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Abstract

Reinsurance reduces the required capital of the primary insurer but in-

creases that of the reinsurer. Capital is costly. All capital costs, including

that of the reinsurer, are ultimately borne by primary policyholders. Reduc-

ing the total capital of insurers and reinsurers lowers the total capital cost and

the total primary policy premium. A reinsurance arrangement is considered

optimal if it minimizes the total required capital. This optimal reinsurance is

shown to be an attracting equilibrium under price competition. Evidence sug-

gests that there is an inverse relationship between the total required capital

and the correlation between the losses held by different insurers. Examples

are constructed to support this observation.
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1 Introduction

A new type of optimal reinsurance is introduced in this paper. Reinsurance serves

many purposes, one of which is to reduce the required capital by lessening the

volatility of losses. From the shareholder point of view, capital is costly because

of income taxes and agency costs. Shareholders pay income taxes two times on
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their capital investment, first at the corporate level and then at the personal level

when they sell the stock. They would not owe the corporate tax if they invested

directly in the securities market. Agency costs exist because of the separation of

ownership and control. They include monitoring and bonding expenditures and

other losses in profits due to a misalignment of managers’ decisions and share-

holders’ welfare. Taxes and agency costs, altogether called capital costs, generally

have an increasing relationship with the amount of capital (Jensen and Meckling

1976, Perold 2005, Chandra and Sherris 2006, Zhang 2008). Thus carrying less

capital is desirable.

Reinsurance transfers losses from a ceding company to a reinsurer. Such losses

are often highly volatile. So this transfer of losses increases the capital requirement

of a reinsurer while reducing that of a ceding company. Consequently, capital

costs of the reinsurer increase and those of the ceding company decrease. The

total capital cost, the sum of that of both companies, may go either way. Capital

costs are funded by premium. Primary policy premiums include charges to cover

primary insurers’ capital costs; reinsurance premiums include charges to cover

reinsurers’ capital costs. But reinsurance premiums are funded through premiums

of primary policies. Therefore, the total capital costs of primary insurers and

reinsurers are ultimately borne by primary policyholders. If a treaty reduces a

ceding company’s capital costs more than it increases the reinsurer’s, the total

capital cost is reduced, which benefits primary policyholders. A treaty, or a set of

treaties, is optimal, if it minimizes the total capital cost. Such optimal reinsurance

arrangements are the subject of this paper.

Numerous authors have written about optimal reinsurance and have proposed

various optimality criteria. My approach is noticeably different. Usually an opti-

mal reinsurance is defined from the ceding company’s point of view. The ceding

insurer seeks a treaty to maximize its risk-adjusted return (Lampaert and Wal-

hin 2005, Fu and Khury 2010), to minimize the variance of its net loss (Kaluszka

2001, Lampaert and Walhin 2005), or to minimize the tail risk of the net loss

(Gajek and Zagrodny 2004, Cai and Tan 2007), under the constraint of a given

premium principle that links the ceded premium to the ceded loss. This line of

research is valuable. However, it does not pay enough attention to the profit tar-

get of the reinsurer. Although the proposed premium principles usually include

risk margins reflecting the volatility of the ceded loss, they generally ignore the

fact that the reinsurer needs to put up more capital thus incurring greater capital

costs. My approach places the ceding insurer and the reinsurer on an equal footing

and addresses the capital costs of both directly. A reinsurance arrangement that
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minimizes the total capital is the best deal for the combined welfare of primary

insurers, reinsurers and policyholders.

Under reasonable assumptions, minimization of the total capital cost is equiv-

alent to minimization of the total amount of capital carried by all companies.

This latter problem may be directly solved by simulating insurers’ and reinsurers’

losses. A remarkable fact, however, is that this type of optimal reinsurance need

not be solved by any one party. (In fact, neither the ceding insurer nor the rein-

surer can obtain the full knowledge of the joint probability distribution of losses of

both parties.) Market forces automatically push the insurer and the reinsurer to

select treaties with less total capital costs. In other words, an optimal reinsurance

arrangement is an attracting equilibrium.

The capital requirement will be set by a risk measure. In this paper, I assume

that the risk measure is coherent, as defined in Artzner et al. (1999). For such a

risk measure, there is an absolute lower bound for the total capitals. Regardless of

reinsurance arrangements, the total capital must be greater than this lower bound.

It can be shown that if the losses of the insurers have a certain correlation called

comonotonicity (defined in Section 5), then the total capital attains the lower

bound. This observation leads to a discussion on the relationship between optimal

reinsurance and correlated losses. Evidence suggests that an optimal treaty is one

that makes the losses of insurers and reinsurers as correlated as possible. (Such

correlation needs only occur at the tail.)

The main part of the paper is organized as follows. In Section 2, I prove that

minimization of the total primary insurance premium leads to minimization of the

total capital. I then show in Section 3 that price competition tends to produce this

type of optimal reinsurance. Coherent risk measures are discussed in Section 4. In

Section 5, I point out that a lower bound exists for the total required capital, and

in some cases an inverse relationship exists between the sum of capitals and the

correlation between losses. Section 6 contains a general formulation of the optimal

reinsurance problem. Examples are given in Section 7 to further examine the link

between the sum of capitals and correlation. Section 8 concludes the paper.

