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Abstract: In this paper we discuss the application of modern mathematical optimization tech-
niques to some of the common problems in insurance premium rating. e computationally
tractable setting of convex optimization [] is particularly attractive as it encompasses parame-
ter estimation in generalized linear models and offers means to address practical challenges such
as variable selection, coefficient smoothing, spatial and hierarchical priors, constraints on rela-
tivities and the time evolution of model parameters. Recent advances in modelling systems for
convex optimizationmake thesemethods not only eminently practical but also inmany respects
more flexible than what is presently offered by statistical soware.
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 I
In this paper we formulate several commonmodels arising in premium rating as convex optimiza-
tion problems and describe the use of constraints and regularization to address practical issues
such as variable selection, coefficient smoothing, hierarchical credibility, parameter evolution and
spatial priors in a unified framework. e resulting optimization problems can be solved using ef-
ficient algorithms [] developed for convex programming.

Many classical actuarial techniques such asWhittaker graduation and various credibilitymod-
els can be interpreted as performing regularized or constrained fitting [, , ]:

minimize
w

L(y;w) +R(w) minimize
w

L(y;w)

subject to R(w) ≤ ϵ,
()

whereL(y;w) is the term penalizingmodel error relative to the data y and the regularization term
R(w) measures the lack of smoothness or some other desired property of the model w. While
not a part of the classical theory, regularization has important implications for the practical use
of generalized linear models (GLMs), by now a nearly universal tool in premium rating. Namely,
rather than carrying out manual feature design and selection it may oen be far more effective to
control the degrees of freedom of the model by imposing penalties or constraints on the coeffi-
cients. Recent advances in solvers and open source modelling soware for convex optimization
[] have made it exceedingly easy to develop such custommodels.

e idea of regularization itself has been developed independently many times in many dif-
ferent fields, e.g. the work of A. Tikhonov on operator equations in the s []. It is also the
principal reason for the remarkable performance of the “support vector machines” family of algo-
rithms which implicitly generate feature spaces of high dimension through the kernel functions
[].

Video lectures for the Stanford course EEA Convex Optimization, made publicly available via the Stanford En-
gineering Everywhere initiative, are highly recommended as background for this paper.


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In recent years there has been a resurgence of interest in a particular form of regularization
known as “ℓ1-norm” regularization. Its early applications appeared in geophysics in s []
where its sparsity inducing properties had been employed for signal recovery. Around the same
time in the actuarial literature Schuette proposed an ℓ1-norm formulation of the graduation prob-
lem [] which allowed it to be solved by linear programming; this idea was further developed in
econometrics as quantile smoothing splines []. It was not until much later that ℓ1-norm regular-
ization had become a widely adopted technique in signal processing with applications including
computing transform coefficients (“basis pursuit”) [] and signal recovery from incompletemea-
surements (“compressive sensing”) []. In statistics, the idea of ℓ1-norm regularization was pop-
ularized by the well-known “lasso” procedure [] for linear regression and its many extensions
[, , , ]. While for a long time ℓ1-norm regularization has been viewed as little more than
a useful heuristic in optimization, recent theoretical results (e.g. []) have provided surprising
guarantees on its performance in certain restricted settings.

What the above models have in common is that they all, together with many others [], can
be formulated as convex optimization problems. Recognizing convexity and its implied proper-
ties offers a unifying perspective on a collection of seemingly unrelated ideas frommany different
fields and dramatically reduces the need to develop special purpose algorithms as many instances
can be handled by standard solvers. Moreover, convex problems constitute, perhaps, the widest
known class of optimization problems for which exist efficient algorithms guaranteed to find a
global solution, making convexity especially desirable when reliable numerical solutions are a re-
quirement.

is paper consists of twomain parts. In the first halfwe outline the basics ofmathematical op-
timization and convex calculus and briefly describe the connection between convex optimization
and statistical estimation. In the second part we focus on the application of convex optimization
to some of the problems in technical premium rating. We discuss variable selection, curve fit-
ting, spacial clustering and smoothing, additivemodels, hierarchical credibility, time evolution of
model parameters and stochastic optimization.

