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1 Introduction

This paper outlines an application of a weighted Monte Carlo method to a jump diffusion model
in the presence of clustering and runs suggestive of contagion. The paper was originally submitted as
a master’s thesis in the Mathematics in Finance program at the Courant Institute of Mathematical
Sciences, New York University, on March 15, 2003. The author wishes to make the material available
to a wider audience. Explanatory material has been added to make the paper easier to read. The
mathematics is unchanged.

Although the motivation for this application is actuarial in nature, the method is not limited
to insurance accidents. In fact, the method has broad application to financial analysis. The first
equation below may be seen as a theoretical bridge between the two fields of Actuarial Science and
Finance; the underlying processes have a common construct.

In its most general form, a sample path corresponding to a stochastic process which is differential,
homogeneous, and increasing may be decomposed as a linear part plus a pure jump function [12][10].
The process is referred to as a homogenous differential process with increasing paths. The process
will be defined in Section 2. For now, we state only the equation:

pt = p(t) = mt+

∫ ∞
0

`℘([0, t]× d`); t ≥ 0 (1)

The term ` corresponds to the size of a jump. The function ℘ counts the number of jumps. In
this paper, the counts will be Poisson distributed. The term [0, t] × d` corresponds to a set over
which the counts are taken. The expression ℘([0, t] × d`) is the number of jumps occuring up to
time t of severity between ` and `+d`. In other words, the integrand corresponds to the well-known
actuarial phrase “frequency times severity”.

The linear part of the decomposition is mt. If the linear term is dropped, i.e. mt = 0, then the
resulting pure jump function resembles an insurance aggregate loss. Frequency of accidents times
severity of those accidents are summed over a given population to obtain the total loss amount [8].
If the linear part is replaced by a Brownian motion with or without drift, a financial model results.
It’s important to note here that in the financial model, there is a stochastic differential equation
where the Brownian motion is in the exponential. There is no exponential term in the actuarial
model; a jump is a jump.

Avellaneda has calibrated a variety of financial instruments [1]. Throughout this reference, a
pricing model refers to a model for pricing less liquid instruments relatively to more liquid instru-
ments (the benchmarks). Calibration of the Monte Carlo model is performed by assigning probability
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weights to the simulated paths. The weights are derived by minimizing the Kullback-Leibler relative
entropy of the posterior measure to the prior (empirical) measure.

Recall the definition of entropy and don’t feel bad if you look it up in Wikipedia. Entropy is
a measure of how evenly energy is distributed in a system. Entropy is a measure of order versus
disorder or randomness. Relative entropy measures the entropy of one state as compared to the
entropy of a second state. A very rough analogy can be found in the measurement of temperature.
Temperature is measured with thermometers, which may be calibrated to a variety of temperature
scales such as degrees Fahrenheit, Celsius, or Kelvin. Relative entropy would be very roughly similar
to a comparison of any two of these three temperature scales.

2 Modelling A Jump Diffusion

Applications of jump diffusions include option pricing, credit risk, and actuarial science. Appli-
cations in option pricing and actuarial science are outlined in the history of jump diffusion models
below. For a financial model of credit risk, a suggested reference is [15].

A stochastic process with sample paths p(t), p(0) = 0 is said to be differential if its increments
p[t1, t2) = p(t2) − p(t1) over disjoint intervals [t1, t2) are independent, homogenous if the law of
p[t1 + s, t2 + s)is independent of s(≥ 0), and increasing if p(t1) ≤ p(t2) for t1 ≤ t2.

A sample path may be decomposed into a linear part plus an integral of Poisson processes:

pt = p(t) = mt+

∫ ∞
0

`℘([0, t]× d`); t ≥ 0 (2)

℘(dt × d`) being Poisson distributed with mean dt × ν′d` where dν = ν′d`, ν′ being the density
function of the measure dν. The measure ν shouldn’t be too large in the sense that the integral is
finite: ∫ 1

0

`dν +

∫ ∞
1

dν <∞ (3)

Then:

P[℘(B) = n] =
βn

n!
e−β ; for n ≥ 0, B ⊂ ([0,+∞)× (−∞,+∞)), (4)

β =

∫
B

dtν′d` (5)

The process pt is differential because the counts ℘(B) attached to disjoint B ⊂ [0,+∞)× (0,+∞)
are independent, and additive in the sense that ℘(

⋃
n≥1) =

∑
n≥1 ℘(Bn) for disjoint B1, B2, etc.

⊂ ([0,+∞) × (0,+∞)). ℘([t1, t2) × [`1, `2)) is just the number of jumps of p(t); t1 ≤ t < t2 of
magnitude `1 ≤ ` < `2.
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Natural extensions of the basic model would include stochastic volatility, mean reversion, and
multiple jump processes.

Stochastic volatility accommodates volatility clustering, an important feature of the data. Mean
reversion may account for perturbations induced by diffusion vs. perturbations created by jumps.
Multiple jump processes may be used to distinguish between types of jumps or sizes of jumps.
Additionally, the jump sizes may be modelled by various distributions.

Each of these scenarios will be described in turn.

3 Jump Diffusion Processes In The Literature

3.1 The Initial Pricing Model

The first pure jump model in the financial literature is attributed to Cox, Ingersoll and Ross
[4].The model is illustrated as follows in the usual discrete pricing diagram.

S↗Su↘S exp(−w∆t)

The upward and downward probabilities for stock price movement in time ∆t are λ∆t and 1−λ∆t
respectively. The asset price declines at rate w except for occasional jumps occurring as a Poisson
process with rate λ. The size of the jumps are modelled as u times the current asset price S.

