
Casualty Actuarial Society E-Forum, Fall 2014 1 

Combining Estimates 

Thomas Struppeck, FCAS, ASA, CERA 

 ____________________________________________________________________________________________  

Abstract: 

The problem of combining two or more estimates into a single estimate appears in many applications, such as 
combining estimates based on paid losses and estimates based on incurred losses, or combining estimates for 
several accident years or lines of business into a single estimate.  A methodology for performing such 
combinations which allows for correlation is described.  An accompanying Excel spreadsheet illustrates the 
procedure.   
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 ____________________________________________________________________________________________  

1. Introduction 

Actuaries often are faced with the task of combining two or more estimates into a single estimate.  

When estimating ultimate losses, there may be one estimate based on paid losses and another 

estimate based on incurred losses.  As a second example, consider estimates for several lines of 

business that are to be combined into a single estimate.   While these two examples are somewhat 

similar, there is a very important difference between them.  In the first example, we have two 

different estimates for the same quantity.  In the second example, we have estimates for different 

quantities.  As we will see, in the first case we will actually be able to improve on both estimates.  In 

the second case, we can only hope to not be much worse than the worst one (at least in terms of the 

width of our confidence interval).   

Patel and Raws [PR] used a simulation technique to study the effects of different methods of 

combining estimates in the case where the estimates are for different quantities (example 2 above).  

We review their results in section 3. 

The remainder of this paper is structured as follows:   

 Combining two or more estimates for the same quantity 

o Precision vs. accuracy 

o An example: two estimators for one parameter 

 Combining estimates for multiple components 

o Patel and Raws’ simulation work 

o Sums of different component pieces 

o Why normal distributions? 

 Considerations in selecting correlations 



Combining Estimates 

Casualty Actuarial Society E-Forum, Fall 2014 2 

 An example 

 Concluding remarks 

 

2. Combining Two Or More Estimates For The Same Quantity 

First, consider the case where two independent estimates, ˆ
A  and B̂ , are available for an 

unknown parameter,   .  We will follow the usual notational convention of writing carats (“hats”) 

over parameters to denote estimators of those parameters and of using Greek letters to denote 

unknown parameters.  In a reserving context,   might represent the unpaid claims on a block of 

business, and ˆ
A and B̂ might represent two different estimates of  .  

It should be noted that we think of   as being a fixed (but unknown) number; it is not itself a 

random variable.   On the other hand, ˆ
A  and B̂ are often instances of random variables and as 

such have sampling distributions.  We will follow customary notation and write, for example, E[ ˆ
A ] 

for the expected value of (the sampling distribution of) ˆ
A . 

2.1 Precision vs. Accuracy 

The two terms “precision” and “accuracy” are often used interchangeably; however, there is a 

slight difference in their definitions.  Accuracy refers to the proximity of the expected value of an 

estimator to the true value of the parameter (the “reference value” in the illustration), whereas 

precision refers to the spread of estimator values around its expected value.  Figure 1, below, 

illustrates this for a normal density.1 

 

                                                            
1 Used with permission under the terms of the GNU Free Documentation License, Version 1.2. 
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Figure 1: The distinction between accuracy and precision 

 

2.2 An Example: Two Estimators for One Parameter 

For our first example, we will attempt to estimate the outstanding loss reserve,  .  We have an 

unbiased estimator of  , ˆ
A .  For the moment assume that this estimator has a normally distributed 

sampling distribution with mean $250 and standard deviation $30.  Then, since ˆ
A  is unbiased, a 

reasonable choice of point estimate for   would be the expected value of ˆ
A , namely $250.  Since 

the sampling distribution is known2, we can even give an approximate 95% confidence interval,  

$250   2($30) = ($190, $310) 3. 

Now suppose that a second, independent, unbiased estimator of  , B̂ , is available.  Further 

suppose that the sampling distribution of B̂  also is normal but with mean $275 and standard 

deviation $40.  This second estimator has less precision than our first estimator (it has a larger 

standard deviation), and it suggests a different point estimate.  Using just the second estimator we 

obtain another 95% confidence interval, $275   2($40) = ($195, $355).  

We would like to create a single estimator that allows these two estimates to work in tandem in a 

way that maximizes the precision of the resulting estimator.  The way to do this is to consider the 

one-parameter family of estimators obtained by taking weighted averages of ˆ
A  and B̂ : 

(1 )t A Bt t    
  

 where 0 1t   . 