. Related work
A number of unifying approaches along similar lines have been previously proposed in the actu-
arial literature but using as the foundation algorithmic developments from statistics, rather than
mathematical optimization. ese include Bayesian multilevel extensions of generalized linear
models [, ] and the so called “mixed effect” models []. Unlike convex optimization, how-
ever, these have arguably less broad scope of applicability (e.g. ability to handle constraints is
lacking) and do not take into account computational complexity of the proposed methods.

It should be noted at the same time that stateful sampling algorithms such as variants of geo-
metric Markov chain Monte Carlo [], used for inference in Bayesian models, bear close resem-
blance to iterative optimization methods and their hybridization is an active area of research, e.g.
[]. It seems not unreasonable to hope that one day an effective synthesis will be attained.

emost complete treatment of actuarial models from the perspective of convex optimization
was developed in a visionary paper of Brockett [], albeit in the dual form and some  years
before advances in algorithms and computing power have made such schemes truly practical for
all insurance applications.

In particular it is worth noting that one of many fields where convex analysis has proven to be the key tool is mathe-
matical economics; see [] for an accessible introduction from this point of view.

e equivalence between “information theoretic” maximum entropy principle and maximum likelihood estimation
for exponential families is discussed in standard references, e.g. [].

 Casualty Actuarial Society Forum, Spring 
CAS E-Forum, Spring 2013 
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 O   

. Mathematical optimization
A constrained optimization problem has the the following form:

minimize
x

f0(x)

subject to fi(x) ≤ bi, i = 1, . . . ,m.
()

e vector x ∈ Rn is the optimization variable, the function f0 : Rn → R is the objective function,
the functions fi : Rn → R, i = 1, . . . ,m are the inequality constraint functions , and the constants
b1, . . . , bm are the limits, or bounds, for the constraints. A vector x∗ is called a solution or a global
minimum of the optimization problem () if no other vector satisfying the constraints achieves
a smaller objective value, that is for any z ∈ Rn with f1(z) ≤ b1, . . . , fm(z) ≤ bm we have f0(z) ≥
f0(x

∗).

.. Convex optimization

While the general problem () is computationally completely intractable, we can mitigate this by
restricting the class of functions f0, . . . , fm. For example, if we take the objective and the con-
straints to be linear, the optimization problem () is called a linear program and can be written
as:

minimize
x

cTx

subject to aTi x ≤ bi, i = 1, . . . ,m.
()

Despite the seeming simplicity surprisingly many problems in business operations and engineer-
ing (e.g. optimal network flow) can be expressed in this form []. ere are also applications in
statistics and econometrics (least absolute deviations, quantile regression []). e subject was
developed in s and s by L. Kantorovich andG. Dantzig. e latter introduced the simplex
algorithm for solving linear programs that for many applications remains unsurpassed to this day
and can routinely solve problems with millions of variables and constraints.

A less restrictive class of tractable optimization problems is the one in which the objective and
constraint functions are convex, namely:

fi(αx+ βy) ≤ αfi(x) + βfi(y) ()

for all x,y ∈ Rn and all α, β ∈ R with α + β = 1, α ≥ 0, β ≥ 0. Convex functions have the
essential property that every local minimum is also a global minimum. A function g(x) is called a
concave function if −g(x) is convex. It is easy to check that linear functions are convex (they are
also concave) and therefore linear programs are a special case of convex optimization problems.

ere are efficient polynomial time algorithms (e.g. so called interior point methods []) for
global minimization of convex functions subject to convex inequality constraints. Indeed convex
problems are effectively the widest class of optimization problems for which such algorithms exist
at this time. And while convexity is not an essential property of a successful optimization model,
it is worthwhile to be aware of the trade-off between efforts to make a model more realistic and
ensuing difficulties with numerical methods. To quote Y. Nesterov [], one of the key figures in
the development of convex programming:

Every year I meet Ph.D students of different specializations who ask me for advice
Equality constraints are omitted for brevity but are implied, i.e. an equality constraint fi(x) = 0 can be represented

as fi(x) ≥ 0 and−fi(x) ≥ 0.

