
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complex parts, the main diagonals of Hermetian matrices must be real-valued.  If the matrices are 

NND [or PD], all the elements of their main diagonals must be non-negative [or positive]. 

 

Let Γ represent the variance of the complex random vector z.  Its jkth element represents the 

covariance of the jth element of z with the kth element.  Since Γ is Hermetian, 

[ ] [ ] [ ] [ ] [ ] jkjkjkkjkjkjkj γγ =Γ=Γ=Γ′=Γ=Γ= * .  Because of this, it is fitting and natural to define 

the variance of a complex random vector as: 

[ ] ( )( ) ( )( )[ ]*µµµµ −−=



 ′

−−==Γ zzzzz EEVar  

The complex formula is like the real formula except that the second factor in the expectation is 

transjugated, not simply transposed.  This renders Γ Hermetian, since: 

( )( )[ ] ( )( ){ }[ ] ( )( )[ ] Γ=−−=−−=−−=Γ ****** µµµµµµ zzzzzz EEE  

It also renders Γ NND.  For since ( )( )*zz µµ −−  is NND, its expectation over the probability 

distribution of z must also be so.  Usually Γ is PD, in which case  1−Γ  exists. 

5. THE EXPECTATION OF THE STANDARD QUADRATIC FORM 

The most common quadratic form in zn×1 involves the variance of the complex random variable, 

viz., ( ) ( )µµ −Γ− − zz 1* , where [ ]zVar=Γ .  The expectation of this quadratic form equals n, the 

rank of the variance.  The following proof uses the trace function.  The trace of a matrix is the sum 

of its main-diagonal elements, and if A and B are conformable ( ) ( )BAtrABtr = .  Moreover, the 

trace of the expectation equals the expectation of the trace.  Consequently: 
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( ) ( )[ ] ( ) ( )( )[ ]
( )( )( )[ ]
( )( )[ ]( )
( )( )[ ]( )

( )
( )

n
tr
tr

Etr

Etr

trE

trEE

n

=
=

ΓΓ=

−−Γ=

−−Γ=

−−Γ=

−Γ−=−Γ−

−

−

−

−

−−

I

1

*1

*1

*1

1*1*

µµ

µµ

µµ

µµµµ

zz

zz

zz

zzzz

 

The analogies above between complex and double-real matrices might suggest the result to be 2n.  

However, for real-valued random variables ( ) ( )[ ] nE =−Σ− − µµ xx 1* , and the complex case is a 

superset of the real.  So by extension, the complex case must be the same. 

 

But an insight is available into why the value is n, rather than 2n.  Let x and y be n×1 real-valued 

random vectors.  Assume their means to be zero, and their variances to be identity matrices (so zero 

covariance): 

















=Σ








=









×

×

n

n

n

nμ
I0
0I

,
0
0

~
1

1

y
x

 

The quadratic form is: 

[ ] [ ] [ ] ∑
=

−

−











+=′+′=







′′=















′′=








Σ′′

n

j

jj

n

n

1

221
1

11I0
0I yx

yyxx
y
x

yx
y
x

yx
y
x

yx  

Since the elements have unit variances, the expectation is: 

[ ] [ ] [ ]
n

EE
EE

n

j

n

j

jj
n

j

jj 2
1
1

1
1

1111 11

22

1

22
1 =






 +=










+=






















+=
















Σ′′ ∑∑∑

===

− yxyx
y
x

yx  

Now let z be the n×1 complex random vector yx i+ .  Since [ ] 10 ×=+ niE yx , the variance of z is: 
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[ ]
[ ]

[ ]

[ ] [ ]

[ ] [ ]

[ ]

[ ]

[ ]

[ ]

n

nn

n

n
nn

n

n

n

n
nn

n

n
nn

n

n
nn

nnnn

nnnn

nn

i

i
i

i
i

i
Vari

i
Ei

iiE

iiE

iVar

iVar
Var

I2
II

I
I

II

I
I

I0
0I

II

I
I

II

I
I

II

IIII

IIII

II

2

*

*
*

*

=
−=









−

=









−








=









−








=









−



























=




























=





































=

















=

+=
=Γ

y
x

y
x

y
x

y
x

y
x

y
x

y
x

y
x

yx
z

 

The complex quadratic form is: 

( ) ( )( ) [ ] 







Σ′′=

+

+
=

+−
====Γ −

===

−− ∑∑∑ y
x

yxzzzzzz 1

1

22

11

*
1*1*

2
1

11222
I2

n

j

jj
n

j

n

j

jj
n

ii yxyxyxzz jjjj  

The complex form is half the real-valued form; hence, its expectation equals n.  The condensation of 

the 2n real dimensions into n complex ones inverts the order of operations: 

∑∑
== +

+
⇒










+

n

j

jj
n

j

jj

1

22

1

22

1111
yxyx
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Within the sigma operator, the sum of two quotients becomes the quotient of two sums.  A proof 

for general variance Γ involves diagonalizing Γ, i.e., that Γ can be eigen-decomposed as 

*WWΛ=Γ , where Λ is diagonal and nIWWWW ** == .6 

 

At this point we can derive the standard complex normal distribution.  The normal distribution is 

( )
( )

2

2

2
22

1 σ
µ

πσ

−
−

=
x

X exf .  The standard complex normal random variable is formed from two 

independent real normal variables whose means equal zero and whose variances equal one half: 

( )
( )

( )
( )

( )

( )
( ) ( ) zzyxyx

yx

Z eeeeeezf −+−−−
−

−
−

−

====
ππππππ
1111

212
1

212
1 2222

22

212
0

212
0

 

The distribution of the n×1 standard complex normal random vector is ( ) zz*1z ef nπ
=z .  A vector so 

distributed has mean [ ] 10 ×= nE z  and variance [ ] [ ] nEVar I=′= zzz . 

6. COMPLEX VARIANCE, PSEUDOVARIANCE, AND AUGMENTED 
VARIANCE 

Section 4 justified the definition of the variance of a complex random vector as: 

[ ] ( )( ) ( )( )[ ]*µµµµ −−=



 ′

−−==Γ zzzzz EEVar  

The naïve formula differs from this by one critical symbol (prime versus asterisk): 

( )( ) 



 ′−−= µµ zzEC  

                                                 
6 Cf. Appendix C for eigen-decomposition and diagonalization.  We believe the insight about commuting sums and 
quotients to be valuable as an abstraction.  But of course, a vector of n independent complex random variables of unit 

variance translates into a vector of 2n independent real random variables of half-unit variance, and n
n

j
=∑

=

2

1 2
1

.  Because 

of the half-unit real variance, the formula in the next paragraph for the standard complex normal distribution, lacking 
any factors of two, is simpler than the formula for the standard real normal distribution. 
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This naïveté leads many to conclude that [ ] [ ] [ ]zzz VarVariiVar −== 2 , whereas it is actually:7 

 [ ] ( ) ( ){ }[ ] ( ) ( )[ ] ( )( )[ ] ( ) [ ] [ ]zzzzzzzzz VarVariiEiiiiEiiEiVar =−=−−=−−=−−= *** µµµµµµ  

Nevertheless, there is a role for the naïve formula, which reduces to: 

( )( ) ( )( ) ( )( )[ ] [ ]zzzzzzzz ,C
*

CovEEE =−−=






 ′
−−=



 ′−−= µµµµµµ  

Veeravalli [2006], whose notation we follow, calls C the “relation matrix.”  The Wikipedia article 

“Complex normal distribution” calls it the “pseudocovariance matrix.”  Because of the naïveté that 

leads many to a false conclusion, we prefer the ‘pseudo’ terminology (better, “pseudovariance”) to 

something as bland as “relation matrix.”  However, a useful and non-pejorative concept is what we 

will call the “augmented variance.”    

 

The augmented variance is the variance of the complex random vector z augmented with its 

conjugate z , i.e., the 2n×1 vector 







z
z

.  Its expectation is 
[ ]
[ ] 








=








=








µ
µ

z
z

z
z

E
E

E .  And its variance is 

(for brevity we ignore the mean): 

[ ] [ ] [ ]
[ ] [ ]






=








′′








=




























=








zzzz
zzzz

zz
z
z

z
z

z
z

z
z

,,
,,*

CovCov
CovCov

EEVar  

In two ways this matrix is redundant.  First, [ ] [ ] [ ] [ ]zzzzzzzz ,, CovEECov =′=′= ; equivalently, 

[ ] [ ] Γ== zz VarVar .  And second, [ ] [ ] [ ] [ ] C,, ==′=′= zzzzzzzz CovEECov .  Therefore: 

[ ] [ ]
[ ] [ ] 








Γ

Γ
=








=








C

C
,,
,,
zzzz
zzzz

z
z

CovCov
CovCov

Var  

                                                 
7 In general, for any complex scalar α, [ ] [ ]zz VarVar ααα = . 
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As with any valid variance matrix, the augmented variance must be Hermetian.  Hence, 










Γ′
′Γ

=
′










Γ
Γ

=
′









Γ

Γ
=








Γ

Γ
=








Γ

Γ
*

**

C
C

C
C

C
C

C
C

C
C

, from which follow Γ=Γ*  and CC =′ .  

Moreover, it must be at least NND, if not PD.  It is important to note from this that the 

pseudovariance is an essential part of the augmented z; it is possible for two random variables to 

have the same variance and to covary differently with their conjugates.  How a complex random 

vector covaries with its conjugate is useful information; it is even a parameter of the general complex 

normal distribution, which we will treat next. 

7. THE COMPLEX NORMAL DISTRIBUTION 

All the information for deriving the complex normal distribution of yxz in +=×1   is contained in 

the parameters of the real-valued multivariate normal distribution: 



















ΣΣ
ΣΣ

=Σ







=








××

yyyx

xyxx

y

x

y
x

nnnN 2212 ,
μ
μ

μ~  

According to this variance structure, the real and imaginary parts of z may covary, as long as the 

covariance is symmetric: xyyx Σ′=Σ .  The grand Σ matrix must be symmetric and PD.  The 

probability density function of this multivariate normal is:8 

( )
( )

[ ] [ ] 







−
−

Σ′−′′−′−







−
−

Σ′−′′−′−










−−

Σ
=

Σ
= y

x
yx

y

x
yx

y
x

μy
μx

μyμx
2
1

2

μy
μx

μyμx
2
1

2

11

2
1

2

1y,x eef
nnn ππ

 

 

                                                 
8 As derived briefly by Judge [1988, pp 49f].  Chapter 4 of Johnson [1992] is thorough.  To be precise, Σ   under the 

radical should be Σ , the absolute value of the determinant of Σ.  However, the determinant of a PD matrix must be 
positive (cf. Judge [1988, A.14(1)]). 
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Since yxz i+= , the augmented vector is 







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
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y
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.  We will call 









−

=Ξ
nn

nn
n i

i
II
II

 the augmentation matrix; this linear function of the real-valued vectors produces 

the complex vector and its conjugate.  An important equation is: 

n
n

n

nn

nn

nn

nn
nn iii

i
2

* I2
2I0
02I

II
II

II
II

=



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
=








−








−

=ΞΞ  

Therefore, Ξn has an inverse, viz., one half of its transjugate. 

 

The augmented mean is 







=








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+
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
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E n .  The augmented variance is: 
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And so: 

( ) ( ) ( ) 111*1*
1

1

C
C −−−−

−
− ΞΣΞ=ΣΞΞ=






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This can be reformulated as 1
1

*1*

C
C −

−
− Σ=Ξ








Γ

Γ
Ξ=Ξ








Ξ nnnnVar

z
z

. 
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We now work these augmented forms into the probability density function: 
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However, this is not quite the density function of z, since the differential volume has not been 

considered.  The correct formula is ( ) ( ) xyz y,xz dVfdVf







=
y
xz .  The differential volume in the xy 

coordinates is ∏
=

=
n

j
jj dydxdV

1
xy .  A change of dxj entails an equal change in the real part of dzj, 

even as a change of dyj entails an equal change in the imaginary part of dzj.  Accordingly, 

( ) xy
1111

z 1 dVdydxdydxidydxidyidxdV
n

j
jj

n

j
jj

n
n

j
jj

n
n

j
jj =⋅===⋅= ∏∏∏∏

====

.  It so happens that 

Ξn does not distort volume; but this had to be demonstrated.9 

 

So finally, the probability density function of the complex random vector z is: 
                                                 
9 This will be abstruse to some actuaries.  However, the integration theory is implicit in the change-of-variables 
technique outlined in Hogg [1984, pp 42-46].  That the n×n determinant represents “the volume function of an n-
dimensional parallelepiped” is beautifully explained in Chapter 4 of Schneider [1973]. 
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( ) ( ) ( ) ( )
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This formula is equivalent to the one found in the Wikipedia article “Complex normal distribution.”  

Although CC 1−Γ−ΓΓ  appears within the radical of that article’s formula, it can be shown that 

CC
C

C 1−Γ−ΓΓ=
Γ

Γ
.  As far as allowable parameters are concerned, µ may be any complex 

vector.  
Γ

Γ
C

C
 is allowed if and only if Σ=Ξ








Γ

Γ
Ξ 4

C
C*

nn  is real-valued and PD. 

 

Veeravalli [2006] defines a “proper” complex variable as one whose pseudo[co]variance matrix is 

0n×n.  Inserting zero for C into the formula, we derive the probability density function of a proper 

complex random variable whose variance is Γ: 
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=
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=
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=
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=
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Γ
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n
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The transformations in the last several lines rely on the fact that Γ is Hermetian and PD.  Now the 

standard complex random vector is a proper complex random vector with mean zero and variance 

In.  Therefore, in confirmation of Section 5, its density function is zz*1 −enπ
. 

8. THE COMPLEX LOGNORMAL RANDOM VECTOR AND ITS 
MOMENTS 

A complex lognormal random vector is the elementwise exponentiation of a complex normal 

random vector: 1
1

×=×
nen

zw .  Its conjugate also is lognormal, since zee == zw .  Deriving the 

probability density function of w is precluded by the fact that wze →:  is many-to-one.  

Specifically, ( )kizz ewe π2+==  for any integer k.  So unlike the real-valued lognormal random 

variable, whose density function can be found in Klugman [1998, §A.4.11], an analytic form for the 
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complex lognormal density is not available.  However, even for the real-valued lognormal the 

density function is of little value; its moments are commonly derived from the moment generating 

function of the normal variable on which it is based.  So too, the moment generating function of the 

complex normal random vector is available for deriving the lognormal moments. 

 

We hereby define the moment generating function of the complex n×1 random vector z as 

( ) [ ]zz
z

ts
11 t,s ′+′
×× = eEM nn .  Since this definition may differ from other definitions in the sparse 

literature, we should justify it.  First, because we will take derivatives of this function with respect to 

s and t, the function must be differentiable.  This demands simple transposition in the linear 

combination, i.e.,  zz ts ′+′  rather than the transjugation zz ** ts + .  For transjugation would involve 

derivatives of the form 
ds
sd , which do not exist, as they violate the Cauchy-Riemann condition.10  

Second, even though moments of z  are conjugates of moments of z, we will need second-order 

moments involving both z and z .  For this reason both terms must be in the exponent of the 

moment generating function. 

 

                                                 
10 Cf. Appendix D.1.3 of Havil [2003].  Express ( )iyxzf +=  in terms of real-valued functions, i.e., as 

( ) ( )yxviyxu ,, ⋅+ .  The derivative is based on the matrix of real-valued partial derivatives 







∂∂∂∂
∂∂∂∂
yvyu
xvxu

.  

For the derivative to be the same in both directions, the Cauchy-Riemann condition must hold, viz., that 

yvxu ∂∂=∂∂  and yuxv ∂∂−=∂∂ .  But for ( ) iyxzzf −== , the partial-derivative matrix is 







−10

01
; 

hence yvxu ∂∂≠∂∂ .  The Cauchy-Riemann condition becomes intuitive when one regards a valid complex 

derivative as a double-real 2×2 matrix (Section 3).  Compare this with ( ) iyxzzf +== , whose matrix is 







10
01

, 

which represents the complex number 1. 
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We start with terminology from Section 7, viz., that 





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
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 and 

that 







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
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
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
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yyyx

xyxx

y

x

y
x

nnnN 2212 ,
μ
μ

μ~ .  According to Appendix A, the moment 

generating function of the real-valued normal random vector  







y
x

 is: 
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Consequently: 
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It is so that we could invoke it here that Appendix B went to the trouble of proving that complex 

values are allowed in this moment generating function. 

 

But in two ways we can simplify this expression.  First: 

( ) ( ) ( ) ( ) ( ) ( ) zzyxyxyx
y

x μtμsμμtμμsμtsμts
μ
μ

tsts ′+′=−′++′=′−+′+=











 ′−′+ iiii  
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And second, again from Section 7, **
22C
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On the right side, ( ) ( )
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And the simplified expression, based on the mean and the augmented variance of z, is: 
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As in Appendix A, let je  denote the jth unit vector of nℜ , or even better, of nC .  Then: 
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Moreover: 
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++++++ =+== z

zzzz  
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According to Section 6, C is symmetric ( CC =′ ).  This and further simplification leads to: 
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Hence, mindful of the transjugation (*) in the definition of complex covariance, we have: 
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
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In terms of zw e=  this translates as [ ] [ ] [ ] ( )nneEECov ×−




 ′= 1, Cwwww , in which the ‘◦’ operator 

represents elementwise multiplication.11  So too: 

[ ] [ ] ( )1,, C −⋅



==



 jkkjkjkj eeEeEeeCoveeCov zzzzzz  

This translates as [ ] [ ] [ ] ( )nneEECov ×−




 ′= 1, Cwwww . 

 

The remaining combination is the mixed form [ ]kj eeE zz : 

[ ] [ ] [ ] ( ) ( )kjkkjjjkkjkjkjkj eMeEeeEeeE kj

Γ+++Γ+++ ====
CC

2
1μμ

e,ez
zzzzzz  

Since Γ is Hermetian, jkjkjkkj Γ=Γ=Γ′=Γ * .  Hence: 

[ ] ( ) ( ) [ ] [ ] jkkj
jkjkkkkjjjkjkkjjjkkj

kj eeEeEeeeeE ΓΓ+Γ+





 ++






 +Γ+++Γ++

⋅=== zzzz 2
1C

2
1μC

2
1μCC

2
1μμ

 

Therefore, [ ] [ ] [ ] [ ] [ ] [ ] ( )1, −⋅=−= Γ jkkjkjkjkj eeEeEeEeEeeEeeCov zzzzzzzz , which translates as 

[ ] [ ] [ ] ( )nneEECov ×
Γ −





 ′= 1, wwww .  By conjugation, [ ] ( )1, −⋅



=



 Γjkkjkj eeEeEeeCov zzzz , 

which translates as [ ] [ ] [ ] ( )nneEECov ×
Γ −





 ′= 1, wwww . 

                                                 
11 Elementwise multiplication is formally known as the Hadamard, or Hadamard-Schur, product, of which we will make 
use in Appendices A and C.  Cf. Million [2007]. 
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We conclude this section by expressing it all in terms of 1
1

×=×
nen

zw .  Let z be complex normal with 

mean µ and augmented variance 







Γ

Γ
=








C

C
z
z

Var .  And let D be the n×1 vector consisting of the 

main diagonal of C.  Then D  is the vectorization of the diagonal of C .  So the augmented mean of 

w is 







=








+

+

2Dμ

2Dμ

e
e

E
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w

.  And the augmented variance of w is: 
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Scaling all the lognormal means to unity (or setting 2Dμ −= ), we can say that the coefficient-of-

lognormal-augmented-variation matrix equals nn

Var
e 221 ×










−z
z

, which is analogous with the well-

known coefficient of lognormal variation 1
2σ −e . 

9. THE COMPLEX LOGNORMAL RANDOM VARIABLE 

The previous section derived the augmented mean and variance of the lognormal random vector; 

this section provides some intuition into it.  The complex lognormal random variable, or scalar, 
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derives from the real-valued normal bivariate 

































2

2

τρστ
ρστσ

,
0
0

~ N
Y
X

.  Zero is not much of a 

restriction; since ( ) ( ) ( )V,0μV,0μVμ, CNCNCN eeee == + , the normal mean affects only the scale of the 

lognormal.  The variance is written in correlation form, where 1ρ1 ≤≤− .  As usual, ∞<< τσ,0 .  

Define 







−
+

=








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
−

=

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
Ξ=








iYX
iYX

Y
X

i
i

Y
X

Z
Z

1
1

1 .  Its mean is zero, and according to Section 7 its 

variance (the augmented variance) is: 

( ) ( )
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i
i

ii
ii

iii
i

Z
Z

Var

 

 

We will say little about non-zero correlation ( 0ρ ≠ ); but at this point a digression on complex 

correlation is apt.  The coefficient of correlation between Z and its conjugate is: 

ZZZZ
ii ρ

τσ
ρστ2τσ

τσ
ρστ2τσρ 22

22

22

22

=
+
−−

=
+
+−

=  

As a form of covariance, correlation is Hermetian.  Moreover: 

( )
( )

( ) ( )
( )

( )
( ) 1

τσ
τσ

τσ
τσ14τσ

τσ
τσρ4τσρρρρ0 222

222

222

22222

222

222222

=
+

+
=

+

+−
≤

+

+−
==≤ ZZZZZZZZ  

So, the magnitude of complex correlation is not greater than unity.  The imaginary part of the 

correlation is zero unless some correlation exists between the real and imaginary parts of the 

underlying bivariate.  More interesting are the two limits: 1ρlim
02

=
+→ ZZτ

 and 1ρlim
0σ2

−=
+→ ZZ .  In the 
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first case, ZZ → in a statistical sense, and the correlation approaches one.  In the second case, 

ZZ −→ , and the correlation approaches negative one. 

 

Now if ZeW = , by the formulas of Section 8, [ ] ( ) ( ) ρστ2τσ2ρστ2τσ0 2222 ii eeeWE ⋅== −+−+  and 

[ ] ( ) ρστ2τσ 22 ieeWE −− ⋅= .  And the augmented variance is: 
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In the first case above, as +→ 0τ2 , 







→








1
12σ2

e
W
W

E  and ( ) 







−→








11
11

1
22 σσ ee

W
W

Var .  Since 

the complex part Y becomes probability-limited to its mean of zero, the complex lognormal 

degenerates to the real-valued XeW = .  The limiting result is oblivious to the underlying correlation 

ρ, since WW → . 
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In the second case, as +→ 0σ2 , 







→







 −

1
12τ2

e
W
W

E  and  












−−
−−→








−

−
−

11
11

22

22
2

ττ

ττ
τ

ee
eee

W
W

Var .  As 

in the first case, both [ ] [ ]WEWE =  and the underlying correlation ρ has disappeared.  Nevertheless, 

the variance shows W and its conjugate to differ; in fact, their correlation is the real-valued 

( ) ( ) [ ]WEeeeWW −=−=−−= −− 222

11ρ τττ .  Since 0τ2 > , 0ρ1 <<− WW  and 

[ ] [ ] 10 <=< WEWE . 

 

Both these cases are understandable from the “geometry” of iYXiYXZ eeeeW === + .  The 

complex exponential function is the basis of polar coordinates; Xe  is the magnitude of W, and Y is 

the angle of W in radians counterclockwise from the real axis of the complex plane.  Imagine a 

canon whose angle and range can be set.  In the first case, the angle is fixed at zero, but the range is 

variable.  This makes for a lognormal distribution along the positive real axis.  In the second case, 

the canon’s angle varies, but its range is fixed at 10 =e .  This makes all the shots to land on the 

complex unit circle; hence, their mean lies within the circle, i.e., [ ] 1<WE .  Moreover, the symmetry 

of Y as ( )2τ,0N -distributed guarantees [ ]WE  to fall on the real axis, or [ ] 11 <<− WE .  

Furthermore, since the normal density function strictly decreases in both directions from the mean, 

more shots land to the right of the imaginary axis than to the left, so [ ] 10
2

<=< −τeWE .  A “right-

handed” canon, or a canon whose angle is measured clockwise from the real axis, fires iYX eeW −=  

shots. 
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A shot from an unrestricted canon will “almost surely” not land on the real axis.12  If we desire 

negative values from the complex lognormal random variable, as a practical matter we must extract 

them from its real or complex parts, e.g., ( )WU Re= .  One can see in the second case, that as 2τ  

grows larger, so too grows larger the probability that 0<U .  As ∞→2τ , the probability 

approaches one half.  In the limit, the shots are uniformly distributed around the complex unit 

circle.  In this specialized case ( +→ 0σ2  and ∞→2τ ), the distribution of ( )WU Re=  is 

( )
21

1
u

ufU
−

=
π

, for 11 ≤≤− u .13 

This suggests a third case, in which ∞→2τ  while 2σ  remains at some positive amount.  An 

intriguing feature of complex variables is that infinite variance in Y leads to a uniform distribution of 

iYe .14  So if iYXZ eeeW == , ( ) YeWU X cosRe ==  will be something of a reflected lognormal; 

both its tails will be as heavy as the lognormal’s.15  In this case: 
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Again, ρ has disappeared from the limiting distribution; but in this case 0ρ =WW . 

 

                                                 
12 For an event almost surely to happen means that its probability is unity; for an event almost surely not to happen 
means that its probability is zero.  The latter case means not that the event will not happen, but rather that the event has 
zero probability mass.  For example, if X ~ Uniform[0, 1], Prob[X=½] = 0.  So X almost surely does not equal ½, even 
though ½ is as possible as any other number in the interval.   
13 For more on this bimodal Arcsine(-1, 1) distribution see Wikipedia, “Arcsine distribution.” 
14 The next section expands on this important subject.  “Infinite variance in Y” means “as the variance of Y approaches 

infinity.”  It does not mean that iYe  is uniform for a variable Y whose variance is infinite, e.g., for a Pareto random 
variable whose shape parameter is less than or equal to two. 
15 Cf. Halliwell [2013] for a discussion on the right tails of the lognormal and other loss distributions. 
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In practical work with ( )WU Re= ,16 the angular part iYe  will be more important than the 

lognormal range Xe .  For example, one who wanted the tendency for the larger magnitudes of 

( )WU Re=  to be positive might set the mean of Y at 2π−  and the correlation ρ to some positive 

value.  Thus, greater than average values of Y, angling off into quadrants 4 and 1 of the complex 

plane, would correlate with larger than average values of X and hence of Xe .  Of course, 

[ ] 2τ=YVar  would have to be small enough that deviations of π±  from [ ] 2π−=YE  would be 

tolerably rare.  Equivalently, one could set the mean of Y at 2π  and the correlation ρ to some 

negative value.  As a second example, one who wanted negative values of U to be less frequent than 

positive, might set both the mean of Y and ρ to zero, and set the variance of Y so that 

[ ]2Prob π>Y  is desirably small.  Some distributions of U for 22 στ >>  are bimodal, as in the 

specialized case +→ 0σ2  and ∞→2τ .  But less extreme parameters would result in unimodal 

distributions for U over the entire real number line. 

10. THE COMPLEX UNIT-CIRCLE RANDOM VARIABLE 

In the previous section we claimed that as the variance 2τ  of the normal random variable Y 

approaches infinity, iYe approaches a uniform distribution over the complex unit circle.  The 

explanation and justification of this claim in this section prepare for an important implication in the 

next. 

 

Let real-valued random variable Y be distributed as [ ]2σμ,N , and let iYeW = .  According to the 

moment-generating-formula of Section 8, ( ) [ ] ( ) 2σμ2σμ 2222 tititititY
Y eeeEitM −+ === .  Although the 

                                                 
16 In the absence of an analytic distribution, practical work with the complex lognormal would seem to require 
simulating its values from the underlying normal distribution. 
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formula applies to complex values of t, here we’ll restrict it to real values.  With ℜ∈t  ( )itMY  is 

known as the characteristic function of real variable Y.  And so: 

( )
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∞→∞→ 0if0
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eeeitM t
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It is noteworthy, and indicative of a uniformity of some sort, that µ drops out of the result. 

 

Next, let real-valued random variable Θ be uniformly distributed over [ ]naa π2, + , where n is a 

positive integer; in symbols, [ ]naa π2,U~ +Θ .  Then: 
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Letting n approach infinity, we have: 
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1limlim 0
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Hence, ( ) ( ) 0
σ

δlimlim
2 tYn

itMitM ==
∞→

Θ∞→
.  The equality of the limits of the characteristic functions of 

the random variables implies the identity of the limits of their distributions; hence, the diffuse 

uniform [ ]∞+aa,U  is “the same” as the diffuse normal [ ]∞μ,N .17 

                                                 
17 Quotes are around ‘the same’ because the limiting distributions are not proper distributions.  The notion of diffuse 
distributions comes from Venter [1996, pp. 406-410], who shows there how different diffuse distributions result in 
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Indeed, for the limit to be 0δt  it is not required that n be an integer.  But for [ ]naa π2,U~ +Θ , the 

integral moments of Θ= ieW  are: 

[ ] [ ]

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≠
±±=

=
== Θ

integralnot if0
,2,1if0

0if1

jn
jn
j

eEWE ijj   

So if n is an integer, jn will be an integer, and all the integral moments of W will be zero, except for 

the zeroth.  Therefore, the integral moments of Θ= ieW  are invariant to n, as long as the n in 2πn, 

the width of the interval of Θ, is a whole number.  Hence, although we hereby define the unit-circle 

random variable as Θie  for [ ]π2,0~ UΘ , the choice of 0=a  and 1=n  is out of convenience, 

rather than out of necessity.  The probability for Θie  to be in an arc of this circle of length l equals 

π2l . 

