Applications of Convex Optimization in Premium Rating
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Abstract: In this paper we discuss the application of modern mathematical optimization tech-
niques to some of the common problems in insurance premium rating. The computationally
tractable setting of convex optimization [6] is particularly attractive as it encompasses parame-
ter estimation in generalized linear models and offers means to address practical challenges such
as variable selection, coeflicient smoothing, spatial and hierarchical priors, constraints on rela-
tivities and the time evolution of model parameters. Recent advances in modelling systems for
convex optimization make these methods not only eminently practical but also in many respects
more flexible than what is presently offered by statistical software.
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1 INTRODUCTION

In this paper we formulate several common models arising in premium rating as convex optimiza-
tion problems and describe the use of constraints and regularization to address practical issues
such as variable selection, coeflicient smoothing, hierarchical credibility, parameter evolution and
spatial priors in a unified framework. The resulting optimization problems can be solved using ef-
ficient algorithms [65] developed for convex programming’.

Many classical actuarial techniques such as Whittaker graduation and various credibility mod-
els can be interpreted as performing regularized or constrained fitting [10, 38, 29]:

minimize L(y;w) + R(w) minimize  L(y;w)

(1)

subject to R(w) <,

where £(y; w) is the term penalizing model error relative to the data y and the regularization term
R(w) measures the lack of smoothness or some other desired property of the model w. While
not a part of the classical theory, regularization has important implications for the practical use
of generalized linear models (GLMs), by now a nearly universal tool in premium rating. Namely,
rather than carrying out manual feature design and selection it may often be far more effective to
control the degrees of freedom of the model by imposing penalties or constraints on the coeffi-
cients. Recent advances in solvers and open source modelling software for convex optimization
[21] have made it exceedingly easy to develop such custom models.

The idea of regularization itself has been developed independently many times in many dif-
ferent fields, e.g. the work of A. Tikhonov on operator equations in the 1960s [s8]. It is also the
principal reason for the remarkable performance of the “support vector machines” family of algo-
rithms which implicitly generate feature spaces of high dimension through the kernel functions

[s9].

Video lectures for the Stanford course EE364A Convex Optimization, made publicly available via the Stanford En-
gineering Everywhere initiative, are highly recommended as background for this paper.
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Convex optimization in premium rating

In recent years there has been a resurgence of interest in a particular form of regularization
known as “¢;-norm” regularization. Its early applications appeared in geophysics in 1970s [5s]
where its sparsity inducing properties had been employed for signal recovery. Around the same
time in the actuarial literature Schuette proposed an ¢;-norm formulation of the graduation prob-
lem [45] which allowed it to be solved by linear programming; this idea was further developed in
econometrics as quantile smoothing splines [35]. It was not until much later that ¢,-norm regular-
ization had become a widely adopted technique in signal processing with applications including
computing transform coeflicients (“basis pursuit”) [12] and signal recovery from incomplete mea-
surements (“compressive sensing”) [14]. In statistics, the idea of ¢;-norm regularization was pop-
ularized by the well-known “lasso” procedure [56] for linear regression and its many extensions
[57, 68, 67, 37]. While for a long time ¢;-norm regularization has been viewed as little more than
a uscful heuristic in optimization, recent theoretical results (e.g. [9]) have provided surprising
guarantees on its performance in certain restricted settings.

What the above models have in common is that they all, together with many others® [6], can
be formulated as convex optimization problems. Recognizing convexity and its implied proper-
ties offers a unifying perspective on a collection of seemingly unrelated ideas from many different
fields and dramatically reduces the need to develop special purpose algorithms as many instances
can be handled by standard solvers. Moreover, convex problems constitute, perhaps, the widest
known class of optimization problems for which exist efficient algorithms guaranteed to find a
global solution, making convexity especially desirable when reliable numerical solutions are a re-
quirement.

This paper consists of two main parts. In the first half we outline the basics of mathematical op-
timization and convex calculus and briefly describe the connection between convex optimization
and statistical estimation. In the second part we focus on the application of convex optimization
to some of the problems in technical premium rating. We discuss variable selection, curve fit-
ting, spacial clustering and smoothing, additive models, hierarchical credibility, time evolution of
model parameters and stochastic optimization.

1.1 Related work

A number of unifying approaches along similar lines have been previously proposed in the actu-
arial literature but using as the foundation algorithmic developments from statistics, rather than
mathematical optimization. These include Bayesian multilevel extensions of generalized linear
models [19, 18] and the so called “mixed effect” models [1]. Unlike convex optimization, how-
ever, these have arguably less broad scope of applicability (e.g. ability to handle constraints is
lacking) and do not take into account computational complexity of the proposed methods.

It should be noted at the same time that stateful sampling algorithms such as variants of geo-
metric Markov chain Monte Carlo [25], used for inference in Bayesian models, bear close resem-
blance to iterative optimization methods and their hybridization is an active area of research, e.g.
[63]. It seems not unreasonable to hope that one day an effective synthesis will be attained.

The most complete treatment of actuarial models from the perspective of convex optimization
was developed in a visionary paper of Brockett [7], albeit in the dual form? and some 15 years
before advances in algorithms and computing power have made such schemes truly practical for
all insurance applications.

2In particular it is worth noting that one of many fields where convex analysis has proven to be the key tool is mathe-
matical economics; see [61] for an accessible introduction from this point of view.

3The equivalence between “information theoretic” maximum entropy principle and maximum likelihood estimation
for exponential families is discussed in standard references, e.g. [8].
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2 OPTIMIZATION AND STATISTICAL INFERENCE

2.1 Mathematical optimization

A constrained optimization problem has the the following form:

minimize  fo(x)
X

(2)

subject to  fi(x) <b;, i=1,...,m.

The vector x € R™ is the optimization variable, the function f; : R” — R s the objective function,
the functions f; : R* — R, i = 1,..., mare the inequality constraint functions#, and the constants
bi,...,bm are the limits, or bounds, for the constraints. A vector x* is called a solution or a global
minimum of the optimization problem (2) if no other vector satisfying the constraints achieves
a smaller objective value, that is for any z € R” with fi(z) < by,..., fm(2z) < by, we have fo(z) >

Jo(x*).

2.1.1  Convex optimization

While the general problem (2) is computationally completely intractable, we can mitigate this by
restricting the class of functions fo, ..., f,,. For example, if we take the objective and the con-
straints to be linear, the optimization problem (2) is called a linear program and can be written

as:
minimize c'x
x (3)

subject to aZTx <b,i1=1,...,m.

Despite the seeming simplicity surprisingly many problems in business operations and engineer-
ing (e.g. optimal network flow) can be expressed in this form [3]. There are also applications in
statistics and econometrics (least absolute deviations, quantile regression [34]). The subject was
developed in 1930s and 40s by L. Kantorovich and G. Dantzig. The latter introduced the simplex
algorithm for solving linear programs that for many applications remains unsurpassed to this day
and can routinely solve problems with millions of variables and constraints.