2 Why Minimize the Total Required Capital?

In this section I will rigorously prove that, if a reinsurance arrangement minimizes

the total capital cost, then it minimizes the aggregate premium of primary poli-

cyholders. I will also point out the exact conditions under which minimization of

the total capital cost is equivalent to minimization of the total amount of capital.
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Policyholders purchase insurance to protect themselves against unexpected

losses. At the same time, they also provide funds to cover all operating costs of

the insurance company, including underwriting and claim expenses, income taxes,

agency costs and reinsurance costs. The reinsurance costs, in turn, cover the

reinsurer’s expenses, taxes and agency costs, and its reinsurance costs (costs of

retrocession). Ultimately, it is the primary insurance policyholders that bear the

operating costs of primary insurers and reinsurers. For the insurance/reinsurance

market as a whole, reinsurance treaties rearrange these costs among all insurers

and reinsurers. Some reinsurance arrangements result in lower total costs than

others. A reinsurance arrangement is optimal if the total cost is minimized, in

which case the primary policyholders pay the lowest aggregate premium.

This paper focuses on minimizing the total capital cost, consisting of income

taxes and agency costs.1 To cleanly study the capital cost, I assume that the aggre-

gate underwriting and claim expenses remain constant under various reinsurance

arrangements. Therefore, these expenses can be excluded from consideration. The

gross insurance premium of a policy can be decomposed into the following com-

ponents

p = PV(Loss) + PV(Tax) + PV(Agency Cost) + Reinsurance Premium. (2.1)

The p in (2.1) represents the fair premium, which is the exact amount to fund all

insurer’s costs related to the policy. Equation (2.1) is a version of the net present

value principle. Slightly different formulas for the fair premium have appeared

in the literature (Myers and Cohn 1987, Taylor 1994, Vaughn 1998). Each term

on the right-hand side of (2.1) provides the exact amount to cover that specific

type of cost. The PV’s represent risk-adjusted present values. The loss in the

first term is the net loss. It is assumed here that the present value of insured loss

satisfies the following two basic requirements of the fair value accounting: (1) The

value PV(Loss) is independent of the carrier of the insurance policy.2 (2) The

function PV( ) is additive. The two conditions together eliminate the possibility

1Agency costs include any cost associated with the issue of “separation of ownership and con-

trol”, as discussed in Jensen and Meckling (1976), Perold (2005), like monitoring and bonding

expenditures and other losses in profits due to misalignment of managers’ decisions and share-

holders’ welfare.
2 The risk-adjusted PV can be viewed as the risk-free discounted expected cash flow plus a

risk margin, where the risk margin reflects the market, or the systematic risk of the cash flow. It

is sometimes argued that the fair value of losses should be affected by its carrier’s default risk.

In this paper, I only consider insurance firms that hold the required level of capital and whose

risk of default is negligible.
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of arbitrage. In particular, they imply that PV(Gross Loss) = PV(Net Loss) +

PV(Ceded Loss).

I now examine the relationship between the gross fair premium and the total

amount of capital held by insurers and reinsurers. Consider a one-year model

containing only one loss to be shared between a primary insurer and a reinsurer.

Let p be the gross premium charged by the primary insurer at the beginning of

the year and L the random gross loss paid at the end of the year. The primary

insurer collects the premium p then cedes an amount pc to the reinsurer, retaining

pn = p− pc. Similarly for losses, Ln = L− Lc, where Lc is the ceded loss and Ln

the net loss.

The total income tax is the sum of two charges, one on the income generated

by premiums, which equals the underwriting profit plus the investment income on

premiums, and the other on the investment income generated by capital. To write

premium formulas in a concise way, I use the following notations

ePr : capital carried by the primary insurer

eRe : capital carried by the reinsurer

tPr : average tax rate for the primary insurer

tRe : average tax rate for the reinsurer

The present value of tax for the primary insurer is of the form tPr(pn −
PV(Ln)) +uPrePr, and that for the reinsurer is tRe(pc−PV(Lc)) +uReeRe, where

the u’s are constants: if rf represents the risk-free rate, then uPr = tPr ·rf/(1+rf )

and uRe = tRe · rf/(1 + rf ). (A derivation of the multiplier rf/(1 + rf ) can be

found in Cummins 1990). Agency costs generally increase with the amount of

capital.3 For simplicity, I assume there is a linear relationship: for some constants

sPr and sRe, the present value of agency cost is sPrePr for the primary company

and sReeRe for the reinsurer.

Following (2.1), for the primary insurer, we have

p = PV(Ln) + tPr(pn − PV(Ln)) + uPrePr + sPrePr + pc (2.2)

and, for the reinsurer (if there is no retrocession),

pc = PV(Lc) + tRe(pc − PV(Lc)) + uReeRe + sReeRe. (2.3)

3 An important type of capital cost is the cost of financial distress, which increases as capital

becomes more insufficient. But firms considered in this paper satisfy a given capital requirement.

So the cost of financial distress is ignored.
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An equation for the fair gross premium p can be obtained by substituting (2.3)

into (2.2). p is the sum of the following four terms.

1. The present value of loss: PV(Ln) + PV(Lc) = PV(L), which does not vary

with reinsurance.

2. The tax on the incomes generated by premium: tPr(pn−PV(Ln))+ tRe(pc−
PV(Lc)). On the condition that the tax rates are equal, tPr = tRe = t, this

term is t(p− PV(L)), which decreases as p decreases.

3. The tax on the incomes generated by capital: uPrePr + uReeRe. If the

applicable tax rates are the same, then uPr = uRe = u, and the term equals

u(ePr + eRe), which decreases if a reinsurance contract lowers the sum of

capitals, ePr + eRe.

4. The agency cost: sPrePr +sReeRe. If the cost factors are equal, sPr = sRe =

s, then the term equals s(ePr + eRe), again a direct function of the total

capital ePr + eRe.

To sum up, as reinsurance varies, the loss component PV(L) remains constant,

while the fair premium p varies because taxes and agency costs vary. p is lower if

the present values of taxes and agency costs are lower. Under the above assump-

tions, this is equivalent to a less amount of total capital, ePr + eRe. The optimal

reinsurance is then defined as the one that minimizes ePr +eRe. An optimal treaty

creates the least gross premium, so is best for the policyholder.