 

The integral moments of the conjugate of Θ−= ieW  are the same, for 

[ ] [ ] [ ] [ ]jjj
jjj WEWEWEWE ===== 00 δδ .  Alternatively, [ ] [ ] ( ) 00 δδ jj

ijj eEWE === −
Θ− .  And 

the jkth mixed moment is [ ] [ ] ( )[ ] ( ) jkkj
kjiikijkj eEeeEWWE δδ 0 ==== −
Θ−Θ−Θ .  Since 

[ ] [ ] 0== WEWE , the augmented variance of the unit-circle random variable is: 
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
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WWWW
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W
W

E
W
W

Var  

Hence, Θ= ieW  for [ ]π2,0~ UΘ  is not just a unit-circle random variable; having zero mean and 

unit variance, it is the standard unit-circle random variable. 
                                                                                                                                                             
different Bayesian estimates.  But here every continuous random variable Y diffuses through the periodicity of iYe  into 
the same limiting distribution, viz., the Kronecker 0δt  (note 31). 
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Multiplying W by a complex constant 0α ≠  affects the radius of the random variable, whose jkth 

mixed moment is: 

( ) ( )[ ] [ ] ( )




≠
=

===
kj
kjWWEWWE

j

jk
kjkjkjkj

if0
ifααδαααααα  

The augmented variance is [ ] 2Iαααα
α
α

==






 WVar
W
W

Var .  One may consider α as an instance of a 

complex random variable Α.  Due to the independence of Α from W, the jkth mixed moment of 

ΑW is ( ) ( )[ ] [ ] [ ] [ ] ( )[ ] jk
j

jk
kjkjkjkj ΑΑEΑΑEWWEΑΑEΑWΑWE δδ === .  Its augmented 

variance is [ ] [ ] [ ] [ ] [ ]{ } [ ]WVarΑEΑEAVarWVarΑΑE
AW
AW

Var +==







.  Unlike the one-dimensional 

W, ΑW can cover the whole complex plane.  However, like W, it too possesses the desirable 

property that ( )[ ] 0δ j
jΑWE = .18 

11. UNIT-CIRCULARITY AND DETERMINISM 

The single most important quality of a random variable is its mean.  In fact, just having reliable 

estimates of mean values would satisfy many users of actuarial analyses.  Stochastic advances in 

actuarial science over the last few decades notwithstanding, much actuarial work remains 

deterministic.  Determinism is not the reduction of a stochastic answer ( )XfY =  to its mean 

[ ] ( )[ ]XfEYE = .  Rather, the deterministic assumption is that the expectation of a function of a 

random variable equals the function of the expectation of the random variable; in symbols, 

                                                 
18 The existence of the moments [ ]kj ΑΑE  needs to be ascertained.  In particular, moments for j and k as negative 

integers will not exist unless [ ] [ ] [ ] 00Prob10Prob10Prob =>−=≠−== ΑΑΑΑ . 
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[ ] ( )[ ] [ ]( )XEfXfEYE == .  Because this assumption is true for linear f, it was felt to be a 

reasonable or necessary approximation for non-linear f. 

 

Advances in computing hardware and software, as well as increased technical sophistication, have 

made determinism more avoidable and less acceptable.  However, the complex unit-circular random 

variable provides a habitat for the survival of determinism.  To see this, let f be analytic over the 

domain of complex random variable Z.  From Cauchy’s Integral Formula (Havil [2003, Appendix 

D.8 and D.9]) it follows that within the domain of Z, f can be expressed as a convergent series 

( ) ∑
∞

=

+=++=
1

010
j

j
j zaazaazf  .  Taking the expectation, we have: 

( )[ ] [ ]∑
∞

=

+=
1

0
j

j
j ZEaaZfE  

But if for every positive integer j [ ] [ ] jj ZEZE = , then: 

( )[ ] [ ] [ ] [ ]( )ZEfZEaaZEaaZfE
j

j
j

j

j
j =+=+= ∑∑

∞

=

∞

= 1
0

1
0  

Therefore, determinism conveniently works for analytic functions of random variables whose 

moments are powers of their means. 

 

Now a real-valued random variable whose moments are powers of its mean would have the 

characteristic function: 

( ) [ ] ( ) [ ] ( ) [ ] [ ]
[ ] ( )itMeXE

j
itXE

j
iteEitM XE

XitE

j

j
j

j

j
j

itX
X ==+=+== ∑∑

∞

=

∞

= 11 !
1

!
1  

This is the characteristic function of the “deterministic” random variable, i.e., the random variable 

whose probability is massed at one point, its mean.  So determinism with real-valued random 
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variables requires “deterministic” random variables.  But some complex random variables, such as 

the unit-circle, have the property [ ] [ ] jj ZEZE =  without being deterministic. 

 

In fact, when [ ] [ ] jj ZEZE = , not only is ( )[ ] [ ][ ]ZEfZfE = .  For positive integer k, ( )zf k  is as 

analytic as f itself; hence, ( )[ ] [ ]( )ZEfZfE kk = .  So the determinism with these complex random 

variables is valid for all moments; nothing is lost. 

 

In Section 10 we saw that for the unit-circle random variable Θ= ieW  and for ,2,1 ±±=j ,  

[ ] [ ] [ ] jjj WEWEWE ===− 0 .  Can determinism extend to non-analytic functions which involve 

the negative moments?  For example, let ( ) ( )zzg −= η1 , for some complex 0η ≠ .  The function 

is singular at η=z ; but within the disc { } { }η:1η: <=< zzzz  the function equals the 

convergent series: 

( ) ( )  +++=



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



+
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



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


−

⋅=−= 3

2

2

2

ηηη
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ηη
1

η
1

η
1

1
η
1η1 zzzz

z
zzg  

Outside the disc, or for { } { }η:1η: >=> zzzz , another convergent series represents the 

function: 

( ) ( )  −−−−=












+


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





 −
⋅−=−= 3

2

2

2 ηη1ηη11
η1

11η1
zzzzzz

z
z

zzg  

So, if 1η > , then η1<=W .  In this case: 
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( )[ ]
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However, if 1η < , then η1>=W .  So in this case: 

( )[ ]

[ ] [ ] [ ]

0
0η0η0

ηη

ηη1

2

3221

3

2

2

=
−⋅−⋅−−=
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




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Both answers are correct; however, only the first satisfies the deterministic equation 

( )[ ] [ ]( ) ( ) η10 === gWEgWgE . 

 

To understand why the answer depends on whether η is inside or outside the complex unit circle, let 

us evaluate ( )[ ]WgE  directly: 

( )[ ] ( )[ ] ( )[ ]
π

π

2
θ

η
1η1η1

2

0θ
θ

d
e

eEWEWgE i
i ∫

=

Θ

−
=−=−=  

The next step is to transform from θ into θiez = .  So θθθ izddiedz i == , and the line integral 

transforms into a contour integral over the unit circle C: 
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Now the value of each of these integrals is one if its singularity is within the unit circle C, and zero if 

it is not.19  Of course, the singularity of the first integral at 0=z  lies within C; hence, its value is 

one.  The second integral’s singularity at η=z  lies within C if and only if 1η < .  Therefore: 

( )[ ] [ ]( )




<
>

⋅=








−
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−
= ∫∫ 1ηif0

1ηif1
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1
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1
η
1 WEg
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i
WgE

CC ππ
 

So the deterministic equation will hold for one of the Laurent series according to which the domain 

of the non-analytic function is divided into regions of convergence.  Fascinating enough is how the 

function ( )




<
>

=
−

= ∫ 1ηif0
1ηif1

η2
1ηφ

C z
dz

iπ
 serves as the indicator of a state, viz., the state of being 

inside or outside the complex unit circle. 

 

                                                 
19 Technically, the integral has no value if the singularity lies on C; but there are some practical advantages for “splitting 
the difference” in that case. 
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12. THE LINEAR STATISTICAL MODEL 

Better known as “regression” models, linear statistical models extend readily into the realm of 

complex numbers.  A general real-valued form of such models is presented and derived in Halliwell 

[1997, Appendix C]: 









ΣΣ
ΣΣ

=















+








=









2221

1211

2

1

2

1

2

1

2

1 ,β
X
X

e
e

e
e

y
y

Var  

The subscript ‘1’ denotes observations, ‘2’ denotes predictions.  Vector 1y  is observed; the whole 

design matrix X is hypothesized, as well as the fourfold ‘Σ’ variance structure.  Although the 

variance structure may be non-negative-definite (NND), the variance of the observations 11Σ  must 

be positive-definite (PD).  Also, the observation design 1X  must be of full column rank.  The last 

two requirements ensure the existence of the inverses 1
11
−Σ  and ( ) 1

1
1

111 XX −−Σ′ .  The best linear 

unbiased predictor of 2y  is ( )βyβy ˆXˆXˆ 11
1

112122 −ΣΣ+= − .  The variance of prediction error 

22 ŷy −  is [ ] ( ) [ ]( ) 12
1

1121221
1

112121
1

1121222 XXˆVarXXˆ ΣΣΣ−Σ+
′

ΣΣ−ΣΣ−=− −−− βyyVar .  Embedded 

in these formulas are the estimator of β and its variance: 

( ) [ ] 1
1

1111
1

111
1

1
1

111 XˆXXXˆ yβyβ −−−− Σ′⋅=Σ′Σ′= Var . 

 

For the purpose of introducing complex numbers into the linear statistical model we will concern 

ourselves here only the estimation of the parameter β.  So we drop the subscripts ‘1’ and ‘2’ and 

simplify the observation as ey += Xβ , where [ ] Γ=eVar .  Again, X must be of full column rank 

and Γ must be Hermetian PD.  According to Section 4, transjugation is to complex matrices what 

transposition is to real-valued matrices.  Therefore, the short answer for a complex model is: 

( ) [ ] yβyβ 1*1*11* XˆXXXˆ −−−− Γ⋅=ΓΓ= Var . 
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However, deriving the solution from the double-real representation in Section 3 will deepen the 

understanding.  The double-real form of the observation is: 


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
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All the vectors and matrices in this form are real-valued.  The subscripts ‘r’ and ‘i’ denote the real 

and imaginary parts of y, X, β, and e.  Due to the redundancy of double-real representation, we may 

retain just the left column: 
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Note that if X is real-valued, then 0X =i , and ry  and iy  become two “data panels,” each with its 

own parameter rβ  and iβ .20 

 

Now let 







−

=Ξ
tt

tt
t i

i
II
II

, the augmentation matrix of Section 7, where t is the number of 

observations.  Since the augmentation matrix is non-singular, premultiplying the left-column form 

by it yields equivalent but insightful forms: 

                                                 
20 This assumes zero covariance between the error vectors. 
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The first insight is that eey +=+= βXXβ  is as much observed as ey += Xβ .  The second 

insight is that 







e
e

Var  is an augmented variance, whose general form according to Section 6 is 
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Var .  Therefore, the general form of the observation of a complex linear model is 
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Var .  Not only is y  as observable as y, but also β  

is as estimable as β.  Furthermore, although the augmented variance may default to 0C = , the 

complex linear statistical model does not require 







e
e

 to be “proper complex,” as defined in Section 

7. 

 

Since X is of full column rank, so too must be 







X0
0X

.  And since Γ is Hermetian PD, both it and 

its conjugate Γ  are invertible.  But the general form of the observation requires 







Γ

Γ
C

C
 to be 



Complex Random Variables 

Casualty Actuarial Society E-Forum, Fall 2015 41 

Hermetian PD, hence invertible.  A consequence is that both the “determinant” forms CC 1−Γ−Γ  

and CC 1−Γ−Γ  are Hermetian PD and invertible.  With this background it can be shown, and the 

reader should verify, that 




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
Η

Η
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Γ −
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C
C 1

, where ( ) 11CC −−Γ−Γ=Η  and ΗΓ−= − CK 1 .  The 

important point is that inversion preserves the augmented-variance form. 

 

The solution of the complex linear model 
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The conjugates of the two equations in β̂  and β̂  are the same equations in β̂  and β̂ : 
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Therefore, 











=













β
β

β
β

ˆ
ˆ

ˆ

ˆ
.  It is well known that the estimator of a linear function of a random variable 

is the linear function of the estimator of the random variable.  But conjugation is not a linear 

function.  Nevertheless, we have just proven that the estimator of the conjugate is the conjugate of 

the estimator. 

13. ACTUARIAL APPLICATIONS OF COMPLEX RANDOM VARIABLES 

How might casualty actuaries put complex random variables to work?  Since the support of most 

complex random variables is a plane, rather than a line, their obvious application is bivariate.  An 

example is a random variable whose real part is loss and whose imaginary part is LAE.  Another 

application might pertain to copulas.  According to Venter [2002, p. 69], “copulas are joint 

distributions of unit random variables.”  One could translate these joint distributions into 

distributions of complex variables whose support is the complex unit square, i.e., the square whose 

vertices are the points iiz ,1,1,0 += .  However, for now it seems that real-valued bivariates 

provide the necessary theory and technique for these purposes. 

 

Actuaries who have applied log-linear models to triangles with paid increments have been frustrated 

applying them to incurred triangles.  The problem is that incurred increments are often negative, and 

the logarithm of a negative number is not real-valued.  This has led Glenn Meyers [2013] to seek 

modified lognormal distributions whose support includes the negative real numbers.  The persistent 

intractability of the log-linear problem was a major reason for our attention to the lognormal 

random vector 1
1

×=×
nen

zw  in Section 8.  But to model an incurred loss as the exponential function 

of a complex number suffers from two drawbacks.  First, to model a real-valued loss as iyx eee ⋅=z  

requires y to be an integral multiple of π.  The mixed random variable Xe  with probability p and 
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Xe−  with probability p−1 is not lognormal.  No more suitable are such “denatured” random 

variables as ( )ZeRe .  Second, one still cannot model the eminently practical value of zero, because 

for all z, 0≠ze .21  At present it does not appear that complex random variables will give birth to 

useful distributions of real-valued random variables.  Even the unit-circle and indicator random 

variables of Sections 10 and 11, as interesting as they are in the theory of analytic functions, most 

likely will engender no distributions valuable to actuarial work. 

 

The complex version of the linear model in Section 12 showed us that conjugates of observations 

are themselves observations and that conjugates of estimators are estimators of conjugates.  

Moreover, there we found a use for augmented variance.  Nonetheless we are still fairly bound to 

our conclusion to Section 3, that one who lacked either the confidence or the software to work with 

complex numbers could probably do a work-around with double-real matrices. 

 

So how can actuarial science benefit from complex random variables?  The great benefit will come 

from new ways of thinking.  The first step will be to overcome the habit of picturing a complex 

number as half real and half imaginary.  Historically, it was only after numbers had expanded from 

rational to irrational that the whole set was called “real.”  Numbers ultimately are sets; zero is just 

the empty set.  How real are sets?  Regardless of their mathematical reality, they are not physically 

real.  Complex numbers were deemed “real” because mathematicians needed them for the solution 

of polynomial equations.  In the nineteenth century this spurred the development of abstract 

algebra.  At first new ways of thinking amount to differences in degree; at some point many develop 

                                                 
21 If 0=ae  for some a, then for all z 00 =⋅=== −−+− azaazaazz eeeee .  One who sees that 

00lim =⋅=⋅
−∞→

iyiyx

x
eee  might propose to add the ordinate ( ) −∞== xzRe  to the complex plane.  But not only 

is this proposal artificial; it also militates against the standard theory of complex variables, according to which all points 
infinitely far from zero constitute one and the same point at infinity. 
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into differences in kind.  One might argue, “Why study Euclidean geometry?  It all derives from a 

few axioms.”  True, but great theorems (e.g., that the sum of the angles of a triangle is the sum of 

two right angles) can be a long way from their axioms.  A theorem means more than the course of 

its proof; often there are many proofs of a theorem.  Furthermore, mathematicians often work 

backwards from accepted or desired truths to efficient and elegant sets of axioms.   Perhaps the 

most wonderful thing about mathematics is its “unreasonable effectiveness in the natural sciences,” 

to quote physicist Eugene Wigner.  The causality between pure and applied mathematics works in 

both directions.  Therefore, it is likely that complex random variables and vectors will find their way 

into actuarial science.  But it will take years, even decades, and technology and education will have to 

prepare for it. 

14. CONCLUSION 

Just as physics divides into different areas, e.g., theoretical, experimental, and applied, so too 

actuarial science, though perhaps more concentrated on business application, justifiably has and 

needs a theoretical component.  Theory and application cross-fertilize each other.  In this paper we 

have proposed to add complex numbers to the probability and statistics of actuarial theory.  With 

patience, the technically inclined actuary should be able to understand the theory of complex 

random variables delineated herein.  In fact, our multivariate approach may even more difficult to 

understand than the complex-function theory; but both belong together.  Although all complex 

matrices and operations were formed from double-real counterparts, we believe that the “sum is 

greater than the parts,” i.e., that the assimilation of this theory will lead to higher-order thinking and 

creativity.  In the sixteenth century the “fiction” of 1−=i  allowed mathematicians to solve more 

equations.  Although at first complex solutions were deemed “extraneous roots,” eventually their 

practicality became recognized; so that today complex numbers are essential for science and 
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engineering.  Applying complex numbers to probability has lagged; but even now it is part of signal 

processing in electrical engineering.  Knowing how rapidly science has developed with nuclear 

physics, molecular biology, space exploration, and computers, who would dare to bet against the 

usefulness of complex random variables to actuarial science by the mid-2030s, when many scientists 

and futurists expect nuclear fusion to be harnessed and available for commercial purposes? 
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APPENDIX A 

REAL-VALUED LOGNORMAL RANDOM VECTORS 

Feeling that the treatment of lognormal random vectors in Section 8 would be too long, we have 

decided to prepare for it in Appendices A and B.  According to Section 7, the probability density 

function of real-valued n×1 normal random vector x with mean µ and variance Σ is: 

( )
( )

( ) ( )μxμx
2
1 1

2

1x
−Σ′−− −

Σ
= ef

nπ
x  

Therefore, ( ) 1x =∫
ℜ∈ nx

dVf x .  The single integral over nℜ  represents an n-multiple integral over each 

xj from –∞ to +∞; ndxdxdV 1= . 

 

The moment generating function of x is ( ) [ ]












 ∑
== =′

n

j
jj xt

eEeEM 1tt x
x , where t is a suitable n×1 

vector.22  Partial derivatives of the moment generating function evaluated at 10t ×= n  equal moments 

of x, since: 

( ) [ ] [ ]nn

n

n

n
k
n

k

t

tk
n

k

t

kk

kk

xxEexxE
xx
tM






11

1

1

1

101

0

==
∂∂

∂
=

′

=

+
xx  

But lognormal moments are values of the function itself.  For example, if jet = , the jth unit vector, 

then ( ) [ ] [ ]jj X
j eEeEM == ′ x

x
ee .  Likewise, ( ) [ ]kj XX

kj eeEM =+ eex .  The moment generating 

function of x, if it exists, is the key to the moments of xe . 

 
                                                 
22 All real-valued t vectors are suitable; Appendix B will extend the suitability to complex t. 
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The moment generating function of the real-valued multivariate normal x is: 

( ) [ ]

( )
( ) ( )

( )
( ) ( ){ }

dVe

dVee

eEM

n

n

x
n

x
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∫

∫
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=
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2
1

xtμxμx
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2
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t

π
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x
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A multivariate “completion of the square” results in the identity: 

( ) ( ) [ ]( ) [ ]( ) ttμt2ΣtμxΣtμxxt2μxμx 11 Σ′−′−+−Σ′+−=′−−Σ′− −−  

We leave it for the reader to verify.  By substitution, we have: 

( )
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The reduction of the integral to unity in the second last line is due to the fact that 

( )
[ ]( ) [ ]( )ΣtμxΣtμx

2
1 1

2

1 +−Σ+−− −′

Σ
e

nπ
 is the probability density function of the real-valued n×1 normal 

random vector with mean tμ Σ+  and variance Σ.  This new mean is valid if it is real-valued, which 

will be so if t is real-valued.  In fact, tμ Σ+  is real-valued if and only if t is real-valued. 
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So the moment generating function of the real-valued normal multivariate ( )Σ,μ~ Nx  is 

( ) 2ttμtt Σ′+′= eM x , which is valid at least for nℜ∈t .  As a check:23 

( ) ( ) [ ] ( )
μ

t
ttμ

t
t

0t
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And for the second derivative: 
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The lognormal moments follow from the moment generating function: 

[ ] [ ] ( ) 22eeμexe e jjjjjjjj eeMeEeE j
X Σ+Σ′+′′ ==== µ

x  

The second moments are conveniently expressed in terms of first moments:  

[ ] ( )

( ) ( ) ( )

( )

( )

( )

( )

[ ] [ ] jkkj

jkjkkkkjjj

kjjkkkkjjj

kjjkkkkjjj

kkkjjkjjkj

kjkjkj

kjkj

eeEeE

eee

eee

e

e

e

eEeeE

XX

XX

Σ

Σ+ΣΣ+Σ+

Σ+ΣΣ+Σ+

Σ+Σ+Σ++Σ+

Σ+Σ+Σ+Σ++

+Σ′++′+

′+

⋅=

⋅⋅=

⋅⋅=

=

=

=





=

222

222

222

2

2eeeeμee

xee

µµ

µµ

µµ

µµ

 

                                                 
23 The vector formulation of partial differentiation is explained in Appendix A.17 of Judge [1988]. 
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So, [ ] [ ] [ ] [ ] [ ] [ ]( )1, −=−= Σ jkkjkjkjkj eeEeEeEeEeeEeeCov XXXXXXXX , which is the multivariate 

equivalent of the well-known scalar formula [ ] [ ] [ ] 1
2σ22 −== eeEeVareCV XXX .  Letting [ ]xeE  

denote the n×1 vector whose jth element is [ ]jXeE ,24 and [ ]





 xeEdiag  as its n×n diagonalization, 

we have [ ] [ ] { } [ ]





−






= ×

Σ xxx eEdiageeEdiagVar nn1 .  Because [ ]





 xeEdiag  is diagonal in positive 

elements (hence, symmetric and PD), [ ]xVar  is NND [or PD] if and only if nne ×
Σ −1  is NND [or 

PD].25  Symmetry is no issue here, because for real-valued matrices, Σ is symmetric if and only if 

nne ×
Σ −1  is symmetric. 

 

The relation between Σ and nne ×
Σ −=Τ 1  is merits a discussion whose result will be clear from a 

consideration of 2×2 matrices.  Since 22×Σ  is symmetric, it is defined in terms of three real numbers: 









=Σ

db
ba

.  Now Σ is NND if and only if 1) 0≥a , 2) 0≥d , and 3) 02 ≥− bad .  Σ is PD if and 

only if these three conditions are strictly greater than zero.  If a or d is zero, by the third condition b 

also must be zero.26  Since we are not interested in degenerate random variables, which are 

effectively constants, we will require a and d to be positive.  With this requirement, Σ is NND if and 

                                                 
24 This would follow naturally from the “elementwise” interpretation of Ae , i.e., that the exponential function of matrix 

A is the matrix of the exponential functions of the elements of A.  But if A is a square matrix, Ae  may have the 

“matrix” interpretation ∑
∞

=

+
1

!AI
j

j
n j . 

25 PD [positive-definite] and NND [non-negative-definite] are defined in Section 4. 

26 Since NND matrices represent variances, 
[ ] [ ]
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.  The 

fact that a or d equals 0 implies that b equals 0 means that a random variable can’t covary with another random variable 
unless it covaries with itself. 
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only if  adb ≤2 , and PD if and only if adb <2 .  Since a and d are positive, so too is ad, as well as 

the geometric mean ad=γ .  So Σ is NND if and only if  γγ ≤≤− b , and PD if and only if 

γγ <<− b .  It is well-known that ( ) ( )dadada ,max
2

,min ≤
+

≤≤ γ  with equality if and only if 

da = . 

 

Now the same three conditions determine the definiteness of 








−−
−−

=−=Τ ×
Σ

11
11

1 22 db

ba

ee
ee

e .  

Since we required a and d to be positive, both 1−ae  and 1−de  are positive.  This leaves the 

definiteness of Τ dependent on the relation between ( )( )11 −− bb ee  and ( )( )11 −− da ee .  We will 

next examine this relation according to the three cases 0=b , 0>b , and 0<b , all of which must 

be subject to γγ ≤≤− b . 

 

First, if 0=b , then γγ <<− b  and Σ is PD.  Furthermore, ( )( ) ( )( )11011 −−<=−− dabb eeee .  

Therefore, in this case, the lognormal transformation 221 ×
Σ −=Τ→Σ e  is from PD to PD.  And 

zero covariance in the normal pair produces zero covariance in the lognormal pair.  In fact, since 

zero covariance between normal bivariates implies independence (cf. §2.5.7 of Judge [1988]), the 

lognormal bivariates also are independent. 

 

In the second case, 0>b , or more fully, γ≤< b0 .  Σ is PD if and only if γ<b .  Define the 

function ( ) ( )( )xex x 1ln −=ϕ  for positive real x (or +ℜ∈x ).  A graph will show that the function 

strictly increases, i.e., ( ) ( )21 xx ϕϕ <  if and only if 21 xx < .  Moreover, the function is concave 

upward.  This means that the line segment between points ( )( )11 , xx ϕ  and ( )( )22 , xx ϕ  lies above 
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the curve ( )xϕ  for intermediate values of x.  In particular, 
( ) ( )







 +

≥
+

22
1121 xxxx

ϕ
ϕϕ

.  

Equivalently, for all +ℜ∈21 , xx , ( ) ( )21
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2
2 xxxx

ϕϕϕ +≤





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 with equality if and only if 21 xx = .  

Therefore, since a and d are positive, ( ) ( )dada ϕϕϕ +≤





 +

2
2 .  And since 

2
0 daad +

≤=< γ , 

( ) ( ) ( )dada ϕϕϕγϕ +≤





 +

≤
2

22 .  So ( ) ( ) ( )da ϕϕγϕ +≤2  with equality if and only if da = .  

Furthermore, since in this case γ≤< b0 , ( ) ( ) ( ) ( )dab ϕϕγϕϕ +≤≤ 22 .  Hence, 

( ) ( ) ( )dab ϕϕϕ +≤2 .  The equality prevails if and only if dab === γ , or if and only if dba == .  

If dba ==  then Σ is not PD; otherwise Σ is PD.  Hence: 

( ) ( ) ( ) 

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The inequality is preserved by exponentiation: 
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This leads at last to the inequality: 

( ) ( )( ) ( )( ) ( )( )111111111
222
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


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b
b eeeebee
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b
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γ
 

Therefore, in this case ( ) ( )( )111 2
−−≤− dab eee  with equality if and only if dba == .  This means 

that if 0>b , the lognormal transformation 221 ×
Σ −=Τ→Σ e  is from NND to NND.  But Τ is 

NND only if ( ) ( )( )111 2
−−=− dab eee , or only if dba == .  Otherwise, Τ is PD.  So, when 

0>b , 221 ×
Σ −=Τ e  is PD except when all four elements of Σ have the same positive value.  Even 
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the NND matrix 







=Σ

dad
ada  log-transforms into a PD matrix, unless da = .  So all PD and 

most NND normal variances transform into PD lognormal variances.  A NND lognormal variance 

indicates that at least one element of the normal random vector is duplicated. 

 

In the third and final case, 0<b , or more fully, 0<≤− bγ .  This is equivalent to γ≤−< b0 , or 

to the second case with b− .  In that case, ( ) ( )( )111 2
−−≤−− dab eee  with equality if and only if 

dba =−= .  But from this, as well as from the fact that 10 022 <<< ⋅ee b , it follows: 

( ) ( ) ( ) ( )( ) ( )( )11111111 222222
−−⋅<−−≤−=−=− −− dadabbbbbb eeeeeeeeee  

So in this case the inequality is strict: ( ) ( )( )111 2
−−<− dab eee , and Τ is PD.  Therefore, if 0<b , 

the lognormal transform 221 ×
Σ −=Τ→Σ e  is PD, even if Σ is NND. 

 

To summarize, the lognormal transformation 221 ×
Σ −=Τ→Σ e  is PD if Σ is PD.  Even when Σ is 

not PD, but merely NND, Τ is almost always PD.  Only when Σ is so NND as to conceal a 

random-variable duplication is its lognormal transformation NND. 