A less restrictive class of tractable optimization problems is the one in which the objective and
constraint functions are convex, namely:

filax + By) < afi(x) + Bfi(y) (4)

forall x,y € R and all 0,3 € Rwitha+ 3 = 1, a > 0, 8 > 0. Convex functions have the
essential property that every local minimum is also a global minimum. A function g(x) is called a
concave function if —g(x) is convex. It is easy to check that linear functions are convex (they are
also concave) and therefore linear programs are a special case of convex optimization problems.

There are efficient polynomial time algorithms (e.g. so called interior point methods [6]) for
global minimization of convex functions subject to convex inequality constraints. Indeed convex
problems are effectively the widest class of optimization problems for which such algorithms exist
at this time. And while convexity is not an essential property of a successful optimization model,
it is worthwhile to be aware of the trade-off between efforts to make a model more realistic and
ensuing difficulties with numerical methods. To quote Y. Nesterov [ 42], one of the key figures in
the development of convex programming:

Every year I meet Ph.D students of different specializations who ask me for advice

4Equality constraints are omitted for brevity but are implied, i.c. an equality constraint f;(x) = 0 can be represented
as fi(x) > 0and — f;(x) > 0.

Casualty Actuarial Society Forum, Spring 2013 3
CAS E-Forum, Spring 2013


esmith
Typewritten Text

esmith
Typewritten Text


Convex optimization in premium rating

on reasonable numerical schemes for their optimization models. And very often they
seem to have come too late. In my experience, if an optimization model is created
without taking into account the abilities of numerical schemes, the chances that it will
be possible to find an acceptable numerical solution are close to zero.

2.1.2  Convex calculus

Itis generally labor intensive to check convexity of a function directly from the definition. In most
cases it is much easier to see wheteher a given function is built up of known convex functions using
transformations that preserve convexity, just as classical calculus permits effective computation
without explicitly working with infinite series.

Familiarity with the basics of convex analysis and a few heuristics will permit effective creation
of custom models for many applications. The tedious (and ultimately mechanical) task of convert-
ing the resulting formulation to one of standard forms understood by solvers can be handled by
the modelling system [21].

We describe some convex functions of one and many variables together with operations that
maintain convexity in Appendix A. Much more detailed treatments can be found in [44, 6,2, 42].

2.2 Convex optimization and statistical estimation

Statistical inference can often reduced to solving certain optimization problems. Below we discuss
two such principles.

2.2.1  Maximum likelihood and loss minimization:

A familiy of probability density functions on R" denoted p(y; w) with parameter vector w € R™
is called a likelihood function when taken as a function of w only for a fixed y. It is, however,
often more convenient to deal with the logarithm of the likelihood function or the log-likelihood,
log p(y; w). The negative log-likelihood is sometimes also called the “loss function”:

L(y;w) = —logp(y; w). (s)

It is worth noting, however, that not all loss functions are directly motivated by a priori distribu-
tional assumptions e.g. quantile loss (27).

A remarkably effective method for estimating the parameter w given an observation y consists
of maximizing the log-likelihood (equivalently, minimising the loss function) with respect to w:

w* = argmin L(y; w). (6)

In many practical applications we have prior information that can be represented in the form of
constraints on the admissible values of w. These constraints can be defined explicitly by specifying
aset C C R™ such that w € C or incorporated into the likelihood function by setting p(y; w) = 0
and correspondingly £(y; w) = oo forall w ¢ C. When C is given, the constrained maximum
likelihood estimation problem can be written as follows:

minimize  L(y;w) )
v 7

subject to w € C.

While computationally intractable in general, maximum likelihood estimation is reduced to a
convex optimization problem if the loss function £(y; w) is convex in w and C is a convex set.

4 Casualty Actuarial Society Forum, Spring 2013
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2.2.2  Bayesian estimation

Maximum likelihood procedure has an analogue in the Bayesian setting known as maximum a
posteriori estimation. Here the parameter vector w and the observation y are both considered to
be random variables with a joint probability density p(y, w). The density of w is then given b

) y yply y 8 y

p(w) = /p(y,W) dyi . .. dyy. (8)

This is referred to as the prior distribution of w and represents the information about w before y
is observed. We can similarly define p(y), the prior distribution of y. The conditional probability
density of y given w is as follows:

_ply,w)

Being a function of w, it is equivalent to the likelihood function in employed in maximum likeli-
hood estimation. The conditional probability density of w given y can then be written as:

p(y[w)p(w) (Io)

p(wly) = o)

If we substitute the observed value of y into p(wly) we obtain the posterior density of w, repre-
senting the updated information about w. The maximum a posteriori estimate of w is the one that
maximizes the posterior probability (p(y) does not depend on w and can be omitted):

w* = argmax p(w|y) = argmax p(y|w)p(w). (11)
After taking the logarithm the expression for w* can be written as:

w’ = argmax log (p(y|w)p(w)) = argmin — log (p(y|w)) —log (p(w)). (12)
This is equivalent to minimising a data dependent loss function — log (p(y|w)) with the additional
regularization term — log (p(w)).

It is also a basic consequence of Lagrange duality [6, Chapter 5] that under some mild regular-
ity conditions (12) has the same solution w* as the following constrained optimization problem
for some instance dependent value of e:

minimize —log (p(Y|W)> ( )
w 13
subject to  — log (p(w)) < e.

For example if the prior density of w has support over a a set C and is uniform then finding the
maximum a posteriori estimate is the same as loss minimization subject to the constraint w € C.

For any estimation problem with a convex loss function we can add a convex regularization
term (corresponding to a prior density on w that is log-concave) and the resulting optimization
problem will be convex.

2.3 Convex loss functions

A large number of statistical problems can be reduced to minimizing convex loss functions, with
conditional exponential families being perhaps the key example. Several approaches not based
directly on the maximum likelihood principle are also mentioned.

Casualty Actuarial Society Forum, Spring 2013 S
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2.3.1  Conditional exponential families

It is a standard result that the log-likelihood of distributions in the exponential families is concave
in the natural parameters [8, 62]. Below we discuss convexity properties of conditional exponen-
tial families, closely related to generalized linear models.