Casualty Actuarial Society Forum, Spring  
CAS E-Forum, Spring 2013 
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on reasonable numerical schemes for their optimization models. And very oen they
seem to have come too late. In my experience, if an optimization model is created
without taking into account the abilities of numerical schemes, the chances that it will
be possible to find an acceptable numerical solution are close to zero.

.. Convex calculus

It is generally labor intensive to check convexity of a function directly from the definition. Inmost
cases it ismuch easier to seewheteher a given function is built up of known convex functions using
transformations that preserve convexity, just as classical calculus permits effective computation
without explicitly working with infinite series.

Familiarity with the basics of convex analysis and a few heuristics will permit effective creation
of custommodels formany applications. e tedious (andultimatelymechanical) task of convert-
ing the resulting formulation to one of standard forms understood by solvers can be handled by
the modelling system [].

We describe some convex functions of one and many variables together with operations that
maintain convexity inAppendixA.Muchmore detailed treatments can be found in [, , , ].

. Convex optimization and statistical estimation
Statistical inference can oen reduced to solving certain optimization problems. Belowwe discuss
two such principles.

.. Maximum likelihood and loss minimization:

A familiy of probability density functions on Rn denoted p(y;w) with parameter vectorw ∈ Rm

is called a likelihood function when taken as a function of w only for a fixed y. It is, however,
oenmore convenient to deal with the logarithmof the likelihood function or the log-likelihood,
log p(y;w). e negative log-likelihood is sometimes also called the “loss function”:

L(y;w) = − log p(y;w). ()

It is worth noting, however, that not all loss functions are directly motivated by a priori distribu-
tional assumptions e.g. quantile loss ().

A remarkably effectivemethod for estimating the parameterw given an observation y consists
of maximizing the log-likelihood (equivalently, minimising the loss function) with respect tow:

w∗ = argmin
w

L(y;w). ()

Inmany practical applicationswe have prior information that can be represented in the formof
constraints on the admissible values ofw. ese constraints can be defined explicitly by specifying
a set C ⊆ Rm such thatw ∈ C or incorporated into the likelihood function by setting p(y;w) = 0

and correspondingly L(y;w) = ∞ for all w /∈ C. When C is given, the constrained maximum
likelihood estimation problem can be written as follows:

minimize
w

L(y;w)

subject to w ∈ C.
()

While computationally intractable in general, maximum likelihood estimation is reduced to a
convex optimization problem if the loss function L(y;w) is convex inw and C is a convex set.

 Casualty Actuarial Society Forum, Spring 
CAS E-Forum, Spring 2013 
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.. Bayesian estimation

Maximum likelihood procedure has an analogue in the Bayesian setting known as maximum a
posteriori estimation. Here the parameter vectorw and the observation y are both considered to
be random variables with a joint probability density p(y,w). e density ofw is then given by

p(w) =

∫
p(y,w) dy1 . . . dyn. ()

is is referred to as the prior distribution ofw and represents the information aboutw before y
is observed. We can similarly define p(y), the prior distribution of y. e conditional probability
density of y givenw is as follows:

p(y|w) =
p(y,w)

p(w)
. ()

Being a function ofw, it is equivalent to the likelihood function in employed in maximum likeli-
hood estimation. e conditional probability density ofw given y can then be written as:

p(w|y) = p(y|w)p(w)

p(y)
()

If we substitute the observed value of y into p(w|y) we obtain the posterior density of w, repre-
senting the updated information aboutw. emaximum a posteriori estimate ofw is the one that
maximizes the posterior probability (p(y) does not depend onw and can be omitted):

w∗ = argmax
w

p(w|y) = argmax
w

p(y|w)p(w). ()

Aer taking the logarithm the expression forw∗ can be written as:

w∗ = argmax
w

log
(
p(y|w)p(w)

)
= argmin

w
− log

(
p(y|w)

)
− log

(
p(w)

)
. ()

is is equivalent tominimising a data dependent loss function− log (p(y|w))with the additional
regularization term − log (p(w)).