 

The Hadamard (elementwise) product and Schur’s product theorem allow for an understanding of 

the general lognormal transformation nne ×
Σ −=Τ→Σ 1 .  Denoting the elementwise nth power of Σ 

as 



factorsn

n ΣΣ=Σ , we can express elementwise exponentiation as ∑
∞

=

Σ Σ=
0

!
j

j je  .  So 

∑
∞

=
×

Σ Σ=−=Τ
1

!1
j

j
nn je  .  According to Schur’s theorem (§3 of Million [2007]), the Hadamard 
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product of two NND matrices is NND.27  Since Σ is NND, its powers jΣ  are NND, as well as the 

terms !jjΣ .  Being the sum of a countable number of NND matrices, Τ also must be NND.28  

But if just one of the terms of the sum is PD, the sum itself must be PD.  Therefore, if Σ is PD, 

then Τ also is PD. 

 

Now the kernel of m×n matrix A is the set of all nℜ∈x  such that 0Ax = , or 

( ) { }0Ax:xA ==ker .  The kernel is a linear subspace of nℜ  and its dimensionality is ( )Arankn − .  

By the Cholesky decomposition the NND matrix U can be factored as nnnn ×× ′= WWU .  The 

quadratic form in U is ( ) ( )WxWxWxWxUxx ′=′′=′ .  If 0Uxx =′ , then 10Wx ×= n , and 

11 00WWxWUx ×× =′=′= nn .  Conversely, if 10Ux ×= n , then 0Uxx =′ .  So the kernel of NND 

matrix U is precisely the solution set of 0Uxx =′ , i.e., 0Uxx =′  if and only if ( )Ukerx∈ .  

Therefore, the kernel of ∑
∞

=

Σ=Τ
1

!
j

j j  is the intersection of the kernels of jΣ , or 

( ) ( ) 
∞

=

Σ=Τ
1j

jkerker .  It is possible for this intersection to be of dimension zero, i.e., for it to equal 

{ }10 ×n , even though the kernel of no jΣ  is.  Because of the accumulation of intersections in 

∑
∞→

=

Σ
k

j

j j
1

!  , the lognormal transformation of NND matrix Σ tends to be “more PD” than Σ itself.  

                                                 
27 Appendix C provides a proof of this theorem. 

28 For the quadratic form of a sum equals the sum of the quadratic forms: xUxxUx ∑∑ ′=






′
k

k
k

k .  In fact, if the 

coefficients aj are non-negative, then ∑
∞

=

Σ
1j

j
ja   is NND, provided that the sum converges, as Σe  does. 
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We showed above that if Σ is PD, then nne ×
Σ −=Τ 1  is PD.  But even if Σ is NND, Τ will be PD, 

unless Σ contains a 2×2 subvariance 







ΣΣ
ΣΣ

kkkj

jkjj  whose four elements are all equal. 
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APPENDIX B 

THE NORMAL MOMENT GENERATING FUNCTION AND COMPLEX 
ARGUMENTS 

In Appendix A we saw that the moment generating function of the real-valued normal multivariate 

( )Σ,μ~ Nx , viz., ( ) 2ttμtt Σ′+′= eM x , is valid at least for nℜ∈t .  The validity rests on the identity 

( )
[ ]( ) [ ]( )

1
2

1

x

ΣtμxΣtμx
2
1 1

=
Σ

∫
ℜ∈

+−Σ+−− −′

dVe
n

nπ
 for real-valued tμξ Σ+= .  But in Section 8 we must 

know the value of ( )
( )

( ) ( )
dVe

n
n∫

ℜ∈

−Σ−− −′

Σ
=

x

ξxξx
2
1 1

2

1ξ
π

ϕ  when ξ is a complex n×1 vector.  So in 

this appendix, we will prove that for all nC∈ξ , ( ) 1ξ =ϕ . 

 

The proof begins with diagonalization.  Since Σ is symmetric and PD, 1−Σ  exists and is symmetric 

and PD.  According to the Cholesky decomposition (Healy [1986, §7.2]), there exists a real-valued 

n×n matrix W such that 1WW −Σ=′ .  Due to theorems on matrix rank, W must be non-singular, or 

invertible.  So the transformation Wxy =  is one-to-one.  And letting Wξζ = , we have 

( )ξxWζy −=− .  Moreover, the volume element in the y coordinates is: 

Σ
=Σ=′=′=== − x

x
1

xxx
2

xy WWWWWW dVdVdVdVdVdVdV . 

Hence: 
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( )
( )

( ) ( )

( )
( ) ( )

( )
( )[ ] ( )[ ]

( )
( ) ( )

( )

( )

( )

( )

( )∏

∏ ∫

∫ ∏

∫

∫

∫

∫

∫

=

=

∞

−∞=

−−

ℜ∈ =

−−

ℜ∈

−−

ℜ∈

−′−−

ℜ∈

−′−−

ℜ∈

−′−−

ℜ∈

−Σ−−

=

∑
=

∑
=

∑
=

=

Σ
=

Σ
=

Σ
=

=

=

=

′

−′

n

j
j

n

j
j

n

j

n

n

n

n

n

j

n

j
jj

n

n

j
jj

n

n

j
jj

n

n

n

n

de

dVe

dVe

dVe

dVe

dVe

dVe

1

1 y

ζy
2
1

y 1

ζy
2
1

y

ζy
2
1

y
y

ζyζy
2
1

x

x

ξxWξxW
2
1

x
x

ξxWWξx
2
1

x

ξxξx
2
1

ζψ

y
2
1

2
1

2

1

2

1

2

1

2

1

2

1ξ

1

2

1

2

1

2

1

π

π

π

π

π

π

π
ϕ

 

In the last line ( ) ( )
∫
=

−−

+∞→
−∞→

=
b

ax

x

b
a

dxe
2ζ

2
1

2
1ζψ lim π

.  Obviously, if ζ is real-valued, ( ) 1ζψ = .  So the 

issue of the value of a moment generating function of a complex variable resolves into the issue of 

the “total probability” of a unit-variance normal random variable with a complex mean.29 

 

To evaluate ( )ζψ  requires some complex analysis with contour integrals.  First, consider the 

standard-normal density function with a complex argument: ( ) 2

2

2
1 z

ezf
−

=
π

.  By function-

composition rules, since both 2z  and the exponential function are “entire” functions (i.e., analytic 

                                                 
29 We deliberately put ‘total probability’ in quotes because the probability density function with complex ζ is not proper; 
it may produce negative and even complex values for probability densities. 
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over the whole complex plane), so too is ( )zf .  Therefore, ( ) 0=∫C dzzf  for any closed contour C 

(cf. Appendix D.7 of Havil [2003]).  Let C be the parallelogram traced from vertex bz =  to vertex 

az =  to vertex ζ−= az  to vertex ζ−= bz  and finally back to vertex bz = .  Therefore: 

( )

( ) ( ) ( ) ( )∫∫∫∫

∫

−

−

−

−

+++=

=

b

b

b

a

a

a

a

b

C

dzzfdzzfdzzfdzzf

dzzf

ζ

ζ

ζ

ζ

0

 

The line segments along which the second and fourth integrals proceed are finite; their common 

length is ( ) ( )ζζζζ −−==−=−−= bbaaL , where 0ζζζ ≥= .  By the triangle inequality 

( ) ( ) ( ) dzzfdzzfdzzf
a

a

a

a

a

a
∫∫∫
−−−

=≤
ζζζ

.  But ( )zf  is a continuous real-valued function, so over a 

closed interval it must be upper-bounded by some positive real number M.  Hence, 

( ) ( ) ( )( ) [ ]( )( ) ( ) LaMdzaazfSupdzzfSupdzzfdzzf
a

a

a

a

a

a

a

a

⋅=−∈=≤≤ ∫∫∫∫
−−−− ζζζζ

ζ, .  Likewise, 

( ) [ ]( )( ) ( ) LbMdzbbzfSupdzzf
b

b

b

b

⋅=−∈≤ ∫∫
−− ζζ

ζ, . 

 

Now, in general:  
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( ) ( ) ( )

( )2

22

22

22

22

Re

2

22

22

22

2

2
1

2
1

z

zz

zz

zz

zz

e

e

ee

ee

ee

zfzfzf

−

+
−

−−

−−

−−

∝

∝

⋅∝

⋅
=

⋅=

=

π

ππ

 

Therefore, since ℜ∈a : 

( ) ( ) [ ]

( )

0

ζ1,1;lim

ζ,;limlim

1Re

Re

Re

2
2

2

2

∝
⋅∝

⋅




















 −∈∝

⋅




 −∈∝⋅

∞−




















−

+∞→

−

−∞→−∞→

Le

L
aa

zeSup

LaazeSupLaM

a
za

a

z

aa

 

Similarly, ( ) 0lim ∝⋅
+∞→

LbM
b

.  So in the limit as −∞→a  and +∞→b  on the real axis, the second 

and fourth integrals approach zero.  Accordingly: 

{ }

( ) ( ) ( ) ( )

( ) ( )












+=













+++=

=

∫∫

∫∫∫∫

−

−
+∞→
−∞→

−

−

−

−

+∞→
−∞→

+∞→
−∞→

ζ

ζ

ζ

ζ

ζ

ζ

lim

lim

lim 00

b

a

a

b
b
a

b

b

b

a

a

a

a

b
b
a

b
a

dzzfdzzf

dzzfdzzfdzzfdzzf  

And so, ( ) ( ) ( ) 1
2
1 2

2
1ζ

ζ
limlimlim ===−= ∫∫∫∫

+∞

∞−

−

+∞→
−∞→

+∞→
−∞→

−

−
+∞→
−∞→

dzedzzfdzzfdzzf
zb

a
b
a

a

b
b
a

b

a
b
a π
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So, at length: 

( ) ( )

( )( ) ( )

( )

( )

1

2
1

ζ
2
1

ζ
2
1

2
1ζψ

ζ

ζ

ζ

ζ

2
1

ζ

ζ

2
1

ζζ
2
1

ζ
2
1

lim

lim

lim

lim

lim

2

2

2

2

=

=

=

+=

+=

=

∫

∫

∫

∫

∫

−

−=
+∞→
−∞→

−

−=

−

+∞→
−∞→

−

−=

−

+∞→
−∞→

=

−+−

+∞→
−∞→

=

−−

+∞→
−∞→

b

az
b
a

b

az

z

b
a

b

az

z

b
a

b

ax

z

b
a

b

ax

x

b
a

dzzf

dze

zde

zde

dxe

π

π

π

π

 

So, working backwards, what we proved for one dimension, viz., ( ) ( )
1

2
1ζψ

2ζ
2
1

== ∫
+∞

−∞=

−−

x

x
dxe

π
, 

applies n-dimensionally: for all nC∈ξ , ( )
( )

( ) ( )
1

2

1ξ
x

ξxξx
2
1 1

=
Σ

= ∫
ℜ∈

−Σ−− −′

dVe
n

nπ
ϕ .  Therefore, even 

for complex t, ( ) 2ttμtt Σ′+′= eM x .  Complex values are allowable as arguments in the moment 

generating function of a real-valued normal vector.  This result is critical to Section 8. 

 

Though we believe the contour-integral proof above to be worthwhile for its instructional value, a 

simple proof comes from the powerful theorem of analytic continuation (cf. Appendix D.12 of 

Havel [2003]).  This theorem concerns two functions that are analytic within a common domain.  If 

the functions are equal over any smooth curve within the domain, no matter how short,30 then they 

                                                 
30 The length of the curve must be positive; equality at single points, or punctuated equality, does not qualify.   
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are equal over all the domain.  Now ( ) ( )
∫
=

−−

+∞→
−∞→

=
b

ax

x

b
a

dxe
2ζ

2
1

2
1ζψ lim π

 is analytic over all the complex 

plane.  And for all real-valued ζ, ( ) 1ζψ = .  So ( )ζψ  and ( ) 1ζ =f  are two functions analytic over the 

complex plane and identical on the real axis.  Therefore, by analytic continuation ( )ζψ  must equal 

one for all complex ζ.  Analytic continuation is analogous with the theorem in real analysis that two 

smooth functions equal over any interval are equal everywhere.  Analytic continuation derives from 

the fact that a complex derivative is the same in all directions.  It is mistaken to regard the real and 

imaginary parts of the derivative as partial derivatives, as if they applied respectively to the real and 

imaginary axes of the independent variable.  Rather, the whole derivative applies in every direction. 
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APPENDIX C 

EIGEN-DECOMPOSITION AND SCHUR’S PRODUCT THEOREM 

Appendix A quoted Schur’s Product Theorem, viz., that the Hadamard product of non-negative-

definite (NND) matrices is NND.  Million [2007] proves it as Theorem 3.4; however, we believe our 

proof in this appendix to be simpler; moreover, it affords a review of eigen-decomposition.  Those 

familiar with eigen-decomposition may skip to the last paragraph. 

 

Let Γ be an n×n Hermetian NND matrix.  As explained in Section 4, ‘Hermetian’ means that 

*Γ=Γ ; ‘NND’ means that for every complex n×n vector z (or nC∈z ), 0zz* ≥Γ .  Positive 

definiteness [PD] is a stricter condition, in which 0zz* =Γ  if and only if 10z ×= n . 

 

Complex scalar λ and non-zero vector ν form an “eigenvalue-eigenvector” pair of Γ, if λνν =Γ .  

Since 10ν ×= n  is excluded as a trivial solution, vector ν can be scaled to unity, or 1νν* = .  But 

λνν =Γ  if and only if ( ) 10νλI ×=−Γ nn .  If nλI−Γ  is non-singular, or invertible, then: 

( ) ( ) ( ) 11
11 00λIνλIλIνIν ××
−− =−Γ=−Γ−Γ== nnnnnn  

Hence, allowable eigenvectors require for nλI−Γ  to be singular, or for its determinant nλI−Γ  to 

be zero.  Since the determinant is an nth-degree equation (with complex coefficients based on the 

elements of Γ) in λ, it has n root values of λ, not necessarily distinct.  So the determinant can be 

factored as ( ) ( ) ( )nnf λλλλλIλ 1 −−=−Γ=  .  Since ( ) 0Iλλ =−Γ= njjf , there exist non-

zero solutions to ( ) 10νλI ×=−Γ nn .  So for every eigenvalue there is a non-zero eigenvector, even a 

non-zero eigenvector of unit magnitude. 
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The first important result is that the eigenvalues of Γ are real-valued and non-negative.  Consider the 

jth eigenvalue-eigenvector pair, which satisfies the equation jjj νλν =Γ .  Therefore, 

jjjjj ννλνν ** =Γ .  Since Γ is NND, jj νν*Γ  is real-valued and non-negative.  Also, jj νν*  is real-

valued and positive.  Therefore, their quotient λj is a real-valued and non-negative scalar.  

Furthermore, if Γ is PD, jj νν*Γ  is positive, as well as λj. 

 

The second important result is that eigenvectors paired with unequal eigenvalues are orthogonal.  

Let the two unequal eigenvalues be kj λλ ≠ .  Because the eigenvalues are real-valued, jj λλ = .  The 

eigenvector equations are jjj νλν =Γ  and kkk νλν =Γ .  The following string of equations relies on 

Γ’s being Hermetian (so *Γ=Γ ): 

( )

( )
( )

0

νννν

νννν

νννν

ννλννλ

ννλννλ

ννλννλννλλ

**

***

***

***

**

***

=

Γ−Γ=

Γ−Γ=

Γ−Γ=

−=

−=

−=−

kjkj

kjkj

kjjk

kjkjkj

kjkkjj

kjkkjjkjkj

 

Because 0λλ ≠− kj , the eigenvectors must be orthogonal, or 0νν* =kj .  If all the eigenvectors are 

distinct, the eigenvectors form an orthogonal basis of nC .  But even if not, the kernel of each 

eigenvalue, or ( ) { }zλz:zIλ j
n

nj Cker =Γ∈=−Γ  is a linear subspace of nC  whose rank or 

dimensionality equals the multiplicity of the root λj in the characteristic equation ( ) nf λIλ −Γ= .  

This means that the number of mutually orthogonal eigenvectors paired with an eigenvalue equals 
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how many times that eigenvalue is a root of its characteristic equation.  Consequently, there exist n 

eigenvalue-eigenvector pairs ( )jj ν,λ  such that jjj νλν =Γ  and ijkj δνν* = .31 

 

Now, define W as the partitioned matrix [ ]nnn ννW 1 =× .  The jkth element of W*W equals 

ijkj δνν* = ; hence, nIWW* = .  A matrix whose transjugate is its inverse is called “unitary,” as is 

W.32  Furthermore, define Λ as the n×n diagonal matrix whose jjth element is λj.  Then: 

[ ] [ ] [ ] [ ] Λ=















==ΓΓ=Γ=Γ W

λ

λ
νννλνλννννW

1

11111

n

nnnnn   

And so, **
n WWWWI Λ=Γ=Γ=Γ , and Γ is said to be “diagonalized.”  Thus have we shown, 

assuming the theory of equations, 33 the third important result, viz., that every NND Hermetian 

matrix can be diagonalized.  Other matrices can be diagonalized; the NND [or PD] consists in the 

fact that all the eigenvalues of this diagonalization are non-negative [or positive]. 

 

The fourth and final “eigen” result relies on the identity jj eνW* = , which just extracts the jth 

columns of each side of nIWW* = .  As in Appendix A, je  is the jth unit vector.  Therefore: 

                                                 
31 The Kronecker delta, ijδ , is the function ( )0,1,IF ji = . 
32 To be precise, at this point W* is only the left-inverse of W.  But by matrix-rank theorems, the rank of W equals n, so 
W has a unique full inverse -1W .  Then ( ) ( ) 111*1*** WWIWWWWWWIWW --

n
--

n ===== . 

33 The theory of equations guarantees the existence of the roots of the nth-degree equation ( ) .λIλ nf −Γ=   
Appendix D.9 of Havel [2003] contains a quick and lucid proof of this, the fundamental theorem of algebra. 
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( )( )
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


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
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


=









=









=

Λ=Γ

n

j
jjj

n

n

j
jjjn

n

j
jjj

n

j
jjj

n

j
jjj

n

j

*
jjj

1

*

1

*

*

1

**

*

1

**

*

1

***

*

1

*

ννλ

IννλI

WWννλWW

WWννWλW

WνWνWλW

WeeλW

WW

 

The form ∑
=

n

j
jjj

1

*ννλ  is called the “spectral decomposition” of Γ (§7.4 of Healy [1986]), which plays 

the leading role in the following succinct proof of Schur’s product theorem. 

 

If Σ and Τ are two n×n Hermetian NND definite matrices, we may spectrally decompose them as 

∑
=

=Σ
n

j
jjj

1

*ννλ  and ∑
=

=Τ
n

j
jjj

1

*ηηκ , where all the λ and κ scalars are non-negative.  Accordingly: 
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( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )
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srsrsr
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r
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n

r
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


=

=

=

=

=

















=

















=

ΤΣ=ΤΣ

∑∑

∑∑

∑∑

∑∑

∑∑

∑∑

∑∑

= =

= =

= =

= =

= =

==
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1 1

*

1 1

*

1 1

1 1

1 1

11

1

*

1

*

ηνηνκλ

ηνηνκλ

ηνηνκλ

ηνηνκλ

ηνηνκλ

ηηκννλ

ηηκννλ











 

Hence, ( )( )∑∑
= =

=ΤΣ
n

r

n

s
srsrsr

1 1

*ηνηνκλ  .  Since each matrix ( )( )*ηνην srsr   is Hermetian 

NND, and each scalar srκλ  is non-negative, ΤΣ   must be Hermetian NND.  Therefore, the 

Hadamard product of NND matrices is NND. 
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The Gauss-Markov Theorem: Beyond the BLUE 

Leigh J. Halliwell, FCAS, MAAA 
______________________________________________________________________________ 

Abstract: Until now the Gauss-Markov theorem has been the handmaid of least squares; it has served 
as a proof that the least-squares method produces the Best Linear Unbiased Estimator (BLUE).  This 
theoretical paper shows that it can be, and should be, reformulated as the solution to the problem of the 
minimization of a quadratic form subject to a linear constraint.  The whole theory of linear statistical 
modeling, from basic to complicated, receives a clean and efficient development on the basis of this 
reformulation; estimates and predictions based thereon are BLUE from the start, rather than BLUE by 
subsequent proof.  With an intermediate-level background in matrix algebra the reader will understand 
the frequent interpretations of this development in terms of an n-dimensional projective geometry.  
Because this paper elevates BLUE to its true role, “Beyond the BLUE” really means “To the True 
BLUE.” 
Keywords: Gauss-Markov, BLUE, linear model, projection, distance metric 

______________________________________________________________________________ 

1.  INTRODUCTION 

The many treatments of the Gauss-Markov theorem (e.g., Judge [1988, 202-206], Halliwell 

[2007, Appendix B], and Wikipedia) lead one to believe that the theorem is no more than a 

proof that ( ) yβ XXX 1 ′′= −ˆ  is best linear unbiased estimator (BLUE) of β in the model 

ey +β= X , where [ ] I2σ=eVar .  In this capacity the theorem is impressive enough; 

however, with a little abstraction it becomes much more, as we shall see in the following 

eleven sections. 

2.  STATEMENT OF THE THEOREM AND ITS PROOF 

The Gauss-Markov theorem is essentially the solution to a constrained-optimization 

problem, more exactly, to the problem of minimizing a quadratic form subject to a linear 

constraint.  Here is our formulation of the theorem: 

The Gauss-Markov Theorem: If symmetric nn×Σ  is positive-definite and nm×A  is of 

full-row rank, then ( ) WWW 1−Σ′=Φ  can be minimized subject to the linear 

constraint pmpnnm ××× = BWA .  The value ( ) BAAAW -1* ′Σ′Σ=  uniquely minimizes 

Φ  at ( ) ( ) BAABW -1* ′Σ′=Φ . 
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To prove the theorem, we take for granted two theorems about positive-definite matrices.1  

First, positive-definite matrices have inverses; the inverses also are positive-definite.  

Therefore, symmetric 1−Σ  exists, and is positive-definite.  Second, if nm×A  is of full-row 

rank and nn×Τ  is positive-definite, then AA ′Τ  is positive-definite.  From these it follows that 

AA ′Σ  is positive-definite and invertible; hence, ( ) BAAAW -1* ′Σ′Σ=  exists.  Moreover, 

*W  satisfies the constraint, since ( ) BBIBAAAAAW -1* ==′Σ′Σ= m . 

 

Now if 1W  satisfies the constraint, then: 

( )
( )

( ) ( )
( ) BAAB

BAAAW

BAAAW

BAAAWWW

1-

1-
1

1-
1

-11
1

*1
1

′Σ′=

′Σ′=

′Σ′′=

′Σ′ΣΣ′=Σ′ −−

 

And since *W  is an allowable instance of 1W , we have the following chain of equalities: 

( ) ( ) 1
1**1

1
*1**1*1-*1

1 WWWWWWWWBAABWW −−−−− Σ
′

=
′

Σ′=
′






 Σ

′
=Σ

′
=′Σ′=Σ′  

As the heart of the Gauss-Markov proof: 

( ) ( )

( ) ( )
pp×

−

−−−−

−−−−

−−

≥

−Σ
′

−=

Σ
′

+Σ
′

−Σ′−Σ′=

Σ
′

+Σ
′

−Σ
′

−Σ′=

Σ
′

−Σ′=Φ−Φ

0

WWWW

WWWWWWWW

WWWWWWWW

WWWWWW

*
1

1*
1

*1*
1

1**1
11

1
1

*1**1**1*
1

1
1

*1*
1

1
1

*
1

 

                                                 
1 For a review of positive-definite and non-negative-definite (or positive-semi-definite) matrices see Judge 
[1988, Appendix A.14] and Halliwell [1997, Appendix A]. 
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The last line is to be taken in a matrix-definite sense, viz., that the difference 

( ) ( )*
1 WW Φ−Φ  is the non-negative-definite matrix ( ) ( )*

1
1*

1 WWWW −Σ
′

− − .  And 

because 1−Σ  is positive-definite, the difference equals the zero matrix ( pp×0 ) if and only if 

*
1 WW = .  Therefore, ( ) BAAAW -1* ′Σ′Σ=  uniquely minimizes ( ) WWW 1−Σ′=Φ  subject 

to BAW = .  Furthermore, the minimum is ( ) ( ) BAABW -1* ′Σ′=Φ . 

 

3. GEOMETRICAL INTERPRETATION WITH A DISTANCE 
METRIC 

A geometrical interpretation of the theorem will prove helpful.  Again, let 1W  satisfy the 

constraint, and let ( ) BAAAW -1* ′Σ′Σ= .  From the chain of equalities, we derive: 

( ) ( ) ( )*
1

1**1**1
1

*1*
1 WWW00WW-WWWWW −Σ

′
=′==Σ

′
Σ′=Σ

′
− −

××
−−−

pppp  

These are unusual quadratic forms.  The usual quadratic form is xy Σ′ , where the factors 

before and after 1−Σ  are n×1  and 1×n  vectors.  Here the form is XY 1−Σ′ , where the 

factors before and after 1−Σ  are np× and pn×  matrices, and the integer p  may exceed 

one. 

 

But for now, consider the usual quadratic form in the special case that nI=Σ .  Actuaries 

know that ∑
=

=′=′
n

i
in x

1

2xxxIx  is the square of the distance from the origin of nℜ  to x (or 

the area of a square the length of whose sides is that distance).  Less well known is that 

∑
=

=′=′
n

i
ii yx

1
yxxy  represents the area of a rectangle, the length of one of whose sides is 
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the length of the projection of one vector onto the other.  Most will recognize, however, an 

equivalent interpretation, viz., that 0yxxy =′=′  if and only if yx ⊥ .  The standard 

(Euclidean) definition of the distance from x  to y  is ( ) ( ) ( )xyxyyx −′−=,d .  It has the 

three properties of a metric on nℜ : 

( ) ( )
( ) ( )
( ) ( ) ( ) inequality trianglezxzyyx3

symmetryyxxy2

zero  trivially;negativitynonyx0yx;0yx1

,d,d,d.

,d,d.

,d,d.

≥+

=

−=⇔=≥

 

But for any positive-definite matrix nn×Σ , one can define a valid “Σ metric” on nℜ  as 

( ) ( ) ( )xyxyyx 1 −Σ′−= −
Σ ,d , which is valid in that it possesses these three properties.2  

The matrix Σ  represents a combination of scaling and rotating the axes of nℜ . 

 

So what is special in the Gauss-Markov theorem about ( ) BAAAW -1* ′Σ′Σ= ?  Adapting the 

concept of perpendicularity to a metric, we have: 

( ) pp×
− =Σ

′
− 0WWW *1*

1  

                                                 
2 Some confusion results from using the inverse of Σ in the quadratic form; one must think twice to determine 

whether something is a Σ  metric or a 1−Σ  metric.  However, consider the usual formula for the ellipse whose 

major semi-axis is two units and minor semi-axis is one: ( ) ( ) 22
2

2
1 112 =+ xx .  As a quadratic form this 

would be: 

[ ] 2

2

1
1

21 1
10

02
=
























−

x

x
xx  

 
It seemed more natural to call this a [2 0; 0 1] metric (as if to say, “Two units on the first axis count as one unit 

on the second.”), rather than to call it a [½ 0; 0 1] metric.  This ellipse is the set of points in 2ℜ  whose 
distance from the origin is one unit according to the [2 0; 0 1] metric.  It may help some readers to know that 

( ) ( ) ( )xyxyyx 1 −Σ′−= −
Σ ,d  is called the “Mahalanobis distance” (cf. Wikipedia), in whose definition 

the Σ matrix is inverted.  Appendix A provides a proof of the triangle inequality, as well as a justification of the 
geometric interpretation of yx′ as the product of the length of x and the length of the projection of y onto x. 
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This means that according to the Σ  metric *W  is perpendicular to *
1 WW −  (and vice 

versa).  In mathematical notation, ( )*
1

* WWW −⊥
Σ

.  The heart of the Gauss-Markov 

theorem, expressed above as ( ) ( ) ( ) ( )*
1

1*
1

*
1 WWWWWW −Σ

′
−=Φ−Φ − , is really just the 

Pythagorean theorem adapted to the Σ  metric: 

( ) ( ) 1
1

1
*

1
1*

1
*1* WWWWWWWW −−− Σ′=−Σ

′
−+Σ

′
 

*W  is the element of the constraint set closest to the origin according to the Σ  metric.  The 

following diagram clarifies this: 

{ }BAW:W ={ }BAW:W =

W1

W*

0

 

The orange line represents the constraint set.3  The origin, 
*W , and 1W  form the Σ-right 

triangle, of which 1W  is the hypotenuse, and *W  and *
1 W-W  are the legs.  The salient 

point is that the Σ area of the square with side *W  is less than or equal to that of the square 

with side 1W , or 11
** WWWW Σ′≤Σ

′
, and equal if and only if *

1 WW = .  This is valid even 

                                                 
3 Since the constraint on W  is linear, the constraint set is a hyperplane (technically, an affine apace).  The 
Gauss-Markov theorem requires a linear constraint; constraints involving curvature are inadmissible. 
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when the area concept is abstracted from a non-negative scalar to a non-negative-definite 

matrix. 

 

This ends the geometric interpretation.  Gauss-Markov reasoning happens whenever a 

quadratic form is to be minimized subject to a linear constraint.  Gauss-Markov/BLUE 

proofs are abstractions of what we all learned in plane Geometry, viz., that the shortest 

distance from a point to a straight line is along a line segment perpendicular to the line.  