                                                            
2 In fact, we do not need to know the entire sampling distribution, only its 2.5th and 97.5th percentiles. 
3 We have used 2.0 instead of 1.96 for ease of exposition; about 95% of the area under a normal is within two standard 
deviations of the mean.  The given interval is actually a 95.45% confidence interval. 
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Since we have assumed that both ˆ
A  and B̂  are unbiased, each t̂  is unbiased because 

expectation is a linear operator. 

When t is zero, we get the first estimator, and when t is 1, we get the second estimator.  In 

between, we get a family of estimators.  Since each of ˆ
A  and B̂  is normal, and they are 

independent, the weighted average t̂  is normal with mean (1 ) [ ] [ ]A Bt E tE  
 

, which in our case 

is (1 )*250 t*275 250 25t t    , and variance 2 2(1 ) [ ] [ ]A Bt Var t Var  
 

, which in our case is 
2 2 2 2(1 ) *30 *40t t  . 

We want to maximize the precision, which amounts to minimizing the standard deviation, which 

is the same as minimizing the variance.  This is easily done by taking the derivative with respect to t 

and setting it to zero: 

 

 2
2 2 2 2 2 32(1 )*30 *( 1) 2* *40 0 (30 40 ) 30 5t t t t           

 

So the minimum occurs when we let t=.36, i.e. we use 64% of estimator A and 36% of estimator 

B.  This produces 0.36̂ which is normal with mean = 259 and standard deviation = 24.  This 

estimator has the smallest standard deviation of any weighted average of our estimators and suggests 

a point estimate of $259 with an approximate 95% confidence interval of ($211, $307).  This 

estimate has the most precision of any estimator in this class. 
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Figure 2: Densities for two estimators and their optimal combination 

Figure 2, shown above, illustrates the density function for the two estimators, ˆ
A  (shown in red) 

and B̂  (shown in blue), and the density function of their optimum weighted average, 0.36̂ (shown 

in black). The weighted average, having a more concentrated density, is more precise.  Whether it is 

more accurate is a more delicate question. 

Accuracy measures how far the true parameter is from our estimate.  Since the true parameter is 

intrinsically unknowable, we will have to satisfy ourselves with a statement about confidence 

intervals.  Since 0.36̂ lies between ˆ
A  and B̂ , whatever its true value,   is closer to 0.36̂ than it is to 

at least one of ˆ
A  and B̂ .  In other words, 0.36̂ is always more accurate than the worst of ˆ

A  and 

B̂ . 
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In fact, sometimes it is more accurate than either of them.  Whenever 254.5  ,   will be closer 

to 0.36̂ than to ˆ
A . And whenever 267  ,   will be closer to 0.36̂  than to B̂ .   Using the 

sampling distribution for 0.36̂ , we see that the first interval is a 57.44% one-sided confidence 

interval for   and that the second is a 63.06% one-sided confidence interval.  The intersection of 

these two intervals is the interval 254.5 267  , which is a 20.49% confidence interval for  . 

In the example, we assumed that we had two estimators, that our estimators were normally 

distributed, and that they were independent.  If we have more than two estimators, we can still find 

the optimum weighting by using multivariate calculus techniques (setting the gradient to zero, etc.).  

If the estimators are correlated and we have a good estimate of the correlation coefficient(s), we can 

still compute the standard deviation of the weighted averages and find the optimum weighting.  In 

order to create a confidence interval, we need to know the distribution of the sum.  If our 

summands are bi-normally or multi-normally distributed4, then the sum will have a normal 

distribution.  In that case, we can create our confidence interval in the usual way, namely by picking 

the appropriate point from a table of standard normal values (a z-score), multiplying it by the 

standard deviation and using this as a radius about the point estimate. 

In practice, multiple estimates of the same quantity tend to be highly correlated.  But, unless the 

correlation is 100%, some increase in precision will occur when they are combined. 

 

3. Combining Estimates for Multiple Components 

3.1 Patel and Raws’ Simulation Work 

In [PR], Patel and Raws considered the problem of estimating a total reserve from estimates of 

the component pieces.  They used a simulation approach to compare several different possible 

distributions for the losses in each piece.  Among the distributions that they examined were the 

uniform, triangle, normal, and log-normal distributions.  In each iteration of the simulation, they 

generated losses by line from those distributions, summed them, and repeated this process many 

times to create the simulated distribution of the sum. 

In their simulations, they assumed that the component pieces were independent.  That 

assumption allowed them to select the losses for each line without having to explicitly correlate 

them.  In the text they suggest that correlations between accident years could be adjusted for in the 

choice of distribution and that correlations between lines of business could be adjusted for similarly. 

                                                            
4 It is possible for two or more jointly distributed normal random variables to have normal marginal distributions but 
not be multi-normally distributed.  