Criticism of the model notes that jumps here can only be positive which is unrealistic in the
financial markets except for the probability of ruin. Note that the exponential term in the diagram
above cannot yield a negative value. However, this criticism would not hold for insurance losses.
For instance, the value of a property lost in a fire cannot be negative, one does not lose negative
time on the job due to an injury, and so forth.

Arguably, a reserve for future indemnity benefits, as an example, may be posted and subsequently
netted down due to the death of the claimant. In such a case, however, the life expectancy of the
claimant would have been quantified and posted as the initial reserve. The resulting downward
movement could be seen as parameter risk. In other words, if the reserve had been estimated with
greater accuracy, the downward movement would not have occurred. Further such arguments could
be made to show that a pure jump process is useful in modelling insurance losses.

Another criticism of the financial model is that the process leads to a distribution of stock price
values with a fat right tail and a thin left tail, the opposite to that observed for equities. Such
a distribution, however, is common in insurance and especially in reinsurance. The time lags in
discovering and reporting losses such as medical malpractice or products liability create a fat right
tail. inflationary and social trends in jury awards may be very different ten years hence, leading to
unexpected increases in the size of awards.

In Actuarial Science, pricing models for aggregate distributions of claim data occur in the cohort
approach to collective risk theory. An analysis of collective risk theory and insurance models is
beyond the scope of this paper. Aggregate loss distributions have been widely discussed in the
actuarial literature. The interested reader is referred to basic, comprehensive treatments [2] [8] [6].
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3.2 An Application To Option Pricing

Merton first suggested a modification to the standard option pricing model, a jump function
added to the Brownian motion term [13]. The jump component represents the occasional discontin-
uous breaks observed in the financial markets.

Define:

µB the expected return from an asset associated with the Brownian motion
σB the volatility of the Brownian motion
λ the rate of occurrence of a jump
κ the average jump size (amplitude) as the change in asset price.

Then the model is written in the following form:

dS

S
= (µB − λκ)dt+ σBdW + κdq (6)

where κ is drawn from a normal distribution κ ∼ N(µJ , σ
2
J) for µJ and σJ the mean and standard

deviation of the jump respectively, W is a Wiener process, and q is a Poisson process generating the
jumps. The processes W and q are assumed to be independent.

If λκ is the contribution from the jumps then the remainder µB − λκ is the expected growth rate
provided by the geometric Brownian motion.

In a special case of Merton’s model, the logarithm of the jump amplitude is normally distributed.
The European call option price is then written as:

C = Σ∞n=0

e(−λ
′T )(λ′τ)n

n!
fn (7)

where τ = T − t, λ′ = λ(1 + κ) and fn is the Black-Scholes option price with parameters

σ2
n = σ2 +

nσ2

τ
(8)

for σ, the standard deviation of the normal distribution, and

rn = r − λκ+
n(ln(1 + κ))

τ
(9)

for r, the interest rate. Terminating the infinite sum is not problematic since the factorial function
grows rapidly.

Note that the model gives rise to fatter left and right tails than Black-Scholes and is consistent
with implied volatilities in currency options but not in insurance losses.
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The key assumption in Merton’s model is that the jump component of the asset return models
non-systematic risk. This assumption would be difficult to make in an actuarial model where the
jumps may represent a mixture of both systematic risk and non-systematic risk. Insurance claim
sizes tend to cluster due to insurance policy limits, trends in jury awards, and claims adjusters’
case reserving practices. The jump component of risk may involve contract law, procedural law,
and insurance goodwill. A more sophisticated model incorporating multiple jump processes may be
required.

3.3 Stochastic Volatility

A stochastic volatility model may be of the following form.

dS

S
= µBdt+ σdW + kdq (10)

where k ∼ N(µJ , σ
2
J) and

d(lnσ2) = b(µh − ln(h2))dt+ cdZ (11)

The logarithm of the variance σ2 follows a mean-reverting process with the Wiener error term
dZ. This model is termed a stochastic volatility jump diffusion process (SVJD)[5]. The model has
constant jump amplitude and a mean-reverting process for the volatility. In other words, the path of
the volatility parameter is a mean-reverting process. Note the drift is also a mean-reverting process.

3.4 Multiple Jump Processes

In the general form of the sample path, denote the pure jump process by Jt =
∫∞
0
`℘([0, t]× d`)

and replace mt by dW where W is a Wiener process with drift dW = σdZ + µdt.

dZ is an independent Gaussian shock
σ is the variance
µ is the drift

Jt may be further decomposed as a multiple jump process Jt = J 1
t + J 2

t where J 1
t has jump-

amplitudes ≤ 1 and J 2
t has jump-amplitudes >1. The J 1

t term may be comprised of an mininite
number of small jumps. In financial and actuarial applications, the J 1

t term would assume a finite
number of jumps or insurance losses in a given period of time.

Then, referring back to equation (2):

pt = mt+

∫ ∞
0

`℘([0, t]× d`) = dW + J 1
t + J 2

t = σdZ + µdt+ J 1
t + J 2

t (12)
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3.5 Jump Amplitudes

The jump amplitudes can give rise to a variety of models. The large jumps may be seen as
rare events relative to the background noise of the diffusion. The jump amplitude may be time
dependent.

Denote the positive measure by ν and the associated density function as ν′, as before in the
general form of the model. The measure ν is the product of the Poisson rate λ and the size of the
jump.

The measure ν may not be a probability measure. In such a case, the jump diffusion model is
not of the compound Poisson type. Further,

∫
ν′(dx) =

∫
dν may not be finite.