It is also a basic consequence of Lagrange duality [, Chapter ] that under somemild regular-
ity conditions () has the same solution w∗ as the following constrained optimization problem
for some instance dependent value of ϵ:

minimize
w

− log
(
p(y|w)

)
subject to − log

(
p(w)

)
≤ ϵ.

()

For example if the prior density of w has support over a a set C and is uniform then finding the
maximum a posteriori estimate is the same as loss minimization subject to the constraintw ∈ C.

For any estimation problem with a convex loss function we can add a convex regularization
term (corresponding to a prior density on w that is log-concave) and the resulting optimization
problem will be convex.

. Convex loss functions
A large number of statistical problems can be reduced to minimizing convex loss functions, with
conditional exponential families being perhaps the key example. Several approaches not based
directly on the maximum likelihood principle are also mentioned.

Casualty Actuarial Society Forum, Spring  
CAS E-Forum, Spring 2013 
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.. Conditional exponential families

It is a standard result that the log-likelihood of distributions in the exponential families is concave
in the natural parameters [, ]. Below we discuss convexity properties of conditional exponen-
tial families, closely related to generalized linear models.

Consider an exponential family distribution on Y × X :

p(y, x|w) = h0(y, x) exp
( m∑

k=1

wkϕk(y, x)−A(w)
)

= h0(y, x)
exp

(∑m
k=1 wkϕk(y, x)

)
exp

(
A(w)

) .

()

In this context the non-negative function h0 is the base or carriermeasure,w ∈ Rk are the model
parameters, ϕ(y, x) = [ϕ1(y, x), . . . , ϕk(y, x)]

T is the vector of sufficient sttics and A(w) is the
logarithm of the normalizing constant or the log-partition function, namely:

A(w) = log
(∫

(y,x)∈Y×X
exp

( m∑
k=1

wkϕk(y, x)
)
h0(y, x) dx dy

)
, ()

with summation replacing the integral for discrete distributions. For reasons such as data and
computational limitations, we may instead wish to directly estimate the conditional probability:

p(y|x,w) = h0(y, x) exp
( m∑

k=1

wkϕk(y, x)−A(w|x)
)
, ()

with conditional log-partition function given by:

A(w|x) = log
(∫

y∈Y
exp

( m∑
k=1

wkϕk(y, x)
)
h0(y, x) dy

)
. ()

Note that the sufficient statistics that do not depend on y can effectively be omitted as the choices
of associated parameters do not influence the conditional densities. Given a collection of inde-
pendent samples (yi, xi) ∈ Y ×X for i = 1, . . . , n, the joint conditional probability can be written
as:

n∏
i=1

p(yi|xi,w) =
n∏

i=1

(
h0(yi, xi) exp

( m∑
k=1

wkϕk(yi, xi)−A(w|xi)
))

, ()

giving rise to the following maximum log-likelihood estimation problem to find parametersw:

minimize
w

n∑
i=1

(
A(w|xi)−

m∑
k=1

wkϕk(yi, xi)
)
. ()

e above objective is convex being a sum of linear terms and the convex log-partition functions.
e latter are convex inw by an extension of the so max rule (see A.).

In this formulationY is not restricted to be equal toR or to a small set of discrete outcomes but
can also represent more complex structured objects, e.g. all possible parts of speech assignments
for a particular sentence. is type of models is commonly referred to as a conditional random
field [] and is likely to prove quite fruitful in insurance applications.

To recover the (now classical) generalized linear models ofWedderburn and Nelder, consider
At least in computer science literature on “machine learning” (a variant of computational statistics with a strong focus

on out of sample performance) and natural language processing.