Combining Estimates 

Casualty Actuarial Society E-Forum, Fall 2014 7 

Capturing the effects of correlation in a simulation is possible, but it can be tricky.  If one is not 

careful, the marginal distributions can fail to be what is expected.  Copulae can solve this problem. 

A (d-dimensional) copula is a mapping from the d-dimensional unit cube onto the unit interval 

that is a joint cumulative distribution function with uniform marginals.  Copulae are of interest to us 

because of Sklar’s Theorem, which says that any d-dimensional random variable (i.e. d jointly 

distributed univariate random variables) can be expressed as a composition of its d marginal random 

variables and a copula that combines them.  Furthermore, in the case of continuous random 

variables, this decomposition is unique.  So, utilizing a copula, one can impose any possible 

correlation structure on a family of random variables, such as having correlation mainly manifest 

itself in the tails.  More in depth discussions of copulae can be found in Mango and Sandor [MS] and 

Venter [V].    

The ranges of estimates that Patel and Raws obtained did not vary greatly by choice of 

distribution.  This suggests an alternative approach: instead of assuming independence and using 

multiple distributions, only use one distribution, but use one that allows for explicit correlations.  

One such distribution is the multi-normal distribution. 

3.2 Sums of Different Component Pieces 

The example in the first section illustrated how multiple estimates for the same parameter can be 

combined to create an estimate with greater precision than the original individual estimates.  Often 

the quantity that we want to estimate is a sum of several parts, each of which has an associated 

estimate --- this is the problem that Patel and Raws examined.  For instance, we could be interested 

in the total outstanding losses for a company that writes three lines of business, and we have 

estimates of the outstanding losses for each line. 

We will not be taking a weighted average here, but rather we will just take a sum.  The summing 

and averaging are closely related, but differ in an important way: in a weighted average, each 

summand gets multiplied by a number between 0 and 1, t and (1-t) in our example: 

(1 )t A Bt t    
  

 where 0 1t   

The variances of ˆ
A  and B̂  got multiplied by 2(1 )t  and 2t , respectively, and these are strictly 

less than (1-t) and t (unless t is 0 or 1).  This is how we obtained greater precision.  There is no 

similar opportunity when the coefficient is equal to one as it is in a sum. 
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What this means is that as we add more and more independent pieces to our sum, our confidence 

intervals will get nominally larger.5  By nominally larger, we mean that the width of the confidence 

interval will increase.  In relation to the size of the reserve however, the intervals might be getting 

smaller.  One possible measure of the relative size is the coefficient of variation (CV) --- the ratio of 

the standard deviation to the mean.  The square of this, the ratio of the variance to the squared 

mean, is another measure which is sometimes easier to work with.  It is called the squared 

coefficient of variation or SCV.  Both the CV and SCV are dimensionless quantities. 

When there is no correlation among the pieces and the number of pieces is large, the sampling 

distribution of the sum will start to look like a normal distribution--this is essentially the content of 

the Central Limit Theorem.  Intuitively, we expect half of our pieces to be above their respective 

medians and the other half to be below their medians; when we add them all together the errors 

tend to cancel. 

Often, however, there is reason to believe that there may be some correlation among the pieces.  

For instance, if we are estimating the total ultimate losses for a book consisting of several lines of 

long-tail business, we might model each of them separately.  Future inflation (or deflation) might 

simultaneously increase (or decrease) each of those lines effectively creating correlation. 

   

                                                            
5 If the pieces had very large negative correlations, it is possible that the confidence intervals could get smaller, but such 
instances are rare and would be quite unusual. 
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Figure 3: The marginal densities of a bi-normal pair of random variables 

Figure 3, above, illustrates the marginal densities (in red and blue) of a bi-normally distributed 

pair of random variables6.  The green ellipse represents a level curve of the joint distribution (in this 

instance, a 3-sigma ellipse7).  If the correlation is positive, the distribution of the sum corresponds to 

the major axis of the ellipse (if the correlation is negative, the minor axis).  This shows that the 

precision of the sum is smaller than the precision of the summands (unless the correlation is very 

negative).  