Lines are abstracted into linear constraints and distance is abstracted into a Σ  metric. 

 

It is hardly necessary to memorize the formula for *W .  With the following heuristic 

reasoning one can derive it on the fly.  Since nm×A  is of full-row rank (or of rank m), the 

mm×  matrix AA ′  is invertible.  In fact, as stated above, for any positive-definite nn×T , 

AA ′Τ  is invertible.  Thus, there is a family of “right inverses” of A  that have the form 

( ) 1AAA −′Τ′Τ .  *W  will be the matrix product of one of these right inverses and B , i.e., 

( ) BAAAW 1* −′Τ′Τ= .  Since we seek to minimize WW 1−Σ′ , distance is measured 

according to a Σ=Τ  metric.  According to this metric ( ) BAAAW 1* −′Σ′Σ=  is the element 

of the constraint set closest to the origin. 

4. PROJECTION INTO THE CONSTRAINT SPACE 

In the interest of economy and precision, let us introduce some more formalism.  Our ‘W’ 

variables denote elements of pn×ℜ , the real space of pn×  dimensions.  Let us use ‘Ω’ to 

denote the constraint set: { }BAW:W =ℜ∈=Ω ×pn .  Obviously, pn×ℜ⊆Ω ; but it is not 

empty under the assumption that nm×A  is of full-row rank.  In fact, we have just seen that 
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( ) BAAAW -1* ′Σ′Σ=  is the element of Ω  closest to the origin of pn×ℜ  according to the Σ 

metric.  We may say that ( ) BAAAW -1* ′Σ′Σ=  is the Σ projection of the origin into Ω .  In 

general, what is the Σ projection of any element of pn×ℜ  into Ω ? 

 

Using ‘P’ for projection, we define ( )ΣΩ,P ;W0  as the function which projects pn×ℜ∈0W  

into Ω according to the Σ metric.  As before, Ω  is the non-empty solution set of the linear 

constraint BAW = , and Σ is positive-definite.  When these parameters are understood, we 

will use the abbreviation ( )0WP .  So ( )ΣΩ,P ;W0  is an element of Ω that minimizes the Σ-

metric distance from 0W  to Ω.  Equivalently, it minimizes the quadratic form 

( ) ( ) ( )0
1

0 W-WW-WW −Σ′=Φ  subject to BAW = . 

 

We could argue from scratch as in Section 2, but the following analysis is more insightful.  

The constraint BAW =  is equivalent to ( ) 00 AWBWWA −=− .  So the projection 

problem is to minimize ( ) ( )0
1

0 W-WW-W −Σ′  subject to ( ) 00 AWBWWA −=− .  This is 

the Gauss-Markov problem with two changes in variables: 

0

0

AWBB

WWW

−→

−→
 

Hence, the Gauss-Markov theorem states that ( ) ( ) ( )0
1*

0 AWBAAAWW −′Σ′Σ=− -  

uniquely minimizes ( ) ( ) ( )0
1

00 WWWWWW −Σ′−=−Φ − .  But since 0W  is a constant, 

( ) 0
**

0 WWWW −=− , or ( ) ( ) ( )0
1

0
*

00
* AWBAAAWWWWW −′Σ′Σ+=−+= - .  So 

there is not just an element of projection, but a unique element: 
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( ) ( ) ( )
( ){ } ( ) BAAAWAAAA

AWBAAAWW;
11

1

--
n

-

I

,P

′Σ′Σ+′Σ′Σ−=

−′Σ′Σ+=ΣΩ
 

As a check: 

( ) ( ){ } ( )

( ){ } ( )
{ }
B

BIWAIA

BAAAAWAAAAAA

BAAAAWAAAAIAW;A
11

11

=

+−=

′Σ′Σ+′Σ′Σ−=

′Σ′Σ+′Σ′Σ−=ΣΩ

mm

--

--
n,P

 

Hence, for all pn×ℜ∈W , ( ) Ω∈WAP .  So P is a mapping from pn×ℜ  into Ω, i.e., 

Ω→ℜ ×pnP : .  In particular, the mapping of the origin is: 

( ) ( ){ } ( ) ( ) BAAABAAA0AAAAI0 111 ---
npnP ′Σ′Σ=′Σ′Σ+′Σ′Σ−=× , 

which is the 'W' *  of the theorem itself.  Accordingly, we may employ the formulation 

( ) ( ){ } ( )0WAAAAIW 1 PP -
n +′Σ′Σ−= . 

 

P maps element pn×ℜ∈W  to the closest element of constraint set Ω according to the Σ 

metric.  Geometrically, P sends a Σ perpendicular from W into Ω; in symbols, 

( ) ( )WWWW 1 PP −⊥−
Σ

, for every Ω∈1W , as the following algebra shows: 
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( )( ) ( )( )

( ){ } ( )( ) ( )( )

( ) ( )( ) ( )( )

( ) ( )( ) ( )( )

( ) ( )( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )
0

BBAAAWB

WAAWAAAWB

WWAAAAWB

WWAAAAWB

WWAWBAAA

WWAWAAABAAA

WWAWAAA0

WWW0WAAAAI

WWWW

1

1
1

1
1

1
11

1
11

1
111

1
11

1
11

1
1

=

−′Σ′−=

−′Σ′−=

−′Σ′−=

−ΣΣ′Σ′−=

−Σ
′

−′Σ′Σ=

−Σ
′

′Σ′Σ−′Σ′Σ=

−Σ
′

′Σ′Σ−=

−Σ
′

−+′Σ′Σ−=

−Σ′−

−

−

−

−

−

−

-

-

-

-

-

--

-

-
n

P

P

P

P

P

PP

PP

PP

Because of the first property of a metric (zero-triviality), within the restricted domain Ω, P is 

the identity mapping.  Hence, not only is P a mapping into the constraint set Ω; it is also a 

mapping onto Ω.  Nonetheless, we will prove it algebraically.  If W ∈Ω : 

( ) ( ){ } ( )

( ) ( ) ( )
( ) ( ) ( )

W

BAAABAAAW

BAAAAWAAAW

BAAAWAAAAIW

11

11-

11

=

′Σ′Σ+′Σ′Σ−=

′Σ′Σ+′Σ′Σ−=

′Σ′Σ+′Σ′Σ−=

--

-

--
nP

Conversely, if ( ) WW =P , then ( ) BWAAW == P  and Ω∈W .  Therefore, P is a many-

to-one mapping from pn×ℜ  onto constraint set Ω, and an element of 
pn×ℜ  belongs to Ω if 

and only if P acts upon it as an identity mapping. 
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Just as the Σ-metric right inverse ( ) 1AAA -′Σ′Σ  is conspicuous in the formula 

( ) ( ) BAAA0 1-
pnP ′Σ′Σ=× , so too is it conspicuous in the formula for what we will call the 

“Σ-projection matrix” ( ) AAAAI 1-
n ′Σ′Σ− .4  Since Σ  is positive-definite, it can be 

Cholesky-decomposed as QQ ′=Σ  for some non-singular nn×Q .  Then the matrix can be 

factored as ( ) ( ){ } 11-11 QMQQAQAQAQAQIQAAAAI --
n

-
n =′′′′−=′Σ′Σ− .  So the rank 

of the matrix is the rank of ( ) AQAQAQAQIM 1-
n ′′′′−= .  But M  is a (symmetric) 

idempotent matrix (i.e., MMM ′= ), and the rank of an idempotent matrix equals its trace 

(Judge [1988, Appendix A.4 and A.12] and Halliwell [1997, Appendix B, 317; also Note 3]).  

Employing basic theorems about the trace operator, we derive: 

( )( ) ( ){ }( )
( )( )

( )( )
( ) ( )( )
( ) ( )( )
( ) ( )

mn

TrTr

TrTr

TrTr

Tr

rank

rankrank

mn

-
n

-
n

-
n

-
n

--
n

-
n

−=

−=

′′′−=

′′′−=

′′′−=

′′′−=

′′′−=′Σ′Σ−

II

AQAQAQAQI

AQAQAQAQI

AQAQAQAQI

AQAQAQAQI

QAQAQAQAQIQAAAAI

1

1

1

1

111

 

So every column of the elements of constraint set Ω has m  fewer degrees of freedom than 

the columns of pn×ℜ ; in a sense, the dimensionality of Ω is ( ) pmn ×−ℜ .  This can be surmised 

from the full-row rank of nm×A , which imposes m  independent restrictions on the elements 

of pn×ℜ  that belong to Ξ .  This will prove useful in Section 9, in which we will treat linear 

statistical models with parameter constraints. 

                                                 
4 The projection matrix shows to its greatest effect in the homogeneous form, i.e., in the differential form, 

( ) ( ) ( ){ }( )12
-1

12 WWAAAAIWW −′Σ′Σ−=− nPP . 
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5. VARIANCE AS A METRIC 

In this section we will show how the variance of a random vector serves as its natural metric.  

Let x be an n×1 random vector with mean μ and non-degenerate variance Σ.  Since the 

variance is non-degenerate, the variance of every non-zero linear combination of its elements 

is positive, i.e., Σ is positive-definite and 1−Σ  exists.  The variance of a random vector is a 

measure of its ability to differ from its mean.  So the distances of random vectors from their 

means should somehow be invariant, when their variances serve as their distance metrics. 

 

The square of the Σ-metric distance of x from its mean is ( ) ( ) ( )µ−Σ′µ−=µ −
Σ xxx 12 ,d .  

And by definition, the variance of x is [ ] ( )( ) 



 ′µ−µ−=Σ= xxx EVar .  Using again the 

trace-operator theorems of the previous section, we find: 

( )[ ] ( ) ( )

( ) ( )

( ) ( )

( )( )

( )( )

( )( )

( )
( ) nITr

Tr

ETr

ETr

TrE

TrE

ETr

E,dE

n ==

ΣΣ=












 ′µ−µ−Σ=












 ′µ−µ−Σ=





 





 ′µ−µ−Σ=





 





 µ−Σ′µ−=












 µ−Σ′µ−=





 µ−Σ′µ−=µ

−

−

−

−

−

−

−
Σ

1

1

1

1

1

1

12

xx

xx

xx

xx

xx

xxx
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Hence, a random vector’s variance is its natural metric, according to which its expected 

squared distance from its mean equals its dimensionality n, the degrees of its freedom.5 

 

6. PROJECTIONS OF RANDOM VECTORS 

As in the previous section, let x be an n×1 random vector with mean μ and variance Σ, i.e., 

( )Σµ,~x .  Since the Gauss-Markov theorem has to do with abstract projective geometry, 

we may inquire about the moments of the Σ projection of x into the constraint space 

{ }11 bxA:x ××× =ℜ∈=Ω mnnm
n . 

 

The Σ projection is ( ) ( ){ } ( ) bAAAAAAA; 11 --
nI,P ′Σ′Σ+′Σ′Σ−=ΣΩ xx .  Therefore: 

( )[ ] ( ){ } ( )[ ]
( ){ } [ ] ( )

( ){ } ( )

( ) ( )µ−′Σ′Σ+µ=

′Σ′Σ+µ′Σ′Σ−=

′Σ′Σ+′Σ′Σ−=

′Σ′Σ+′Σ′Σ−=ΣΩ

bAAA

bAAAAAAA

bAAAAAAA

bAAAAAAA;

1

11

11

11

-

--
n

--
n

--
n

I

EI

IE,PE

x

xx

 

The variance follows from the standard formula [ ] [ ]QQQ ′= xx VarVar : 

                                                 
5 Moreover, if x is multivariate normal, or if x ~ N(μ, Σ), then ( ) ( ) 21

n~ χµ−Σ′µ− − xx  (Judge [1988], 
§2.5.9).  The multivariate normal distribution is unique in that its probability distribution is a function of its 

variance metric: ( ) ( ) ( )µ−Σµ−− −′

∝
xx

2
1 1

x ef x .  Most likely, this is the ultimate reason why normality is preserved 
under any linear transformation. 
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( )[ ] ( ){ } ( )[ ]
( ){ }[ ]

( ){ } [ ] ( ){ }
( ){ } ( ){ }

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) Σ′Σ′Σ−Σ=

Σ′Σ′Σ+Σ′Σ′Σ−Σ′Σ′Σ−Σ=

Σ′Σ′Σ′Σ′Σ+Σ′Σ′Σ−Σ′Σ′Σ−Σ=

Σ′Σ′−Σ′Σ′Σ−=

′
′Σ′Σ−′Σ′Σ−=

′Σ′Σ−=

′Σ′Σ+′Σ′Σ−=ΣΩ

AAAA

AAAAAAAAAAAA

AAAAAAAAAAAAAAAA

AAAAAAAA

AAAAAAAA

AAAA

bAAAAAAA;

1

111

1111

11

11

1

11

-

---

----

-
n

-
n

-
n

-
n

-
n

--
n

II

IVarI

IVar

IVar,PVar

x

x

xx

 

Therefore, if ( )Σµ,~x , then ( ) ( ) ( )( )Σ′Σ′Σ−ΣΣΩµΣΩ AAAA;; 1-,,P~,P x .  As a check, 

[ ] ( ) bAA =µ= PE x  and [ ] ( )( ) mm
-Var ×=′Σ′Σ′Σ−Σ= 0AAAAAAA 1x .  This will prove 

useful in Section 11. 

 

7. PARAMETER ESTIMATION IN THE LINEAR STATISTICAL 
MODEL 

Now let us apply our Gauss-Markov theorem to the linear statistical model.  First, and as an 

easy start, we will apply it to derive the best linear unbiased estimator (BLUE) of the 

parameter β in the model ey +β= ×× 1X kkt , where [ ] ttVar ×Σ=e .  X  is of full-column rank, 

and Σ is positive-definite.   The estimator is linear in y , or yβ W′=ˆ .6  Because it is unbiased 

for all β, [ ] [ ] β=β′=′= XWW yβ EˆE .  So matrix W′  is constrained according to the 

equation kIXW =′ , which transposes as kIWX =′ .  The best of the unbiased estimators 

minimizes [ ] [ ] WWW Σ′=′= yβ VarˆVar .  So the problem is to minimize 

                                                 
6 For a reason immediately to become apparent, we use here the transpose of W. 
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( ) ( ) WWWWW 11 -−Σ′=Σ′=Φ  subject to kIWX =′ . The correspondences between the 

theorem and this model are: 

kIB

XA

WW

ModelTheorem
1

←

′←

←

Σ←Σ

←

−

 

X′  is of full-row rank, because X  is of full-column rank.  Hence, according to the 

theorem, ( ) ( ) 111111* XXXIXXXW −−−−−− Σ′Σ=′′Σ′′′Σ= k .  So ( ) yyβ 111* XXXW −−− Σ′Σ′=
′

=ˆ  

and [ ] ( ) ( ) 1111** XXIXXIWW −−−− Σ′=′′Σ′′=Σ
′

= kk
ˆVar β .  Accordingly, [ ] yββ 1X −Σ′= ˆVarˆ . 

 

8. PREDICTION IN THE LINEAR STATISTICAL MODEL 

The goal of most linear modeling is not to estimate the parameter β , but rather to estimate7 

quantities which eventually will be observed.  Although the model makes such quantities 

dependent on the parameter, the parameter itself is usually hypothetical and never to be 

observed.  With partitioning between the observed 1y  and the to-be-predicted 2y  (hence, 

containing missing values) the general form of the linear statistical model is:  

( )

( )

Σ=












ΣΣ

ΣΣ
=
























+β












=












×

×

×

2221

1211

2

1

2

1

1
2

1

2

1
  where,

X

X

2

1

e

e

e

e

y

y
Vark

kt

kt
 

Not only must Σ  be symmetric and non-negative-definite, 11Σ  must be positive-definite, 

and 1X  must be of full-column rank.  We seek the best linear-in- 1y , unbiased estimator 
                                                 
7 More accurately, the goal is to predict – we seek the best linear unbiased prediction.  But we will continue to 
call this BLUE, because BLUP already has a different technical meaning in statistics (Wikipedia, “Best linear 
unbiased prediction”). 
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(BLUE) of 2y , i.e., 12 W yy ′=ˆ  for some matrix W′ , which depends only on the partitions 

of the design X  and variance Σ  matrices.  Because the estimator is unbiased for all β, 

[ ] [ ] ( )β′−=′−=−= 121222 XWXW0 yyyy EˆE .  Thus the estimator is unbiased if and 

only if 21 XXW =′ .  By transposition, 21 XWX ′=′  , where W is 21 tt × . 

 

But now there is a complication in being “best.”  Predicting 2y  as 2ŷ , we will err by the 

amount  22 ŷy − .  So it is the prediction-error variance that we must minimize: 

[ ] [ ]

[ ]

[ ] [ ]

[ ]

22211211

2221

1211

2

1

2

1

1222

WWWW

W
W

WW

W

W

2

2

22

2

Σ+Σ−Σ′−Σ′=











−













ΣΣ

ΣΣ
′−=

′′−











′−=
























′−=

′−=−

t
t

tt

t

I
I

IVarI

IVar

VarˆVar

y

y

y

y

yyyy

 

Although we can ignore the constant 22Σ  in the minimization, we cannot ignore the second 

and third terms, which are linear in W. 

 

The key here is to apply the one-to-one transform 12
1

11WV ΣΣ−↔ − .  The transformation 

of the constraint set is { } { }12
1

111212
1

1111121 X-XX-WXVX:VXWX:W ΣΣ′′=ΣΣ′′=′=′=′ −− .  

So expressed in terms of V: 
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[ ]

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )12
1

11212211

2212
1

11212112
1

112112

12
1

1121211211

2212
1

112112
1

112112
1

1111
1

1121

2212
1

11211212
1

1112
1

111112
1

11

2221121122

VV

VV

VVVV

VVVV

VVVV

WWWW

ΣΣΣ−Σ+Σ′=

Σ+ΣΣΣ−Σ−ΣΣΣ−Σ′−

ΣΣΣ+Σ+Σ′+Σ′=

Σ+ΣΣ+Σ−ΣΣΣ+′−ΣΣ+ΣΣΣ+′=

Σ+ΣΣ+Σ−Σ
′

ΣΣ+−ΣΣ+Σ
′

ΣΣ+=

Σ+Σ−Σ′−Σ′=−

−

−−

−

−−−−

−−−−

yy ˆVar

 

This transformation is a matrix version of completing the square.  We can now apply the 

Gauss-Markov theorem to the problem of minimizing ( ) VVVV 11
1111

−−Σ′=Σ′  subject to 

12
1

11121 X-XVX ΣΣ′′=′ − .  The correspondences are: 

12
1

1112

1

1
11

X-XB

XA

VW

ModelTheorem

ΣΣ′′←

′←

←

Σ←Σ

←

−

−

 

As before, the conditions are met; 1X′  is of full-row rank since 1X  is of full-column rank.  

Hence, ( ) ( )12
1

1112
1

1
1

1111
1

11
* X-XXXXV ΣΣ′′Σ′Σ= −−−− , and 1

*
2 W yy ′
=ˆ , where: 

( )

( )( ) 1
1121

1
111

1
1

1
1111

1
11212

1
1121

*

12
1

11
**

XXXX-X

V

VW

−−−−−

−

−

ΣΣ+Σ′Σ′ΣΣ=

ΣΣ+
′

=

′
ΣΣ+=

′

 

The minimized prediction-error variance is: 

[ ] ( )
( )( ) ( ) ( )12

1
1121221

1
11212

1
1

1
1111

1
11212

12
1

112122
*

11
*

22

XXXXXX

VV

ΣΣΣ−Σ+
′

ΣΣ−Σ′ΣΣ−=

ΣΣΣ−Σ+Σ
′

=−

−−−−−

−yy ˆVar
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Introducing the estimator ( ) 1
1

111
1

1
1

111 XXX yβ −−− Σ′Σ′=ˆ  and its variance  [ ] ( ) 1
1

1
111 XX −−Σ′=β̂Var  

allows us to simplify: 

( )( )
( )

( )
[ ] ( ) [ ]( ) ( )12

1
1121221

1
112121

1
1121222

11
1

11212

1
1

11211
1

11212

1
1

11211
1

111
1

1
1

1111
1

11212

1
*

2

XXXX

XX

XX

XXXXX

W

ΣΣΣ−Σ+
′

ΣΣ−ΣΣ−=−

−ΣΣ+=

ΣΣ+ΣΣ−=

ΣΣ+Σ′Σ′ΣΣ−=

′
=

−−−

−

−−

−−−−−

βyy

βyβ

yβ

yy

yy

ˆVarˆVar

ˆˆ

ˆ

ˆ

 

Combining this completing-the-square technique with the Gauss-Markov theorem makes for 

a cleaner and more elegant proof than that in Halliwell [1997, Appendix C, 328-330]. 

 

9. LINEAR STATISTICAL MODELS WITH PARAMETER 
CONSTRAINTS 

Here we will impose upon the model of Section 8 a constraint on β, viz., 11 rR ××× =β jkkj .  

The rows of R must be linearly independent, i.e., R  must be of full-row rank.  The 

constraint set { }rR: =βℜ∈β k  is non-empty because right inverses of R exist, most 

obviously ( ) 1RRR −′′ .  Hence, ( ) rRRRβ 1−′′= exists and satisfies the constraint. 

 

Two procedures are commonly employed to solve β-constrained linear models.  The first is 

to reduce the parameter dimension according to the equation ( ) ( ) 10 S ×−−× γ+β=β jkjkk , for 

some matrix S (of full-column rank) such that ( )jkj −×= 0RS , as done in Halliwell [1997, 

Appendix B, 321-324].  This is the purist approach to the problem, but it requires an 

understanding of eigen-decomposition, cannot be performed in Excel without add-ins, and 

may suffer from the numerical-analysis problem of deciding when small eigenvalues should 
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be zeroed.  The second procedure is to employ the Lagrange multiplier (Judge [1988, §6.2, 

235-237]) to minimize ( ) ( ) ( ) ( )rR2XX 1
1 −βλ′+β−Σ′β−=λβΛ −
× yyj, .  But a third 

procedure (Halliwell [1998, Appendix C]) to us is the most convincing. 

 

This procedure is to treat the β constraint as the limit of ηr +β= R  as [ ] jjVar ×→ 0η .  We 

could have specified the variance as jI2σ , and the limit as 02 →σ ; but for the sake of 

generality we will let [ ] Η=ηVar  be any positive-definite matrix.  So we can form the 

following augmented linear model, which satisfies the conditions of Section 8: 



















ΣΣ

Η

ΣΣ

=





































+



















=



















2221

1211

2

1

2

1

2

1

2

1

0

00

0

  where,β

X

R

X

e

η

e

e

η

e

y

r

y

Var  

The parameter estimator, which depends on Η, is: 

( ) [ ] [ ]

[ ] [ ]

( ) ( )
( )[ ]( )ryβ

ry

r

y

r

y
β

1
1

1
111

1
1

1
111

11
1

1
111

1

1

1
11

1

1

1

1

1
11

1

1
1

11

1

1

1
1

11

1

RX

RXRRXX

0

0
RX

R

X

0

0
RX

0

0
RX

R

X

0

0
RX

−−

−−−−−

−

−
−

−

−

−−−

Η′+Σ′Η=

Η′+Σ′Η′+Σ′=

























Η

Σ
′′






































Η

Σ
′′=

























Η

Σ
′′







































Η

Σ
′′=Η

ˆVar

ˆ

 

Therefore, according to the formulas of the previous section, the predictor is: 

( ) ( ) [ ] ( )

( ) ( )( )Η−ΣΣ+Η=














Η












−

























Η

Σ
Σ+Η=Η

−

−

βyβ

β
r

y
βy

ˆˆ

ˆˆˆ

11
1

11212

11
1

11

2122

XX

R

X

0

0
0X

 

And the variance of the prediction error is: 
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( )[ ] [ ] ( )[ ] [ ]

[ ]

( ) ( )[ ]( ) ( )12
1

1121221
1

112121
1

11212

12
1

11

2122

1
1

11

212

1
1

11

21222

XXXX

00

0
0

R

X

0

0
0X

R

X

0

0
0X

ΣΣΣ−Σ+
′

ΣΣ−ΗΣΣ−=

























Σ













Η

Σ
Σ−Σ+

′







































Η

Σ
Σ−Η







































Η

Σ
Σ−=Η−

−−−

−

−−

β

βyy

ˆVar

ˆVarˆVar

 
These two formulas depend on Η only insofar as β̂  depends on Η.  Therefore, it remains 

for us to determine ( )Η=
→Η
ββ ˆlim

0

* . 

 

We start with [ ] ( ) 11
1

1
1110

* RRXX −−−

→Η
Η′+Σ′= limVar β .  The following proof makes use of the 

theorem ( ) ( ) 1111111 CABCADBAABDCA −−−−−−− +−=+  (cf. Judge [1988, A.7, 938]; the 

inverses must exist, as they do here): 8 

[ ] ( )

( ) ( ) ( )[ ] ( )

( ) ( ) ( )[ ] ( )
( ) ( ) ( )[ ] ( )

[ ] [ ] [ ][ ] [ ]ββββ

β

ˆVarˆVarˆVarˆVar

lim

limVar

RRRR

XXRRXXRRXXXX

XXRRXXR0RXXXX

XXRRXXRRXXXX

RRXX

1

1
1

1
111

11
1

1
111

1
1

1
111

1
1

1
111

1
1

1
111

11
1

1
111

1
1

1
111

1
1

1
111

1
1

1
111

11
1

1
111

1
1

1
111

1
1

1
1110

11
1

1
1110

*

−

−−
−−−−−−−

−−
−−−−−−−

−−
−−−−−−−

→Η

−−−

→Η

′′−=

Σ′′Σ′′Σ′−Σ′=

Σ′′Σ′+′Σ′−Σ′=







 Σ′′Σ′+Η′Σ′−Σ′=

Η′+Σ′=

 

The variance of the constrained estimator is neatly expressed in terms of the variance of the 

unconstrained estimator [ ] ( ) 1
1

1
111 XX −−Σ′=β̂Var .  As a check: 

[ ] [ ] [ ] [ ] [ ][ ] [ ] 0RRRRRRRRRRR
1** =′′′−′=′=
−

ββββββ ˆVarˆVarˆVarˆVarVarVar  

                                                 
8 In the following formulas the existence of the inverse of ( ) [ ]RRRXXR -1

1
1

111 ′=′Σ′ − β̂Var  is guaranteed, 
since the variance matrix is positive-definite and R is of full-row rank. 
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In order to take the limit of ( )Ηβ̂  we need the following intermediate result: 

( )[ ] ( ) ( )[ ] ( )

( ) ( )[ ] ( )

( ) ( )[ ] ( )

( ) ( )[ ] ( )[ ]
( ) ( )[ ]
( ) ( )[ ]
( ) ( )[ ]
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111
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1
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11
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−−−−−

−−−
−−−−−

−−−
−−−−−−

′+Η′=

′Σ′+Η′Σ′=

Η






 Η′Σ′+Η′Σ′=

Η






 Η′Σ′+Η+−′Σ′=

Η






 Η−′Σ′+Η′Σ′+Η−′Σ′=

Η






 ′Σ′′Σ′+Η−′Σ′=

Η






 ′Σ′′Σ′+Η′−′Σ′=

Η′






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j
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Therefore: 
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ˆVarˆVarˆVarˆVarˆVarˆVar
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ˆVarˆVarVar

limpˆVarˆVarVar

limpˆVarlimVar

ˆVarlimˆVarlim

ˆVarlim

ˆlim

k

k

Var

 

As a check: 
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[ ] [ ][ ] [ ] [ ][ ]

[ ] [ ][ ] [ ] [ ][ ]
{ }
r

rIRIR

rRRRRRRRRRR

rRRRRRRRRIRR

11

11*

=

+−=

′′+






 ′′−=

′′+






 ′′−=

−−

−−

jj

k

ˆ

ˆVarˆVarˆˆVarˆVar

ˆVarˆVarˆˆVarˆVar

β

βββββ

ββββββ

 

And so, to summarize, the solution of a β-constrained linear model is the solution of the 

unconstrained model with the substitution of *β  for β̂ , where: 

[ ] [ ][ ] [ ] [ ][ ]

[ ] [ ] [ ] [ ][ ] [ ]βββββ

ββββββ

ˆVarˆVarˆVarˆVarVar

ˆVarˆVarˆˆVarˆVark

RRRR

rRRRRRRRI

1*

11*

−

−−

′′−=

′′+






 ′′−=

 

 

10. PARAMETER CONSTRAINTS AS PROJECTIONS  

The formulas above for *β  and [ ]*βVar  may seem cumbersome, perhaps even repugnant.  