This definition can be generalized to an insurance market with many primary

insurers and reinsurers, and many primary policyholders. Assume each primary

insurer covers a given set of policyholders. There are a great number of ways in

which each insurer buys reinsurance and each reinsurer enters retrocession agree-

ments. A set of reinsurance/retrocession arrangements is called optimal if it min-

imizes the total capital cost of the insurers and reinsurers. With the condition

that all companies have identical tax rates and agency cost factors, this criterion

is equivalent to minimizing the total amount of capital.4

4 It has been pointed out to me that reinsurers usually have a different tax rate than primary

companies. If tax rates or agency cost factors are not all equal, or the costs are not all linear

to the capital, then the optimal treaty is one that minimizes some increasing function of the

capitals.
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3 Market Competition Produces Lower Total Capital

Minimization of the total capital cost is a new optimality criterion. Criteria in

the existing literature are very different; see Kaluszka (2001), Gajek and Zagrodny

(2004), Lampaert and Walhin (2005), Cai and Tan (2007) and Fu and Khury (2010)

for a sample of recent papers. In these papers, reinsurance is considered optimal

if it minimizes the risk of the net loss under a given constraint on the reinsurance

cost (or a constraint on the ceded premium). This line of research is valuable for

reinsurance purchase decisions but is incomplete. A major concern of reinsurance

has been missing. The reinsurer needs additional capital to accommodate the

increased risk from assumed losses, which increases its capital cost. This extra cost

is transferred to the ceding company through reinsurance pricing. To the ceding

company, if this extra cost is not offset by the reduction of its own capital cost,

the deal is not acceptable. My method treats the ceding insurer and the reinsurer

equally. The optimal treaty is fair to both firms and is the most beneficial to

the primary policyholder. Obviously, an optimal reinsurance treaty so defined

cannot be calculated by either company since one company cannot model the

other company’s aggregate loss distribution. Fortunately, it is not necessary to

explicitly calculate the optimal treaty terms. As long as each company correctly

prices its own policies, the optimal treaty is automatically attained through price

competition. I will use a few examples to illustrate the working of this market

force.

Let us begin with a simple scenario. Assume a primary insurer has written a

line of business and would like to cede a part of it. Denote by fPr the amount

of capital cost saved by reinsurance. The reinsurer incurs extra capital costs

associated with the assumed loss. It charges the primary insurer an additional

premium, denoted by fRe, to cover these costs.5 So the primary insurer pays an

amount of premium fRe to save an amount of cost fPr. The reinsurance only makes

sense if fRe ≤ fPr, which means the sum of the capital costs of both companies

must decrease.

Assume further that there are two competing reinsurers; a treaty placed with

reinsurer 1 costs the primary insurer a premium fRe,1 to save a capital cost fPr,1,

and one placed with reinsurer 2 costs fRe,2 to save a capital cost fPr,2. The

immediate (present value) benefits from the treaties are fPr,1 − fRe,1 and fPr,2 −
fRe,2, respectively. The insurer would choose the reinsurer with the greater benefit,

5 Rigorously, fPr and fRe represent risk-adjusted present values of the corresponding capital

cost cash flows.
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which is the one producing the lower total capital cost.

Now look at an example where primary insurers choose reinsurance to compete

with each other for business. Suppose that a line of business is on the market and

two insurers are bidding. Suppose each insurer has a set of available reinsurance

options. As proved in Section 2, the fair gross premium includes a capital cost

component that equals the present value of the total capital cost of the insurer

and the reinsurer. To win the bid, an insurer looks for a reinsurance treaty that

can produce the lowest possible total capital cost. Eventually, the business will

go to the insurer able to secure a reinsurance with so low a total capital cost that

the other cannot match. Obviously, an insurer’s ability to get a more competitive

reinsurance deal depends on its existing business and capital structure.

The above analysis shows that market competition always favors a reinsur-

ance structure that produces less total capital cost. Consequently, a reinsurance

structure with the least total capital cost is an attracting equilibrium.

4 Capital Requirement Defined by a Coherent Risk

Measure

Suppose a uniform capital requirement is imposed on all insurers by regulation. I

will only deal with the loss risk, that is, the risk that L becomes very large. The

required capital can be defined by a risk measure on the loss distribution. A class

of risk measures considered desirable are the coherent risk measures. According to

Artzner et al. (1999), risk measure ρ is called coherent if it satisfies the following

conditions:

• Monotonicity: For any two losses, L1 and L2, if L1 ≤ L2, then ρ(L1) ≤ ρ(L2)

• Positive homogeneity: For any loss L and a constant a > 0, ρ(aL) = aρ(L)

• Translation invariance: For any loss L and a constant b, ρ(L+ b) = ρ(L) + b

• Subadditivity: For any two losses, L1 and L2, ρ(L1 + L2) ≤ ρ(L1) + ρ(L2)

All these properties have simple intuitive meanings. Most important to this study

is subadditivity. Subadditivity implies diversification: When two risks are pooled

together, the required capital of the pool is less than the sum of the required

capitals of each risk.

A typical property/casualty loss is a continuous random variable, that is, its

cumulative distribution function FL(x) is continuous. The p-quantile of L is de-
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fined by

Qp(L) = min{x|FL(x) ≥ p}, p ∈ (0, 1), (4.1)

and the tail value at risk (TVaR) at level p is

TVaRp(L) = E[L|L ≥ Qp(L)], p ∈ (0, 1). (4.2)

The TVaR is the most well-known coherent risk measure for continuous risks. (The

quantile, also called the value at risk, does not always respect subadditivity.) The

TVaR will be used in my illustrative examples.