Consider an exponential family distribution on Y x X

p(y,wlw) = ho(y, z)exp (3 widn(y,2) — A(w))

k=1
exp (22;1 WPk (Y, I))
exp (A(w))

(14)

= hO(Z/? x

In this context the non-negative function hy is the base or carrier measure, w € R* are the model
parameters, ¢(y,z) = [¢1(y,2),...,¢r(y,2)]T is the vector of sufficient statistics and A(w) is the
logarithm of the normalizing constant or the log-partition function, namely:

Aw) = log ('/( e P (liwmk(y,x))ho(m dzdy), (15)

with summation replacing the integral for discrete distributions. For reasons such as data and
computational limitations, we may instead wish to directly estimate the conditional probability:

Pyle, w) = ho(y, ) exp (3 win(y, ) — A(wla) ). (16)
k=1

with conditional log-partition function given by:

Atwla) = o ([ exp (30 wnon(0) o) ). (17)
€ k=1

Y

Note that the sufficient statistics that do not depend on y can effectively be omitted as the choices
of associated parameters do not influence the conditional densities. Given a collection of inde-

pendent samples (y;,z;) € Y x X fori = 1,...,n, the joint conditional probability can be written
as: . . .
[r(ilzi,w) =] (ho(ymxi) exp ( Wik (Yi, i) — A(Wl‘z‘)>)7 (18)
i=1 i=1 k=1

giving rise to the following maximum log-likelihood estimation problem to find parameters w:

n m
minimize (A wlz;) — w iy T ) . I
e ; ( | z) ]; k¢k(yza i) ( 9)
The above objective is convex being a sum of linear terms and the convex log-partition functions.
The latter are convex in w by an extension of the soft max rule (see A.3).

In this formulation Y is not restricted to be equal to R or to a small set of discrete outcomes but
can also represent more complex structured objects, e.g. all possible parts of speech assignments
for a particular sentence. This type of models is commonly’ referred to as a conditional random
freld [ 49] and is likely to prove quite fruitful in insurance applications.

To recover the (now classical) generalized linear models of Wedderburn and Nelder, consider

5 At least in computer science literature on “machine learning” (a variant of computational statistics with a strong focus
on out of sample performance) and natural language processing.
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the case when X = R¥, the carrier measure ho does not depend on x and with a particularly simple
choice of sufficient statistics:

O (Y, X) = Yy (20)

We can then rewrite (16) as a single parameter exponential family with respect to w”x in the
following way:
plylx, w) = p(ylw'x)
(21)
T
).

= ho(y) exp (wax — B(w'x

with the log partition function:

B(0) =log (/ey exp (Gy) ho(y) dy) (zz)

Y

and giving rise to the following maximum likelihood parameter estimation problem:

minimize L(y; Xw) = Z (B(w'x;) — yiw’x;). (23)
i=1

The usual relation between the natural parameter and the expected value of y obtains:
E(ylx, w) = VoB(w"'x), (24)

with V¢ B~! being the canonical link function.

There are two remaining incompatibilities between conditional random fields and generalized
linear models, however. Firstly GLMs are based on the so called exponential dispersion families
[31]:

p(ylx, w, \) = ho(y, \) exp ()\(wax - B(WTX))), (25)

rather than exponential families considered up to this point.

For the fixed dispersion parameter 02 = A~! this class of models coincides with single pa-
rameter exponential families. This is often the case, e.g. when o2 represents a known number of
observations for the binomial distribution. If % is not known and is to be estimated, the resulting
log-likelihood is not in general jointly concave in w and o2, unlike that for conditional random
fields. One way to overcome this limitation is to consider the overlapping class of two parameter
exponential families, which includes many standard distributions and also provides means to deal
with overdispersion [13].

Another difficulty is with regard to the link function - convexity of the negative log-likelihood
does not necessarily hold for choices other than the canonical link. Even in this case, however, for
all of the models described in this paper local solutions can be obtained using sequential quadratic
approximation (variants of which are known as iteratively reweighted least squares and Fisher
scoring). It is worth remembering that none of the methods implemented in existing statistical
software provide guarantees of global optimality in this situation either.

Convex formulations for parameter estimation in some common GLMs are shown in Ap-

pendix B.

2.3.2  Huber loss

Huber loss function [26] is often used to make least squares estimates more robust to outliers, see
also [6, Chapter 6] for an illuminating informal discussion. It agrees with the squared />-loss (96)
for |u| < M and for |u| > M the Huber loss function reverts to linear growth which gives lowest
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attainable sensitivity to outliers while still maintaining convexity.

L(y; Xw) = Z¢> — wTxs), ¢(u):{ v ful < (26)

M(2|u| — M), |u| > M.

2.3.3  Quantile loss

One interpretation of the least squares procedure (96) is that it estimates the conditional mean
of y; given the data vector x;. Regression with the asymmetric quantile [34] loss function p. on
the other hand results in estimates approximating the conditional 7-th quantile of the response
variables ;:

U, u >0
elsiw) = Y w. o =f 70 ()

When 7 is equal to 0.5 and corresponds to the median, quantile regression is equivalent to the
method of least absolute deviations which estimates w by seeking to minimize 3 |ly — Xw]|;. We
should note that quantile regression appears quite attractive for insurance applications [36] as
it can provide a non-parametric estimate of the full conditional distribution of the dependent
variable and can deal with such issues as concetration of probability mass at a certain point. In
addition to directly modelling claim costs per policy, it may also be applicable in situations when
mean of the dependent variable is not easily interpreted, e.g. when fitting a model to a sample of
competitor rates.

3 Applications in premium rating

3.1 Variable selection

One compelling application of constrained parameter estimation is variable selection. Consider a
regression type problem with an arbitrary convex loss function £(y; Xw) where y is the vector of
response variables, X is the design matrix and w a vector of parameters to be estimated. This can be
accomplished by restricting the ¢;-norm of the coefficient vector (assuming that the explanatory
variables are standardized with mean 0):

minimize  L(y; Xw) (28)
w 28

subject to  ||w|; <e.

This generally results in a sparse estimate w* with the number of non zero entries controlled by
the magnitude of e. It is possible to motivate this formulation as a convex approximation (or
relaxation) of the computationally intractable best subset selection problem [6]. Using an ¢;-
norm penalty to obtain a sparse solution has been a well known heuristic in optimization and its
applications goingback at least to the 19705 55, 45]. It was popularized in the statistics literature as
the “lasso” by Tibshirani [s6]. Under some mild conditions the above problem can be equivalently
formulated as:

minimize L(y; Xw) + A||w| (29)

where A > 0 corresponds to the optimal Lagrange multiplier associated with the inequality con-
straint in (28). In this form the “lasso” procedure has a Bayesian interpretation as a maximum a
posteriori estimate with a Laplacian prior on w with mean zero and variance . The value of A
controls the sparsity of wx and can be chosen via cross-validation.
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1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Figure 1: Lef?: Solutions of optimization problem (39) for different choices of D - “fused lasso”,
D) (rop) and “/;-trend filtering”, D3 (bottom). Right: Solutions of the Whittaker graduation

problem (32) with the same choices of D. W set A to give the same squared error ||y — w||3 as the
corresponding solutions on the left.