However, they become perspicuous when interpreted as a projection.  From Section 6 we 

take the projection formula { }( ) ( ){ } ( ) bAAAAAAAbAx; 11 --
nI,P ′Σ′Σ+′Σ′Σ−=Σ= xx , 

where [ ]xVar=Σ .  But now let the constraint space Ω be { }rRβ:β k =ℜ∈ .  In this case: 

[ ] [ ][ ] [ ] [ ][ ]
{ } [ ]( )ββ

ββββββ

ˆVar,ˆP

ˆVarˆVarˆˆVarˆVark

rRβ;

rRRRRRRRI
11*

==

′′+






 ′′−=

−−

 

Hence, the constrained parameter estimator is the projection of the unconstrained estimator 

according to the metric of the variance of the unconstrained estimator.  Just to corroborate, 

we see that the variance of the constrained estimator, 
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[ ] [ ] [ ] [ ][ ] [ ]βββββ ˆVarˆVarˆVarˆVarVar RRRR
1* −

′′−=  accords with the projection variance 

( )[ ] ( ) Σ′Σ′Σ−Σ=ΣΩ AAAA; 1-,PVar x . 

 

Similarly to how we argued in Section 4, [ ]β̂Var  can be Cholesky-decomposed as 

[ ] QQ ′=β̂Var  for some non-singular kk×Q .  So the constrained variance can be factored as 

[ ] ( ){ } QQMQRQRQRQRQIQ 1 ′=′′′′′−= −
k

*Var β , and its rank is that of the idempotent 

matrix M , whose rank equals its trace.  Again, to continue as in Section 4: 

( ) ( ) ( )( ) ( )( ) jkTrkTrTrTr k −=′′′′−=′′′′−= −− RQRQRQRQRQRQRQRQIM 11  

Therefore, [ ] [ ] jˆVarrankjkVarrank * −





=−=






 ββ .  The parameter constraint reduces 

the parameter variance by j degrees of freedom.  In words, *βR  is a degenerate random 

variable, or a constant.  Certainly it is, since by the constraint rR =*β . 

 

All this shows that the solution of a parameter-constrained model is equivalent to the 

projection of the solution of an unconstrained model.  There seems to be a certain 

commutativity between constraining/projecting and solving. 

 

11. INFORMATION AS PROJECTION  

We start with the equation of Section 7: ey +β= ×× 1X kkt , where [ ] ttVar ×Σ=e .  However, 

let us suppose that β is known and needs no estimation.  Our best prediction of y is Xβ, 

whose prediction-error variance is [ ] [ ] [ ] Σ==−=− eyyy VarVarˆVar Xβ .  At this stage we 
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are saying nothing more than ( )Σ,~ Xβy .  But furthermore suppose that we have observed 

ytm×A , where A is of full-row rank.  Name the observed value 1×mb .  The problem is to 

predict y after the observation. 

 

Since ey +β= X , eyb AAXA +β== , where [ ] AAA ′Σ=eVar .  Since y is the same in the 

observation as in the prediction, the observation covaries with the prediction; in fact, 

[ ] [ ] Σ== AAA eeyy ,Cov,Cov .  We can predict y according to the parameter-constrained 

model of Section 9: 



















Σ′Σ

Σ′Σ

=





































+



















=



















0A

000

A0AA

0

A

  where,0

A

β

X

I

XA

β0

e

e

e

e

y

b

Vark  

 

Although this will work, a simpler and more appealing model can be constructed if one 

allows for zero-dimensional matrices.9  Because all m×0 and 0×n matrices are of rank zero, 

nmnm ××× = 0BA 00 .  This is nothing more than the nullity of the empty summation operator, 

i.e., ( ) ( ) ( ) 0BAAB
0

1
== ∑

=k
kjikij .  The simpler model is: 

( )

( ) 











Σ′Σ

Σ′Σ
=
























+γ












=













−

−
×

×

×

A

AAAA
  where,

A

X

X

Xβ

AXβ
10

02

01

e

e

e

e

y

b
Var

t

m
 

Its solution begins with: 

                                                 
9 It is a windfall for a matrix language to allow for zeros in the dimensions of its arrays, as do APL, J, and R.  
SAS/IML does not; at least it did not in the late 1990s (version 7), when the author last used it. 
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[ ] ( ) ( )

( )( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )1000

1000

AXβAAXXAAX

AXβAAX

1

11

1
1

1

1
1

1

1
110

××=

××⋅××=

−′Σ′′Σ′=

−′Σ′=

−

−−

−−−

−
×

mmmm

ˆVarˆ

b

bγγ

 

The only thing to give pause here is the inverse of the 0×0 matrix.  But the space of real 0-

vectors, 

0ℜ , contains just one element, viz., the origin.  It is closed under addition and 

multiplication (0+0 = 0×0 = 0), and 0 serves as its identity element.  So in 0ℜ , 00 1 =− .  

Hence, ( ) ( )0000 1 ×=× − .  Therefore, [ ] ( )00×=γ̂Var  and ( )1010 ×=×γ̂ .10  Finally: 

( ) { }( )
( ) { }( )

( ) ( )AXβAAAXβ

0AXβAAA0Xβ

XAXβAAAXXβ

XβXβ

1

1
1

1

1
1

2

−′Σ′Σ+=

−−′Σ′Σ++=

−−′Σ′Σ++=

−+=

−

×
−

×

−

b

b

γbγ

yy

mt

ˆˆ

ˆ

 

The variance of its prediction error is: 

[ ] ( ) ( )[ ]

( )( ) [ ] ( )( ) ( )
( )( )( ) ( )

( )

( ) Σ′Σ′Σ−Σ=

Σ′Σ′Σ−Σ+=

Σ′Σ′Σ−Σ+×××=

Σ′Σ′Σ−Σ+
′

′Σ′Σ−′Σ′Σ−=

−−−=−

−

−
×

−

−−−

AAAA

AAAA0

AAAA0000

AAAAXAAAXXAAAX

XβXβ

1

1

1

1
1

1
21

1
2

tt

tt

ˆVar

ˆVarˆVar

γ

yyyy

 

Except for slight notational differences, this solution is the same as that of Section 6.  As 

long as no parameter needs to be estimated (or the parameter dimension is 0×1), the linear 

statistical model treats “m dimensions” of prior information as a projection into a subspace 

of mt −  dimensions. 

                                                 
10 To elaborate on the previous footnote, we have verified that APL, J, and R yield these results.  Therefore, 

they correctly treat ( ) ( )00 as 00 1 ×× − . 
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12. COMBINING ESTIMATES  

It is not uncommon for an actuary linearly to combine two or more unbiased estimators of 

the same quantity.  Of course, it is desirable for the combination to be best.  In the simplest 

situation of independent scalar estimators, the best combination uses weights inversely 

proportional to the variances of the estimators.  But with Gauss-Markov theorem one can 

determine the best linear combination of vector estimators, even if they are not independent. 

 

To frame the problem, suppose that we have n unbiased estimators iŷ  of the same t×1 

vector y, as well as their t×t prediction-error variances [ ]iii ˆVar yy −=Σ .  Suppose also that 

we have the t×t prediction-error covariances [ ]jiij ˆˆCov yyyy −−=Σ , .  Frequently the 

covariances are 0t×t, but there are realistic exceptions.  Stack the estimators and block their 

(co)variances: 

[ ]


















ΣΣ

ΣΣ

=−



















= ××

nnn

n

ntnt

n

nt
ˆVar

ˆ

ˆ

ˆ









1

1111

1 , YY

y

y

Y  

The variance matrix must be non-negative-definite; but we will assume it to be positive 

definite, hence invertible.  If the weight given to iŷ  is the t×t matrix iW′ , the combined 

estimator will be [ ] Y

y

y

yy ˆ

ˆ

ˆ

ˆˆ

n

nttn

n

i
ii WWWW

1

1
1

′=



















′′=′= ×
=
∑  .  In order for this estimator 

to be unbiased, [ ] t

t

t

t

t

n I

I

I

W

I

I

WW1 =



















′=



















′′  .  The transpose of this constraint is 
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[ ] ttntntttt IWII =×× .  The best combination will minimize the combined prediction-

error variance [ ]WW YY ˆVar −′ .  Posing the problem in the proper form, we seek to 

minimize [ ] [ ]( ) WWWW
11 −− −′=−′ YYYY ˆVarˆVar  subject to [ ] ttntntttt IWII =×× .  

According to the Gauss-Markov theorem: 

[ ] [ ] [ ]

[ ] [ ] [ ]
1

11

1

11*

I

I

II

I

I

I

I

I

II

I

I
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−

−−
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




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
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
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
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

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t
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t

t

t

t

t
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t

t

ˆVarˆVar

ˆVarˆVar
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
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If the covariances Σ i≠j are zero, this simplifies to: 

1

1

1

1

1
11

*W
−

=

−

−

−









Σ



















Σ

Σ

= ∑
n

i
ii

nn

  

It is recognizable as the matrix version of the well known rule of weighting independent 

scalar estimates inversely proportionally to their variances.11  Appendix B will provide a 

simple example of covarying estimates, and will outline its importance to conjoint modeling, 

or to modeling in which ultimate paid and incurred losses must be equal. 

                                                 
11 Unlike scalar weighting, a matrix-weighted average can fall outside its extremes, e.g.: 
























=

























−

−
+

























398

425

10

01

400

440

600250

250500

420

400

400250

250500

..

..

..

..
, yet [ ]420400398 ,∉ .  This is 

due to non-zero off-diagonal amounts (± 0.25) in the weighting matrices.  In practice, such amounts are 
relatively small, and the matrix-weighted averages lie within their extremes.  Cf. Judge [1988, 287]. 
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13. CONCLUSION  

The Gauss-Markov theorem is truly profound.  It provides a lucid basis for solving a wide 

range of modeling and estimation problems, even within the rudimentary matrix 

functionality of Excel.  As the many sections of this paper have demonstrated, it deserves to 

be liberated from being an appendage to the least-squares approach to linear statistical 

modeling.12 

                                                 
12 For a brief history of the least-squares method and the true relation of the Gauss-Markov theorem to it see 
Appendix C. 
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APPENDIX A 

 

GEOMETRIC MATTERS CONCERNING VECTORS IN nℜ  

 
 
In this appendix we will interpret the vector dot product and prove the triangle inequality.  

For n, ℜ∈yx  the dot product ∑
=

=′=•
n

i
ii yxyx

1
yx .  However, this is easily generalized 

with a Σ metric as yx 1−Σ′ .  The Σ-metric triangle inequality is: 

( ) ( ) yyxxyxyx 111 −−− Σ′+Σ′≤+Σ′+  

 

As for the dot product, let ŷ  be the Σ projection of y onto x.  If 0x 1 ≠×n , then x is of full-

column rank, xx 1−Σ′  is 1×1 positive-definite, and ( ) 11xx −−Σ′  exists.  So vector y will Σ-

project as some multiple of x, or βxy =ˆ .  From Section 7, ( ) yxxxβ 111 −−− Σ′Σ′= .  Hence, 

( ) yxxxxy 111 −−− Σ′Σ′=ˆ .  Accordingly, ( ) yxyxxxxxyx 11-1111 ˆ−−−−− Σ′=Σ′Σ′Σ′=Σ′ .  So the Σ-

metric dot product of two vectors is equal to Σ-metric dot product of one vector and the Σ 

projection of the other onto it.  Although ( ) 11xx −−Σ′  does not exist if 0x = , we know that 

the projection of any vector onto 0 is 0.  Hence, our geometric interpretation of the dot 

product is valid for all x and y.  For the Euclidean metric nI=Σ , the projection is the 

perpendicular, and θyy cosˆ = , where θ is the angle between the two vectors with vertex at 

0.  From this follows the well-known formula θyxyx cosyx =′=• . 
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In preparation for the triangle inequality, since Σ is positive-definite, the following 2×2 

symmetric matrix is non-negative-definite: 

[ ] [ ] [ ]












Σ′Σ′

Σ′Σ′
=Σ













′

′
=Σ′

−−

−−

−−
××

yyxy

yxxx
yx

y

x
yxyx

11

11
11

11 nn  

It is a theorem that the determinant of a non-negative-definite matrix is non-negative; but we 

can readily prove it here for the 2×2 case.  Such a matrix can be Cholesky factored as 

























d

ba

db

a

0

0
, for real numbers a, b, and c.  This equals 













+ 22

2

dbba

aba
, whose 

determinant is ( ) 2222222 dabadba =−+ , which must be greater than or equal to zero. 

 

Now let ‘~’ stand for the relationship in the triangle inequality: 

( ) ( ) yyxxyxyx 111 −−− Σ′+Σ′+Σ′+ ~  

Because the quantities under all the radical signs are non-negative, the following 

transformations will not affect the relationship: 

( ) ( )

( )

xyyxyyxx~0

yyxx~xyyx

yyxxyx

yyxxyx

yyxx2~yx2

yyxx2~xyyx

yyyyxx2xx~yyxyyxxx

yyyyxx2xxyxyx

1111

1111

1121

111

111

1111

11111111

11111

−−−−

−−−−

−−−

−−−

−−−

−−−−

−−−−−−−−

−−−−−

Σ′⋅Σ′−Σ′⋅Σ′

Σ′⋅Σ′Σ′⋅Σ′

Σ′⋅Σ′Σ′

Σ′Σ′Σ′

Σ′Σ′Σ′

Σ′Σ′Σ′+Σ′

Σ′+Σ′Σ′+Σ′Σ′+Σ′+Σ′+Σ′

Σ′+Σ′Σ′+Σ′+Σ′+

~

~

~
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But the expression on the right of the last line is the determinant of our 2×2 non-negative-

definite matrix.  Therefore ‘~’ is ‘≤’.  Thus have we proven the triangle inequality in nℜ for 

every valid Σ metric. 
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APPENDIX B 

COVARYING ESTIMATORS AND CONJOINT PREDICTION 

 
 
This appendix furnishes a simple, but not too uncontrived, example of combining estimators 

that are not independent.  Let [ ]2σμ,~X i  be independent random variables.  Our task will 

be to estimate the mean μ.  However, we must estimate it from two known statistics, 

( ) 33211 XXXY ++=  and ( ) 2432 XXY += .  Four X variables have been melded into 

two Y variables: [ ]3σμ 2
1 ,~Y  and [ ]2σμ 2

2 ,~Y .  But since 3X  is common to both, they are 

not independent; rather, [ ] [ ] 62,3, 2
3321 σ== XXCovYYCov .  So the first two moments 

of the y vector are: 


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

















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



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
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


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2161

6131
σ,

μ

μ
2

2

1
~

Y

Y
y  

The problem is to minimize W
2161

6131
σW 2












′  subject to [ ] 112 IW11 =× .  By the Gauss-

Markov theorem (the 2σ  cancels, so it’s omitted): 

[ ]

[ ]

[ ] ( )











=












=






































−

−

























−

−
=







































−

−

























−

−
=






























































=

−

−

−

−−−

31

32
21

61

31

1

1

3161

6121
11

1

1

3161

6121

1

1

3161

6121

365
111

1

1

3161

6121

365
1

I
1

1

2161

6131
11

1

1

2161

6131
W

1

1

1

1

111

*

 



The Gauss-Markov Theorem: Beyond the BLUE 

Casualty Actuarial Society E-Forum, Fall 2015 33 

So the minimal variance results from combining in a 2:1 = 10:5 ratio.  One who ignored the 

covariance would weight them in a 3:2 = 9:6 ratio, underweighting the first and 

overweighting the second.  The minimal variance itself is:  

[ ] 720σ
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5σ
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Since 3σ720σ4σ 222 =<⋅< . , the informational value of the two Y statistics lies in 

between the informational values of three and four independent X statistics. 

 

As for conjoint prediction, the following model combines submodels a and b: 
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One who works through the formulas of Section 8 will find that the solution of the 

combination is identical to the combination of the separate solutions (Halliwell [1998, 

Appendix A]).  Were it not for this good fortune, one would have to model everything in 

order to model anything.  So this combination is trivial; although the submodels are written 

down together, they interact neither in the design matrix nor in the variance structure.  But 

conjoint prediction (Halliwell [1997]) makes use of the fact that paid losses (model a) and 

incurred losses (model b) must ultimately be equal by exposure period.  This constrains the 

variance matrix; the sums of the paid and the incurred errors of each exposure period must 

be equal.  But additionally, it imposes a restriction on the parameters.  The a priori, or prior-

to-any-observation, expected values are [ ] aaaE βX=y  and [ ] bbbE βX=y .  The exposure-

period sums of these paid and incurred vectors must also be equal.  A “semi-conjoint” 
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model adds the appropriate β constraint to the trivial combination: 
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According to Section 12, one may best combine the semi-constrained solutions 
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 according to the linear constraint that exposure-period sums of paid and 

incurred losses are equal.  Equivalently, in terms of Section 11, one can project the semi-

constrained solution into the subspace of the constraint.  Although a proof of this has so far 

eluded us, it works with examples.  So the Gauss-Markov theorem seems to allow modeling 

temporarily to ignore variance restrictions in order to arrive at a tentative solution that can 

rather easily be collapsed by the hitherto ignored restrictions into the desired solution.  This 

is the meaning of the sentence at the end of Section 10: “There seems to be a certain 

commutativity between constraining/projecting and solving.”  Conjoint prediction by 

collapsing a semi-conjoint model is much easier than fully conjoint prediction; it requires no 

eigen-decomposition, and is amenable to a spreadsheet solution. 
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APPENDIX C 

LEAST-SQUARES VERSUS GAUSS-MARKOV 

Many, probably most, actuaries think in terms of linear regression, rather than in terms of 

linear modeling.  The standard linear-regression problem begins with t observed quantities yj.  

Each observation is associated with a k-tuple of known variables ( )jkj x,,x 1 , on which the 

observation is believed linearly to depend, i.e., kjkjj xxy ββ11 ++=  .  Of course, if kt =  

and the k-tuples are linearly independent, one is merely solving simultaneous equations for 

the βj.  The regression problem arises when kt > , and the equations are approximate: 

kjkjj xxy ββ11 ++≈  .  One then needs to find the values of βj that make 

kjkj xx ββ11 ++  most closely approximate the yj.  A reasonable method, called “least 

squares,” is to find the βj that minimize the sum of the squared errors, i.e., to minimize 

( ) ( )∑
=

++−=
t

j
kjkjjk xxy,,f

1

2
111 ββββ  .  This is a problem well within the capability of 

a first-year calculus student. 

 

The least-squares criterion for fitting, or “regressing,” the best line to data first appeared in 

print in 1805, when Legendre published his Nouvelles méthodes pour la détermination des 

orbites des comètes.  Earlier, in 1801, Gauss had applied the method to predict the 

reappearance of Ceres, which had just been discovered and then lost.  However, he did not 

publish the method until 1806 in his Theoria Motus Corporum Coelestium in sectionibus 

conicis solem ambientium.  Apparently, he did not refer to Legendre; and in the ensuing 

controversy over priority Gauss insisted that he had worked out the method at least as early 
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as 1795, when at the age of eighteen he entered the University of Göttingen.13  The relevant 

point of this interesting story is that in this early astronomical setting, the least-squares 

method was not statistical modeling.  It was applied to deterministically moving objects 

(comets and the newly discovered asteroids).  All uncertainty stemmed from the imprecision 

of the astronomers.  But for the first time it was realized that many economical but “fuzzy” 

observations could be more useful than one costly but “sharp” observation. 

 

Gradually the approximate equations were turned into exact ones with random error terms: 

jkjkjj xx ey +++= ββ11  .  Gauss himself in 1822 stated the optimality of the least-

squares method, an early form of BLUE.  So today we talk of the “Gauss-Markov” theorem 

because Gauss started it.  But the linear algebra and statistical theory that developed after his 

death in 1855 culminated in the work of Andrey Markov (1856-1922).  Even today it is 

common for students to be introduced into linear modeling by way of least squares; many 

texts still refer to the matrix formula ( ) yβ XXX 1 ′′= −  as the OLS (“Ordinary Least 

Squares”) estimator. 

 

How does the least-squares method differ from our version of the Gauss-Markov theorem?  

To put it in modern terms, both deal with estimating the β parameter in the model of 

Section 7: ey +β= X , where [ ] Σ=eVar .  But instead of finding the t×k matrix W that will 

make estimator yβ W′=ˆ  unbiased and of minimal variance, as per the Gauss-Markov 

theorem, the least-squares method seeks the value of β for which Xβ most closely 

                                                 
13 Wikipedia “Least squares” gives an excellent account of this history, which is also recounted in many 
histories of mathematics.  However, there is slight disagreement about some of the dates.  Most historians cede 
the priority to Gauss. 
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approximates y.  “Closeness” here requires distance as measured by the Σ metric.  So the 

least-squares problem is to minimize ( ) ( ) ( )XβXβ 1 −Σ′−=β − yyf .  As with the Gauss-

Markov theorem, X must be of full-column rank and Σ must be positive-definite.  But the 

two approaches are not logically equivalent.  Although they yield the same answer, BLUE is 

a posteriori to the least-squares answer, whereas it is a priori to the Gauss-Markov. 

 

The usual approach to the minimization is by means of multivariate calculus: 
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Setting the first derivative to 10 ×k , we derive ( ) yβ 111 XXX −−− Σ′Σ′=~ .  Since the second 

derivative is positive-definite, the critical value β~  is a minimum, as desired.  However, since 

vector differentiation is unfamiliar to many (cf. Judge [1988, Appendix A.16]), we will solve 

the problem algebraically: 
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As in Section 2, the last line is to be taken in a matrix-definite sense.  Moreover, since 

XX 1−Σ′  is positive-definite, the inequality is strict except for β~=β .  Therefore, β~  uniquely 

minimizes ( ) ( ) ( )XβXβ 1 −Σ′−=β − yyf .  Geometrically, the least-squares method drops a 

Σ perpendicular from y to the linear subspace swept by Xβ. 

 

But now that we have a “least-squares” estimator, we must check its “BLUE-ness.”  This is 

the meaning of the sentence above, that BLUE is a posteriori to the least-squares answer.  Of 

course, from our a priori Gauss-Markov approach, we already know it to be BLUE, since it is 

identical to the Section 7 formula ( ) yβ 111 XXX −−− Σ′Σ′=ˆ .  If β~  were not identical to β̂ , β~  

would be either biased or not as good as β̂ ; it would lack either the ‘B’ or the ‘U’ of BLUE. 

 

Finally, despite the historical development from least squares to Gauss-Markov, this is 

neither a “distinction without a difference” nor a matter of taste.  Developing the theory of 

linear statistical modeling from our Gauss-Markov theorem allows us cleanly to solve 

problems that the least-squares approach can solve only with difficulty, if at all – such 

problems as predicting (Section 8), constraining (Section 9), projecting (Section 10), 

incorporating prior information (Section 11), and combining estimates (Section 12). 
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Credibility for Pricing Loss Ratios and Loss Costs 
Uri Korn, FCAS, MAAA 

 
______________________________________________________________________________ 

Abstract 
This paper discusses how credibility can be applied to pricing loss ratios and loss costs.  A method is also 
presented that can perform a credibility weighted allocation of  losses without changing the overall average, which 
often occurs when applying credibility.  Finally, it is shown how Generalized Linear Mixed Models can be used to 
credibility weight loss ratios while taking multiple dimensions into account.  Workarounds are shown for some 
common pitfalls, and it is explained how to implement these models in spreadsheets. 
 
Keywords. Bühlmann-Straub Credibility, Bayesian Credibility, Loss Ratios, Loss Costs, Generalized Linear Mixed 
Models 

______________________________________________________________________________ 

1. INTRODUCTION 

When doing any type of  actuarial analysis, credibility is an issue that must be frequently dealt with.  

However, many seemingly simple credibility applications are difficult to apply in practice.  For loss ratios and 

loss costs, seemingly simple concepts such as how to calculate the Bühlmann-Straub parameters or how to 

perform a credibility weighted allocation are difficult to apply in practice. 

 In this paper, we discuss these and other practical issues that arise when using credibility with loss ratios 

and loss costs.  For our discussion, we will use the term loss ratio for brevity, but everything mentioned is 

applicable to loss costs as well.  For loss costs, “exposures” should be substituted for “premium” for 

everything below. 

1.1 Outline 

We will start our discussion with Bühlmann-Straub credibility and how to apply it to loss ratios and loss 

costs.  The following section discusses the recommended method for calculating loss ratios for pricing studies 

when credibility is being performed.  Section 4 introduces a credibility model that ensures that the credibility 

weighted results always tie to the original loss ratio.  This method is especially useful for performing a 

credibility weighted allocation of  a selected loss ratio.  And finally, section 5 discusses the use of  mixed 

models to perform the credibility weighting.  It also discusses dealing with some common pitfalls and shows 

how to implement these models in a spreadsheet or other environment. 

2. BÜHLMANN-STRAUB CREDIBILITY 

The first topic that will be discussed is how to calculate the Bühlmann-Straub parameters.  This includes 

calculation of  the within variance and the between variance.  The formulas for each are shown below (Dean 
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2005). 

̂EPV =
∑
g= 1

G

∑
n= 1

N g

W gn( X gn− X̄ g)
2

∑
g= 1

G

( N g− 1)
 

  
(2.1) 
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∑
g= 1

G

W g ( X̄ g− X̄ )2− (G− 1) ̂EPV

W−
∑
g= 1

G

W g
2

W  

  

(2.2) 

Where EPV is the expected value of  the process variance, or the “within variance”, and VHM is the 

variance of  the hypothetical means, or the “between variance”.  W is the weight, G is the number of  groups, 

N is the number of  periods, X gn  is the indication for group g in period n, X̄ g  is the average for group g 

across all periods, and X̄  is the average across all groups and periods. 

2.1 The Within Variance 

For loss ratios, we will assume that the variance of  total losses is proportional to the premium, which 

implies that the variance of  a loss ratio is proportional to the inverse of  premium (since calculating the 

variance of  the latter involves dividing the former by the square of  the premium).  A closer look shows that 

this must be the case, since the variance of  total losses for two (uncorrelated) accounts is equal to the sum of  

the individual variances.  Assuming any other relationship between premium and variance will not agree with 

this result and will lead to inconsistencies.  Similarly, for loss costs, we will assume that the variance is 

inversely proportional to the exposures. 

The next question is what data should be used for calculating this parameter.  The answer is that it should 

be based off  of  the observed experience, although this is not as straightforward as it sounds.  The variance 

should not be based off  of  the final selected estimates for each year by using a Bornhuetter-Ferguson 

method; doing so artificially reduces the variance since each year is moved closer to the a priori estimate and 

so does not represent the true volatility in the data.  Instead, we recommend using an approach similar to the 

Cape Cod method that compares actual paid or reported losses to used premiums, which are premiums 

divided by the loss development factor.  If  the data is capped and excess ratios are used to produce final 

uncapped loss ratios, then the excess ratios should be applied to the premiums as well to produce used, 

capped premium, since this reflects the premium relevant to the capped losses.  If  we want, we can also 

reflect the fact that some of  volatility observed in the loss ratios is due to yearly changes that are not captured 

in trend or rate changes.  We can take this into account and give older, less predictive years less weight by 
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applying an exponential decay factor to the weights as well.  This will be discussed further later on.  Doing 

this will reflect the level of  credibility inherent in each year and group, and this is the weight that should be 

used in the formulas above.  Dividing capped paid or reported losses by used, capped premium is 

mathematically equivalent to using the chain ladder estimates for the ultimate loss ratios multiplied or divided 

by one minus the excess ratios, depending on how the excess ratios are expressed.  So, we are essentially using 

chain ladder ultimate loss ratios with weights for each year as described.  Using this method, we can analyze 

the actual experience that has emerged and the volatility estimates will be appropriate. 

Note that the within variance formula above multiplies the differences squared by the weights, but does 

not divide by the total of  the weights afterwards.  This is because the within variance used in the Bühlmann-

Straub formula is really more accurately described as a within variance factor, and not the actual within 

variance for anything in particular.  This can be seen from the Bühlmann-Straub credibility formula as well; 

rearranging the formula below shows that this parameter is divided by the dollar amount to come up with the 

final within variance. 

Z= N
N + W / A

= 1

1+ W / N
A

= 1
1+ V / A

 

Where N is the weight, W is the within variance from the Bühlmann-Straub formula, or the within 

variance factor as we will call it, V is the actual within variance, and A is the between variance. 

The within variance formula (2.1) assumes that the product of  the weights and the square differences 

from the mean all have the same expected value.  The square differences from the mean represent the 

variance component.  So, by taking the average of  these values as the within variance factor, this formula 

essentially assumes that the variances of  each year multiplied by the weight are consistent, which is the same 

as assuming that the weights are proportional to the variance. 

Lastly, we will note that formula (2.1) takes an average of  the within variance factors by segment, only 

weighting by the number of  years, but not the premium volume.  If  one wishes, one can modify the formula 

and use a weighted average by premium volume instead. 

2.2 The Between Variance 

The second parameter, the between variance, is even more volatile and difficult to calculate than the first.  

When constructing a hierarchical model with multiple levels, for smaller, lower down levels, if  the estimates 

of  this parameter appear unreasonable, assumptions can be made for how each level's between variance 

relates to the levels above it, and it can then be judgmentally selected accordingly.  This parameter is easier to 

calculate with more groups, and so it can also be calculated between finer segmentations than being used, and 

then judgmentally adjusted as well.  The formula shown above (2.2) can sometimes return negative values, 
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which means that the indicated between variance is zero. 