Suppose a coherent risk measure ρ is selected by the regulator. Then ρ(L) is

the amount of assets a company is required to hold. In a one-year model, the

premium provides part of the assets at the beginning of the year; the required

capital thus equals the required assets minus the premium. Following Section 2,

I examine reinsurance structures that minimize the sum of the required capitals

of the insurer and the reinsurer. This is equivalent to the problem of minimizing

the sum of their required assets,6 i.e., minimizing the sum of their risk measures.

Note that the required assets should be calculated from the loss distribution at

the end of the year and discounted back to the beginning of the year. I ignore the

discounting here for simplicity.

5 Lower Bound of Total Capitals and Comonotonicity

Reconsider the simplified model with a single loss L, one primary insurer and

one reinsurer. The primary insurer issues a policy to cover the entire loss L

and cedes part of it to the reinsurer. Thus, L is split between the two insurers,

L = LPr +LRe. For a given coherent risk measure ρ, by the rule of subadditivity,

ρ(L) ≤ ρ(LPr) + ρ(LRe). This inequality provides an absolute lower bound for

the sum of capitals: however L is split between the two insurers, the sum of their

required assets is no less than ρ(L). To minimize the total required capital is to

get the sum ρ(LPr) + ρ(LRe) as close to ρ(L) as possible.

The lower bound can be attained by many reinsurance arrangements. One

trivial case is that LPr = L and LRe = 0, or LPr = 0 and LRe = L, that is, only

one insurer holds all of L. This fact is no surprise, for if there is only one insurer

6 This can be explained using equations (2.2) and (2.3). The assets for the insurer are pn+ePr,

and that for the reinsurer are pc+eRe. It is proved in Section 2 that the total (gross) fair premium

pn + pc decreases as the total capital ePr + eRe decreases. If a reinsurance treaty minimizes the

total required assets, it must simultaneously minimize the total required capital and the total

fair premium.
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and all losses are insured with it, the effect of diversification is maximized, and the

least amount of capital is required. An extension of this fact is that an insurance

market with few insurers requires less total amount of capital than a market with

many insurers. But few insurers means less competition, and insurers have less

incentive to price policies fairly.

The lower bound is also reached by the quota share reinsurance. If a is the

quota share ceding fraction (0 < a < 1), then LPr = (1− a)L and LRe = aL. The

equality ρ(L) = ρ(LPr) + ρ(LRe) follows from the rule of positive homogeneity

of ρ. More generally, if two losses L1 and L2 are perfectly linearly correlated,

that is, their linear (Pearson) correlation coefficient equals 1, then ρ(L1 + L2) =

ρ(L1)+ρ(L2). Therefore, if a reinsurance treaty splits L into two linearly correlated

parts, then the sum of their required capitals is minimized. The condition of

perfect linear correlation can rarely be fulfilled. Fortunately, it can be much

relaxed in the following two steps. First, although some kind of perfect correlation

has to exist between two losses, L1 and L2, for their risk measures to add up, the

correlation does not have to be linear—any monotonic and increasing relationship

suffices. Second, a perfect correlation only needs to exist at the tail, for large

values of L1 and L2. Mathematically, both these issues have been well treated in

the literature, as explained below.

Let me first give the definition of comonotonicity. Two random variables, X

and Y , are perfectly linearly correlated (the linear correlation coefficient of X and

Y equals 1) if and only if their support lies in a straight line with a positive slope.

(Recall that the support is the set of all possible values of X and Y in the (x, y)-

plane. It can be visualized by drawing a scatter plot. A scatter plot of a pair of

random variables is merely a small, random subset of its support.) Comonotonicity

is an extention of perfect linear correlation. Two random variables, X and Y ,

are called comonotonic, if their support lies in a one-dimensional curve that is

never decreasing. More precisely, the support of a pair of comonotonic random

variables satisfies the following condition: if, for any two points in the support,

(x1, y1) and (x2, y2), x1 < x2 implies y1 ≤ y2 and y1 < y2 implies x1 ≤ x2.

A good overview of comonotonicity and its application in risk theory is Dhaene

et al. (2006), where comonotonicity is defined for any number of random variables.

Comonotonicity can be considered a perfect nonlinear correlation. For example, if

X is a positive random variable, then X and X2 are comonotonic but not linearly

correlated. The support of (X,X2) is contained in the graph of parabola y = x2.

The Spearman rank correlation coefficient is a more meaningful measure than the

linear correlation coefficient for characterizing such a nonlinear relationship. The
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rank correlation coefficient of two comonotonic random variables equals 1 (see

Wang 1998), while their linear correlation coefficient is typically less than 1.

The TVaR is a coherent risk measure and is also additive for comonotonic risks:

If two losses L1 and L2 are comonotonic, then TVaRp(L1 + L2) = TVaRp(L1) +

TVaRp(L2) for any p (Dhaene et al. 2006).7 In the one-insurer-one-reinsurer

model, assume the required asset is determined by a risk measure ρ that is co-

herent and additive for comonotonic risks. If L is split in such a way that LPr

and LRe are comonotonic, then ρ(LPr) + ρ(LRe) reaches its lower bound ρ(L).

We have seen that the quota share reinsurance splits the loss this way. Another

example is the stop-loss reinsurance, which is defined by

LPr = min(L, k), LRe = max(L− k, 0), (5.1)

where k > 0 is the attachment point. It is easy to check that the three variables

L, LPr and LRe are comonotonic, and ρ(L) = ρ(LPr) + ρ(LRe).

Risk measures like Qp(L) and TVaRp(L) are determined by large values of L.