Processes with an infinite number of jumps may be modelled by jump amplitudes with densities
given by:

1. ν′(x) = A | x |−1 e(−η±|x|) a variance gamma function

2. ν′(x) = A± | x |−(1+α) e(−η±|x|) a tempered (”truncated”) stable process

3. ν′(x) = Ae(−λx)

sinh(x) a Meixner process

Note that in these cases, the singularity occurs near the origin as the denominator approaches
zero. The small jumps may be truncated or the singularities may be omitted by dropping the J 1

t

term.

In cases where λ =
∫
ν′(x)dx < +∞, the measure is finite and the measure ν can be normalized

to define a probability measure µ which can be interpreted as the distribution of jump sizes:

µ(dx) =
ν(dx)

λ

In these cases, it may be shown that one necessarily obtains a compound Poisson process as in
formula (1). Processes constituted by stochastic variation in both the number of jumps and ampli-
tude of the jumps are termed compound processes. The independence of the variables denoting the
number of jumps and the jump amplitudes follows from the assumption of independent increments
for the sample paths. The jump amplitudes xi and xj are independent of each other ∀ i 6= j by
independence of increments. Each xi has the same distribution by homogeneity.

Consider sample paths. Let X(t) =
∑N(t)
n=0 xn where xn are independent identically distributed

random variables, N(t) is a Poisson process with rate λ. The sum of the jumps is compound
Poisson. Without loss of generality, we may assume X(0) = 0. Let dµ = dν

λ be the normalization of
the measure to a probability measure. Compute the characteristic function of the sample path:

E(eikX(t)) = E(eik
∑N(t)
n=0 xn) = E(eikx0 ...eikxN(t)) (13)
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By independence of N and x:

= E((

∫
eikxdµ(x))N(t)) =

∞∑
j=0

(λt)j

j!
e−λt(

∫
eikxdµ(x))j (14)

= e−λt
∞∑
j=0

(λt)j

j!
(

∫
eikxdµ(x))j = e−λt(eλt

∫
eikxdµ(x))

= eλt(
∫
eikxdµ(x)−1) = eλt

∫
eikxdµ(x)−λt

∫
dµ(x)

Substituting the normalized probability measure, one obtains:

et
∫
(eikx(t)−1)dν(x) (15)

In a financial or actuarial application, the number of jumps per unit of time is finite so the application
may be described by a jump process of compound Poisson type.

4 Contagion

The next step in this exposition is a description of contagion as it affects the statistical properties
of the number of jumps seen as a random process. We introduce contagion into the jump diffusion
process by considering a ”mixed” compound Poisson process. This type of process is often used in
actuarial work when one accident effectively increases the probability of future accidents through a
conditional probability.

We begin at the beginning with Polya’s urn scheme and Polya’s scheme of contagion [7]. Suppose
an urn contains b black balls and r red balls. A ball is drawn at random. The ball drawn is always
replaced and in addition, c balls of the same color are added to the urn. The absolute probability of
the sequence black, black is by Bayes’ theorem below. Let H denote the first drawing of black and
let A denote the second drawing of black. The sequence black, black is denoted by AH. If the first

ball drawn is black, the conditional probability of a black ball at the second drawing is (b+c)
(b+c+r) . The

probability of the sequence AH is, by Baye’s theorem:

P [AH] = P [A | H]P [H] =
b

(b+ r)
× (b+ c)

(b+ c+ r)
(16)

If the first two drawings result in black, the urn contains b+ 2c black balls and b+ r+ 2c balls in

total. The conditional probability of a black ball at the third trial becomes (b+2c)
(b+2c+r) . The probability
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of any sequence can be calculated in this way. The ordering of the sequence is immaterial. Any
sequence of n drawings resulting in n1 black and n2 red balls for n1+n2 = n has the same probability
as the sequence first n1 black balls and then n2 red balls given by:

Pn1,n2
=
b(b+ c)(b+ 2c)...(b+ n1c− c)r(r + c)...(r + n2c− c)

(b+ r)(b+ r + c)(b+ r + 2c)...(b+ r + nc− c)
(17)

The Polya process describes a model for contagion, where every accident increases the probability
of future accidents. The applications of the process include contagious diseases, meteorology, lattices
in crystal structure, industrial quality control, and insurance, where long runs are suggestive of
contagion or accumulated chance effect. It can be shown that the limiting form of Polya’s distribution
of probabilities is the negative binomial distribution. The limiting form may be used in a mixed
compound Poisson process as the distribution for the Poisson rate variable λ [7].

5 Calibration Of The Pricing Model

The calibration methods are taken from a pricing model developed for the financial markets due
to Avellaneda [1]. One purpose of the model is to price less liquid instruments relative to more
liquid instruments. Avellaneda has calibrated a variety of financial instruments. Further work was
done by Cont [3]. Avellaneda’s model for bid-ask spreads admits a jump diffusion, an enhancement
proposed by this paper. The enhancement will be shown in the next section.

5.1 Theory Of The Model

Consider a simulation with sample paths denoted by ω1, ..., ων . Define a uniformly weighted
simulation to be one where each path has equal probability of occurrence. In a non-uniformly
weighted simulation, we assign probabilities p1, ..., pν to each path where the probabilities are not
necessarily equal.

For a contingent claim that pays the holder hi dollars if the path ωi occurs, the value of the
contingent claim in the non-uniformly and uniformly weighted scenario where pi = 1

ν ∀i is:

Πh =

ν∑
i=1

hipi (18)

and

Πh =
1

ν

ν∑
i=1

hi (19)

respectively.

A prior distribution is generated by simulating the paths of a stochastic process which are
uniformly weighted. Probabilities p1, ..., pν are then determined to simulate a posterior distribution
comprised of non-uniformly weighted sample paths.
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For two probability vectors p1, ..., pν and q1, ..., qν , the relative entropy of p with respect to q is
defined as:

D(p | q) =
ν∑
i=1

pi log(
pi
qi

) (20)

For the Monte Carlo simulation with equal weights, denote the uniform probability vector by
u = (1/ν, . . . , 1/ν). Then substitute qi = 1/ν ≡ ui into the above equation to derive the relative
entropy distance immediately below.