 Casualty Actuarial Society Forum, Spring 
CAS E-Forum, Spring 2013 
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the case whenX = Rk, the carrier measure h0 does not depend on x and with a particularly simple
choice of sufficient statistics:

ϕk(y,x) = yxk. ()

We can then rewrite () as a single parameter exponential family with respect to wTx in the
following way:

p(y|x,w) = p(y|wTx)

= h0(y) exp
(
ywTx−B(wTx)

)
,

()

with the log partition function:

B(θ) = log
(∫

y∈Y
exp

(
θy

)
h0(y) dy

)
()

and giving rise to the following maximum likelihood parameter estimation problem:

minimize
w

L(y;Xw) =
n∑

i=1

(
B(wTxi)− yiw

Txi

)
. ()

e usual relation between the natural parameter and the expected value of y obtains:

E(y|x,w) = ∇θB(wTx), ()

with∇θB
−1 being the canonical link function.

ere are two remaining incompatibilities between conditional randomfields and generalized
linear models, however. Firstly GLMs are based on the so called exponential dpersion families
[]:

p(y|x,w, λ) = h0(y, λ) exp
(
λ
(
ywTx−B(wTx)

))
, ()

rather than exponential families considered up to this point.
For the fixed dispersion parameter σ2 = λ−1 this class of models coincides with single pa-

rameter exponential families. is is oen the case, e.g. when σ2 represents a known number of
observations for the binomial distribution. If σ2 is not known and is to be estimated, the resulting
log-likelihood is not in general jointly concave in w and σ2, unlike that for conditional random
fields. One way to overcome this limitation is to consider the overlapping class of two parameter
exponential families, which includes many standard distributions and also provides means to deal
with overdispersion [].

Another difficulty is with regard to the link function - convexity of the negative log-likelihood
does not necessarily hold for choices other than the canonical link. Even in this case, however, for
all of themodels described in this paper local solutions can be obtained using sequential quadratic
approximation (variants of which are known as iteratively reweighted least squares and Fisher
scoring). It is worth remembering that none of the methods implemented in existing statistical
soware provide guarantees of global optimality in this situation either.

Convex formulations for parameter estimation in some common GLMs are shown in Ap-
pendix B.

.. Huber loss

Huber loss function [] is oen used to make least squares estimates more robust to outliers, see
also [, Chapter ] for an illuminating informal discussion. It agrees with the squared ℓ2-loss ()
for |u| < M and for |u| ≥ M the Huber loss function reverts to linear growth which gives lowest

Casualty Actuarial Society Forum, Spring  
CAS E-Forum, Spring 2013 
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attainable sensitivity to outliers while still maintaining convexity.

L(y;Xw) =
n∑

i=1

ϕ(yi −wTxi), ϕ(u) =

{
u2, |u| < M

M(2|u| −M), |u| ≥M.
()

.. uantile loss

One interpretation of the least squares procedure () is that it estimates the conditional mean
of yi given the data vector xi. Regression with the asymmetric quantile [] loss function ρτ on
the other hand results in estimates approximating the conditional τ -th quantile of the response
variables yi:

L(y;Xw) =
n∑

i=1

ρτ (yi −wTxi), ρτ (u) =

{
τu, u > 0

−(1− τ)u, u ≤ 0.
()

When τ is equal to 0.5 and corresponds to the median, quantile regression is equivalent to the
method of least absolute deviations which estimates w by seeking to minimize 1

2∥y −Xw∥1. We
should note that quantile regression appears quite attractive for insurance applications [] as
it can provide a non-parametric estimate of the full conditional distribution of the dependent
variable and can deal with such issues as concetration of probability mass at a certain point. In
addition to directly modelling claim costs per policy, it may also be applicable in situations when
mean of the dependent variable is not easily interpreted, e.g. when fitting a model to a sample of
competitor rates.