This formula also assumes that the within variance factor is the same for all groups.  Using the logic we 

discussed, the following formula can be used when the within variance factor is assumed to differ among 

segments.  Caution should be used when doing this however; the within variance is difficult to calculate due 

to data volatility.  It is normally best to use an average across segments for everything.  This should only be 

done in some special cases where the within variance is expected to be significantly different between groups, 

such as when working with primary and excess data together. 

 

̂VHM =
∑
g= 1

G

W g [( X̄ g− X̄ )2− (G− 1)
G

̂EPV g

W g
]

W−
∑
g= 1

G

W g
2

W  

  

(2.3) 

3. CALCULATION OF LOSS RATIOS 

For the loss ratios used in any credibility method, we recommend using similar guidelines as mentioned, at 

least as a starting point.  This is not essential however, except for when working with mixed models, which 

will be discussed later.  To recap, the loss ratios for each year are equal to the capped paid or reported losses 

divided by the used, capped premium, which is the premium divided by the LDF and then multiplied or 

divided by one minus the excess ratio (ignoring trend and on-leveling).  As we mentioned, this is equivalent to 

multiplying the capped loss ratios by the LDF and then multiplying or dividing by one minus the excess ratio. 

If  the losses are capped, the loss ratios produced from the credibility procedure should be adjusted to 

reflect the fact that we are only analyzing a portion of  the losses.  The final loss ratio should be taken as a 

weighted average of  the credibility weighted result and the overall average loss ratio with weights of  one 

minus the excess ratio and the excess ratio, respectively (assuming that the excess ratio is expressed as a 

percentage of  total losses).  This approach assumes that the excess portion that we are not analyzing is 

running the same as the average for all segments.  (It is also acceptable, however, to assume that the excess 

portion for each segment is running the same as the capped portion and to skip this adjustment, if  one 

desires.) 

An additional factor should also be applied to the weight for each year so that more recent years which 

have more predictive power for the going forward loss ratio receive more weight.  This factor is needed since 

a Bornhuetter-Ferguson method is normally done using the a priori loss ratio obtained from the Cape Cod 

method.  This step uses the a priori loss ratio, but effectively gives even more weight to the recent years, 
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which have the most predictive power for the going forward loss ratio.  Since we are skipping this step, we 

need another way to give some more weight to the latest years.  An exponential decay factor of  0.95 should 

give similar indications as the full Cape Cod/Bornhuetter-Ferguson method, depending on the LDFs, and a 

higher or lower factor can be used based on the perceived rate that the business is changing.  So, to recap, the 

weights should be the used premium multiplied or divided by one minus the excess ratio, multiplied by the 

yearly decay factor.  To keep the weights given to each segment appropriate, the total premium should be used 

as the weight when combining across segments, and the weights mentioned should only be used when 

aggregating results across years.  If  the same premium is used for multiple LDF segmentations, the used 

premium can be calculated using the implied LDF, that is, the total calculated chain ladder ultimate divided by 

the paid or reported losses. 

There are many advantages to this approach.  The first is that loss ratios produced in this fashion are a 

good representation of  the actual experience for each year, and the weights correspond to the amount of  

credibility inherent in each year's estimate; this makes the data well suited for a credibility routine.  Second, it 

is easier to streamline and automate than a Bornhuetter-Ferguson or other similar method, especially when 

there are many segmentations in the data.    Third, it makes it easier to apply assumptions at finer levels of  

detail than the Bornhuetter-Ferguson method.  Lastly, the final weights given to each year are more explicit 

instead of  being implied from the loss development pattern. 

There is sometimes some confusion that a Bornhuetter-Ferguson method already performs credibility 

weighting.  This is only true from a reserving perspective, but not from a going forward profitability point of  

view.  A Bornhuetter-Ferguson method gives more weight to the a priori loss ratio for more recent, greener 

years for which the IBNR for those years are more uncertain.  But from a going forward perspective, even if  

all losses came in instantaneously and there was no need for any loss development, there would still be a need 

to credibility weight results because of  the volatility inherent in the experience.  For complete years, the 

amount of  credibility for each year depends on the premium volume.  For incomplete years, it is the premium 

multiplied by the percentage of  the year that we have already observed.  (The variance is really slightly higher 

because of  the uncertainty in the estimation of  the LDFs, but accounting for this would just give more 

weight to older years, which is counter-intuitive.)  So, for a going forward, pricing perspective, if  credibility is 

being applied, we recommend not using the Bornhuetter-Ferguson method and sticking with the original 

chain ladder method with weights as described.  Doing this is non-essential, however, as we mentioned, 

except for mixed models.  But regardless of  which methods are used to calculate the actual loss ratios, the 

Bornhuetter-Ferguson results are not appropriate for the calculation of  the within variance. 

We will illustrate one way of  performing this method with an example: we are developing a book of  

business that contains segments and sub-segments that we wish to perform credibility on in a hierarchical 

fashion.  We group the data at the sub-segment level.  We then calculate three values for each sub-segment for 
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each year:  the on-level premium; the trended, uncapped loss ratio; and the weight.  The calculation of  the 

on-level premium is straightforward.  The calculation of  the latter two is shown in these two formulas 

(assuming that our analysis is performed on capped, reported losses and that excess ratios are expressed as a 

percentage of  total losses): 

 

Loss Ratio= Capped Reported Losses
On - Level Premium

× LDF × Trend Factor /(1− Excess Ratio)  
 (3.1) 

 
Initial Weight = On - Level Premium / LDF × (1− Excess Ratio)× Yearly Decay Factor  

  

(3.2) 

 

Using these initial weights in the credibility calculation would cause improper weights being given to each 

segment and sub-segment that are not based on the total premiums of  each.  To use the total premium as the 

weights, but still perform the Cape Cod approach as we described above, we apply an off-balance factor for 

each sub-segment and calculate the final weights used as follows:  (Subscripts are used in the below for added 

clarity; they were ignored in 3.1 and 3.2 for brevity.) 

 

Off - Balance FactorSub-Segment=
∑

AllYears

On - Level PremiumSub-Segment

∑
All Years

Initial WeightsSub-Segment

 

  

(3.3) 

 
FinalWeight Sub-Segment ,Year= Intial WeightSub-Segment ,Year× Off - Balance FactorSub-Segment  

  

(3.4) 

 

The final loss ratio to use as the input for each sub-segment is calculated by taking the weighted average 

of  the yearly loss ratios using this as the weight.  With this approach, summing up the results by segment and 

year and then calculating the segment loss ratios will tie to the sum of  the sub-segment loss ratios, which is 

clearly a desired condition.  These final weights can also be used as the base for final weights in a Generalized 

Linear Mixed Model (GLMM) or a Bayesian credibility model and both the regression weights and the relative 

credibility by year will be appropriate.  (A further step is really needed for GLMMs, which will be discussed 

later.)  Once the credibility procedure is run, the final selected loss ratios are equal to: 

 

LRSub-Segment= Credibility Loss RatioSub-Segment× (1− XSRSub-Segment )+ Average LR× XSRSub-Segment  (3.5) 
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Where LR is the loss ratio and XSR is the excess ratio.  As mentioned, it is also acceptable to skip this last 

step.  As a compromise, instead of  using the overall average loss ratio, the loss ratio from the corresponding 

segment can be used as well. 

As a slight alternative, it is also possible to develop losses and calculate the initial weights at the policy 

level.  Results can then be rolled up into sub-segments by adding the ultimate losses and the initial weights 

from each policy.  The final weights can then be calculated at this level, although it is possible to calculate 

them at the policy level as well.  Doing this yields the same results, but allows for more flexibility in the 

segmentation structure used for credibility and also makes it easier to use assumptions, such as LDFs and 

excess ratios, at the policy level. 

As mentioned, this approach produces data that fits very nicely into a credibility procedure.  Another 

benefit is that the segmentation structure has less of  an impact on the final results than a similar Bornhuetter-

Ferguson method. 

4. THE TUG-OF-WAR CREDIBILITY METHOD 

We will introduce a credibility method that ensures that the average of  the resulting credibility weighted 

results matches the original.  This method is well suited for performing a credibility weighted allocation but 

has other uses that will be discussed.  We will focus on loss ratios, although this method can be applied to 

other items as well. 

A frequent problem with applying credibility to loss ratios, is that the average of  the credibility weighted 

results often does not match the original.  This causes practical issues since now we must either change our 

originally selected overall estimate or else the sum of  the segments will not tie to the combined.  A common 

solution is to apply an off-balance factor that forces the average of  the credibility weighted loss ratios to equal 

the original overall average, but doing so often produces questionable results, especially when the segments 

are small and when this off-balance factor is large.   

These problems will be demonstrated with the following example:  We are analyzing a book of  business 

with a total premium volume of  $200 million, which consists of  one very large segment with $100 million of  

premium and a bunch of  smaller segments that in total make up the other $100 million.  The total loss ratio is 

judged to be 70%, and we wish to produce credibility weighted loss ratios for each of  the segments.  The loss 

ratio of  the large segment is 90% and is almost fully credible.  The smaller segments have an average loss 

ratio of  50%, and because of  their size, have almost no credibility.  If  we calculated credibility weighted loss 

ratios for each segment, the large segment would end up with a loss ratio close to 90%, and the smaller 

segments would be assigned loss ratios close to the overall mean, which is 70%.  Each of  these results seem 

to make sense at the individual level, but summing up all the parts, our average loss ratio for the book is now 
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around 80%, much higher than the originally estimated 70%.  If  we applied an off-balance factor to each of  

the loss ratios, the factor would be equal to 0.7 / 0.8 = 0.875.  The large segment would now have a loss ratio 

of  0.9 x 0.875 = 78.75%, and each of  the smaller segments would have loss ratios of  0.7 x 0.875 = 61.25%.  

The combined average loss ratio is now 70%, as expected, but the results by segment are no longer 

reasonable.  The large, almost fully credible segment is not given enough credibility, only around 50%, and the 

smaller segments are given way too much. 

However, if  we took a closer look at the above, the results before the off-balance factor may be 

problematic as well.  If  the total loss ratio is 70% and there is one large, nearly fully credible segment with a 

loss ratio of  90%, then this should imply that the total loss ratio of  the smaller segments is 50%.  In fact, if  

we conducted our analysis removing the large segment, this is what we would expect to see.  The average loss 

ratio of  the smaller segments can be deduced from what we know about the larger segment.  Neither method 

above takes this into account since they both look at each segment individually, ignoring the results of  the 

other segments. 

4.1 Using Bayesian Credibility 

To implement this method, we will be using a simple Bayesian credibility model that does not require any 

special software to run.  The results of  this model are also consistent with Bühlmann-Straub credibility as will 

be shown.  The reason for using the Bayesian version is because the Bühlmann-Straub method only produces 

a point estimate, whereas we need to know the entire distribution so that we can find the most optimal 

solution subject to the constraint that the results must tie to the original overall number.  This can only be 

done using the Bayesian version. 

We will be using a normal distribution to model loss ratios, although with variances that differ for each 

observation.  Note that this assumption is not the same as assuming that these items are normally distributed; 

we are only assuming that each individual loss ratio has a normal distribution on what its possible outcomes 

might have been.  In this way, it is more similar to kernel smoothing than to assuming a distribution.  

Assuming normality with variances inversely proportional to the dollar amount also produces the same results 

as taking a weighted average by the dollar amounts, and so is consistent with traditional actuarial analysis. 

We will also be assuming that the prior distribution (that is, the credibility complement, in Bayesian terms) 

is normal as well, which is the common assumption.  This is a conjugate prior and the resulting posterior 

distribution (that is, the credibility weighted result) will also be normal.  Only when we assume normality for 

both the observations and the prior, Bayesian credibility produces the same results as Bühlmann-Straub 

credibility.  The mean of  this posterior normal distribution is equal to the weighted average of  the actual and 

prior means, with weights equal to the inverse of  the variances of  each.  As for the variance, the inverse of  

the variance is equal to the sum of  the inverses of  the within and between variances (Bolstad 2007).  The 
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variance of  the item being credibility weighted is comparable to the within variance, and the variance of  the 

prior is comparable to the between variance.  This means that the resulting credibility assigned is equal to the 

inverse of  the within variance divided by the sum of  the inverses of  both the within variance and the between 

variance.  Using some algebra: 

Z= 1/V
1/V + 1/ A

× V
V

= 1
1+ V / A  

Where V is the within variance and A is the between variance (or equivalently the variance of  the prior 

distribution).  Examining the Bühlmann-Straub credibility formula again, where W is the within variance 

factor: 

Z= N
N + W / A

= 1

1+ W / N
A

= 1
1+ V / A

 

So, it can be seen that when using normal distributions, Bayesian credibility is equivalent to Bühlmann-

Straub credibility.  The likelihood formula for this Bayesian model is: 

 

N(Credibility Result, Actual Result, Within Variance) 

+ N(Credibility Result, Credibility Complement, Between Variance) 

  

(4.1) 

 

Where N(A, B, C) is the logarithm of  the probability density function (PDF) of  a normal distribution at 

A with a mean of  B and variance of  C.   Maximizing the likelihood of  this formula will produce the 

mentioned result.  As an alternative, it is also possible to use the formulas for the mean and variance of  the 

posterior normal distribution that we mentioned.  (As a practical issue when programming, it may be 

necessary to set a minimum on the PDF values so that they are not too close to zero, which can cause 

problems with logarithms.) 

This simple Bayesian model can be solved using only Maximum Likelihood Estimation (MLE).  Since the 

resulting posterior distribution is normally distributed, the mode of  this distribution is equal to the mean, as 

is known.  This means that the MLE, which returns the mode, will also be returning the mean in this case. 

4.2 Implementing the Method 

To implement the Tug-of-War method, we maximize the likelihood of  the credibility weighted loss ratios, 

while constraining the parameters so that the resulting average will match the original. 

To do this, we start with initial parameters that represent the relative amount of  the total losses allocated 

to each segment.  We then use these initial parameters to calculate percentages that will always add up to one 
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by taking the initial parameter for each segment and dividing by the sum of  all of  the initial parameters.  We 

then convert this into a loss ratio by multiplying each percentage by the total amount of  losses across all 

segments and then divide by the premium for each segment.  We then calculate the likelihood for each loss 

ratio using the Bayesian credibility formula shown above.  Since each loss ratio affects all of  the others, we 

need to weight the likelihood of  each segment to account for this.  The weights used for each segment should 

be the premium.  (To use weights in MLE, each log-likelihood should be multiplied by the weight.)  The initial 

parameters are set using an optimization routine that maximizes the total likelihood. 

In practice, it helps if  the initial parameters are on a logarithmic scale so that negative numbers do not 

cause problems with negative loss ratios.  The parameter of  one of  the segments can be fixed at a number 

such as zero or another value, since the real number of  parameters is one less than the number of  segments 

since the sum of  the percentages must equal one.   Also, to help ensure that the maximization routine 

converges to the correct solution, good starting values should be chosen; these can be obtained from the 

regular Bühlmann-Straub indications. 

There are multiple ways to implement the above scheme.  Another way is to set the percentages of  one of  

the segments to one minus the sum of  the rest, although this can sometimes result in negative percentages.  

Another version that is sometimes helpful is to use relativities instead of  percentages.  In this version, the 

initial parameters are the initial relativities (on a logarithmic scale).  The average relativity is then calculated by 

taking a weighted average of  these initial relativities using the premium as the weight.  The final relativities are 

then set to the initial relativities divided by the average.  This will ensure that the resulting average matches the 

original.  Note that in both versions, credibility is calculated on the loss ratios themselves and not on the 

percentages or the relativities. 

To review, the steps are as follows: 

1) Initial Parameters(Set by Maximization Routine)  
2) Relative Percent of Lossesi= exp( Initial Parameteri)  

3) Percent of Lossesi=
Relative Percent of Lossesi

∑ Relative Percent of Losses  

4) Loss Ratioi= Percent of Lossesi× Total Losses/ Premiumi  

5) Log- Likelihood i= Log- Likelihood ( Loss Ratioi)× Premiumi  
6) Total Log- Likelihood =∑ Log- Likelihood i  

If  implementing the relativities version, the steps are slightly different: 

1) Initial Parameters(Set by Maximization Routine)  
2) Initial Relativityi= exp ( Initial Parameteri)  
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3) Average Relativity= ∑ Initial Relativitiesi× Premiumi

∑ Premiumi
 

4) Relativity i= Initial Relativityi / Average Relativity  

5) Loss Ratioi= Relativityi× Overall Loss Ratio  

6) Log- Likelihood i= Log- Likelihood ( Loss Ratioi)× Premiumi  
7) Total Log- Likelihood =∑ Log- Likelihood i  

We named this method the Tug-of-War method because each loss ratio tries to maximize its own 

likelihood, and because of  the constraint that the resulting average must equal the original, each loss ratio 

“tugs” on all of  the others as they fight for the highest likelihood that they can achieve.  This method 

produces better results than the application of  a simple off-balancing factor, since the likelihood is maximized 

over all possible combinations that tie to the original average, and so the best tying result is selected.  The 

complement for each segment is essentially revised based on available information from the other segments.  

It should be noted though that if  the off-balance is small, there may not be much benefit to using this more 

complicated method, and the use of  a simpler off-balancing factor may be preferable. 

For both the overall loss ratio used as the complement of  credibility as well as the individual segment loss 

ratios used in this model, they can be either actual loss ratios dictated solely from the experience, or they can 

be selected with some degree of  judgment.  If  the overall loss ratio used is a selected loss ratio, and the 

segment loss ratios are from the experience, this method is essentially performing a credibility-weighted 

allocation of  the selected loss ratio.  A hierarchical model can also be built where the overall loss ratio used 

for each level is the credibility weighted result from the previous level.  Alternatively, if  the segment loss 

ratios are judgmentally selected, and the overall is set to the average of  these loss ratios, then this method 

performs a credibility weighting on the selected loss ratios. 

As another similar option, it is possible to use the actual, experience dictated loss ratios for both the 

overall and the segments and have this method take care of  all the selections via credibility weighting, since 

with a good credibility method there is less need to manually select loss ratios.   Adjustments can be made 

afterwards though, if  needed.  A hierarchical model can be built similar to the above, as well.  It is suggested 

to use loss ratios and weights as was explained above, but any reasonable method can be used as long as the 

within and between variances are calculated correctly. 

A couple of  examples of  applying this method are shown below for illustration.  The first is very similar 

to the one given above but shows the actual estimate produced from applying this method in practice. 
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 Total Segment 1 Segment 2 Segment 3 Segments 4 - 21 

Total Premium 20M 10M 500K 500K 500K 

Loss Ratio 70% 100% 40% 40% 40% 

Within Standard 

Deviation 

3.9% 31.6% 31.6% 31.6% 31.6% 

Between Standard 

Deviation 

10%     

Tug-of-War LR 70% 93.2% 46.8% 46.8% 46.8% 

Implied Credibility  77.2% 77.2% 77.2% 77.2% 

Bühlmann-Straub LR 81.7% 96.1% 67.3% 67.3% 67.3% 

Bühlmann-Straub 

Credibility 

 87.0% 9.1% 9.1% 9.1% 

 

Note that with this method, the large segment receives slightly less credibility than it does using the 

Bühlmann-Straub method.  This is because the result of  this large segment affects not only its own loss ratio, 

but all of  the other segments as well. 

The next example is nearly identical except that one of  the smaller segments, segment 3, has a higher loss 

ratio of  80%.  The details are shown below.  The point of  this example is to show that negative credibilities 

are possible since the large segment with ten million in premium and a very high loss ratio essentially lowers 

the complement of  credibility for the remaining segments, since, as we have mentioned, we would expect to 

see an overall lower loss ratio if  we performed the analysis without this large segment.  Note though that the 

resulting Tug-of-War loss ratio for this segment still comes out higher than the other small segments, as 

expected. 
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 Total Segment 1 Segment 2 Segment 3 Segments 4 - 21 

Total Premium 20M 10M 500K 500K 500K 

Loss Ratio 71% 100% 40% 80% 40% 

Within Standard 

Deviation 

3.9% 31.6% 31.6% 31.6% 31.6% 

Between Standard 

Deviation 

10%     

Tug-of-War LR 71% 93.4% 48.4% 52.1% 48.4% 

Implied Credibility  77.2% 72.8% -210.3% 72.8% 

Bühlmann-Straub 

LR 

82.3% 96.2% 68.2% 71.8% 68.2% 

Credibility  87.0% 9.1% 9.1% 9.1% 

 

These results and implied credibilities will be explained more in the next section as well. 

4.3 Understanding the Results 

The loss ratios resulting from this method can sometimes be difficult to interpret at first glance.  Even 

though the correlation between the resulting loss ratios from this method and the Bühlmann-Straub method 

are usually very high, the relationship between the credibility numbers is less apparent at first.  In the simple 

examples shown in the previous section, it was relatively easy to understand the results, but more realistic 

scenarios can be more difficult to interpret.  

As we explained above, the complement of  credibility is effectively changed with this method as it takes 

all of  the information about the expected average loss ratio and the other segment's loss ratios into account.  

A segment's loss ratio is impacted by the other segments’ loss ratios since they provide information and can 

be used to imply something about our current loss ratio.  The amount of  impact other loss ratios affect each 

other is related to how credible each loss ratio is.  Using this logic, we can produce a formula to derive what 

the effective complement for each segment's loss ratio is.  We do this by starting with the total losses for the 

entire book and subtracting out the amount of  losses from all of  the other segments using the Bühlmann-

Straub derived loss ratios.  But subtracting out all of  these losses would be giving the effect that segments 

have on each other too much weight.  To account for the partial credibility of  these loss ratios, we subtract 

out only a portion of  the losses; for this fraction, we use the calculated Bühlmann-Straub credibilities as an 

approximation.  We then divide by the appropriate premium volume to convert these losses into loss ratios.  
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With this formula, each group receives a different effective complement based on the loss ratios and relative 

weights of  all of  the other segments.  The formula is as follows: 

 

Complement=
Total Premium× Average LR− ∑

i= AllOther Segments
Premiumi× Cred LRi× Z i

Total Premium− ∑
i= All Other Segments

Premiumi× Z i
 

  

(4.2) 

 

Where Cred LR is the Bühlmann-Straub loss ratio and Z is the credibility.  The implied credibility from this 

new effective complement can be calculated by inverting the credibility formula and solving for Z, which 

results in the following: 

 

Z =
LRCred− LRComplement

LRSegment− LRComplement
 

 (4.3) 

 

These resulting credibilities will not match the Bühlmann-Straub credibilities exactly, but the correlation is 

usually very high, and these can be used to help explain the results. 

As mentioned, some of  the resulting loss ratios may not fall in between the (original) complement and the 

initially indicated loss ratio.  Even though we can understand and explain the results, this may still be 

undesirable.  A simple solution is to just select different loss ratios for these segments.  This occurs most 

often with smaller segments and so the impact to the overall average will be small.  Another solution is to 

apply a penalty to the likelihood to help keep the results within range.  One way to do this is to subtract from 

the likelihood the product of  the amount that the loss ratio is out of  the range by some small penalty 

constant.  (This should be done within the parenthesis before the likelihood is multiplied by the premium so 

that the penalty is multiplied by the premium volume as well; this seemed to work best.  Also, the penalty 

should usually be less than one or two.)  This approach will not guarantee that the loss ratios remain within 

the range, but it will help push them closer and make being outside of  the range less likely.  Note, however, 

that using a penalty puts more constraints on the loss ratios and often lowers the correlation between the 

implied credibilities and the original and so may make the other loss ratios more difficult to explain. 

4.4 Using Classical Credibility 

Even though this method requires the within and between variance parameters, it can also be 

implemented in a classical credibility-like (or limited fluctuation) fashion, if  desired.  Even though classical 

credibility has some guidelines for selecting different credibility thresholds, such as having the estimate not 
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deviate by more than 5% from the true value 90% of  the time etc., any such selections for these parameters 

are mostly arbitrary.  That is not to say that there are any problems with using classical credibility; it is just 

important to realize the need for judgmental estimates and not assume that the results are more objective 

than they really are.  Classical credibility can provide reasonable credibility weighted results in a small amount 

of  time, which in itself  is a lot to say in its support. 

The Bühlmann-Straub credibility formula is N / (N + K).  This formula will assign 50% credibility when 

N = K, and so K can be thought of  as the criteria for half  credibility.  The premium threshold for this can be 

judgmentally selected.  Alternatively, if  one is more comfortable with choosing a full credibility threshold, a 

threshold can be selected for approximate full credibility, and we can then rearrange the classical credibility 

formula of  Z= √X / K  to K Half  Credibility  Criteria= 0.25 K Full  Credibility  Criteria  to convert this into a rough 

half  credibility threshold, although of  course, this will not be exact. 

Using this, the within variance for a segment can be set as the inverse of  the dollar amount being used as 

the weight multiplied by a factor.  The between variance can be set to the inverse of  the dollar amount that 

should receive half  credibility multiplied by the same factor.  The actual factor used has no impact; it is just 

needed to put the variances on an appropriate scale so that the method can converge. 

5. USING GENERALIZED LINEAR MIXED MODELS 

5.1 Credibility Weighting Loss Ratios and Loss Costs 

As an alternative to the methods presented above, it is also possible to use a Generalized Linear Mixed 

Model (GLMM) to credibility weight loss ratios and loss costs.  See Klinker (2011) for an introduction to 

these models.  Using a GLMM with an identity-link and a normal distribution will produce the same results as 

applying Bühlmann-Straub credibility.  Besides for the benefits it offers of  easily allowing hierarchical and 

multidimensional models, using a GLMM automates the calculations of  the within and between variances. 

A problem, however, arises when using premiums as the base for the weights, since a GLMM assumes 

that a weight represents a number of  observations.  Because of  this, using premium will almost always result 

in assigning full credibility to everything since each premium dollar will be counted as an observation and so 

the number of  observations will be very high1.  Using an alternative weight, such as claim counts, does not 

fulfill the desired objective of  weighting by premiums, since GLMMs use the same weights for credibility as 

they do for the regression.  Weighting by counts may also cause a bias if  there are some segments with high 

frequency, low severity claims that have a high loss ratio and vice versa, for example.  One solution is to 

multiply the weights by an additional constant equal to the total number of  reported claims across all 

                                                 
1 The referenced paper actually shows an example using premium as weights but this appears to be an error. 
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segments divided by the sum of  the original weights so that the new sum of  the weights across all segments 

will be equal to the total number of  reported claims.  This will allow us to weight by premium volume but still 

keep the total weight consistent with the number of  observations overall.  This approach produces reasonable 

credibility estimates when applied in practice.  To summarize, using this method in addition to what we 

discussed above, the weights should be equal to the following: 

 

Premium / LDF x (1 - Excess Ratio) x Yearly Weight Factor x K  (5.1) 

 

Where K is the factor that we mentioned2.  Note that there is only one K factor for all of  the data and it 

has the same value for every segment, regardless of  the actual number of  claim counts for each.  Using this 

approach, it is possible to build hierarchical and multidimensional credibility models using GLMMs. 

Using a GLMM also allows us to use a log-link when credibility weighting, which sometimes produces 

better results than an identity-link when there are extreme values, as there often are with volatile data, but not 

always; both ways can be tested to see which produces better results.  To avoid errors caused from taking the 

logarithm of  zero, observations with loss ratios of  zero should be modified to a very small number slightly 

above zero, such as 0.00001.  Also, even without a log-link, loss ratios with zero weights should be removed 

so as to not cause errors, which will occur with some GLMM implementations if  left in. 

5.2 Multidimensional Credibility Models 

With GLMMs, it is also possible to build a multidimensional credibility model in which each dimension is 

assigned a relativity, and each relativity is credibility weighted back towards zero.  For multidimensional 

models, multiplicative relativities usually behave much better and are recommended. 

Assuming we have two dimensions and we wish to perform credibility weighting on the relativities of  

each, there are two main types of  models we can build, and another that is a compromise of  these two 

approaches, as will be explained.  For this section, we will assume that the two dimensions we are dealing with 

are industry and territory. 

The first type of  model is a true two dimensional model where the resulting loss ratios are the product of  

the two relativities.  This assumes that territory relativities are the same for each industry (and vice versa).  So 

if  a particular territory is higher than average overall, it will be higher for every single industry by the exact 

same amount.  A positive of  this model is that it leverages the credibility of  each territory across all 

industries.  But this is a down side as well since it assumes the relativities are always the same, which they will 

not always be. 
                                                 
2 Note that this additional factor is not needed for Bayesian models. 
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The second type of  model we can build is really a hierarchical model.  For example, we can put territory 

under industry and first perform credibility at the industry level.  We then perform a separate territory 

credibility calculation for each industry.  This will allow territory relativities to differ by industry, but does not 

leverage the credibility of  a territory across industries.  Which of  these two models to choose depends on our 

perception of  how different the territory relativities are across industries and how volatile our data is.  Both 

of  these models can be calculated using GLMMs. 

A compromise model can also be built that leverages the credibility of  each territory across the industries, 

but also allows each industry's territory relativities to differ based on the amount of  credibility within each 

cell.  In this model, the territory relativities for each industry are effectively credibility weighted back towards 

the overall territory relativity, which itself  is credibility weighted back towards zero.  This is the ideal model 

that combines the best points of  each of  the above models.  Such a model can be built using a GLMM with 

both industry and territory included as random effects (that is, included as components of  the model that 

take credibility into account), and the interaction of  these two added as a third random effect3.  This type of  

model is very powerful at producing results at fine levels of  detail even when the data is very thin and volatile. 