The calibrated posterior probability measure is found by minimizing the Kullback-Leibler relative
entropy of the prior and posterior measures. The relative entropy distance

D(p | u) = log ν +
ν∑
i=1

pi log pi (21)

measures the deviation of the calibrated model from the prior data. Note that D ≥ 0 with equality
holding only if pi = 1

ν .

For pi = 1
ν :

D(p | u) = log ν +
1

ν
log

ν∏
i=1

pi = log ν +
1

ν
log(

1

ν
)ν = 0 (22)

The relative entropy is directly related to the support of the measure. Suppose pi = 1
ναi for

i = 1, 2, ..., ν. Let Nα represent the number of paths with αi = α.

Then,
∑
αNα = ν ,

∑
α
Nα
να = 1, and:

D(p | u) = log ν +
∑
α

Nα
να

log
1

να
(23)

which reduces to:

log ν −
∑
α

αNα
να

log ν = log ν(1−
∑
α

Nα
να

α) = log ν(1− Ep(α)) (24)

A small relative entropy corresponds to a large expected value of α. A small α corresponds to a
thin support, which implies that a large number of paths are discarded by the algorithm. A small α
may also be seen as a mismatch of probabilities between the prior and posterior measures since the
measure will be concentrated on a small number of paths in the posterior measure. One sees that
it all depends on the measure. Therein lies the difficulty in calibrating a jump diffusion when the
frequency of jumps is small.

To elucidate the theory, denote the set of sample paths as: ω(i) = (x1(ω(i)), ..., xN (ω(i)) for
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i = 1, 2, ..., ν

and the associated stochastic differential equation with Wiener process W

dX = σ(X, t)dW + µ(X, t)dt (25)

Denote the market prices of N benchmark instruments by C1, ..., CN and the present value of the
jth cashflow as g1j, g2j, ..., gνj for j = 1, ..., N . The price relations for the benchmark instruments,
for j = 1, ..., N are:

ν∑
i=1

pigij = Cj (26)

5.2 The Calibration Algorithm

As before, denote the uniform probability vector by

u = (
1

ν
, ...,

1

ν
)

In the case of the prior measure, we consider the following minimization problem.

Minimize:

D(p | u) = log ν +
ν∑
i=1

pi log pi (27)

under linear constraints Cj =
∑ν
i=1 pigij for Lagrange multipliers λ1, ..., λN :

min
λ

[max
p
{− log ν −

ν∑
i=1

pi log pi +
N∑
j=1

λj(
ν∑
i=1

pigij − Cj)}] (28)

Consider the max first. Differentiate with respect to pi, for fixed i and equate the derivative to
the Lagrange multiplier φ for the additional constraint

∑
pi = 1 :

− log pi − 1 +
N∑
j=1

λjgij = φ
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Let φ = −µ− 1

Then

− log pi − 1 +
N∑
j=1

λjgij = −µ− 1

log pi = µ+
N∑
j=1

λjgij

Let eµ = 1
Z . Then the maximum occurs at the value p∗i ∀i,

p∗i =
e(

∑N
j=1 λjgij)

Z
(29)

The constraint

ν∑
i=1

pi = 1 =

ν∑
i=1

e(
∑N
j=1 λjgij)

Z

shows that Z is a normalizing constant.

Note:

log pi =
N∑
j=1

λjgij − logZ (30)

at the max p.

Thus, at the maximum,

max
p
{− log ν −

ν∑
i=1

pi log pi +
N∑
j=1

λj(
ν∑
i=1

pigij − Cj)}

= − log ν −
ν∑
i=1

pi(
N∑
j=1

λjgij − logZ) +
N∑
j=1

λj

ν∑
i=1

pigij −
N∑
j=1

λjCj
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= − log ν +
ν∑
i=1

pi logZ −
N∑
j=1

λjCj = − log ν + logZ −
N∑
j=1

λjCj

Now consider the minimum:

min
λ

[− log ν + logZ −
N∑
j=1

λjCj ]

Differentiate with respect to λk and equate to zero:

1

Z

∂

∂λk

ν∑
i=1

e(
∑N
j=1 λjgij) − Ck =

1

Z

ν∑
i=1

gike
(
∑N
j=1 λjgij) − Ck = 0

Let

V (λ) = − log ν + logZ(λ)−
N∑
j=1

λjCj (31)

By substituting (28) into (27), one sees that the optimization of (27) is equivalent to minimizing
V (λ). For the minimizing λk so determined, define the calibrated instrument:

∂V (λ)

∂λk
=

ν∑
i=1

pigik − Ck = Ep(gk(ω))− Ck (32)

where gik = gk(ωi) = gk(ω) and Ep(gk(ω)) =
∑ν
i=1 pigk(ωi)

6 Calibration Of The Jump Diffusion Model

Avellaneda models a bid-ask spread by minimizing the relative entropy and the sum of the
weighted least-squares residuals:

χ2
w =

1

2

N∑
j=1

1

wj
(Ep(gj(w))− Cj)2 (33)

where w = (w1, ..., wN ) is a vector of positive weights.
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6.1 The Minimization

Minimize:

D(p | u) + χ2
w (34)

Preliminaries:

Denote Ep{gi(w))} by Ei. Then χ2
w =

∑N
i=1

1
wi

(Ei − Ci)2.