In the presence of correlated covariates “lasso” will tend to select only one of them. To alleviate
this problem we can trade off between penalising ¢, and squared Euclidean norms of w:

minimize  £(y: Xw) + A (aflw] + (1 - a)[wl3). (30)

where 0 < o < 1. This method is known as “elastic net” [68] in the statistics literature. The
“elastic net” performs variable selection while at the same time pushing together coefhicient values
of correlated variables. Indeed, for o = 0 it is equivalent to ridge regression, a classical procedure
for dealing with collinearity:

minimize L(y; Xw) + \|w|3, (31)

see [40] for connections with credibility.

3.2 Graduation or curve fitting

3.2.1  One dimensional data

Before we discuss further extensions to generalized linear models we motivate our approach by ex-
amining the classical setting of non-parametric graduation. The goal of the graduation procedure
is to smooth a sequence of observations y = [y1,9s, ..., y,]” which are usually indexed by time or
age. As pointed out in [46], as early as 1899 Bohlmann had proposed [4] to perform graduation
by solving the following convex optimization problem:

minimize ||y — w||% + | Dw]|3, (32)
w
Casualty Actuarial Society Forum, Spring 2013 9
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Figure 2: Leff: Original residuals (motor portfolio). Center: Solution to (39) using the incidence
matrix of the 10 nearest neighbors graph for regularization. Right: Solution using the graph Lapla-
cian.

with A > 0and D = D®™ being the (n — 1) x n first order finite differences matrix:

-1 1

D(l,n) —

(33)

Heuristically, the “fidelity” term ||y — w||3 encourages the solution w to be close to the original
datay and the smoothness term || D! w||3 penalizes non-zero entries of D™ w, first order finite
differences (or the discretized first derivative) of w. The value of the parameter A determines the
relative importance of the smoothness term. By Lagrange duality we can obtain the same solution
as for (32) with any value of A > 0 by solving either of the following constrained optimization
problems for some values of e; and es:

minimize  |ly — w3 minimize || Dw/||3
w w (34)
subject to  ||[Dw||2 < € subject to [ly — wlf5 < e,

i.e. the objective and the constraint can be freely interchanged.
Bohlmann’s procedure (32) can be extended to penalize k-th order finite differences. In this
case the k-th order finite differences matrix D*™) € R(=K)x" can be defined recursively:

ptn) = pltn=k) plk=1n) “p — 93 . (35)

The second order finite differences matrix would then, for example, is as follows:

12 -1
12 -1
DM = (36)
-1 2 -1

Whittaker [64] had described the underlying probabilistic model and an approximate solution
method for the case of third order differences and weighted fidelity term. A Bayesian interpreta-
tion of Whittaker graduation is also given by Taylor [s1]. Among many extensions to Whittaker
graduation most relevant to the present discussion are the work of Schuette [45] and Chan et
al. [11, 10]. In his remarkable paper, Schuette proposed the formulation using ¢,-norm penalties
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(weights omitted to simplify presentation):
minimize [[y —wij +A[DE M w |y, (37)

After applying a standard transformation this optimization problem can be reformulated as a lin-
car program. In the discussion following [45], S. Klugman had pointed out that the method at-
tempts to make most of the entries of D*™w (or k-th order differences of w) zero but several of
them could be large. This “sparsity inducing” property of ¢;-norm penalty motivates its use in the
“lasso” variable selection procedure 28.

Chan et al. [10] show that for p, ¢ € {1,2, 00} the mixed ¢, and ¢, norm graduation problem:

minimize [y — wl|, + A|D®™w]|,, (38)
w

can be formulated asalinear program wheneverp, ¢ € {1, 0o} and as a quadratic program whenever
either p or g is 2.

Smoothing techniques equivalent to Whittaker graduation are known under different names
in many fields e.g. “Hodrick-Prescott filter” in economics [24]. More recently, a variant of (38):

minimize ||y — w2 + | DS w]|q, (39)

with p = 2 (or equivalently squared ¢>-norm) and ¢ = 1 has been popularized in applied statistics
literature as “fused lasso” [57]. In signal processing the same formulation is called “total varia-
tion denoising”. This procedure usually gives a piecewise constant solutions w* i.e. discrete first
derivative D™ w* has mostly zero entries (see top left section of Fig. 1). Similarly, using second
order differences D(*™ often results in a piecewise linear w* (see bottom left panel of Fig. 1) and
has been described as “¢; trend filtering” [33] and “quantile splines” [35], the latter replacing the
quadratic term with quantile loss. These are effective approaches to change point detection and
are considerably simpler than many methods proposed to date.

3.2.2  Multidimensional data, spatial smoothing and clustering

W can also apply ¢,-norm penalized formulation (38) in situations when the samples y are over a
regular grid or indeed an arbitrary graph (e.g. a k-nearest neighbors graph for objects embedded
in a metric space).

To obtain a piecewise constant solution we can use ¢ = 1 and the graph incidence matrix for
regularization (instead of the first order finite differences matrix D*™) in one dimensional case).
The incidence matrix A for a graph with n nodes and m edges is a m x n matrix, with each row
representing an edge and composed of a 1 and a —1 in the columns corresponding to the two
connected nodes and zeroes elsewhere. See Figure 3 for an example.

To get an equivalent of graduation with second order differences over a regular grid we can
consider horizontal and vertical second order differences. As in the one dimensional case, we
minimize a weighted sum of the fitting error and,for ¢ = 1, a penalty on absolute value of slope
changes in the horizontal and vertical directions. The resulting solution tends to be afhine over
connected regions. The boundaries between regions can be interpreted as curves along which the
gradient of the underlying function changes quickly. The approach can not be extended directly
to arbitrary graphs. Instead we can use the suitably normalized graph Laplacian (which can be
interpreted as a discretization of the Laplace operator) defined as:

L=ATA. (40)
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99— 1 -1 0 0 0
T 1 -1 0 0 0
0 1 =100 L2l 0
3— 4 A= L=ATA= 0 -1 3 -1 -1
0 0 -1 10
| o 0 -1 0 1 0 0 -1 1 0
5 0 0 -1 0 1

Figure 3: A simple directed graph (/ef?), its incidence matrix A (center) and Laplacian L (right).

Figure 2 shows the results of 1 -norm spatial smoothing applied to geocoded residuals using the
incidence matrix of 10 nearest neighbors graph and its Laplacian. The former provides a piecewise
constant solution over connected regions, where the regions with the constant fitted value can be
interpreted as clusters, and the latter a piecewise affine solution. In the actuarial literature the use
of Whittaker graduation to perform spatial smoothing with irregular regions has been proposed
by Taylor [s3].