When looking for a way to split L into LPr and LRe to minimize the total capital,

one should focus on large losses. The condition of comonotonicity requires the

entire support of the random vector to be in a one-dimensional non-decreasing

curve. This condition is too strong. Cheung (2009) introduces the concept of

upper comonotonicity, only requiring the condition to be satisfied in the upper

tail. If LPr and LRe are upper comonotonic, then ρ(L) = ρ(LPr) + ρ(LRe), where

ρ is either Qp or TVaRp and p is sufficiently close to 1. In general, the amount

of total capital corresponding to a reinsurance structure is determined by large

losses only.

6 Optimal Reinsurance in a General Setting

I now apply the concepts developed so far to formulate a general problem about

optimal reinsurance. I have discussed the problem of splitting a single loss L

between an insurer and a reinsurer. In the real world, a primary insurer does not

have the option or the intension to cover its entire book with a reinsurance treaty.

It only attempts to cede some unwanted lines or accounts. On the other hand, a

reinsurer assumes losses from many insurers and reinsurers. A new treaty adds

losses to its existing book. When determining the optimal reinsurance, one needs

7 There are other risk measures that are coherent and additive for comonotonic risks, e.g., the

concave distortion risk measures. The VaR is additive for comonotonic risks but is not coherent

(Dhaene et al. 2006).
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to consider these “other” loss portfolios of the ceding insurer and the reinsurer, in

addition to the loss portfolio to be ceded. The following model includes all these

sets of losses.

Assume a primary insurer initially carries losses X + Z, where X will be

entirely retained and Z may be partially ceded. The reinsurer holds a loss Y

before assuming any part of Z. A reinsurance treaty splits Z into a net and a

ceded part, Z = Zn+Zc. Before reinsurance, the total required asset of the insurer

and the reinsurer is ρ(X + Z) + ρ(Y ). After reinsurance, the total required asset

is ρ(X + Zn) + ρ(Y + Zc). A treaty is optimal if the latter sum is minimized.

If ρ is a coherent risk measure, an absolute lower bound for ρ(X+Zn)+ρ(Y +

Zc) is ρ(X + Y + Z). In general, the distributions of losses X, Y and Z and

correlations between them are complex. There is no ceding arrangement that can

bring down the sum ρ(X + Zn) + ρ(Y + Zc) to anywhere near this lower bound.

Moreover, in the reinsurance market, only a few types of treaties are commonly

placed, like the quota share, excess of loss, catastrophe and stop loss treaties. This

further limits how low ρ(X + Zn) + ρ(Y + Zc) can become. Minimizing the sum

ρ(X + Zn) + ρ(Y + Zc) for a given set of available treaties is mathematically a

constrained optimization problem.

From the preceding section, we learned that if a ceding arrangement makes

X + Zn and Y + Zc comonotonic (upper comonotonicity suffices), then the sum

of required capitals attains its minimum value ρ(X + Y + Z). In other words,

the minimum sum of capitals corresponds to the maximum correlation between

the losses (their rank correlation equals 1). This suggests that the value of ρ(X +

Zn) + ρ(Y + Zc) may be inversely related to the correlation between X + Zn and

Y +Zc. A reinsurance contract that makes the total capital small must make the

correlation large. This observation, if it can be proved in certain circumstances,

should be very interesting. I will examine some examples where a linkage between

the total capital and the correlation does exist. In the appendix, I will provide a

graphic reasoning to further support this relationship.

7 Examples

In the rest of the paper, examples are provided to examine how closely the total

capital is related to the correlation between the ceding insurer’s and the reinsurer’s

losses. The first example uses normally distributed losses, where the optimal

ceding terms can be obtained in closed form. The second example is more general

and has to be solved numerically. The optimal cedings are calculated based on
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simulation results.

7.1 A multivariate normal example

Let X, Y and Z be three jointly normally distributed variables. X and Z are

losses written by the primary insurer, X will be retained and Z partially ceded;

Y is the existing loss of the reinsurer. Suppose only quota share treaties may

be placed on Z. Although this is not a realistic situation (actual losses do not

take negative values as the normal distribution does), discussion of this tractable

example can provide us valuable insights.

Let X, Y and Z have the following parameters: means µx, µy and µz, standard

deviations σx, σy and σz, and pairwise correlation coefficients γxz, γyz and γxy.

If a quota share treaty is placed and a is the ceding fraction, then the primary

company’s net loss is LPr = X + (1− a)Z, and the reinsurer’s total loss is LRe =

Y + aZ. These two losses are also normal random variables. Their means and

standard deviations are as follows.

µPr = E(LPr) = µx + (1− a)µz

σ2Pr = Var(LPr) = σ2x + (1− a)2σ2z + 2(1− a)γxzσxσz

µRe = E(LRe) = µy + aµz

σ2Re = Var(LRe) = σ2y + a2σ2z + 2aγyzσyσz

For a given confidence level p, the risk measuresQp and TVaRp of a normal random

variable can be easily obtained. In fact, they can be written as Qp = µ + hpσ

and TVaRp = µ + kpσ, where hp and kp are constants independent of µ and σ.

For example, Q0.99 = µ+ 2.33σ and TVaR0.99 = µ+ 2.67σ. Therefore, if the risk

measure ρ is of the quantile or the TVaR type, minimizing the sum ρ(LPr)+ρ(LRe)

is equivalent to minimizing the sum σPr + σRe. The latter problem will be solved

below.

The variances of the insurer and the reinsurer can be written in a simpler form

σ2Pr = σ2z((a−APr)
2 +B2

Pr)

σ2Re = σ2z((a+ARe)
2 +B2

Re),
(7.1)

where

APr = 1 + γxzσx/σz, B2
Pr = (1− γ2xz)σ2x/σ2z

ARe = γyzσy/σz, B2
Re = (1− γ2yz)σ2y/σ2z .