Let

ai =
1
√
wi

(Ei − Ci)

and
−bi = λi

√
wi

Utilizing the inequality 1
2a

2 + 1
2b

2 ≥ ab (right hand side is the inner product) and summing over i:

1

2

N∑
i=1

1

wi
(Ei − Ci)2 +

1

2

N∑
i=1

wiλ
2
i ≥ −

N∑
i=1

λi(Ei − Ci)

i.e.

χ2
w ≥ −

N∑
i=1

λi(E{gi(w)} − Ci)−
1

2

N∑
i=1

wiλ
2
i

It follows that

min
p

[D(p | u) + χ2
w] ≥ max

λ
{min

p
[D(p | u)−

N∑
j=1

λj(Ep{gj(w)} − Cj)]−
1

2

N∑
j=1

wjλ
2
j} (35)

The next equality holds by the following logic: max(x) = −min(−x).

= −min
λ

[−min
p

[D(p | u)−
N∑
j=1

λj(Ep{gj(w)} − Cj)]−
1

2

N∑
j=1

wjλ
2
j ]

and since the last two terms are independent of p

= −min
λ

[max
p

[−D(p | u) +
N∑
j=1

λjEp{gj(w)}]−
N∑
j=1

λjCj +
1

2

N∑
j=1

wjλ
2
j ]
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It can be shown that the inequality is in fact an equality.

Now let D be the entropy rather than relative entropy D =
∑ν
i=1 pi log pi, where the term log ν

is dropped without loss of generality.

Then

max
p

[−D +
N∑
j=1

λjEp(gj)] = max
p

[−D +
N∑
j=1

λj

ν∑
i=1

pigij ]

= max
p

[−
ν∑
i=1

pi log pi +
N∑
j=1

λj

ν∑
i=1

pigij ]

= −
ν∑
i=1

pi

N∑
j=1

λjgij +
ν∑
i=1

pi logZ +
N∑
j=1

λj

ν∑
i=1

pigij

where the last equality holds at the maximum p = p∗. This line now reduces to:

ν∑
i=1

pi logZ = logZ = logZ

since
∑ν
i=1 pi = 1) and Z does not depend on p.

Therefore

min
p

[D(p | u) + χ2
w] = −min

λ
[logZ −

N∑
j=1

λjCj +
1

2

N∑
j=1

wjλ
2
j ] (36)

= −min
λ

[V (λ) +
1

2

N∑
j=1

wjλ
2
j ] (37)

Here V (λ) = logZ(λ)−
∑
j λjCj is the function used in the case of exact fitting.

Differentiating with respect to λk,

∂V (λ)

∂λk
+ wkλk =

ν∑
i=1

pigik − Ck + wkλk
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= Ep{gk(w)} − Ck + wkλk = 0

and we have the optimal λk:

λ∗k = − 1

wk
[Ep
∗
{gk(w)} − Ck] (38)

Note, the minimization over p is the same as in the case of exact fitting since χ2
w does not depend

on p, and so leads to the same values of p∗i :

p∗i =
1

Z(λ∗i )
e(

∑N
j=1 λ

∗
j gij) (39)

6.2 The Calibration Algorithm

The minimizing function in the case of least-squares fitting is

log(Z(λ)−
N∑
j=1

λj(Ep
∗
{gj(w)} − Cj) +

1

2

N∑
j=1

wjλ
2
j (40)

This may be seen where, in the minimization of W (λ), the term
∑N
j=1 λj(Ep

∗{gj(w)} − Cj) is

substituted for −
∑N
j=1 λjCj . The substitution occurs since our assumption Ck = Ep{gk(w)} no

longer holds.

The term Ep∗{gj(w)} − Cj is precisely the modelled bid-ask spread, the bid-ask spread being a
small constant-valued jump. This term, however, may be any constant value. Ck is a constant, the
instantaneous price observed in the market. As an expected value, Ep∗{gj(w)} is not a stochastic
term. In fact, an expected value is a constant.

If we replace the bid-ask spread with a larger jump term, the minimization is essentially un-
changed. The mispriced asset value represented by the bid-ask spread is replaced by a larger mis-
priced value representing a shock. This paper proposes that if the shock occurs as a compound
Poisson process, one may replace the bid-ask spread by the expected value of the compound Poisson
jump.

The exhibits of the next section illustrate the concepts. See [9], [11], and [14] for background
material, basic concepts, and formulas.

7 An Example: Exhibits
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U.S. Treasury Yield Curve Rates as of 12/16/02
Term Structure of Interest Rates Fiting Parameters:

Maturity Zero Price Zero Yields y = c + b*(x-d)^2
(continuous)

1 0.985 0.015 1.483766 c
2 0.962 0.0194 -0.00053 b

` 3 0.932 0.0235 -29.3765 d
5 0.855 0.0314
7 0.769 0.0375

10 0.660 0.0415

P = exp ( -r * t)

Valuing Coupon Bonds ln ( 1+IRR (FV cash flows))
0 (nowyear) 0 Bond value Bond yield Check On
s (zeroyear) 10 (using ytm) to maturity Bond value
Bond Face Value (L) 1.00 1.072 4.03% 1.072
Bond Coupon (cL) 0.05 PV Bond

Zero Price PV Bond FV Bond Zero Yields Forward Rates Cash Flows
Maturity (via function) Cash Flows Cash Flows (via function) (via function) (continuous)

0 -1.072
1 0.992 0.050 0.050 0.84% 0.84% 0.048
2 0.959 0.048 0.050 2.11% 3.38% 0.046

Zero Yields for various maturities obtained 
from the U.S. Treasury website.