It is worth pointing out that the formulation (32) is in fact quite general, given a free choice of
matrix D, as it can viewed as a reparametrization of regularized regression. So for the squared ¢,
norm penalty the following problems are equivalent (takinga = Xw and provided X has full row
rank):

minimize [ly — Xwl|3 + w3, minimize [ly — a3 + Allall%, (41)

where ||a||% = aT Ka = || Da|)}for K = (XXT)~! = DT D. The second form is known as “Gaussian

process regression” [43], or “kriging”[ 48] in geostatistics literature.

3.3 Additive models

Additive models were first introduced, perhaps, by Ezekiel in 19205 [15] and extended by Hastie
some 6o years later [22,23]. Generalized linear models form predictions based on alinear function
of the features:

9(By) = wo + wix1 + wams + -+ - + Wi Ty, (42)

where z; € R, i = 1,...,m are explanatory variables, g is the link function and 4 is the expected
value of the dependent variable y. Additive models replace the linear combination with a sum of
arbitrary functions of explanatory variables:

9(Ey) = wo + fi(z1) + fa(w2) + -+ + frn(@Tm). (43)

The richer class of models can lead to overfitting without suitable regularization. The latter is
usually achieved by requiring the functions f; to be (piecewise) smooth.

A similar approach is often followed in the practical applications of GLMs. Continuous vari-
ables are discretized into a number of bins. For ordered categorical variables, “natural” levels can
be used or if the number of levels is deemed too large, binning is applied to reduce the number of
distinct levels. If the total number of bins is not controlled this approach can lead to overfitting
and poor predictive performance so it is a standard practice to examine the initial fit and then
either manually reduce the number of categories or select a suitable collection of basis functions
(e.g. linear or cubic splines) [s2].

We observe that it is possible to largely automate this process by casting it into the convex
optimization framework and taking advantage of regularization (see Figure 4 foran example). Let
X € R"*™ be the design matrix for the original problem, then we follow the standard procedure
and transform the data by binning each feature into k intervals of equal length (we assume the same
number of intervals for every feature for simplicity). This gives a new design matrix X’ € Rvxkm

12 Casualty Actuarial Society Forum, Spring 2013
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Figure 4: Lef?: The additive effect of sum insured on claims frequency in a motor portfolio. The
outer band shows the 90% confidence interval calculated via the bootstrap. Right: The additive
effect of policyholder age. The anomaly around age 45 could be, for example, due to teenage
children driving the family car (also see Figure ).

and a new parameter vector w € RF", with w; € R*:

w1
X’z[X{ e, X;n}, w=| .- (44)

Wm

where X/ is defined as follows (with [X]; ; denoting z;):

(Xl

pl,

iy = { 1, [X];, falls into the j-th bin (45)

0, otherwise

Each observation is now transformed into a sparse vector of dimension km with m non-zero terms.
While we lose some information about the features, we can now model non-linear effects in each
coordinate. We can write down the parameter estimation problem as:

minimize  L(y; X'w)
w

(46)
subject to |[Dw|, <e
or in the equivalent Lagrangian form for some problem specific value of A:
minimize L(y; X'w)+ A|Dw||, (47)

where £(y; X'w) is an exponential family negative log-likelihood or some other convex loss func-
tion and D is a block matrix which evaluates discretized derivatives of the coefficients for each
binned explanatory variable:

Dy
D= D . (48)

D'ﬂl
As shown in section 3.2, we can choose appropriate D; depending on the structure of the problem

and our objectives. Finite difference matrices of up to third order are likely to be sufficient for
most applications. The parameter A can then be chosen by cross-validation. Sometimes it may also

Casualty Actuarial Society Forum, Spring 2013 13
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Figure s: Lefl: Sum insured vs. age interaction for claim frequency in a motor portfolio (same
data as Figure 4) using the incidence matrix penalty (“fused lasso”). Right: Same interaction but
penalising the second order discrete derivative in both coordinates.

be appropriate to introduce independent smoothing parameters (but will make their estimation
more difficult):

minimize L(y; X'w) + M| Diwillg + -+ + Al DimWin|l4- (49)

Notably we can still perform variable selection analogous to the standard ¢;-norm regularisation

(28) by adding a “group lasso” penalty [67]:

m
minimize £(y: X'w) + A|Dwly+ 1> [willz. (s0)
w

i=1

Here the term Y~ | |[w;||> encourages the individual components of w to go uniformly to zero as
the parameter 4 is increased.

3.3.1 Variable interactions

In a Gaussian additive model with identity link function the effect of all the explanatory variables
is a sum of their individual effects. Individual effects show how the expected response varies as
any single explanatory variable is changed with the others held constant at arbitrary values. For
example in order to maximize the expected response we only need to separately maximize each of
the component functions of the additive model.

In general there are no guarantees that an additive model will provide a satisfactory fit in any
given situation. Non-additivity means that, as one explanatory variable is varied, the effect on the
expected response depends on the fixed values of the other variables. Below is an example of how
we would change equation (43) if the model is non-additive in variables z; and z,:

g(p) = wo + h(z1,22) + fa(z3) + -+ + fn(@m). (s1)

We can model non-additivity by including the corresponding interactions. Using the notation
from equation 45 we can define the interaction X (1) st

[X(1.2))ix = [Xi]iw ® [Xo]i, (s2)

where e.g. [X{];,. denotes the i-th row of X| and ® is the Kronecker product.
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In the resulting model, we can penalize first, second or higher order derivatives in z; and z
coordinates (see Figure s), cf. smoothing over a regular grid in section (3.2). Another possibility
is to work with the graph Laplacian, which in this case has a particularly simple form:

Lagy=I®D' +D' ®I, (s3)
with D" a k x k variant of the second differences matrix D>*) with zero padding.

3.3.2  Spatial smoothing and clustering

As geographic regions are not usually arranged in a regular grid the approach in the previous sec-
tion is not directly applicable for spatial smoothing. Instead, we can introduce indicator variables
for each geographic grouping present in the data (postcode, census zone or even unique coor-
dinates) and use a suitably constructed graph representing distance and adjacency information
for regularization. Depending on whether we use the graph incidence matrix or the Laplacian, for
q = 1 we can obtain either a piecewise constant or a smoothly varying surface (see Figure 2) jointly
with the other model parameters:

minimize L(y; X'w) + A || Dw][, , (s4)

where D is a block diagonal matrix (cf. equation 48) and one of the blocks is either the aforemen-
tioned graph incidence matrix or the graph Laplacian. As before, the value of A can be chosen by
cross-validataion.