(7.2)

The sum of standard deviations is thus

σPr + σRe = σz

(
((a−APr)

2 +B2
Pr)

1/2 + ((a+ARe)
2 +B2

Re)
1/2

)
.
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To minimize this sum is to minimize the following function f(a)

f(a) = ((a−APr)
2 +B2

Pr)
1/2 + ((a+ARe)

2 +B2
Re)

1/2,

where the ceding fraction a is between 0 and 1. The derivative of f(a) is

f ′(a) =
a−APr

((a−APr)2 +B2
Pr)

1/2
+

a+ARe

((a+ARe)2 +B2
Re)

1/2
.

Setting the right-hand side of the equation equal to zero, moving one of the terms

to the other side and squaring the terms, we have

(APr − a)2

(a−APr)2 +B2
Pr

=
(a+ARe)

2

(a+ARe)2 +B2
Re

.

Simplifying this gives

(APr − a)2B2
Re = (a+ARe)

2B2
Pr.

Let us assume that γxz ≥ 0 and γyz ≥ 0, meaning that the losses X, Y and

Z are not negatively correlated, a condition likely to be true in the real world.

Mathematically, this implies APr ≥ 1 and ARe ≥ 0. If we assume −ARe ≤ a ≤
APr, then APr − a ≥ 0 and a + ARe ≥ 0. Taking the square root in the above

equation, we get the solution

a∗ =
APrBRe −AReBPr

BPr +BRe
. (7.3)

This is the unique zero of f ′(a) between −ARe and APr and the unique minimum

point of f(a). The function f(a) strictly decreases from −ARe to a∗ and strictly

increases from a∗ to APr. Note that the optimal ceding fraction does not depend

on how X and Y are correlated.

Now let us examine a few special cases. First, suppose Z is uncorrelated with

both X and Y , that is, γxz = γyz = 0. From the equations (7.2), APr = 1,

BPr = σx/σz, ARe = 0 and BRe = σy/σz. Using (7.3), we obtain the optimal

ceding fraction a∗ = σy/(σx + σy). So, in this case, to minimize σPr + σRe, Z

should be shared between the primary insurer and the reinsurer in proportion to

the standard deviations of their “fixed” losses, σx and σy.

A more interesting case is when Z is highly correlated to X but almost un-

correlated to Y . Then γxz ≈ 1 and γyz ≈ 0. These imply that APr ≈ 1 + σy/σz,

BPr ≈ 0, ARe ≈ 0 and BRe ≈ σy/σz. By (7.3), a∗ ≈ 1 + σx/σz. This a∗ is greater

than 1. Thus, to minimize σPr+σRe, Z should be 100 percent ceded. On the other

hand, since Z and X are highly correlated, the more Z is ceded to the reinsurer,
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the greater is the (linear) correlation between X+(1−a)Z and Y +aZ. This cor-

relation is maximized at a = 100%. In this example, the reinsurance is optimized

at the same ceded ratio where the correlation between the losses is maximized.

A parallel result is that, if Z is highly correlated to Y but almost uncorrelated

to X, then the optimal ceded ratio is 0 percent. At this ceded ratio, the correlation

between the losses is again maximized.

Now let us plug in some numerical values. Assume σx = 300, σy = 500 and

σz = 100; γxz = 0.4, γyz = 0.4 and γxy = 0.2. Using (7.2), we compute APr = 2.20,

BPr = 2.75, ARe = 2.00 and BRe = 4.58. Substituting these into (7.3), we obtain

the optimal ceding fraction a∗ = 62.5%. However, this a∗ does not provide the

maximum correlation between X + (1 − a)Z and Y + aZ. Using simulation, we

get that the maximum linear correlation coefficient is 0.290 and is reached at the

ceded ratio of 30.5 percent. Therefore, the minimum total capital does not always

correspond to the maximum correlation. As mentioned before, this result is not

really a surprise because the capital is determined by large losses, while the linear

or rank correlation coefficient does not distinguish between large and small losses

(or even negative losses, which is the case in this example).

7.2 A numerical example

If the joint distribution of losses X, Y and Z is known, and a set of available

reinsurance treaties is given, the optimal treaty can be found by simulation. To

have an easy control on correlations between the losses, I will assume the losses

are jointly lognormal. I will look at two common types of treaties, the quota share

and the stop loss.

Let the variables X, Y and Z be jointly lognormal, in the sense that ln(X),

ln(Y ) and ln(Z) are jointly normal. The mean µ0 and the standard deviation σ0

of these normal variables are as follows.

ln(X) ln(Y ) ln(Z)

µ0 19.5 20.0 17.0

σ0 0.16 0.25 1.10

The mean, the standard deviation and quantiles of X, Y and Z can be com-

puted from the above table with simple formulas. I will denote a parameter

for a normal random variable with a superscript 0, and the same parameter for

the corresponding lognormal variable without a superscript. For example, µ0x

is the mean of ln(X) and µx the mean of X. These formulas are well known:
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µx = exp(µ0x + (σ0x)2/2), and σx = exp(µ0x + (σ0x)2/2)(exp((σ0x)2) − 1)1/2. The p-

quantile of X can be written as Qp(X) = exp(µ0x+hpσ
0
x), where hp is the p-quantile

of the standard normal distribution. More complex measures of the lognormals,

like TVaRp(X) or the standard deviation of X + Y + Z, are more conveniently

estimated using simulation. Some useful statistics for X, Y and Z are listed in

the following table (loss amounts are in millions).