5.3 Uneven Hierarchical Models 

When building a model to perform credibility weighting, sometimes we can encounter a data structure 

where each group has a different number of  levels.  For example, suppose we are building a hierarchical 

model on groups and subgroups that looks like the following: 

 

 

 

Groups A and B each have two children, while groups C and D only have one, and so really do not have 

                                                 
3 In R, an interaction is added by using a colon between variables.  Using the lme4 package, a random effect has the 

syntax, (1 | group) where group is the variable we create a random effect on.  To do as described, the syntax would be:  
(1 | industry) + (1 | territory) + (1 | industry: territory) 
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any sub-groupings.  This can create problems when building a GLMM since if  random effects are assigned to 

the subgroups C1 and D1, the groups C and D will each have two credibility coefficients that do the same 

thing, effectively giving double credibility to these groups.  Really, we would want the coefficients for C1 and 

D1 to be given values of  zero.  This is in fact what happens when building a GLM on this type of  data, but 

not with a GLMM. 

This type of  model can be built using a GLMM if  we add the subgroup random effects as slope 

coefficients instead of  regular intercept coefficients.  To explain, most random effects modify the intercept 

and add or subtract an amount from the intercept, which is same as adding or subtracting this term from the 

entire equation.  But it is also possible to have a random effect behave like a slope parameter instead4.  Doing 

this, the coefficients of  the random effects are multiplied by a data variable in the equation.  Using this, we 

can create a new variable that is one if  its subgroup has any siblings, meaning that it is not the only child of  

its parent, and zero if  it has no siblings.  If  we create the subgroup random effect as a slope on this variable, 

it will not allow the nodes C1 and D1 to have non-zero values, and the model will behave as expected. 

Similarly, if  building the “compromise” model described in the previous section where we gave the 

example of  constructing a model by industry and territory, this unevenness of  levels may need to be 

accounted for as well.  A regular model will give double credibility if  there is a territory with only one 

industry, or an industry only under a certain territory.  Instead of  siblings, we refer to these relationships as 

cousins.  To account for this, similar binary variables can be setup in the data that indicate whether any 

cousins exist, and the random effects can be added as slope parameters to these variables as described. 

5.4 Implementing Mixed Models in Spreadsheets 

GLMM credibility models that are either additive or multiplicative can also be implemented in 

spreadsheets fairly easily using maximum likelihood estimation.  To do this, we first determine the formula of  

the loss ratios, such as log(Fitted LR) = intercept + territory + industry, which would create a multiplicative model 

with territory and industry relativities.  To build a regular GLM without credibility weighting, the log-

likelihood should be calculated as follows: 

 

∑ N ( Fitted LRi , Actual LRi , WithinVariance Factor / Premium Basei)   (5.2) 

 

Where N(A, B, C) is the logarithm of  the Normal PDF at A with a mean of  B and a variance of  C.  The 

                                                 
4 The syntax shown in the previous footnote will create a random effect on the intercept.  To create a random effect 

on the slope, the syntax is: (0 + variable | group) where variable is the variable we are creating the slope on.  (The “0 +” 
is needed here to let it know not to create the random effect on the intercept as well.  If  we left this part out, random 
effects would be added both to the intercept and as a slope.) 
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intercept and territory and industry coefficients should all be determined using a routine that maximizes the 

total log-likelihood. 

A GLMM can be implemented using the simple Bayesian model we described above since MLE 

parameters are assumed to be approximately normally distributed, and so the posterior distribution should be 

approximately normal as well.  To calculate the log-likelihood for the GLMM, we add the following to 

formula (5.2): 

 

∑
t= all territories

N (Coefficient t , 0, BetweenVariance Territories)  

+ ∑
i = all industries

N (Coefficient i , 0, BetweenVariance Industries)  

  

(5.3) 

 

Using zero as the mean for the prior distributions effectively weights everything back towards the 

intercept, which is what performs the credibility weighting.  The between variances are difficult to calculate, 

limiting the advantage of  this approach however.  They can be estimated by looking at the variances of  each 

parameter while controlling for all of  the other parameters, possibly by using a GLM. 

A plus side is that the Tug-of-War method can be implemented.  We suggest using the relativities version 

shown above and implementing as follows, assuming a multiplicative model:  The log-likelihood for the 

relativity coefficients should be calculated first using formulas similar to (5.3).  The exponent of  the log-

relativities should be taken to calculate the actual relativities for each combination of  dimensions and the 

weighted average overall relativity should be calculated.  Revised relativities should then be computed by 

dividing each relativity by the average and the final loss ratios can be calculated by multiplying these relativities 

by the average loss ratio.  The log-likelihood for each loss ratio can then be taken and added to the overall 

total.  This method will ensure that the overall average of  the credibility weighted results ties to the original.  

It is also possible to ensure that the average of  each loss ratio across a particular dimension, industry for 

example, ties the original average industry loss ratios as well.  This can be done by calculating the average 

relativities across each industry and dividing each relativity by the average relativity for each industry.  

Ensuring that the averages of  more than one dimension tie to the originals puts too many constraints on the 

solution and is not recommended5. 

                                                 
5 We ignored the log-likelihood weights in this discussion.  One option is to leave out the weights even though this 

may cause the Tug-of-War method to not work as well.  Another option is to apply weights to each relativity log-
likelihood equal to the total premium for each item across all of  the other dimensions, and weights to each loss ratio 
log-likelihood equal to the premium of  each.  This will help the Tug-of-War part of  the method work better but 
slightly violates Bayes’ formula which is the formula we are using for the credibility weighting. 
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6. ACCOUNTING FOR MIX CHANGES AND NON-RENEWALS 

The last topic we will discuss is non-renewals and business mix changes.  Very often, to improve a book 

of  business, some accounts or segments perceived to be under-performing will be non-renewed, and actuaries 

are often asked to quantify the impact of  these actions.  One method (which is often favored by the 

underwriters) is to completely eliminate all non-renewed business from the experience and calculate 

predictions on this cleaned up data.  But doing so does not account for the credibility of  the non-renewed 

business.  To give an extreme example, assume all policies have a loss on average of  once every five years and 

are completely identical in terms of  expected losses.  If  after a couple of  years, all accounts with a loss are 

non-renewed, the historical loss ratio on the remaining business will clearly look much better, but the book 

really has not changed at all.  The expected going forward loss ratio is exactly the same.  The same example 

can be applied to business mix changes as well. 

Instead, when calculating the benefit, we suggest incorporating credibility in most cases.  (In some cases, 

however, a major change has truly been made and a unique segment has been non-renewed for which the 

overall loss ratio of  the book does not serve as a good credibility complement; in these situations, it may not 

make sense to incorporate credibility.)  If  a particular segment is non-renewed, credibility weighted loss ratios 

can be produced by segment using one of  the methods described above, and the difference to the total loss 

ratio can be calculated both with and without this particular segment to determine the effect.  If  accounts 

with the highest frequency or loss ratios are non-renewed, credibility weighted loss ratios can be calculated by 

frequency or loss ratio band and the effect can be determined.  If  just a bunch of  poor accounts are non-

renewed, a hierarchical model that properly reflects the segmentations in the book of  business can be built 

that goes all the way down to the policy level, and the result of  excluding these policies can be determined as 

well.  Although this last case may be the most difficult to model.  The same applies to mix changes.  

Credibility weighted loss ratios can be produced per segment and the total weighted average loss ratio can be 

calculated before and after the change to help judge the effect on the overall book.  

7. CONCLUSION 

As pricing actuaries, we are relied upon to help make many important strategic and quantitative decisions.  

Without a good credibility mechanism, a choice often needs to be made between not giving enough detail and 

giving enough detail but not accurately.  Applying credibility allows us to balance these two demands and 

provide enough detail and do so accurately. 
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Abstract 

Current approaches to measuring uncertainty in an unpaid claim estimate often focus on parameter risk 

and process risk but do not account for model risk.  This paper introduces simulation-based approaches 

to incorporating model error into an actuary’s estimate of uncertainty.  The first approach, called 

Weighted Sampling, aims to incorporate model error into the uncertainty of a single prediction.  The 

next two approaches, called Rank Tying and Model Tying, aim to incorporate model error in the 

uncertainty associated with aggregating across multiple predictions.  Examples are shown throughout 

the paper and issues to consider when applying these approaches are also discussed. 
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1 Introduction 
One of the core practices performed by property and casualty actuaries is the estimation of unpaid 

claims, which according to Actuarial Standard of Practice Number 43 (ASOP 43), Property/Casualty 

Unpaid Claim Estimates, is defined as: 

Unpaid Claim Estimate – The actuary’s estimate of the obligation for future payment resulting 

from claims due to past events.   

Estimates by their nature are subject to uncertainty and our profession has strived to communicate the 

uncertainty inherent in unpaid claim estimates to the users of our services.  In the past, communications 

were mostly verbal in the sense that they warned the user of the risk that the actual outcome may vary, 

perhaps materially, from any estimate, but were rarely accompanied by a quantification of the 

magnitude of this uncertainty.  More recently, actuaries have developed approaches to measure 

uncertainty and have included this information in their communications.   

ASOP 43 suggests that there are three sources of uncertainty in an unpaid claim estimate. 

Section 3.6.8 Uncertainty – “When the actuary is measuring uncertainty, the actuary should 

consider the types and sources of uncertainty being measured and choose the methods, models 

and assumptions that are appropriate for the measurement of such uncertainty…Such types and 

sources of uncertainty surrounding unpaid claim estimates may include uncertainty due to 

model risk, parameter risk, and process risk.” (emphasis added)    

ASOP 43 defines each risk as follows: 

2.7 Model Risk – “The risk that the methods are not appropriate to the circumstances or the 

models are not representative of the specified phenomenon.” 

2.8 Parameter Risk – “The risk that the parameters used in the methods or models are not 

representative of future outcomes.” 

2.10 Process Risk – “The risk associated with the projection of future contingencies that are 

inherently variable, even when the parameters are known with certainty.” 

Common approaches to measuring uncertainty, such as the Bootstrapping approach described by 

England and Verrall (1999, 2002 and 2006) and England (2001) and the distribution-free methodology 

described by Thomas Mack (1993), are based on the premise that a single model in isolation is 

representative of the unpaid claims process, and as a result, uncertainty is measured only for parameter 

and process risk.  We believe that circumstances exist in current practice where model risk is evident in 

the uncertainty surrounding an unpaid claim estimate, and as a result, this paper introduces 

methodologies to incorporate its impact.  These methodologies leverage existing approaches that 

measure parameter and process risk by supplementing their results with the inclusion of model risk.   

Examples are shown throughout the paper that, to the extent practical, are based on a single case study 

which is discussed in more detail in Appendix A. 
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1.1 Background  
The genesis of this paper and the methodologies presented herein are the result of a dilemma that the 

authors observed when estimating uncertainty associated with an unpaid claim estimate.  This dilemma 

is perhaps best explained through a hypothetical example. 

Consider a hypothetical situation where an actuary uses two actuarial projection methodologies (i.e. 

models) to estimate unpaid claims for a book of business: Model A and Model B, which both produce a 

point estimate.  Based on the actuary’s expertise and professional judgment, the actuary selects the 

central estimate (colloquially referred to as a “best estimate”) to be the straight average of the two 

point estimates.  In other words: 

                  
                                               

 
 

Graphically, these point estimates are shown in Figure 1. 

Figure 1. Actuarial central estimate 

 

In order to convey uncertainty in this example, the actuary uses Model B as the basis for estimating 

uncertainty and observes the following distribution in Figure 2. 

Model A point 

estimate Model B point 

estimate 

Selected point 

estimate 
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Figure 2. Distribution around Model B 

 

If it is assumed that the distribution in Figure 2 is intended to represent the range of uncertainty in the 

actuary’s estimate, then a couple of observations raise concern:  

 The actuarial central estimate is not centrally located within the distribution; and 

 The distribution implies that the point estimate from Model A is an unlikely outcome, which 

conflicts with the actuary’s professional judgment to equally weight the point estimates from 

Model A with Model B in selecting a central estimate. 

This example is not unique in that it is common for an actuary to estimate unpaid claims with more than 

one model and it is rare for different models to produce point estimates that are equivalent.  

Furthermore, current approaches to estimating uncertainty tend to model uncertainty within the 

context of a single model, which often is not equivalent to the actuary’s selected central estimate.   

2 Scaling 
One approach to dealing with this dilemma is to shift the distribution about Model B so that the mean of 

the distribution is set equal to the actuary’s selected central estimate.  This approach, referred herein as 

scaling, can be done additively, which maintains the same variance, or multiplicatively, which maintains 

the same coefficient of variation, where: 

For each point,   , within a distribution with mean equal to  ̅, the corresponding scaled points, 

   , in the distribution are equal to: 

                           [                   ̅] 

                                
[                ]

 ̅
 

Scaling a distribution can be a suitable approach when the magnitude of scaling is immaterial, however, 

this approach tends to produce unsatisfactory results as the magnitude of the difference between the 

Distribution 

around Model B 
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point estimates increase.  For example, consider the hypothetical results before and after scaling 

multiplicatively to the actuarial central estimate in Figure 3. 

Figure 3. Scaling 

 

In this situation, the mean of the implied distribution after scaling reconciles with the actuarial central 

estimate, however, the point estimate from Model A continues to appear as an outlier.  While this 

example may be an exaggeration, it highlights a dilemma that an actuary faces when the indications 

from various models diverge.   

3 Mean Squared Error 
In order to address this dilemma it may be helpful to explore uncertainty in an estimate from a 

mathematical perspective.  [Authors note: The mathematical terms and formulas in this section are used 

only for the purpose of establishing a theoretical foundation for uncertainty and its relationship with 

model error.  The approaches introduced afterward for incorporating model error do not rely on these 

formulas and this section of the paper, however, these formulas are believed to be useful for 

understanding the basic concepts of uncertainty.] 

Uncertainty, as used in the context of this paper, implies that the actual outcome may turn out to be 

different from our estimate (i.e. prediction).  In statistics, the Mean Squared Error (MSE) measures this 

difference.  Consider an outcome as a random variable,   and a prediction,  ̂.  The mean squared error 

is: 

 [     ̂  ] 

Expanding this term through additive properties yields: 

 [     ̂  ]    [     ̂    [ ]   [ ]    [ ̂]    [ ̂]   ] 

Reordering yields 

Distribution around Model B 

scaled to selected estimate 
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 [     ̂  ]    [(    [ ]    ̂   [ ̂]   [ ]    [ ̂])
 
] 

If we assume   and  ̂ are independent, then the formula reduces to 

 [     ̂  ]    [    [ ]  ]   [  ̂   [ ̂]  ]    [ ]   [ ̂]   

Appendix B derives this formula in more detail.  This equation as it is currently structured highlights a 

key relationship: the mean squared error equals the sum of process variance, parameter variance and 

squared bias, where: 

                          [    [ ]  ]  

                          ̂   [  ̂   [ ̂]  ]     

                       ̂      [ ]   [ ̂]    

These terms are discussed further below.   

3.1 Process Variance  

        [    [ ]  ]  

The formula for process variance uses the terms   and  [ ]. The variable   is the actual outcome we are 

trying to predict, which is presumed to be a random variable that is generated from a distribution with 

mean equal to  [ ].  In other words, process variance measures the variance of actual outcomes.       

Insurance is believed to be a stochastic process (or nearly stochastic in the sense that the sheer number 

of conditions which contribute to an actual outcome makes it appear random simply because we are 

unable to account for all of that information) and the variability inherent in a single outcome occurring is 

measured by process variance.  Consider the flipping of a coin where the probability of a “head” 

occurring is equal to the probability of a “tail.”  Despite this knowledge of the underlying probabilities, 

we are still unable to accurately predict the outcome from a single flip of the coin because there is an 

element of randomness to any single observation.  The estimation of unpaid claims in insurance is 

similar in that the actual outcome to which we are predicting is a single observation that is one of many 

probable outcomes which could occur. 

3.2 Parameter Variance 
      ̂   [  ̂   [ ̂]  ] 

The formula for parameter variance uses the terms  ̂ and  [ ̂] where the variable  ̂ is the prediction. 

Actuaries make predictions of unpaid claims through the application of projection methodologies that 

attempt to model the overall insurance process using parameters that are estimated from a data 

sample.  Generally speaking, not every point within the distribution of probable predictions from a 

model is a suitable candidate for an actuarial prediction.  Our goal as actuaries is to parameterize the 

model such that the resulting prediction,  ̂, is central to the distribution, however, this prediction may 

not be equal to the true underlying mean of the model,  [ ̂], because of our uncertainty in estimating 
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the model’s parameters from the data sample.  Parameter variance is also called estimation variance 

because this term of the MSE measures the uncertainty in the estimation of the model parameters. 

3.3 Squared Bias 
         ̂      [ ]   [ ̂]   

In statistics, a prediction,  ̂, is considered unbiased if the expected value of the prediction is equal to the 

expected value of the outcome,  , to which we are trying to predict.  Otherwise, statistical bias exists 

and is measured through this term of the mean squared error.  Squared bias is relevant when 

attempting to estimate the parameters of the MSE, which is beyond the scope of this paper.  Some 

methods of estimation, such as maximum likelihood techniques, may produce biased estimates and will 

require squared bias to be incorporated into the MSE but for simplicity of discussion we will assume 

squared bias is equal to zero and we will not address it further in this paper when discussing the MSE. 

3.4 Estimating the MSE – Single Model 
Although the formula for the mean squared error provides theoretical insights into the components of 

uncertainty in a prediction, it remains a quandary to apply in an actuarial context since it requires us to 

be able to measure statistical properties (namely mean and variance) of outcomes that could occur, 

which are unknown.  In many industries, the statistical properties of actual outcomes can be derived by 

observing a sufficiently large number of trials, but unfortunately, the unpaid claim process is not a 

repeatable exercise. 

One way actuaries have dealt with this predicament is by estimating uncertainty on the condition that a 

particular actuarial projection methodology (i.e. model) in isolation is representative of the random 

variable,  .  In other words, if the unknown distribution of probable outcomes,     , is defined by the 

distribution of probable predictions from Model A, represented as      ,  such that:  

           

then 

[   |          ]   [      ̂  
 ] 

where, 

   is the actual outcome,  , generated from Model A, and 

 ̂  is the prediction,  ̂, from Model A. 

Under this conditional assumption, process variance can be defined as the distribution of probable 

outcomes generated from Model A and parameter variance can be defined as the variance in actuarial 

estimates generated from Model A. 

An interesting observation is that the distribution of uncertainty corresponding to the MSE represents a 

range that is at least as wide and most likely wider than the range of probable outcomes (i.e. process 

variance) since it must also incorporate the uncertainty associated with the actuary’s estimate of the 
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model’s parameters (i.e. parameter variance).  In other words the distribution of uncertainty, such as 

the one shown for Model B in Figure 2, represents the actuary’s estimate of potential outcomes 

conditional on the particular model (i.e. process variance) and the data sample used to estimate the 

model’s parameters (i.e. parameter variance).   

3.5 Estimating the MSE – Multiple Models     
In isolation, a distribution derived from a single model has intuitive appeal since it represents the only 

information available.  In practice, however, it is uncommon for an actuary’s analysis of unpaid claims to 

be comprised of evaluating only a single model in isolation.  ASPOP 43 states: 

Section 3.6.1 Methods and Models – “The actuary should consider the use of multiple methods 

or models appropriate to the purpose, nature and scope of the assignment and the 

characteristics of the claims, unless in the actuary’s professional judgment, reliance upon a 

single method or model is reasonable given the circumstances.  If for any material component of 

the unpaid claim estimate the actuary does not use multiple methods or models, the actuary 

should disclose and discuss the rationale for this decision in the actuarial communication.” 

Therefore, if multiple models are utilized by the actuary to estimate unpaid claims it seems prudent that 

the measure of uncertainty recognize the additional knowledge gained from the application of more 

than one model.    As previously hypothesized in Section 1.1, if an actuary uses two models to estimate 

unpaid claims for a book of business, Model A and Model B with corresponding distributions of probable 

predictions that could be used to define the distribution of outcomes,       and       respectively, 

then two alternatives for estimating the MSE are:  

[   |          ]   [      ̂  
 ] 

[   |          ]   [      ̂  
 ] 

However, it is very likely that 

            

and hence the actuary is left with two conflicting solutions for the MSE in this example.  If both models 

are believed to be reasonable representations of     , then it may not be appropriate to assume that 

only one is representative of      because of the ramification it implies with the other model.  

                              

And likewise 

                              

Perhaps both models are reasonable representations of      but each model suffers from some 

unknown function of inaccuracy that we will characterize as model error, such that  
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Then the introduction of model error can be used to explain the inconsistency between models: 

                       

Unfortunately, we revert to the predicament of defining uncertainty with unknown terms since model 

error is unknown.  If we use Model A and its corresponding model error to define the distribution,     , 

then:  

[   |             ]   [      ̂  
 ]     

is equal to  

[   |             ]   [      ̂  
 ]     

where    represents the unknown inaccuracy in the MSE as a result of model error in Model A 

(i.e.   ) and    represents the unknown inaccuracy in the MSE as a result of model error in 

Model B (i.e   ). 

If the distribution of uncertainty reflects the uncertainty in outcomes defined by a particular model (i.e. 

process variance) and the uncertainty associated with estimating that model’s parameters (parameter 

variance) it seems reasonable to incorporate the additional uncertainty associated with the potential 

error in the underlying model (i.e. model error).  Otherwise, the actuary’s estimate of uncertainty may 

be incomplete.   

Model error and its corresponding impact on the MSE are both unknown, however, as a general rule the 

actuary strives to minimize model error.  Nevertheless, some model error may remain because it is not 

possible or practical to identify and correct for it.  In the context of selecting a central point estimate, 

the actuary must choose a single number and oftentimes that number will be based on a weighted 

average of the reasonable indications from multiple models rather than being set equal to the estimate 

from any single model.  The philosophy underlying this approach, which is akin to hedging one’s bet, is 

that a weighted average of models results in a corresponding unknown model error that is preferred to 

relying on the unknown model error of any single model.     

This same philosophy is proposed as our approach to incorporating model error into the actuary’s 

distribution of uncertainty. Revisiting our previous hypothetical that an actuary uses two models to 

estimate unpaid claims for a book of business, Model A and Model B, and after minimizing model error 

in Model A and Model B to the extent appropriate the actuary uses expertise and professional judgment 

to assign weight to the point estimates from these models in accordance with their perceived value as a 

reasonable predictor such that: 

                    ̂        ̂  

where 
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 ̂                                  

 ̂                              

Then, the MSE and corresponding distribution of uncertainty expressed as a weighted average of 

predictions from Model A and Model B where each model is separately considered in isolation as 

representative of the random variable,  , 

[   |                      ] 

is preferred to the MSE and corresponding distribution conditional only on Model A  

[   |          ] 

or the MSE and corresponding distribution conditional only on Model B 

[   |          ] 

if the unknown model error inherent in this weighted averaging of models,                , is 

preferred to relying solely on the unknown model error inherent in Model A,  , or the unknown model 

error inherent in Model B,  .  

It should be noted that the word “preferred” is used rather than a mathematical relationship such as 

“less than” in the context of this discussion because this is a philosophical approach.  Ideally, we wish to 

develop a solution that eliminates model error but in the absence of being able to do so, a reasonable 

alternative is to attempt to recognize our uncertainty in whatever model error remains.  

4 Model Error  
Before progressing further, it may be helpful to differentiate model error from other types of error.  

Previously, model risk was defined as “the risk that the methods are not appropriate to the 

circumstances or the models are not representative of the specified phenomenon.”   

Many actuarial projection methodologies (i.e. models) can be shown to have no model error when 

applied in a controlled environment under specific limitations; however, these conditions rarely exist, if 

at all, in practice.  For example, the approach used to extrapolate link ratios into the “tail” of a 

traditional chain ladder model can introduce model error.  An important point to make about model 

error is that its resulting bias on the actuary’s prediction, if any, should be unknown.     

4.1 User Error 
User error is different from model error.  User error occurs when actions, or inactions, of the actuary 

lead to the expectation that the resulting prediction will be biased high or low.  Generally accepted 

actuarial practice is based on the presumption that an actuary’s work product is void of significant or 
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material user error, and hence this type of error should not be incorporated as a component of 

uncertainty in the actuary’s estimate.   

4.2 Historical Error 
Implicit within most actuarial projection methodologies is the assumption that observations of patterns 

and trends in the past are indicative of patterns and trends in the future, but future conditions can 

change and result in materially different processes and outcomes that are often too speculative to 

estimate.  This type of error is a subset of model error and while some changes to future conditions may 

be reasonably estimable and therefore can be incorporated as an element of uncertainty within the 

MSE, actuaries oftentimes consider this type of error to be out of scope of their analysis.  If so, then the 

approaches discussed herein will also exclude uncertainty associated with this type of error. 

Regardless of the type of error that may exist in a prediction, a goal should be to minimize error within 

each model to the extent appropriate. Unfortunately, model error often still exists and should therefore 

be incorporated into the actuary’s estimate of uncertainty.     

5 Incorporating Model Error 
At this point we are ready to introduce a methodology for incorporating model error into an estimate of 

uncertainty.  Various suitable methods exist for estimating the MSE conditional on a single model in 

isolation so it will be assumed that this analysis has already been performed for each model relied upon 

by the actuary to derive the central point estimate.  This methodology is a simulation-based approach as 

opposed to a mathematical approach aimed at computing the formulas discussed previously and is 

perhaps best described through a simplistic example. 

5.1 Weighted Sampling 
Consider a single actuarial central estimate,  ̂, to be based on a 50%-50% weighting of estimates 

produced from two projection methodologies, Model A and Model B, such that: 

 ̂  ∑    ̂ 
     

 

Where, 

 ̂                               

 ̂                               

           

       

Assume that two distributions of the MSE conditional on Model A and separately for Model B are 

already estimated and that each distribution is comprised of a series of 10 simulations where each 

simulation, denoted   , is shown in Figure 4.  

Incorporating Model Error into the Actuary's Estimate of Uncertainty

Casualty Actuarial Society E-Forum, Summer 2015



13 
 

Figure 4. Single prediction model simulations 

 

A distribution reflecting the inclusion of model error can be estimated by taking a weighted sample 

without replacement of simulations from Model A and Model B in accordance with their weights.  To 

accomplish this with the example given above, we first create a matrix where we use the weights as the 

basis for sampling between Model A and Model B for each of the 10 simulations.  Because this matrix 

defines which model to sample for each simulation, we will refer to it as a “Model Matrix,” which is 

shown in Figure 5. 

Figure 5. Single prediction Model Matrix 

 

Once a Model Matrix is created, we select the value corresponding to the simulation number and model 

to create a series of sampled simulations, which are shown in Figure 6. 

E.g. simulation x5 from Model A equals 4.4 
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Figure 6. Single prediction sampled simulations 

             

     

If we increase the number of simulations in this example to a larger sample size the MSE of the resulting 

distribution can be estimated by computing the variance of the simulations and the mean of the 

resulting distribution will be equal to the actuarial central estimate.   

Figure 7 shows the results of the distribution before and after incorporating model error when the 

number of simulations in this example is increased to 10,000.  

Figure 7. Single prediction weighted sampling 

 

Figure 8 compares weighted sampling in this example to multiplicative scaling Model B’s simulations to 

the central estimate.     

Distribution around 

Model B (yellow) 

Distribution 

around Model A 

(blue) 

Combined distribution using 

weighted sampling (red) 
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Figure 8. Single prediction weighted sampling versus multiplicative scaling 

 

5.2 Considerations 
Before we progress the methodology further, it is worth discussing a few points about this approach 

thus far. 

5.2.1 Simulations 

It should be noted that in this example, Model B is generated 4 times and Model A is generated 6 times 

in the Model Matrix.  Ideally each model would have been generated an equal number of times since 

the weighting between the models were equal but the low sample count has led to sample error.  For 

statistically significant sample sizes, we would expect each model in this example to be generated close 

to 50% of the time. 

Sample error must also be considered when evaluating the resulting distribution.  Although there is no 

single number of simulations that is suitable for every circumstance, the user should incorporate a 

sufficient number to adequately represent the range of potential outcomes, especially if the user is 

interested in evaluating outcomes generated for extreme tail probabilities.  

5.2.2 Individual Model Distributions 

Weighted sampling assumes that a distribution of the MSE reflecting the combined effects of process 

variance and parameter variance is already developed for each model in isolation.  Various approaches 

to estimating the distribution and deriving simulations exist in the literature and example approaches 

include but are not limited to: 

 Simulated approaches – Bootstrapping, Markov-Chain Monte-Carlo simulation or 

straightforward simulation of outcomes from an assumed distribution using benchmark 

statistical properties, for example, can be used; 

 Analytical approaches – The methodology presented by Thomas Mack is an example of 

approaches that estimate the statistical properties underlying a model.  From this, the user can 

simulate outcomes once a distributional form is selected; and 

Combined distribution using 

weighted sampling (from Figure 7) 

Distribution around Model B scaled to 

central estimate (from Figure 3) 
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 Replicating and scaling – Simulations generated for a particular model can be scaled, either 

additively or multiplicatively, to the mean of a different model such that an implied distribution 

of the different model is approximated.   