Zero Price calculated using continuous 
compounding and  fit to a parabola with R 
squared = 99.75% to obtain 
Zero Price via function.

time in years 3 0.925 0.046 0.050 2.61% 3.61% 0.044
4 0.890 0.044 0.050 2.93% 3.87% 0.043
5 0.853 0.043 0.050 3.17% 4.15% 0.041
6 0.816 0.041 0.050 3.38% 4.46% 0.039
7 0.778 0.039 0.050 3.59% 4.80% 0.038
8 0.739 0.037 0.050 3.79% 5.19% 0.036
9 0.698 0.035 0.050 3.99% 5.63% 0.035

10 0.657 0.690 1.050 4.20% 6.12% 0.702

fitted bond prices - ln (p_i) / t_i
these are PV price * FV cashflow CF * exp ( -t_i * IRR)

- ln (p_i+1 / p_i)
coupons + face value
FV (full value) cash

flows are undiscounted
Zero Yields and Forward Prices both based 
on Zero Price.  
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Fitting Program Output:
             ----  Descriptive Statistics for Variables  ----

  1: Title "Parabola";
 Variable    Minimum value   Maximum value    Mean value     Standard dev.    2: Variables x,y;
----------  --------------  --------------  --------------  --------------    3: Parameters c,b,d;
         x               1              10        4.666667        3.386247    4: Function y = c + b*(x-d)^2;
         y            0.66           0.985          0.8605       0.1261091    5: plot;

   6: data;

                   ----  Calculated Parameter Values  ---- Beginning computation...

 Parameter  Initial guess   Final estimate   Standard error      t      Prob(t)
----------  -------------  ----------------  --------------  ---------  -------
         c              1        1.48376593       0.5056422       2.93  0.06078
         b              1   -0.000533394524    0.0004189297      -1.27  0.29264
         d              1       -29.3764531        27.38353      -1.07  0.36199   ----  Final Results  ----

NLREG version 5.3
                  ----  Analysis of Variance  ---- Copyright (c) 1992-2002 Phillip H. Sherrod.

  Source     DF   Sum of Squares    Mean Square    F value   Prob(F) Parabola
----------  ----  --------------  --------------  ---------  ------- Number of observations = 6
Regression     2      0.07931547      0.03965773     588.88  0.00013 Maximum allowed number of iterations = 500
Error          3    0.0002020314    6.73438E-005 Convergence tolerance factor = 1.000000E-010
Total          5       0.0795175 Stopped due to: Relative function convergence.

Number of iterations performed = 37
Final sum of squared deviations = 2.0203139E-004
Final sum of deviations = -3.3234526E-012
Standard error of estimate = 0.00820633
Average deviation = 0.00518032
Maximum deviation for any observation = 0.00895358
Proportion of variance explained (R^2) = 0.9975  (99.75%)
Adjusted coefficient of multiple determination (Ra^2) = 0.9958  (99.58%)
Durbin-Watson test for autocorrelation = 2.021
Analysis completed 29-Dec-2002 16:38.  Runtime = 0.04 seconds.
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Vasicek Model : see Hull (4th Edition)  pp 567-9 Cox, Ingersoll and Ross Model : see Hull (4th edition) pg 570
RN model dr = a(b-r) dt + sr dz RN model dr = a(b-r) dt + s sqrt(r) dz

a 0.1779 Zero-coupon bond price a 0.2339 Zero-coupon bond price
b 0.0866 P(0,s) 0.6006 b 0.0808 P(0,s) 0.5752
r 1.50% via fn 0.6006 r 1.50% via fn 0.5752
0 (nowyr) 0.00 0 (nowyr) 0.00
s (zeroyr) 10.00 Zero yield s (zeroyr) 10.00 Zero yield
zero life 10.00 R(0,s) 5.10% zero life 10.00 R(0,s) 5.53%
r 2.00% via fn 5.10%  0.0200 via fn 5.53%

B(0,s) 4.6722 Zero yield (infinite maturity)  0.2356 Zero yield (infinite maturity)
A(0,s) 0.6442 R() 8.02% exp((s-0))-1 9.5491 R(¥) 8.05%

B(0,s) 3.8547
Volatility of zero yield A(0,s) 0.6094 Volatility of zero yield
R(0,s) 0.93%  0.09%

Vasicek Term Structure CIR Term Structure
Vasicek CIR

Vasicek Zero Yield Forward CIR Zero Yield Forward
Maturity Zero Yield Volatility Zero Price Rate Maturity Zero Yield Volatility Zero Price Rate

5.10% 0.93% 5.53% 0.09%
0 1.50% 2.00% 0 1.50% 0.24%
1 2.09% 1.83% 0.979 2.09% 1 2.21% 0.22% 0.978 2.21%
2 2.61% 1.68% 0.949 3.13% 2 2.82% 0.20% 0.945 3.44%
3 3.07% 1.55% 0.912 3.98% 3 3.35% 0.18% 0.904 4.40%
4 3.47% 1.43% 0.870 4.68% 4 3.80% 0.16% 0.859 5.17%
5 3.83% 1.32% 0.826 5.25% 5 4.20% 0.14% 0.811 5.77%
6 4.14% 1.23% 0.780 5.72% 6 4.54% 0.13% 0.762 6.25%
7 4.42% 1.14% 0.734 6.11% 7 4.84% 0.12% 0.713 6.63%
8 4.67% 1.07% 0.688 6.43% 8 5.10% 0.11% 0.665 6.93%
9 4.90% 1.00% 0.644 6.69% 9 5.33% 0.10% 0.619 7.16%

10 5.10% 0.93% 0.601 6.91% 10 5.53% 0.09% 0.575 7.35%
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Using Monte Carlo Simulation to Value Zero Yields Vasicek Model : see Hull (4th Edition)  p567-9
RN model dr = a(b-r) dt + sr dz