X Y Z

µ 298 501 44

σ 48 127 68

CV 0.16 0.25 1.53

Q0.99 427 868 312

TVaR0.99 451 941 477

I will choose ρ = TVaR0.99 as the risk measure. In addition to the known µ

and σ, if the linear correlation coefficients γxz, γyz and γxy are also given, then

the distribution of the triplet (X,Y, Z) is completely determined. Following our

naming convention, γ0xz is the linear correlation coefficient between ln(X) and

ln(Z). γ0xz determines γxz, and vise versa. A greater γ0xz corresponds to a greater

γxz. The strongest correlation between X and Z is attained when ln(X) is a linear

function of ln(Z) with a positive slope. In this case, γ0xz = 1 but γxz is generally

less than 1.8

A straightforward sampling method is used to find the optimal ceding term.

For µ and σ in the above table and known γxz, γyz and γxy, a large random

sample of (X,Y, Z) is drawn (using Excel with the @RISK add-in or with a macro

performing the Cholesky decomposition). Applying a given reinsurance treaty on

the sample data, we get samples of losses of the primary insurer and the reinsurer,

from which the TVaR of the losses can be estimated. Table 1 displays results for

quota share treaties. Five scenarios of different γ0xz, γ
0
yz and γ0xy are analyzed. For

each scenario, a set of 20,000 sample points of the triplet (X,Y, Z) is drawn; 101

quota share fractions, a, ranging from 0 to 100 percent with 1 percent increments,

are applied; the measures ρ(X + (1− a)Z) and ρ(Y + aZ) are estimated; and the

least sum of them is found by comparison, which gives the optimal quota share

term. (Loss amounts in Table 1 are in millions.)

8 The exact formula is γxz = [exp(σ0
xσ

0
zγ

0
xz) − 1]/[(exp((σ0

x)2) − 1)(exp((σ0
z)2) − 1)]1/2. When

γ0
xz = 1, γxz is generally less than 1, but the Spearman rank correlation coefficient between X

and Z equals 1.
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Table 1: Optimal Quota Share Fractions

(1) (2) (3) (4) (5)

γ0xz 0.9 0.9 0 0.1 0

γ0yz 0 0.1 0.99 0.9 0

γ0xy 0 0 0 0 0

ρ(X + Y + Z) 1,540 1,570 1,764 1,721 1,422

a∗ (optimal ceding) 100% 100% 0% 36% 75%

ρ(X + (1− a∗)Z) + ρ(Y + a∗z) 1,596 1,624 1,771 1,756 1,529

In the table, ρ(X + Y + Z) is the absolute lower bound of the total required

asset, for any type of reinsurance. In scenario (3), the optimal total asset ρ(X +

(1− a∗)Z) + ρ(Y + a∗Z) is close to ρ(X + Y +Z). But, in general, the difference

between the two is sizable. In scenarios (1) and (2), Z is strongly correlated to

X but weakly correlated Y . Ceding out the entire Z (a = 100%) would maximize

the correlation between X + (1− a)Z and Y + aZ.9 This supports the claim that

the optimal treaty is the one that creates the strongest correlation between the

insurer’s and the reinsurer’s losses. A similar relationship holds in scenario (3),

where Z is strongly correlated to Y but weakly correlated to X. The optimal term

is to cede nothing, which again corresponds to the strongest correlation between

the two losses. However, in scenario (5), the optimal ceding ratio is 75 percent,

while, as can be shown, the maximum correlation is reached at a = 55%. The two

ratios are different.

I now consider the same five correlation scenarios and perform a similar analysis

for stop-loss treaties. In each scenario, let the primary insurer’s retention, k, vary

from 20 million to 250 million, with 5 million increments. The ceded loss is

Zc = max(Z − k, 0), and the retained loss Zn = Z − Zc = min(Z, k). Comparing

the total asset ρ(X +Zn) + ρ(Y +Zc) for all these k, we get the optimal retention

k∗. The results are summarized in Table 2 (loss amounts are in millions).

In the first two scenarios, Z is highly correlated to X; in the next two scenarios,

it is highly correlated to Y . Thus, intuitively, in the first two scenarios, the

correlation (at the right tail) between X + Zn and Y + Zc increases as more of Z

is ceded. In fact, the sample linear correlation is indeed the highest at k = 20.

9 It can be proved mathematically that, if γxz is very close to 1, then the greater the ceded

ratio a, the greater the linear correlation between X+(1−a)Z and Y +aZ. The intuition behind

this result is that, if Z behaves very similarly to X, then Y + Z, for an arbitrary variable Y ,

behaves more similarly to X than Y does.
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Table 2: Optimal Stop-Loss Retentions

(1) (2) (3) (4) (5)

γ0xz 0.9 0.9 0 0.1 0

γ0yz 0 0.1 0.99 0.9 0

γ0xy 0 0 0 0 0

ρ(X + Y + Z) 1,540 1,570 1,764 1,721 1,422

k∗ (optimal retention) 20 20 250 250 85

ρ(X + Z∗n) + ρ(Y + Z∗c ) 1,598 1,625 1,804 1,770 1,557

Z∗
n = min(Z, k∗), Z∗

c = max(Z − k∗, 0)

This again supports the claim that the optimal treaty maximizes the correlation.

This statement holds true in the next two scenarios, where the optimal treaty is

to cede the least of Z. However, in scenario (5), the maximum linear correlation

is attained at the retention k = 115, which is different from the optimal retention

k∗ = 85.