 Applications in premium rating

. Variable selection
One compelling application of constrained parameter estimation is variable selection. Consider a
regression type problem with an arbitrary convex loss function L(y;Xw) where y is the vector of
response variables,X is the designmatrix andw a vector of parameters to be estimated. is can be
accomplished by restricting the ℓ1-norm of the coefficient vector (assuming that the explanatory
variables are standardized with mean 0):

minimize
w

L(y;Xw)

subject to ∥w∥1 ≤ ϵ.
()

is generally results in a sparse estimate w∗ with the number of non zero entries controlled by
the magnitude of ϵ. It is possible to motivate this formulation as a convex approximation (or
relaxion) of the computationally intractable best subset selection problem []. Using an ℓ1-
norm penalty to obtain a sparse solution has been a well known heuristic in optimization and its
applications going back at least to the s [, ]. Itwas popularized in the statistics literature as
the “lasso” byTibshirani []. Under somemild conditions the above problem canbe equivalently
formulated as:

minimize
w

L(y;Xw) + λ∥w∥1 ()

where λ ≥ 0 corresponds to the optimal Lagrange multiplier associated with the inequality con-
straint in (). In this form the “lasso” procedure has a Bayesian interpretation as a maximum a
posteriori estimate with a Laplacian prior on w with mean zero and variance 2

λ2 . e value of λ
controls the sparsity ofw∗ and can be chosen via cross-validation.

 Casualty Actuarial Society Forum, Spring 
CAS E-Forum, Spring 2013 



Conex optimizion in premium ring

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8 9 10
−12

−10

−8

−6

−4

−2

0

2

0 1 2 3 4 5 6 7 8 9 10
−12

−10

−8

−6

−4

−2

0

2

Figure : Le: Solutions of optimization problem () for different choices of D - “fused lasso”,
D(1,n) (top) and “ℓ1-trendfiltering”,D(2,n) (bottom). Right: Solutions of theWhittaker graduation
problem () with the same choices ofD. We set λ to give the same squared error ∥y − w∥22 as the
corresponding solutions on the le.

In the presence of correlated covariates “lasso” will tend to select only one of them. To alleviate
this problem we can trade off between penalising ℓ1 and squared Euclidean norms ofw:

minimize
w

L(y;Xw) + λ
(
α∥w∥1 + (1− α)∥w∥22

)
, ()

where 0 ≤ α ≤ 1. is method is known as “elastic net” [] in the statistics literature. e
“elastic net” performs variable selection while at the same time pushing together coefficient values
of correlated variables. Indeed, for α = 0 it is equivalent to ridge regression, a classical procedure
for dealing with collinearity:

minimize
w

L(y;Xw) + λ∥w∥22, ()

see [] for connections with credibility.

. Graduation or curve fitting

.. One dimensional data

Before we discuss further extensions to generalized linearmodels wemotivate our approach by ex-
amining the classical setting of non-parametric graduation. e goal of the graduation procedure
is to smooth a sequence of observations y = [y1, y2, . . . , yn]

T which are usually indexed by time or
age. As pointed out in [], as early as  Bohlmann had proposed [] to perform graduation
by solving the following convex optimization problem:

minimize
w

∥y −w∥22 + λ∥Dw∥22, ()

Casualty Actuarial Society Forum, Spring  
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Figure : Le: Original residuals (motor portfolio). Center: Solution to () using the incidence
matrix of the nearest neighbors graph for regularization. Right: Solutionusing the graphLapla-
cian.

with λ ≥ 0 andD = D(1,n) being the (n− 1)× n first order finite differences matrix:

D(1,n) =


−1 1

−1 1

· · ·
−1 1

 . ()

Heuristically, the “fidelity” term ∥y − w∥22 encourages the solution w to be close to the original
datay and the smoothness term ∥D(1,n)w∥22 penalizes non-zero entries ofD(1,n)w , first order finite
differences (or the discretized first derivative) of w. e value of the parameter λ determines the
relative importance of the smoothness term. By Lagrange duality we can obtain the same solution
as for () with any value of λ ≥ 0 by solving either of the following constrained optimization
problems for some values of ϵ1 and ϵ2:

minimize
w

∥y −w∥22

subject to ∥Dw∥22 ≤ ϵ1

minimize
w

∥Dw∥22

subject to ∥y −w∥22 ≤ ϵ2,
()

i.e. the objective and the constraint can be freely interchanged.
Bohlmann’s procedure () can be extended to penalize k-th order finite differences. In this

case the k-th order finite differences matrixD(k,n) ∈ R(n−k)×n can be defined recursively:

D(k,n) = D(1,n−k)D(k−1,n), k = 2, 3, . . . ()

e second order finite differences matrix would then, for example, is as follows:

D(2,n) =


−1 2 −1

−1 2 −1

· · ·
−1 2 −1

 . ()

Whittaker [] had described the underlying probabilistic model and an approximate solution
method for the case of third order differences and weighted fidelity term. A Bayesian interpreta-
tion of Whittaker graduation is also given by Taylor []. Among many extensions toWhittaker
graduation most relevant to the present discussion are the work of Schuette [] and Chan et
al. [, ]. In his remarkable paper, Schuette proposed the formulation using ℓ1-norm penalties
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(weights omitted to simplify presentation):

minimize
w

∥y −w∥1 + λ∥D(k,n)w∥1, ()

Aer applying a standard transformation this optimization problem can be reformulated as a lin-
ear program. In the discussion following [], S. Klugman had pointed out that the method at-
tempts to make most of the entries of D(k,n)w (or k-th order differences ofw) zero but several of
them could be large. is “sparsity inducing” property of ℓ1-norm penalty motivates its use in the
“lasso” variable selection procedure .

Chan et al. [] show that for p, q ∈ {1, 2,∞} the mixed ℓp and ℓq norm graduation problem:

minimize
w

∥y −w∥p + λ∥D(k,n)w∥q, ()

canbe formulated as a linear programwhenever p, q ∈ {1,∞} and as a quadratic programwhenever
either p or q is 2.

Smoothing techniques equivalent toWhittaker graduation are known under different names
in many fields e.g. “Hodrick-Prescott filter” in economics []. More recently, a variant of ():

minimize
w

∥y −w∥22 + λ∥D(1,n)w∥1, ()

with p = 2 (or equivalently squared ℓ2-norm) and q = 1 has been popularized in applied statistics
literature as “fused lasso” []. In signal processing the same formulation is called “total varia-
tion denoising”. is procedure usually gives a piecewise constant solutions w∗ i.e. discrete first
derivative D(1,n)w∗ has mostly zero entries (see top le section of Fig. ). Similarly, using second
order differencesD(2,n) oen results in a piecewise linearw∗ (see bottom le panel of Fig. ) and
has been described as “ℓ1 trend filtering” [] and “quantile splines” [], the latter replacing the
quadratic term with quantile loss. ese are effective approaches to change point detection and
are considerably simpler than many methods proposed to date.

.. Multidimensional data, spatial smoothing and clustering

We can also apply ℓq-norm penalized formulation () in situations when the samples y are over a
regular grid or indeed an arbitrary graph (e.g. a k-nearest neighbors graph for objects embedded
in a metric space).

To obtain a piecewise constant solution we can use q = 1 and the graph incidence matrix for
regularization (instead of the first order finite differences matrixD(1,n) in one dimensional case).
e incidence matrix A for a graph with n nodes and m edges is a m × n matrix, with each row
representing an edge and composed of a 1 and a −1 in the columns corresponding to the two
connected nodes and zeroes elsewhere. See Figure  for an example.

To get an equivalent of graduation with second order differences over a regular grid we can
consider horizontal and vertical second order differences. As in the one dimensional case, we
minimize a weighted sum of the fitting error and,for q = 1, a penalty on absolute value of slope
changes in the horizontal and vertical directions. e resulting solution tends to be affine over
connected regions. e boundaries between regions can be interpreted as curves along which the
gradient of the underlying function changes quickly. e approach can not be extended directly
to arbitrary graphs. Instead we can use the suitably normalized graph Laplacian (which can be
interpreted as a discretization of the Laplace operator) defined as:

L = ATA. ()
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1

.

2

. 3. 4.