Random Numbers (Excel)
a 0.1779 Zero-coupon bond price

Vasicek stochastic DE b 0.0866 P(0,s) 0.6006
1st term 0.00127 r 1.50% MC Value 0.6089
2nd term 0.02000 0 (nowyr) 0.00 Zero yield
CIR stochastic DE s (zeroyr) 10.00 R(0,s) 5.10%
1st term 0.00154 zero life 10.00 MC value 4.96%
2nd term 0.00245 r 2.00%

dt 0.10 Volatility of zero yield
r + dr Vasicek CIR B(0,s) 4.6722 R(0,s) 0.93%
MC value 0.0120 0.0160 A(0,s) 0.6442 MC value 1.00%
MC stdev 0.0214 0.0026

Cox, Ingersoll and Ross Model : see Hull (4th edition) p570
RN model dr = a(b-r) dt + s sqrt(r) dz

a 0.2339 Zero-coupon bond price
b 0.0808 P(0,s) 0.5752
r 1.50% MC Value 0.5729
0 (nowyr) 0.00 Zero yield
s (zeroyr) 10.00 R(0,s) 5.53%
zero life 10.00 MC Value 5.57%
r 2.00%
dt 0.10
 0.2356 Volatility of zero yield
exp((s-0))- 9.5491 R(0,s) 0.09%
B(0,s) 3.8547 MC Value 0.01%
A(0,s) 0.6094
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Using Monte Carlo Simulation to Value Zero Yields Vasicek Model : see Hull (4th Edition)  pp 567-9
RN model dr = a(b-r) dt + sr dz

Quasi Random Numbers
a 0.1779 Zero-coupon bond price

Vasicek stochastic DE b 0.0866 P(0,s) 0.6006
1st term 0.00127 r 1.50% MC Value 0.5993
2nd term 0.02000 0 (nowyr) 0.00 Zero yield
CIR stochastic DE s (zeroyr) 10.00 R(0,s) 5.10%
1st term 0.00154 zero life 10.00 MC value 5.12%
2nd term 0.00245 r 2.00%

dt 0.10 Volatility of zero yield
r + dr Vasicek CIR B(0,s) 4.6722 R(0,s) 0.93%
MC value 0.0154 0.0164 A(0,s) 0.6442 MC value 0.91%
MC stdev 0.0194 0.0024

Cox, Ingersoll and Ross Model : see Hull (4th edition) pg 570
RN model dr = a(b-r) dt + s sqrt(r) dz

a 0.2339 Zero-coupon bond price
b 0.0808 P(0,s) 0.5752
r 1.50% MC Value 0.5720
0 (nowyr) 0.00 Zero yield
s (zeroyr) 10.00 R(0,s) 5.53%
zero life 10.00 MC Value 5.59%
r 2.00%
dt 0.10
 0.2356 Volatility of zero yield
exp((s-0))- 9.5491 R(0,s) 0.09%
B(0,s) 3.8547 MC Value 0.01%
A(0,s) 0.6094
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Using Monte Carlo Simulation to Value Bond Prices
Comparison of Results
MRE (Minimum Relative Entropy) Prior Distribution

Zero Yield

time in Vasicek Vasicek Vasicek CIR CIR CIR
years equation MC1 MC2 equation MC1 MC2

0 1.50% 1.64% 1.42% 1.50% 1.45% 1.49%
1 2.09% 1.93% 2.03% 2.21% 2.23% 2.22%
2 2.61% 2.39% 2.57% 2.82% 2.84% 2.84%
3 3.07% 3.12% 3.03% 3.35% 3.41% 3.38%
4 3.47% 3.61% 3.45% 3.80% 3.83% 3.84%
5 3.83% 3.93% 3.81% 4.20% 4.26% 4.24%
6 4.14% 4.17% 4.14% 4.54% 4.57% 4.58%
7 4.42% 4.47% 4.43% 4.84% 4.89% 4.89%
8 4.67% 4.79% 4.68% 5.10% 5.16% 5.15%
9 4.90% 5.03% 4.91% 5.33% 5.39% 5.38%

10 5.10% 5.27% 5.12% 5.53% 5.59% 5.59%

Bond Price 0.54706 0.54012 0.54478 0.52858 0.52478 0.52521

Using Monte Carlo Simulation to Value Bond Prices
Comparison of Results
MRE (Minimum Relative Entropy) Prior Distribution

Forward Rate

time in Vasicek Vasicek Vasicek CIR CIR CIR
years equation MC1 MC2 equation MC1 MC2

0 2.09% 1.93% 2.03% 2.21% 2.23% 2.22%
1 2.09% 1.93% 2.03% 2.21% 2.23% 2.22%
2 3.13% 2.85% 3.10% 3.44% 3.45% 3.46%
3 3.98% 4.59% 3.97% 4.40% 4.57% 4.45%
4 4.68% 5.08% 4.69% 5.17% 5.08% 5.22%
5 5.25% 5.22% 5.27% 5.77% 5.97% 5.84%
6 5.72% 5.37% 5.76% 6.25% 6.12% 6.32%
7 6.11% 6.27% 6.15% 6.63% 6.82% 6.70%
8 6.43% 7.05% 6.48% 6.93% 7.05% 7.00%
9 6.69% 6.95% 6.75% 7.16% 7.23% 7.24%

10 6.91% 7.35% 6.98% 7.35% 7.39% 7.42%
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Initial Bond Portfolio Value 0.522890

Final Bond Portfolio Value 0.506413

Benchmark instruments N=5, nu=11

price PV cash flow price PV cash flow price PV cash flow price PV cash flow price PV cash flow
C_1 g_1j C_2 g_2j C_3 g_3j C_4 g_4j C_5 g_5j