Finally, let us look at scenario (5) and compare the two types of treaties. The

optimal total required asset for the stop-loss treaties is 1,557, and for the quota

share treaties it is 1,529. So the quota share is more effective in cutting the total

capital.10 This appears to contradict the general belief that a stop-loss treaty

reduces volatility more effectively than a quota share treaty. The fact is, however,

although the stop-loss treaty cuts more capital from the primary insurer, it adds

even more to the reinsurer, which results in an increase in the total required

capital. In general, which type of treaty reduces the total capital more effectively

depends on the joint distribution of all losses.

8 Conclusions

I have proposed to call a reinsurance arrangement optimal if it minimizes the

total capital of the primary insurer and the reinsurer. This optimal reinsurance

produces the lowest price for primary insurance policies, so is an attracting equilib-

rium under market competition. An interesting relationship is observed between

the total capital and the tail correlation between the losses of the insurer and the

10 The quota share structure is better in the other four scenarios as well, but those results are

of no surprise. As the stop-loss retention is limited to between 20 and 250, ceding the whole of

Z and ceding none of Z are excluded, yet the optimal quota share terms in these scenarios fall

into these extremes.
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reinsurer. A multivariate normal model and a numerical example are analyzed to

get more insight into the nature of an optimal treaty.

This paper fills a gap in the existing literature on optimal reinsurance, in

which the capital cost of the reinsurer has not been adequately addressed. My

approach establishes a close link between reinsurance and pricing of insurance and

reinsurance policies. In a competitive market, reinsurance not only provides the

ceding insurer a tool of risk transfer, but also satisfies the reinsurer with a fair

amount of profit and benefits primary policyholders by reducing their costs.

Tail correlation between losses has been widely discussed in relation to risk

measurement and management. In this paper, it is linked to the size of the total

capital. This seems to be an interesting area of research.
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Appendix. More on the Linkage Between the Total

Capital and Correlation

I have shown that the TVaR is a subadditive risk measure: If ρ = TVaRp, then

ρ(X) + ρ(Y ) ≥ ρ(X + Y ), and the equality holds if X and Y (representing the

losses of a primary insurer and a reinsurer) are comonotonic. Following this fact,

I propose that a linkage exists between the total asset ρ(X) + ρ(Y ) and the cor-

relation between X and Y , that is, the greater the tail correlation, the closer is

ρ(X) + ρ(Y ) to ρ(X + Y ). In this appendix, I will use the scatter plot to further

explain why there should be such a link.

Figures 1 through 3 provide scatter plots of a pair of losses X and Y cor-

reponding to three different correlation scenarios. (The correlations are actually

only different at the right tail.) Each loss is in the range [0, 100). In Figure 1,

X and Y are comonotonic at the tail. In Figure 2, they are not comonotonic but

are still highly correlated at the tail: as X moves up from about 80, Y generally

moves up as well, although it sometimes moves in the opposite direction (down)

slightly. In Figure 3, X and Y have little correlation at the tail.

Let the risk measure be ρ = TVaR0.9. There are 100 sample points in each

figure. The point labeled A has the 11th largest x coordinate, and the one labeled

B has the 11th largest y coordinate. The quantile Q0.99(X) is the x coordinate of

A, and Q0.99(Y ) the y coordinate of B. ρ(X) is the average of the x coordinates
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of the points to the right of A, and ρ(Y ) the average of the y coordinates of the

points higher than B. ρ(X+Y ) is the average of the largest 10 x+y of all points.

In Figure 1, A and B are actually the same point (78, 76) (coordinates are

rounded), and the points to the right of A are the same as those higher than A,

which are also the 10 points with the largest x+ y. Thus, Q0.99(X) +Q0.99(Y ) =

Q0.99(X+Y ) = 78+76 = 154, and ρ(X)+ρ(Y ) = ρ(X+Y ) (= 178). This explains

that if X and Y are perfectly correlated at the tail, then ρ(X)+ρ(Y ) = ρ(X+Y ).

In Figure 2, the upper-right tail is a rather “thin” set. Thus the two points

A and B are close to each other. Further, the following three sets of points are

similar (contain mostly the same points): those to the right of A, those higher

than B, and the ten points with the largest x+y. This implies that ρ(X)+ρ(Y ) is

close to ρ(X + Y ). (Here ρ(X) = 95.3, ρ(Y ) = 88.8 and ρ(X + Y ) = 183.9.) This

example shows that if X and Y are highly correlated at the tail, then ρ(X)+ρ(Y )

is (greater than but) close to ρ(X + Y ).

The upper-right tail in Figure 3 is not a thin set, and the two points A and

B are generally far apart. Also, it is likely that the three sets—the one to the

right of A, the one higher than B and the one with the largest x + y—contain

very different points. So ρ(X) + ρ(Y ) can be much larger than ρ(X + Y ). (Here

ρ(X) = 95.3, ρ(Y ) = 82.4 and ρ(X+Y ) = 174.1.) This is what normally happens

when X and Y are not correlated at the tail.
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Figure 1: X and Y are comonotonic at the tail; ρ(X) + ρ(Y ) = ρ(X + Y )

Figure 2: X and Y are highly correlated at the tail; ρ(X) + ρ(Y ) is close to (but

greater than) ρ(X + Y )
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Figure 3: X and Y are not correlated at the tail; ρ(X) + ρ(Y ) is generally much

greater than ρ(X + Y )

24

Reinsurance Arrangements Minimizing the Total Required Capital

Casualty Actuarial Society E-Forum, Spring Volume 2


	Introduction
	Why Minimize the Total Required Capital?
	Market Competition Produces Lower Total Capital
	Capital Requirement Defined by a Coherent Risk Measure
	Lower Bound of Total Capitals and Comonotonicity
	Optimal Reinsurance in a General Setting
	Examples
	A multivariate normal example
	A numerical example

	Conclusions