5.2.3 Lumpiness 

In practice, the user may find the resulting probability density function from weighted sampling to be 

lumpy, in that there may be multiple modes to the distribution.  Figure 9 shows a comparison of 

weighted sampling from two underlying distributions. 

Figure 9. Multi-mode distribution 

 

As a result, it may be challenging to interpret relative probabilities associated with particular outcomes 

but it is less of an issue when evaluating probabilities associated with a range of outcomes as shown by 

the corresponding cumulative probability density function for the same example in Figure 9, shown as 

Figure 10 (also shown in Figure 10 is the distribution around Model B scaled to the selected central 

estimate).   

Figure 10. Multi-mode cumulative probability function 

 

Distribution around 

Model B (yellow) 

Distribution 

around Model A 

(blue) 

Bi-modal distribution resulting 

from weighted sampling  

Distribution around 

Model B (yellow) 

Distribution 

around Model A 

(blue) 

Bi-modal distribution 

resulting from 

weighted sampling  

Distribution around Model B scaled to 

central estimate  
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If the shape of the probability density function resulting from weighted sampling is determined to be 

problematic, the following adjustments could be made: 

 Compute the indicated coefficient of variation from the resulting lumpy distribution and re-

simulate a newly defined distribution with the same mean and coefficient of variation.  Figures 

11 and 12 show an example where the lumpy distribution was re-simulated using a Gamma 

distribution with the same mean and coefficient of variation.  It should be noted that a 

potentially undesired consequence of this adjustment is that probabilities associated with 

various outcomes within the distribution will be different. 

 Probabilities within the range of outcomes where the nodes occur can be re-distributed 

according to some user-selected smoothed distribution, such as a uniform distribution.  An 

advantage of this adjustment approach is that tail probabilities are unaffected.  Figures 13 and 

14 show an example of this approach with the probability density graph and the cumulative 

probability graph, respectively. Note that the actuary should use caution with this approach and 

be aware that in achieving a more intuitive ‘shape’ to the distribution, the mean and the 

coefficient of variation should be maintained.   

Figure 11.  Re-simulated distribution – probability density 

 

Bi-modal distribution 

resulting from 

weighted sampling 

(red; from Figure 9) 

Re-sampled gamma 

distribution with same mean 

and CV (black) 
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Figure 12.  Re-simulated distribution – cumulative probability 

 

Figure 13. Re-distributed distribution – probability density 

 

Figure 14. Re-distributed distribution – cumulative probability 

 

Bi-modal distribution resulting 

from weighted sampling (red; 

from Figure 9) 

Uniformly redistributed 

simulations (black) 

Bi-modal distribution 

resulting from 

weighted sampling  

Re-sampled gamma 

distribution (black) 

Bi-modal distribution 

resulting from weighted 

sampling  

Uniformly redistributed 

simulations (black) 
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5.2.4 Assigning Weights to Models 

Assigning weight to a model when using the weighted sampling approach implies that the actuary 

believes the model is a reliable predictor because otherwise the user may be introducing additional 

variability that is attributable to user error.  Bad practices can exist without harm to deriving a central 

point estimate, such as having two models that are known to be biased but offset each other so that the 

average produces a reasonable point estimate (e.g. “two wrongs can make a right” philosophy), but this 

practice should not be used when estimating uncertainty.  In such cases where the models have any 

known bias, the user may want to consider scaling as a solution instead of weighted sampling. 

5.2.5 Effect on MSE 

The effect that weighted sampling has on the MSE depends on two factors: 

1. The dispersion in the means of the underlying models before weighted sampling; and 

2. The MSE of the model distributions before weighted sampling. 

As the mean of each model converges to the same point, the resulting MSE using weighted sampling will 

essentially be an average of the MSE from the various models before weighted sampling.  As the mean 

of each model diverges, the resulting MSE will increase and can be larger than the MSE before weighted 

sampling of each underlying model.   

6 Aggregating Variability 
The weighted sampling approach described thus far is an approach to incorporating model error for a 

single prediction.  Projection methodologies used by actuaries often generate multiple predictions 

where each prediction corresponds to a certain subset of claims generally grouped according to a 

predefined time interval (e.g. accident year, report year, policy quarter, etc.), which we will refer to 

generically as an origin period.  Weighted sampling is suitable for estimating the distribution of any 

single origin period prediction, however, a separate and more complex approach must be considered 

when aggregating the variability across multiple origin period predictions.   

Consider a situation where each model used by the actuary generates a prediction,  ̂ , for multiple 

different origin periods, t, such that: 

 ̂    [ ̂       ̂       ̂       ] 

and the actuary’s selected central estimate for each origin period, t, is  

 ̂  ∑      ̂   

       

 

where      corresponds to the weight assigned to model m and origin period   and 

∑     
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Then we wish to derive an approach for aggregating the Mean Squared Error of predictions across all 

origin periods,  

      [(∑(   ∑      ̂   

       

)

 

   

)

 

]     

 

6.1 Weighted Sampling Revisited 
Expanding on the previous example in Section 5.1, consider actuarial central estimates for three 

separate origin periods, ̂     ̂         ̂    , to be based on a 50%-50% weighting of predictions 

produced from two projection methodologies, Model A and Model B, such that:  

                               

 ̂  ∑      ̂   

       

 

Where, 

 ̂                                                     

 ̂                                                     

     [
            

            
]  [

         
         

] 

Assume that distributions of the MSE for each origin period conditional on Model A and separately for 

Model B are already estimated and that each origin period distribution is comprised of a series of 10 

simulations where each simulation, denoted   , is shown in Figure 15. 

Figure 15. Multiple prediction model simulations 

     

Once again, a distribution incorporating model error can be estimated for each origin period by taking a 

weighted sample without replacement of simulations from the distributions of Model A and Model B for 

each origin period independently in accordance with their weights.  As before, this is accomplished by 
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creating a Model Matrix, shown in Figure 16, where the weights are used as the basis for sampling 

between Model A and Model B for each set of origin period simulations. 

Figure 16. Multiple prediction Model Matrix 

      

Then based on the Model Matrix, we select the value corresponding to the simulation number, model 

and origin period to create a series of sampled simulations, which can be used as a distribution 

incorporating model error for each origin period’s actuarial central estimate as shown in Figure 17. 

Figure 17. Multiple prediction sampled simulations 

   

The weighted sampling approach works for multiple separate estimates much in the same way it works 

for a single estimate; however, dependencies need to be considered before aggregating uncertainty 

across multiple origin periods.   In this example, a total distribution of the three origin periods remains 

unanswered as depicted in Figure 18. 
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Figure 18. Multiple prediction weighted sampling 

 

6.2 Dependencies  
If it can be assumed that within each model the predictions for each origin period are independent then 

an aggregate distribution representing the total of the three origin periods above can be created quite 

easily by summing across the values generated above for each simulation (assuming the weighted 

sampling used to derive the Model Matrix was generated randomly).   

Unfortunately, the assumption of independence among different origin periods within a particular 

model is generally not true.  Instead, origin period dependencies are generally inherent within the 

structure of a model and the process of weighted sampling among various different models for each 

origin period independently (as described in this example thus far) will break these origin period 

dependencies.  Before discussing an approach to establishing a dependency, if any, among origin 

periods, it is useful to consider how origin period dependencies may exist within the components that 

make up uncertainty. 

6.2.1 Origin Period Dependency – Process Error 

Given that the actual outcome, , is assumed to be a random variable, we would not expect there to be 

any dependency in the order in which actual outcomes occur.  Therefore, it is usually assumed that the 

outcome of any given origin period is independent of the outcomes in any other origin period.   

6.2.2 Origin Period Dependency - Parameter Error 

Parameter variance measures the uncertainty in the actuary’s estimate of the model’s parameters used 

to generate a prediction.  For many actuarial models, the same parameters and assumptions are used to 

generate predictions for all origin periods, and as such, any change to a parameter estimate or 

assumption will permeate through some or all of the origin periods and result in a dependency.  

Approaches, such as Bootstrapping, produce results which enable the user to measure this dependency.     

6.2.3 Origin Period Dependency - Model Error 

The model we use to predict  ̂ is likely an imperfect representation of the true model that defines the 

actual outcome,  , and as such may result in an unknown tendency to overestimate or underestimate 

the intended measure.  The degree to which a model’s error, if any, is dependent across different origin 

periods is debatable and may depend on the circumstances. 
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In certain circumstances, it may be argued that a model’s error will be consistent across all origin 

periods.  Consider a hypothetical example where the only difference between two chain-ladder models 

is the approach used to select the tail factor, which results in different values being chosen.  Because the 

tail factor affects the predictions for all origin periods, any error may affect all origin periods.   

In other circumstances, it may be argued that error, if any, in any given model may not be consistent 

across origin periods.  For example, chain ladder models tend to be sensitive to the magnitude of 

cumulative amounts to which the link-ratios are applied and it may be that the cumulative amounts 

across origin periods exhibit an amount of reasonable volatility with respect to their size relative to 

historical experience simply because the volume of business being analyzed is not statistically 

voluminous.  If the volatility observed is somewhat random across the origin periods, then the 

corresponding error in the model, if any, may also be random across origin periods as a result of this 

attribute.    

Because it can be argued that model error dependency may or may not exist across origin periods, we 

discuss two different approaches to aggregating the weighted sampling distributions across origin 

periods so that a range of model error dependency assumptions can be used. 

6.3 Rank Tying 
One approach to aggregating the weighted sampling results across origin periods is to borrow a 

dependency structure from one of the underlying sampled models.  Since process variance does not 

usually create a dependency across origin periods, any dependency observed is wholly attributable to 

parameter variance in standard models.   

Continuing with the example discussed in Section 6.1, we can create another type of matrix, called a 

Rank Matrix, that identifies the “rank order” of each simulation within a given model and origin period 

where the largest value of all simulated values is assigned a rank value of 1.  Then, the second largest 

value of all simulated values within that same model and origin period is assigned a rank value of 2.  This 

process is repeated until all simulations are assigned a rank order value.  The Rank Matrix for Model A 

and Model B are shown in Figure 19. 
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Figure 19 – Rank Matrix for Model A and Model B 

     

 

    

Currently, the weighted sample results for each origin period in Figure 18 produces a different Rank 

Matrix from the Rank Matrix of Model A and Model B because the underlying Model Matrix was 

generated randomly in accordance with the weights and therefore broke the origin period links intrinsic 

to the underlying models.  Figure 20 shows the implied Rank Matrix from Figure 18 which is crossed out 

to denote that the origin period dependencies may not be appropriate.   

Figure 20. Rank Matrix from weighted sampling 

    

 

If we select Model B as the model to use as the basis for dependency in aggregating simulations across 

all origin periods, then all we have to do is reorder our sampled simulation values in Figure 20 within 
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each origin period separately so that the Rank Matrix of Model B is replicated.  Then we can aggregate 

across each simulation as shown in Figure 21 (differences in the total occur because of rounding). 

Figure 21. Reordered simulations using Model B Rank Matrix   

    

 

 

Note that the resulting reordered simulations are not color-coded because the link to the Model Matrix 

no longer exists.   

The Rank Tying approach is a means to combine the simulations across origin periods while maintaining 

the same parameter variance dependency structure associated with one of the underlying projection 

models.  In essence, this approach assumes that the introduction of model uncertainty does not produce 

any additional dependency across origin periods.   

6.4 Model Tying 
The Model Tying approach attempts to incorporate dependencies associated with model error into the 

aggregate estimate.  In order to accomplish this, we will need to revisit the case study in Section 6.1 and 

revert to the step where the Model Matrix was created in Figure 16.  The Model Matrix in Figure 16 and 

underlying model simulations in Figure 15 are summarized in Figure 22. 
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Figure 22. Multiple prediction Model Matrix 

     

 

     

    

  

 

Under the Model Tying approach, we will rearrange the Model Matrix with the goal of maximizing the 

degree to which the same model is selected across as many origin periods as possible within a given 

simulation.  In this specific example, we want to maximize the degree to which ‘A’s in one origin period 

are grouped with ‘A’s in other origin periods, and the degree to which ‘B’s are grouped with ‘B’s.  The 

resulting reordered Model Matrix might look like the example in Figure 23. 
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Figure 23. Reordered Model Matrix 

    

Note that sampling error in this example means that we do not achieve an exact 50/50 split reflecting 

the weights chosen in each year between Model A and Model B so ‘perfect strings’ are not possible for 

all simulations. 

With the reordered Model Matrix, we are now ready to select the value corresponding to the simulation 

number, model and origin period to derive our values for each origin period as shown in Figure 24.  Also, 

the total can be derived by aggregating across each simulation (differences in the total occur because of 

rounding).  It should be noted that the resulting distributions for each origin period from this approach 

should produce similar results to the distributions derived from weighted sampling because the 

reordered Model Matrix maintains the exact same weighting between the models. 

Figure 24. Model Tying simulations 

    

Figure 25 shows the resulting aggregate distribution for all three origin periods combined resulting from 

Model Tying, Rank Tying to Model B’s dependency structure and scaling the distribution 

(multiplicatively) around Model B to the selected central estimate when the number of simulations in 

this example is increased to 10,000.  All three approaches have the same mean value, which is equal to 

the actuarial selected central estimate for all three origin periods combined.   
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Figure 25. Aggregating multiple predictions: Model Tying versus Rank Tying to 

Model B 

 

The difference between Model Tying and Rank Tying occurs only in the aggregate results.  Rank Tying 

uses the parameter variance dependency attributable to only one of the models whereas Model Tying 

incorporates parameter variance dependencies from all models in accordance with their weights.  Rank 

Tying excludes origin period dependencies associated with model error whereas Model Tying 

incorporates origin period dependency associated with model error.     

6.5 Aggregation Considerations  
A few points about using the Rank Tying or Model Tying approaches are noteworthy. 

6.5.1 Broken Strings 

With respect to the Model Tying approach, a broken string refers to a Model Matrix simulation where 

the same model is not identified for all origin periods.  Examples of broken strings and perfect strings 

are shown in Figure 26. 

Figure 26. Broken strings versus perfect strings 

 

Broken strings can occur because of sample error as demonstrated in the previous example or because 

of the particular weighting attributed to the various models by origin period.  A broken string is 

noteworthy for two reasons.  First, a broken string raises the question of how to address parameter 

Aggregate distribution from model 

B scaled to selected estimate 

 

Aggregate distribution using 

weighted sampling and using 

‘Rank-Tying’ approach 

 

Aggregate distribution using 

weighted sampling and using 

‘Model-Tying’ approach 

(dotted line) 

 

‘Broken’ string 

 

‘Broken’ string 
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variance dependency since values are being pulled from different models within that particular 

simulation.  One solution is to pre-sort the simulations within each model in ascending order by some 

measure, such as the total unpaid claim estimate across all origin periods, before applying the Model 

Matrix.  The result will be an approximate Rank Tying of parameter variance dependency between 

models. 

Second, a broken string implies that a dependency associated with model error does not run throughout 

all origin periods in that particular simulation.  This should be considered a desirable effect if the broken 

string was caused by the particular weighting chosen for each model and origin period. 

6.5.2 Increasing Complexity 

The example used for Rank Tying and Model Tying was simplistic in that it used only two models, three 

origin periods and equal weights across all origin periods.  The Rank Tying and Model Tying approaches 

are scalable to multiple models, an increased number of origin periods and varying weights across origin 

periods, however, some considerations are worth noting. 

As mentioned previously, Rank Tying superimposes the parameter variance dependency structure from 

a single model.  As the number of models is increased the relevance of any single parameter variance 

dependency structure is diminished accordingly.  If Rank Tying is used, preference for the selected 

parameter variance dependency structure should be given to one of the models that contribute to the 

largest proportion of the total unpaid claim estimate. 

Increasing the number of models and origin periods and varying the weights with Model Tying may 

result in broken strings and a situation where there are multiple solutions for the Model Matrix.  

Weightings among models should be sensible such that broken strings produce a desirable effect on the 

resulting distribution.  An example of a desirable effect is if the actuary believes that a particular model 

is appropriate and hence given weight in the actuarial central estimate for only a subset of origin 

periods.  As a result, a perfect string will not exist across all origin periods if the weight for some origin 

periods is zero.   

With regards to multiple solutions for the Model Matrix, consider the following example in Figure 27 

where we have three models used to estimate three origin periods: 

Figure 27. Multiple prediction model simulations 
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We can, again, create a Model Matrix, shown in figure 28, based on the selected weights from each of 

the Models A, B and C across 10 simulations: 

Figure 28. Multiple predictions Model Matrix 

     

Under the Model Tying approach, we rearrange the Model Matrix with the goal of maximizing the 

degree to which the same model is selected across as many origin periods as possible within a given 

simulation. Two unique solutions exist and are shown in Figure 29: 

Figure 29. Multiple solutions 

 

 

  

 

  

 

 

Removing common strings in Figure 30 helps identify the differences: 
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Figure 30. Isolated differences  

 

 

 

   

 

 

 

Although both solutions maximize origin period dependency as measured on the Model Matrix, the 

origin period dependency measured on the sampled simulations (i.e. values) between both solutions 

may differ and the preferred solution may depend on the circumstances. 

6.5.3 Effects on MSE   

It is difficult to make blanket statements about the impact between Rank Tying and Model Tying 

approaches on the overall variance of aggregate origin period predictions because it will depend on each 

unique situation.  With regards to model error, the dependency assumed in Model Tying will generally 

increase the aggregate variance as compared to Rank Tying in situations where the predictions of the 

underlying models diverge in the same direction relative to the actuarial central estimate across origin 

periods.  However, model error dependency assumed in Model Tying can reduce the aggregate variance 

in situations where the predictions of the underlying models fluctuate between being greater and less 

than the actuarial central estimate across origin periods.   

With regards to parameter variance, the dependency assumed in Rank Tying is unaffected by the 

complexity in the number of models, origin periods and weights, and the dependency structure selected 

may be different from the dependency structures observed in other models.  On the other hand, 

parameter variance dependency structures across models will be averaged under Model Tying and their 

effect may be diminished as the complexity of the approach increases.   
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7 Summary 
It has been shown that the uncertainty in a prediction, as defined by the mean squared error, is 

comprised of the sum of three components: process variance, parameter variance and squared bias.  

Suitable approaches exist in the literature to measure these components and its corresponding 

distribution when a single model is considered in isolation.  When multiple models are considered 

reasonable indicators of unpaid claims, it may be appropriate to incorporate model uncertainty into the 

actuary’s distribution of uncertainty.  Various approaches for incorporating model uncertainty were 

introduced.  The first approach, called weighted sampling, is an approach that can be used to 

incorporate model uncertainty into a single prediction.  Rank Tying and Model Tying are approaches that 

can be used to incorporate model uncertainty into an aggregation of multiple predictions that exhibit 

dependencies in either parameter or model uncertainty.  These approaches are somewhat more 

complex to apply but are nevertheless important to consider when measuring the aggregate uncertainty 

of multiple predictions.         
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Appendix A 

Excerpts of the following case study are used throughout this paper.  In this appendix we will discuss the 

complete case study and will highlight relevant sections corresponding to the Figures displayed in the 

body of the paper.   

Overview of data and selections 

 This case study is based on data spanning a nine year history of origin periods, where an origin 

period represents an accident year. 

 Development factor models (i.e. chain ladder models) were applied to each of the paid (‘model 

A’) and incurred (‘model B’) data in order to project to ultimate.  

 A ‘central estimate’ was selected based on a simple average of the two development factor 

models for each accident year. 

 Distributions reflecting process and parameter variance for each model were achieved using 

stochastic methods.  The type of stochastic methods used is irrelevant for this illustration, but in 

this instance a ‘practical stochastic’ method was applied to Model A and a Bootstrapping 

approach to Model B.  ‘Practical stochastic’ in this instance is used to describe a process 

whereby the analyst generates samples from a selected distribution with a user-defined mean 

and coefficient of variation. 

For the purpose of this case study we are going to concentrate on results for just the three most recent 

accident years, however, any totals shown will represent the cumulative results of the full nine years of 

accident period history (rounding may occur with totals). 

Central Estimate 

The table in Figure A.1 summarizes the point estimates produced by each model for ‘prior’ years (1997 – 

2008), 2009, 2010 and 2011 accident years, alongside the weighting used to determine the selected 

central estimate and the resulting amount of that estimate.  

Figure A.1. Selected central estimates 
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Implicit in the equal weightings used in this case study is the assumption that each model is an equally 

reliable predictor of the final outcome. The challenge is to estimate the corresponding uncertainty 

around this prediction that adequately reflects this inherent assumption.  

Distributions conditional on each model 

We begin the process of estimating uncertainty by developing distributions around each of the 

underlying models that reflect both process and parameter variance. The table in Figure A.2 summarizes 

the results of the stochastic uncertainty analyses performed around each of the underlying models in 

terms of the prediction error (“Pred. Error”, $000s) of the resulting distributions as well as the 

coefficient of variation (“CV”, prediction error as a percentage of the mean), for the most recent three 

accident years and in total. 

Figure A.2. Summary of uncertainty conditional on each model 

 

These distributions are also shown graphically in Figure A.3 along with the means (represented by the 

vertical bar) and corresponding CV’s from each model (blue line is Model A, yellow line is Model B). 
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Figure A.3. Distributions around Model A and Model B 

 

  

It should be noted that the distributions for each origin period and in total are not generated 

independently but rather collectively as a single process defined by the stochastic methods.  As a result, 

origin period dependencies exist and can be measured.  As a precursor for what is to come, each origin 

period can be treated as a ‘single period prediction’ as discussed in the paper through weighted 

sampling, however, the intrinsic origin period dependencies created by these stochastic methods will be 

broken.  Rank Tying and Model Tying are options to restoring some sort of origin period dependency in 

order to recreate a ‘total’ aggregate distribution.  

 Distribution around selected central estimate using scaling 

Once we have generated our distributions reflecting process and parameter uncertainty for each of the 

underlying models, we are faced with the challenge of producing a distribution around our selected 

central estimate.  

One commonly-used approach is to select an underlying model and scale the associated simulated 

output from that model in an appropriate manner (see Section 2, Scaling). 

In this example, we might select underlying Model B as our preferred model and choose multiplicative 

scaling to generate a distribution of simulated outcomes with a mean equal to our selected central 

estimate.  

CV = 25.3% 
CV = 11.0% 

14.1% 
11.4% 

16.0% 10.9% 9.1% 

17.0% 
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Figure A.4 summarizes the statistical properties of our distribution around our selected central estimate 

derived by multiplicatively scaling the simulations from Model B.  Again, we show the prediction error 

(“Pred. Error”, $   s) of the resulting distribution as well as the coefficient of variation (“CV”, prediction 

error as a percentage of the mean), for the most recent three accident years and in total. 

 

Figure A.4. Summary of uncertainty for selected central estimate using scaling 

 

Note that, because we selected to use multiplicative scaling, the mean of the distribution is equal to our 

selected central point estimate and the coefficients of variation for each accident year are equivalent to 

the corresponding measure from the distribution developed around Model B.  

Had we selected to scale additively, the mean of our distributions would still align with our selected 

central estimate but the coefficient of variation for each accident year would change when compared to 

Model B.  Under additive scaling, the prediction error for each accident year remains equivalent instead 

of the CV.  

Note also that the ‘Total’ coefficient of variation from multiplicative scaling is not equivalent to the 

‘Total’ coefficient of variation from Model B. This is due to differences in the magnitude of scaling for 

each year.  

Figure A.5 shows these scaled distributions for each accident year and in total. The selected mean and 

the scaled distributions are shown as solid green lines, and the distributions and means from our 

underlying models are shown as blue (Model A) and yellow (Model b) broken lines.  
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Figure A.5. Distributions using scaling 

      

 

It should be noted that the graph shown in Figure A.5 for 2009 is similar to the graph shown in Figure 3 

in the main text.  

With regards to scaling, we are simply borrowing a distribution from one of our underlying models, 

which the actuary is forced to select. This may not adequately reflect the assumption that both models 

are considered to be equally valid as implied by the equal weighting used in the selection of the central 

estimate.  

Furthermore, we may end up in a situation where our selected scaled distribution around our central 

estimate implies that the prediction from one of our underlying models is a relatively unlikely outcome. 

If we consider the 2010 accident year, our scaling approach suggests that the point estimate projected 

by Model A, as shown as the blue bar in Figure A.6, lies at the 3rd percentile of our range of probable 

outcomes.  

CV = 11.0% 

17.0% 

9.7% 

11.4% 
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Figure A.6. Distribution using scaling for 2010 

 

Distribution around selected estimate using weighted sampling 

We can instead employ weighted sampling for each accident year in a manner that reflects the weights 

selected for the determination of our selected central estimate that perhaps better represents the full 

distribution of possible outcomes suggested by the underlying models (see Section 5.1, Weighted 

Sampling).  

For each accident year, we sample randomly and without replacement from each of the underlying 

distributions – in this case, we select 50% of the sample from the distribution around Model A and 50% 

from the distribution around Model B.  

The table in Figure A.7 summarizes the statistical properties of our distribution around our selected 

central estimate derived by weighted sampling from each of the underlying models.  Again, we show the 

prediction error (“Pred. Error”, $   s) of the resulting distribution as well as the coefficient of variation 

(“CV”, prediction error as a percentage of the mean), for the last three accident years. 

Figure A.7. Summary of uncertainty using weighted sampling 

 

As noted previously, the origin period dependencies intrinsic in the stochastic methods have been 

broken as a result of weighted sampling so the total aggregate distribution is no longer discernible.   

 

Model A lies 

at 3
rd

 

percentile 
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The graphs in Figure A.8 show these distributions for each of the last three accident years. The selected 

mean and the weighted sampling distributions are shown as solid red lines, and the distributions and the 

means from our underlying models are again shown as broken lines.  

Figure A.8. Distributions using weighted sampling 

   

 

It should be noted that the graphs shown in Figure A.8 for 2009 and 2010 are similar to the graphs 

shown in the main text as Figures 7 and 9, respectively.   

Weighted sampling will produce distributions for each accident year in isolation (as discussed for single 

period predictions in Section 5.1). In order to create a distribution around the selected total central 

estimate of unpaid claims across multiple accident years we must decide how to reintroduce an origin 

period dependency.   

As suggested by this paper, we have the options of using either: 

 Rank Tying, which reorders the year-by-year simulations such that a pre-defined accident-year 

correlation is targeted (as discussed in Section 6.3); or  

 Model Tying, which uses a Model Matrix designed in such a manner to maximize the degree to 

which the same model is selected across as many different accident years as possible within a 

given simulation (as discussed in Section 6.4) 

CV = 23.9% 
CV = 25.0% 

CV = 19.6% 
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If using Rank Tying, the analyst should produce the Rank Matrix that is to be used to reorder the 

simulation. In this example, we have selected to use the Rank Matrix from the simulated distribution 

around Model B.  

The tables in Figure A.9 summarize the point estimates and statistical properties of our distribution 

around each of: 

 Model A; 

 Model B; 

 Selected central estimate using multiplicative scaled simulations from Model B; 

 Selected central estimate using weighted sampling and Rank Tying accident years according to 

the correlation matrix suggested by Model B; and 

 Selected central estimate using weighted sampling and optimized Model Tying.  

Figure A.9. Summary comparing uncertainty from various models 

 

As before, graphs assist in the interpretation and comparison of these results and the associated 

distributions. Such graphs corresponding to Figure A.9 can be viewed in Figure A.10.  Please note: 
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 The blue and yellow columns represents the point estimate prediction from Models A and B 

 The red column represents the selected central estimate 

 The burgundy line represents the distribution around the selected central estimate using 

multiplicative scaling 

 The red line represents the distribution around the selected central estimate using weighted 

sampling 

 In the ‘Total’ graph, the distribution is shown around the total aggregate point estimate using: 

o Rank Tying (solid red line) 

o Model Tying (broken red line) 

o Scaling (solid burgundy line) 

Figure A.10. Comparison of distributions using weighted sampling and scaling 
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Appendix B 

In statistics, the Mean Squared Error (MSE) measures the difference between an estimate and what the 

true value is.  Consider a random variable,   and a predicted variable,  ̂.  The mean squared error (MSE) 

is: 

 [     ̂  ] 

Expanding this term through additive properties yields: 

 [     ̂  ]    [     ̂    [ ]   [ ]    [ ̂]    [ ̂]   ] 

Reordering yields 

   [(    [ ]    ̂   [ ̂]   [ ]    [ ̂])
 
] 

A series of expanding terms and subsequent simplification yields, 
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If we assume   and  ̂ are independent, then  [  ̂]   [ ] [ ̂] and 
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Reordering yields, 

   [    [ ]  ]   [  ̂   [ ̂]  ]   [ ]    [ ] [ ̂]   [ ̂]  

which simplifies to, 
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