0.693 0.059 0.608 0.050 0.523 0.040 0.438 0.030 0.353 0.020
0.058 0.048 0.038 0.029 0.019
0.055 0.046 0.037 0.028 0.018
0.053 0.044 0.036 0.027 0.018
0.051 0.043 0.034 0.026 0.017
0.049 0.041 0.033 0.024 0.016
0.047 0.039 0.031 0.023 0.016
0.044 0.037 0.030 0.022 0.015
0.042 0.035 0.028 0.021 0.014
0.039 0.033 0.026 0.020 0.013
0.194 0.192 0.191 0.189 0.187

The Vector Of Benchmark Prices C_j The Vector Of Final Values p_i

0.692669 0.607779 0.522890 0.438000 0.353111 0.173543 0.171769 0.193366 0.209694 0.251628

The Matrix Of Present Valued Cash Flows g_ij The Matrix Of Lagrange Multipliers lambda*_j

0.059495 0.049579 0.039663 0.029748 0.019832 -0.026586 -0.047202 0.171634 0.389973 1.000000
0.057519 0.047932 0.038346 0.028759 0.019173 -0.026586 -0.047202 0.171634 0.389973 1.000000
0.055479 0.046232 0.036986 0.027739 0.018493 -0.026586 -0.047202 0.171634 0.389973 1.000000
0.053374 0.044479 0.035583 0.026687 0.017791 -0.026586 -0.047202 0.171634 0.389973 1.000000
0.051206 0.042672 0.034137 0.025603 0.017069 -0.026586 -0.047202 0.171634 0.389973 1.000000
0.048974 0.040811 0.032649 0.024487 0.016325 -0.026586 -0.047202 0.171634 0.389973 1.000000
0.046677 0.038898 0.031118 0.023339 0.015559 -0.026586 -0.047202 0.171634 0.389973 1.000000
0.044317 0.036931 0.029545 0.022158 0.014772 -0.026586 -0.047202 0.171634 0.389973 1.000000
0.041892 0.034910 0.027928 0.020946 0.013964 -0.026586 -0.047202 0.171634 0.389973 1.000000
0.039404 0.032837 0.026269 0.019702 0.013135 -0.026586 -0.047202 0.171634 0.389973 1.000000
0.194332 0.192498 0.190665 0.188832 0.186999 -0.026586 -0.047202 0.171634 0.389973 1.000000
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MRE: Find LaGrange Multipliers
Maximum allowed number of iterations = 500
Convergence tolerance factor = 1.000000E-010

Number of iterations performed = 5
Final function value = 4.9005938E-017
Analysis completed  2-Jan-2003 07:54.  Runtime = 0.02 seconds.

  ----  Calculated Parameter Values  ----

 Parameter  Initial guess   Final estimate 
----------  -------------  ----------------
        L1              1       -0.26586057
        L2              1     -0.0472018362
        L3              1       0.171634464
        L4              1       0.389972719
        L5              1                 1
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Initial Bond Portfolio Value 0.522890

Final Bond Portfolio Value 0.504591

Benchmark instruments N=5, nu=11

price PV cash flow price PV cash flow price PV cash flow price PV cash flow price PV cash flow
C_1 g_1j C_2 g_2j C_3 g_3j C_4 g_4j C_5 g_5j

0.693 0.059 0.608 0.050 0.523 0.040 0.438 0.030 0.353 0.020
0.058 0.048 0.038 0.029 0.019
0.055 0.046 0.037 0.028 0.018
0.053 0.044 0.036 0.027 0.018
0.051 0.043 0.034 0.026 0.017
0.049 0.041 0.033 0.024 0.016
0.047 0.039 0.031 0.023 0.016
0.044 0.037 0.030 0.022 0.015
0.042 0.035 0.028 0.021 0.014
0.039 0.033 0.026 0.020 0.013
0.194 0.192 0.191 0.189 0.187

The Vector Of Benchmark Prices C_j The Vector Of Final Values p_i

0.692669 0.607779 0.522890 0.438000 0.353111 0.159167 0.177378 0.197673 0.220289 0.245493

The Matrix Of Present Valued Cash Flows g_ij The Matrix Of Lagrange Multipliers lambda*_j

0.059495 0.049579 0.039663 0.029748 0.019832 -1.276111 -1.276111 -1.276111 -1.276111 -1.276111
0.057519 0.047932 0.038346 0.028759 0.019173 -1.276111 -1.276111 -1.276111 -1.276111 -1.276111
0.055479 0.046232 0.036986 0.027739 0.018493 -1.276111 -1.276111 -1.276111 -1.276111 -1.276111
0.053374 0.044479 0.035583 0.026687 0.017791 -1.276111 -1.276111 -1.276111 -1.276111 -1.276111
0.051206 0.042672 0.034137 0.025603 0.017069 -1.276111 -1.276111 -1.276111 -1.276111 -1.276111
0.048974 0.040811 0.032649 0.024487 0.016325 -1.276111 -1.276111 -1.276111 -1.276111 -1.276111
0.046677 0.038898 0.031118 0.023339 0.015559 -1.276111 -1.276111 -1.276111 -1.276111 -1.276111
0.044317 0.036931 0.029545 0.022158 0.014772 -1.276111 -1.276111 -1.276111 -1.276111 -1.276111
0.041892 0.034910 0.027928 0.020946 0.013964 -1.276111 -1.276111 -1.276111 -1.276111 -1.276111
0.039404 0.032837 0.026269 0.019702 0.013135 -1.276111 -1.276111 -1.276111 -1.276111 -1.276111
0.194332 0.192498 0.190665 0.188832 0.186999 -1.276111 -1.276111 -1.276111 -1.276111 -1.276111
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