3.4 Kalman filter and dynamic models

Kalman filter [32] and related ideas have played a central role in the development of state space
methods in engineering control through out 1960s (culminating in the linear quadratic Gaussian
theory). Remarkably, the first practical application of the Kalman filter was to improve the ac-
curacy of navigation for the Apollo program, quickly followed by adoption for a wide range of
aerospace problems. In these applications the goal is typically to track the “state” of a missile or
a spacecraft obeying Newtonian dynamics. The state vector would contain the current position
together with velocity and acceleration vectors and the goal would be to repeatedly re-estimate
the state using measurements coming in from a range of sensors, such as inertial, optical, ground
based radar etc.

Kalman filter also has quite a long history in the actuarial literature both as a generalization of
the classical linear credibility models [39, 30] and applied to optimal updating of claim reserves
[29, 54]. Below we formulate the Kalman filter as an optimization problem and describe some in-
tuitive extensions that make the technique directly applicable to tasks such as ongoing monitoring
of conversion rates, claim frequencies or other aspects of portfolio performance.

3.4.1 Kalman filter as an optimization problem

Consider the standard least squares problem (see also Appendix B.1):

minimize |1y — Xwl3, (55)
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and partition the design matrix X and the response vector y into m row blocks, corresponding to
time periods:
X1 Y1
X=| - |, y=1| - |. (56)
Xm Ym

We can then equivalently transform (ss) by introducing m copies of the parameter vector and
some linear equality constraints:

m
minimize Z lye — Xewe3
Wi,z Wi —1

(s7)

subject to wyi 1 — w1 =0, t=1,...,m—1.

The above model can also be written in the state space form with the identity state transition
matrix, no state transition noise and i.i.d. Gaussian observation noise®, where w; is the unobserved
state vector and y;, are the observations associated with time dependent observation matrices X;:

Wipl = Wy, yi = Xewy + €,
8
e ~ N(0,1). (58)

By introducing i.i.d. Gaussian state transition noise:

Wil = Wi + Vg, yi = Xewy + €, (59)
v, ~ N(0, 1), € ~ N(0,1)

we effectively relax the equality constraints in (57) replacing them with a squared ¢5-norm penalty
term. It is then possible to perform estimation by solving the following convex optimisation prob-
lem:

m m—1

Ce 2 2
minimize - X —
minimize > [y~ Xewil3 4 Y Iweor — will (60)
t=1 t=1

which amounts to substituting every independent variable in the model by its interaction with
the time index variable ¢ and regularizing the differences in the corresponding parameters. The
estimation problem can be either solved directly or transformed back to the standard least squares
form:

minimize |y’ — X'w||3, (61)
w

where the design matrix X’ and the response vector y’ are redefined as follows:

X1 ¥
—I I 0 W1
X' = , y': , R . (62)
-1 I 0 Wi,
Xm Ym

The formulation in (60) simultaneously performs both “filtering” and “smoothing” condi-
tional on all the observations up to time m. If new information becomes available the augmented
optimization problem should be solved again to obtain new estimates of the entire history of state

*

transitions w* = [w},...,w},, w;, . ,]7. Standard Kalman filter given information up to time m+1,
on the other hand, only updates the estimate of the current state w7, ., and requires a backward

6We can in fact avoid the Gaussianity assumption by positing a quadratic loss function instead. The estimators obtained
are the same in both cases.
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“smoothing” pass to update estimates of past states wy, ..., Wy,.

Indeed, the Kalman filter followed by a “smoothing” step can be viewed as a computationally
efficient recursive procedure for solving the normal equations of the least squares problem (61)
which exploits block tri-diagonal structure of the matrix X’. With advances in numerical linear
algebra routines for sparse matrices and increasing computer speeds very large problems of this
kind can be solved directly.

So far we focused on the special case with the identity state transition matrix and i.i.d noise,
however state estimation in the the general linear Gaussian state space model:

Wir1 = Fwy + vy, Vi = Xewy + €,

V¢ NN(O, Ey), €¢ NN(O7ZF)

(63)

can also be expressed as a convex optimisation problem. Denoting ||| » = (a” Pa)?, P-quadratic
norm for a positive definite matrix P, it is:

m m—1
minimize Z ly: — tht||2271 + Z lWer1 — Fwt||2271. (64)
W1,y W = € P v

Notably we can recover both Whittaker graduation and Jones-Gerber “evolutionary” credibil-
ity [28] as state space models by choosing a one dimensional state vector w; with the observation
matrix X; a constant vector 1 [30, 60]:

m m—1
minimize D llye = 1well3 + Y wegr — welf3. (65)
T =1 t=1

When there is only a single observation per time step, this is identical to Whittaker graduation
with first order differences as in (32), while the Gerber-Jones model allows multiple observations
per time period.

3.4.2 Some extensions to the dynamic models:

We can use any convex loss for the observations, such as quantile or logistic, and still end up with
a convex optimization problem:

m m—1
minimize Zﬁ(yt;tht) + Z Wit — well3. (66)
t=1

Wi, ;Wi P

In the context of dynamic generalized linear models this corresponds to posterior mode estima-
tion as proposed by Fahrmeier [17, 16]. Non-Gaussian state noise is another possibility. It may be
appropriate to apply ¢;-norm penalty to state changes provided most of the time parameters stay
constant with occasional large jumps (cf. Figure 1):

m m—1
minimize Y L(y; Xowe) + Y [Werr — w1 (67)
- t=1

Another possibility is a combination of norms, e.g. an approach combining squared ¢;-norm and
¢1-norm penalties will attempt to decompose the state trajectory into a smooth and a piecewise
constant component:

m m—1 m—1
minimize D Ly Xi(wi+e) +A Y (Wi —willi + 1Y [leers — el (68)
’ t=1 t=1 t=1
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We can also allow linear trends in the parameters (this formulation can be reduced to the standard
state space model by expanding the state vector):

m—2

minimize Zﬁ(yt; Xywy) + Z [Wive = 2Wip1 4+ Wi (69)

Wi,...,W
t=1 t=1

Finally it is possible to add arbitrary convex inequality and linear equality constraints (see section
3.5.2), s0 e.g. seasonality adjustments can be handled by introducing new variables c4, ..., c,,, and
equality constraints:

m m—1
minimize Z/:(Yt;Xt(Wt +c))+ Z [Wer1 —well3
’ t=1 t=1
subjectto ¢t =ciqp, t=1,.... m—k (70)

i Ct = 0.
t=1

Formulating state space models as regularized regression can make them considerably more intu-
itive for those lucky not to have a background in control theory.