                                                            
6 This image is in the public domain.  The code to produce this graph can be found here: 
http://en.wikipedia.org/wiki/File:MultivariateNormal.png 
7 Symmetric confidence intervals for univariate normal variables have the property that the density function is equal at 
each end of the interval, i.e. the two endpoints of the interval form a level set of the density function.  The analog for 
bivariate or multivariate normal random variables is to use a level set of the density function as the boundary for the 
analog of a confidence interval--a confidence region.  In the case of bivariate normals, these level sets are ellipses.  The 
green one shown corresponds to three standard deviations, i.e. approximately 99.7% of the probability is inside it. 
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Consider the following example: the company writes three lines of business, A, B, and C. You 

have estimated the outstanding losses for these three lines of business and selected ultimate losses 

for each.  Your estimated outstanding losses along with some estimated ranges are: 

 

Line of Business  Expected Losses  25th‐percentile Losses  75th‐percentile Losses 

A  100  90  110 

B  225  150  300 

C  350  200  500 

 

Further suppose that we believe that these estimates of the unpaid losses for lines A and B are 

50% correlated, for lines B and C are 60% correlated and for lines A and C are 50% correlated. 

Notice that we have selected our range of estimates for each line of business to a symmetric 

confidence interval (best estimate is in the center).  This is because we are going to represent all 

three lines by a multi-normal random variable with mean vector,  , and variance-covariance matrix, 

 . 

First, we select the marginal distribution for line A.  It is going to be normal with mean = 100 

(the expected value) and some standard deviation, A .   We know that the 25th-percentile is 90, 

which is 10 less than the mean, so using the standard normal table we conclude that A must be 

14.82.  This technique is just the familiar method-of-moments. 

Similarly, for line B we obtain mean = 225 and B = 111.2, and for line C, mean = 350 and C  

= 222.4. 

Since the expected value of a sum is the sum of the expected values, the mean for our total will 

be 675. 

To create the variance-covariance matrix, we start with the correlation matrix and multiply it on 

both the right and the left by a diagonal matrix with the respective standard deviations down the 

diagonal. 

The correlation matrix:    

1 0.5 0.5

0.5 1 0.6

0.5 0.6 1

 
 
 
 
 
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The variance-covariance matrix: 

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

A BA CA A

B AB CB B

C AC BC C

   
   

   

   
        
   
   

  

 

The variance-covariance matrix for our example: 

14.82 0 0 1 0.5 0.5 14.82 0 0

0 111.2 0 0.5 1 0.6 0 111.2 0

0 0 222.4 0.5 0.6 1 0 0 222.

219.6 824.0 1,648.0

824.0 12,365.4 14,838.5

4 1,648.0 14,838.5 49,461.8

     
            
     
     

 

The correlation matrix is easier to interpret than the variance-covariance matrix.  One reason for 

this is that the correlation matrix is dimensionless, meaning that it has no units, whereas the 

variance-covariance matrix has units, in this case square dollars.  It is generally easier to work with 

dimensionless quantities when possible. 

 

Line of 
Business 

Expected 
losses 

25th‐percentile 
losses 

75th‐percentile 
losses 

St. Dev. (Est.)  Estimated CV 

A  100  90  110  14.8  0.148 

B  225  150  300  111.2  0.494 

C  350  200  500  222.4  0.635 

Naïve Total  675  440  910  348.4  0.516 

With 
Covariance 
Adjustment  

675  465.3  884.7  310.9  0.461 

 

The range for the “naïve total” is obtained by summing the endpoints of the intervals for each 

line of business.  This corresponds to comonotonicity8, which in the case of normal random 

variables means 100% correlation.  See, for example, [S]. 

The last line labelled “with covariance adjustment” shows the 25th- to 75th-percentiles for the sum 

using the given correlations.  The term covariance adjustment is taken from the US Statutory Risk 

Based Capital (RBC) calculation. 

This calculation is easily reproduced using only Lines A, B, and C in the accompanying Excel 

spreadsheet, the use of which is described in detail later in this paper. 

                                                            
8 Incidentally, the copula corresponding to this is the upper Fréchet–Hoeffding bound. 
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3.3 Why Normal Distributions? 

Normal distributions are not the only distributions with the property that they are closed under 

addition9.  Gamma distributions and many other families of distribution also have this property, at 

least when the summands are independent and possibly with some restrictions on the parameters.  

We choose to use normal distributions to approximate the individual distributions that we are going 

to combine because: 

 Many naturally arising estimators have large-sample normal distributions.  In 

particular, large-sample bootstrap estimators are asymptotically normal. 

 The Central Limit Theorem suggests that averages (and hence sums) of independent 

observations will become normally distributed when the sample sizes get large. 

 We can easily incorporate correlation and interpret it. 

 It tends to produce results that seem reasonable. 

3.3.1 Considerations in Selecting Correlations 

Correlations are related to the 2R  statistic that comes from performing a simple regression of 

one of the two variables on the other.  This statistic gives the proportion of the variation in the 

response variable that is explained by the explanatory variable.  The square root of 2R  is an 

estimator for the correlation between the two variables.  So, an 2R of 49%, which means that about 

half of the variation on one variable is explained by the other, corresponds to an estimated 

correlation of 0.70.  Higher 2R values correspond to even larger correlations. 