3.5 Other applications
3.5.1 Hierarchical credibility

We can describe hierarchical credibility [27, 55] models (closely related to both “random effects”
from statistics literature 41, 1] and linear filtering [30, 39]) in the optimization framework pro-
vided variances are known. This can be achieved by introducing additional variables to the opti-
mization problem. Consider a simple setup with two risks I; and I, with observations y;, i € I,
for j € {1,2} with unit variance and the following group mean:

Eyi = wj, Vielj, (71)
where w; are themselves random variables with group mean w and known variance:
Ew; = w, Var(w;) =0?, j=1,2. (72)

We can then obtain the linear credibility estimator as a solution of the following optimization
problem:
2 12
. . . 2 2
minimize YY" (yi — wy)* + 3 > (w; —w)*. (73)
j=liel, =

While the notation above is rather cumbersome, complex models are easy to implement in prac-
tice. This can be achieved by augmenting the data with indicator variables for the lowest level of

the hierarchy and regularizing by the squared Euclidean norm of the product of the (tree) graph

incidence matrix representing the hierarchical structure and the parameter vector.

3.5.2 Constraints on relativities

Treating maximum likelihood estimation of GLM parameters as a convex optimization prob-
lem allows us to introduce arbitrary convex constraints on rate relativities in addition to various
smoothness penalties described earlier. One such constraint in the classical GLM theory is the
“offset”, used e.g. to allow for exposure in Poisson models. It amounts to setting the coefficient
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associated with the offset term z; equal to one:

minimize  L(y; Xw)
v (74)
subject to w; = 1.

Given the range of practical insurance applications of this simple device [ 66], the overall approach
seems promising.

Consider for example an additive model with binned variables and the associated regulariza-
tion term (47). Possible constraints would include bounds on the absolute magnitude of the effect
w; associated with the i-th risk factor or its rate of growth (first differences):

minimize  L(y; X'w) + \|| Dwl||1 minimize  L(y; X'w) + \||Dw||;
subject to w; > —e11 subject to DEFw, > —e1 (75)
w; < 611 D(l’k)WZ' < 621.

In the above > denotes entrywise vector inequality and the constraints can alternatively be written
as:
|’w7;j|§617 Z:].,,k ‘wi7j+1_wij‘§€2, Zzl,,k—l (76)

We can also directly control the shape of the additive effect in a particular variable, requiring i,
for example, to be non-decreasing or convex (these two might be appropriate for sum insured and
driver age respectively):

minimize  L(y; X'w) + \|Dwl||1 minimize  L(y; X'w) + A|Dw||;
v . v o 77)
subject to D& )Wi >0 subject to D& )Wz' >0
Here monotonicity constraints? can be written without matrix notation as:
Wil S Wiz < ... S Wik (78)
and similarly for convexity we obtain:
Wij — 2W; j41 +Wij42 J=1,...,k—2. (79)

Finally consider a problem where there are two known risks ¢; and & for which we want the
percentage difference in premium to be within a certain range € (either due to market or regulatory
considerations). Assuming the model uses the log link, this yields:

minimize  L(y; Xw) (s0)
w 8o

subject to  [wl& — wl&| <log(l 4+ e).

3.5.3 Demand based pricing

In recent years optimization has most often been mentioned in insurance context in relation to
various aspects of “demand driven” pricing which amounts to varying margins in order to maxi-
mize underwriting profit. Below we present a very simple model for pricing renewals which admits

7Remarkably, there are entire monographs devoted to this topic under the name of isotonic regression.
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Figure 6: Left: Logistic demand v;(p;) and revenue r;(p;) = (p; — ¢;) ¢:(p;) as functions of price
pi- Right: Revenue r(d;) = (¥; ' (d;) — ¢;) d; as a function of demand d; is concave for d; € [0, 1].

K3

a convex reformulation:
n

mpdmize ) (s~ &) i(p)
zzl (81)
subject to qu)i(pi) >C.
i=1
The model maximizes the total revenue objective for a cohort of n policies subject to a constraint
on minimum retention level, where for i-th policyholder p; is the proposed premium, d; = ;(p;)
is the expected demand as a function of premium and ¢; is the expected cost of claims. This opti-
mization problem is not convex in general, however, for monotone demand functions from cer-
tain parametric families e.g. logistic and probit (see [so] for a detailed discussion) we can obtain a
convex equivalent (or rather a maximization problem with a concave objective) parametrized by
expected demand d; (see Figure 6):

maximize Z (wfl(dz) — ci)) d;

1ye+sUn .
i=1

subjectto 0<d; <1l,i=1,...,n (82)
> di>C.
i=1

Here ;' (d;) is the inverse demand function which can be uniquely defined for d; € [0, 1].

It is worth noting that both claim costs and demand are usually not known precisely or even
with reasonable accuracy and the rates obtained from (82) do not in fact maximize the expected
revenue, but rather the “certainty equivalent” objective where we have replaced stochastic demand
and claim costs with their expected values. A more accurate model would have the following form:

n

maximize  E, ( ; (pi — ci(wi)) ¥i(pi, wz‘))

= (83)
subject to E, ( Z U, (pi, wi)) >C,

=1

where the expectation is with respect to the joint distribution of individual demand functions and
claims costs. Clearly some simplifying assumptions about the distribution will need to be made
in order to make its estimation tractable. The interpretation of the volume constraint holding in
expectation is also quite difficult. To address the latter point it may be appropriate to consider e.g.

20 Casualty Actuarial Society Forum, Spring 2013
CAS E-Forum, Spring 2013



Convex optimization in premium rating

the expected shortfall (reminiscent of conditional risk measures):
EW([C - Zi/)i(puwi)h) <e. (84)
i=1

Techniques that attempt to address this type of problems usually go under the name of stochastic
optimization [47].

4 SOLVING CONVEX OPTIMIZATION PROBLEMS

Until recently, solving convex optimization problems required not inconsiderable subject mat-
ter expertise and even increasing availability of high quality open source and commercial solvers
(spPT3, SEDUMI, MOSEK, CVXOPT) did not allay the situation. The reason for this is that these
solvers require problems to be converted to one of several restrictive standard forms (e.g. a second
order cone program). In some cases such a transformation is not possible and it may be necessary
to develop a custom solver. For a potential user with a focus on applications these requirements
are challenging to say the least.

This has recently changed with the introduction of cvx [20, 21], a high level specification
language for general convex optimization. It provides a convenient interface for specifying con-
vex optimization problems and then automates underlying mathematical steps for analysing and
solving them. The underlying solvers can often handle sparse instances with millions of variables.
While the idea of a an optimization modelling language is not new (e.g. GAMS), existing com-
mercial offerings can not handle general convex problems.

Below is sample cvX/MATLAB code® for the problem (39):

n = length(y); Y%length of timeseries y
m = n-2; %hlength of Dw

lambda = 15;

I2
02
D = [I2 02 02]+[02 -2*I2 02]+[02 02 I2];

speye(m,m) ;

zeros(m,1);

cvx_begin
variable w(n)
minimize (sum_squares (y-w)+lambda*norm(D*w,1))

cvx_end

Due to some limitations in the way the current version of cvx deals with problems that are not
SDP representable (e.g. loss functions involving logarithms and exponentials) for large problems
it may sometimes be necessary to implement an iterative reweighting scheme similar to Fisher
scoring, such asin [37], with cvX in the inner loop. For very large problems decomposition meth-
ods are available, see [5] for an accessible introduction and examples.