Correlations can be estimated from historic data, if available, or they can be selected 

judgmentally.  Some caution should be exercised when using historic data, as common estimation 

methods can severely underestimate correlations, especially when the correlation is large.  The 

choice of a value for the correlation coefficient can be influenced by how the result is to be used.  If 

the goal is to obtain a central estimate, correlations based on historic levels may be adequate.  On 

the other hand, if the goal is to obtain estimates in the tails, higher correlation selections may be 

justified, because correlations tend to be higher in the tails--when it rains, it pours. 

 

4. An Example 

The accompanying Excel spreadsheet illustrates how this technique can be used.  The 

spreadsheet accepts up to eight lines-of-business and combines them into a single total.  The user 

                                                            
9 A family of distributions is said to be “closed under addition” if, whenever two members of the family are added 
together, the resulting sum is in the same family, but possibly with different parameters. 
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gives two points on a normal curve for each line-of-business.  The user also specifies a correlation 

matrix for the various lines-of-business. 

The reserve being estimated is outstanding losses.  This purely hypothetical example uses five 

lines.  Lines A, B, and C are taken from the above example10. Line D is a large loss, which the claim 

handler estimates will settle for $250 million, although there is a chance that it could realistically be 

as little as $150 million or as high as $400 million. Selecting the 20th-percentile to be $150 million 

and the 90th-percentile to be $400 million produces an expected loss close to $250 million; this is 

shown on the Output Page.  Tweaking the 90th-percentile to be the 89.67th-percentile trues up the 

expected loss to be $250 million.  Line E represents the unpaid losses from a recent catastrophe.  

They are currently estimated to be $450 million, but are expected to grow to $500 million.  There is 

a small chance that the ultimate losses will turn out to be much worse--we selected a 95th-percentile 

loss of $1,155 million.  We have chosen to enter $500 million as the 50th-percentile (which is the 

mean for symmetric distributions, such as the normal distribution.)  The spreadsheet uses the 

method of percentile matching (see, for example, [KPW]) and a univariate normal is determined by 

two parameters (say, the mean and the standard deviation), so we can specify two percentiles for 

each line.  

For the correlations among Lines A, B, and C, we will use the correlations we used above.  We 

believe that Line D will act less like Line A or B than Line C, so we select 25% for the first two and 

50% for the third correlation.  Finally, we feel that an increase in Line E would come from a general 

adverse change in insurance loss reserves in general (less friendly courts, unexpected inflation, etc.), 

so we select 50% for the correlation with each of Lines A, B, C, and D. 

The resulting correlation matrix is positive definite, so there is a multi-normal distribution that 

has our selected correlation matrix and that has our modelled losses for our lines of business as its 

marginals.  The sum of our five lines of business has a normal distribution with mean and standard 

deviation computed by the spreadsheet.  It is now an easy matter to select the mean and the two 

specified percentiles.  These are shown on the Output Page along with the ranges corresponding to 

no correlation and comonotonicity (“100% correlation”). 

The spreadsheet will calculate a value for any given percentile; however, it is designed for 

estimates somewhat close to the center of the distribution.  Solvency II calls for calculations at 

specified percentiles such as the 99.5th-percentile.  Caution should be exercised in estimating such 

high percentiles using these methods. 

 

                                                            
10 To reproduce the earlier example, simply set the Line D and Line E losses at the 25th- and 75th-percentiles to zero. 
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5. Concluding Remarks 

Estimates for a given quantity often are obtained by combining other estimates.  In the case of 

multiple estimates for the given quantity, we can combine them and obtain an estimate with more 

precision than any of the individual estimates.  On the other hand, if our estimate is for a sum and 

we have estimates for the summands, we cannot hope to obtain (nominal) precision better than the 

worst of our summands, and in fact we cannot even do that well.  Often, however, it is possible to 

improve the precision in a relative sense, using a measure such as the coefficient of variation. 

Patel and Raws’ simulation work showed that the choice of distribution did not matter very 

much, but they had to assume independence.  We give up the choice of distribution, always selecting 

a normal distribution, but in exchange we recapture the ability to select the correlation structure.  

Since, in many cases, independence cannot reasonably be assumed, this is a real advantage. 
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Supplementary Material 

There is an accompanying Excel spreadsheet which contains the examples from this paper.  It can be found on the 
CAS website.  The URL is: http://www.casact.org/pubs/forum/14fforum/. 
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