8Please contact the author for largcr examplcs described in this paper.
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APPENDIX

A BASICS OF CONVEX CALCULUS

As mentioned earlier, it is often the easiest to verify convexity by checking whether a given func-
tion is composed from known convex primitives by applying convexity preserving transforma-
tions. Below we list a subset of these sufficient to verify convexity of problems described in this

paper.

A.1  Functions of a single variable:
. Exponential. e*® is convex on R for any o € R.
o Powers. x is convex on (0, +00) for a > 1 or a < 0, and concave for 0 < o < 1.

e Logarithm.log x is concave on (0, +00).

A.2  Vector norms:
All vector norms on R™ are convex. A function f : R” — Ris called a norm if:
e f(x) >0forallx € R",
o f(x)=0onlyifx =0,
o f(ax) = |a|f(x), forallx € R" and o € R,
e f satisfies the triangle inequality: f(x +y) < f(x) + f(y), forall x,y € R".

Such functions are usually denoted x| rather than f(x) with a subscript to indicate the exact
norm being used. They can be interpreted as measuring the length of the elements of R™. Most
common is the Fuclidean or the #5-norm defined as:

Ixll2 = VxTx = (3" a?)".

i

=

(8s)

Two other examples of norms on R™ are the absolute value or ¢;-norm:

Ixfs = Ja] (86)

and the max or /,,-norm, given by:
[%[loo = max (Jz1],..., [zn]) (87)

These can be generalized as the ¢,-norm, for p > 1:

Il = (X i) (85)

where ¢,.-norm obtains as p — oc. It is easy to check convexity of norms from the definition.
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A.3 Other functions on R”

o Max function. The function max(z, ..., ,) is convex on R". Note that it is distinct from
the ¢,.-norm.

o Soft max. The so called “soft max” function log(e®* + - -- + e®») is convex on R™. It can be
viewed as a differentiable approximation of max (1, ..., z,).

n

1, .
o Geometric mean. The geometric mean f(x) = ([]/_, z;)™ is concave forz; >0, i =1,...,n.

A.4 Transformations that preserve convexity

Convexity is maintained for certain compositions of convex functions, for example:

A.41  Weighted sums:

A weighted sum of convex functions

f=aifi+ -+ anf (89)

is convex if all the weights are non-negative, a; > 0, i = 1,...,n. Similarly a weighted sum of
concave functions is concave for non-negative Weights.

A.4.2  Composition with an affine function:

If f is a convex function, f : R™ — R, A is an m x n matrix and b a vector in R” then g : R® — R:
9(x) = f(Ax +b) (90)
is also a convex function. Similarly, g is concave if f is concave.

A.4.3 Composition of multivariable functions:

Suppose that a function f : R" — R has the following form:

f(x) = h(g(x)) = h(g1(x), ..., gm(x)), (91)
where g; : R* - R, i = 1,...,m. Then the following holds:
e fis convex if functions g; are convex and & is convex and non-decreasing in each argument,

e fisconvex if g; are concave and h is non-increasing in each argument.

B SoME coMMON GLMS AS CONVEX PROBLEMS

B.1 Gaussian

Assume y; € R follows a Gaussian distribution with known variance o2 and mean y; then its
probability density function is:

N —(—p)?
p(yl) - \/W exp < 202 : (92’)
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We can then express p; as a linear function (ignoring the intercept term for clarity) of the vector
of explanatory variables x; € R™, parametrized by w € R™ :

pi = w'x;. (93)

The likelihood function for n independent observations (y;, x;) is given by:

- 1 —(yi WTXi)Z)
; XwW) = ex ,
p(y; Xw) ];[1 Norrohid ( 52 (94)
where X is the design matrix with rows x; fori = 1,...,n and the loss or negative log-likelihood

function is as follows:

Lly; Xw) = —élog (oo (F2 5 0))

n 1
= Z @(yi —wix)® + log(27ror )-
=1

(95)

We can obtain an estimate of w by solving a convex optimization problem (to check convexity in
w, observe that it is a square of />-norm composed with an affine function):

min‘iﬂmize Z(yi —wlx;)?, (96)
i=1

which in matrix notation can be restated as:

minimize |ly — Xw|[3. (97)

B.2 Poisson

Take y; € Z* to be a random variable with Poisson distribution and mean y; > 0:

e Hi Lf
Py =k) = k!l : (98)

The mean 4; can be modelled via the log link as a linear function of the vector of explanatory
variables x; € R™:

wi = exp(wlx;). (99)

Here w € R™ is the parameter vecor. Given n independent observations (y;,x;), i = 1,...,n, the
likelihood function is as follows:

exp (—exp(w’'x;)) exp(w’x;)¥i

pyviXw)=]] " : (100)
i=1
with the corresponding loss or negative log-likelihood:
Ly; Xw) = Z exp(wlx;) — y;wlx; + log(yi!)) . (101)
i=1
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A maximum likelihood estimate of w can then be obtained by solving the convex loss minimiza-
tion problem (convexity follows directly from the composition rules defined in A.4):

n
minimize Z (exp(wai) — yinxi) . (102)
w
i=1

B.3 Logistic

Consider a random variable y; € {0, 1}, with the binomial distribution:

Ply=1)=pm, Ply=0)=1-pu, (103)

where p; € [0, 1] is the expected value of y;. It depends on a linear function of a vector of explana-
tory variables x; € R™ via the logistic link:

exp(wlx)

1+ exp(wlx)’ (r04)

i =
where w € R™ is the vector of model parameters. Given n independent observations (y;, x;),i =
1,...,nand defining Iy = {i | y; = 0} and I; = {i | y; = 1} we obtain the following likelihood

function: . .
R T Y R

Ty Ty,
e 1+ exp(wTx;) on 1+ exp(wTx;)

The corresponding negative log-likelihood or loss function has the form:

exp(wlx;) exp(wlx;)
X log | ———— 1 1l ———
£lys Xw) g; (1 + exp(wTx; ) ; ©8 ( 1+ exp(wai)>
1 0

) (106)
- _ Z wlx; + Z log (1 + eXp(wTXi))

il i=1

It is easy to check that £(y; Xw) is a convex function in w (composition of soft max and affine).
Maximum likelihood estimation for logistic regression is then equivalent to a convex loss mini-
mization problem:

e e . T, T,
minimize - Z wlix; + Z log (1 +exp(w’x;)) . (107)
icl i=1
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