5

A =


1 −1 0 0 0
0 1 −1 0 0
0 0 −1 1 0
0 0 −1 0 1

 L = ATA =


1 −1 0 0 0

−1 2 −1 0 0
0 −1 3 −1 −1
0 0 −1 1 0
0 0 −1 0 1


Figure : A simple directed graph (le), its incidence matrix A (center) and Laplacian L (right).

Figure  shows the results of ℓ1-norm spatial smoothing applied to geocoded residuals using the
incidencematrix of 10 nearest neighbors graph and its Laplacian. e former provides a piecewise
constant solution over connected regions, where the regions with the constant fitted value can be
interpreted as clusters, and the latter a piecewise affine solution. In the actuarial literature the use
of Whittaker graduation to perform spatial smoothing with irregular regions has been proposed
by Taylor [].

It is worth pointing out that the formulation () is in fact quite general, given a free choice of
matrix D, as it can viewed as a reparametrization of regularized regression. So for the squared ℓ2
norm penalty the following problems are equivalent (taking a = Xw and providedX has full row
rank):

minimize
w

∥y −Xw∥22 + λ∥w∥22, minimize
a

∥y − a∥22 + λ∥a∥2K , ()

where ∥a∥2K = aTKa = ∥Da∥22 forK = (XXT )−1 = DTD. e second form is knownas “Gaussian
process regression” [], or “kriging”[] in geostatistics literature.

. Additive models
Additive models were first introduced, perhaps, by Ezekiel in s [] and extended by Hastie
some years later [, ]. Generalized linearmodels formpredictions based on a linear function
of the features:

g(Ey) = w0 + w1x1 + w2x2 + · · ·+ wmxm, ()

where xi ∈ R, i = 1, . . . ,m are explanatory variables, g is the link function and µ is the expected
value of the dependent variable y. Additive models replace the linear combination with a sum of
arbitrary functions of explanatory variables:

g(Ey) = w0 + f1(x1) + f2(x2) + · · ·+ fm(xm). ()

e richer class of models can lead to overfitting without suitable regularization. e latter is
usually achieved by requiring the functions fi to be (piecewise) smooth.

A similar approach is oen followed in the practical applications of GLMs. Continuous vari-
ables are discretized into a number of bins. For ordered categorical variables, “natural” levels can
be used or if the number of levels is deemed too large, binning is applied to reduce the number of
distinct levels. If the total number of bins is not controlled this approach can lead to overfitting
and poor predictive performance so it is a standard practice to examine the initial fit and then
either manually reduce the number of categories or select a suitable collection of basis functions
(e.g. linear or cubic splines) [].

We observe that it is possible to largely automate this process by casting it into the convex
optimization framework and taking advantage of regularization (see Figure  for an example). Let
X ∈ Rn×m be the design matrix for the original problem, then we follow the standard procedure
and transform thedata bybinning each feature into k intervals of equal length (we assume the same
number of intervals for every feature for simplicity). is gives a new design matrix X ′ ∈ Rn×km
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Figure : Le: e additive effect of sum insured on claims frequency in a motor portfolio. e
outer band shows the 90% confidence interval calculated via the bootstrap. Right: e additive
effect of policyholder age. e anomaly around age 45 could be, for example, due to teenage
children driving the family car (also see Figure ).

and a new parameter vectorw ∈ Rkm, withwi ∈ Rk:

X ′ =
[
X ′

1 , . . . , X ′
m

]
, w =

 w1

· · ·
wm

 ()

whereX ′
p is defined as follows (with [X]i,j denoting xij):

[X ′
p]i,j =

{
1, [X]i,p falls into the j-th bin
0, otherwise

()

Each observation is now transformed into a sparse vector of dimension kmwithmnon-zero terms.
While we lose some information about the features, we can nowmodel non-linear effects in each
coordinate. We can write down the parameter estimation problem as:

minimize
w

L(y;X ′w)

subject to ∥Dw∥q ≤ ϵ
()

or in the equivalent Lagrangian form for some problem specific value of λ:

minimize
w

L(y;X ′w) + λ∥Dw∥q ()

where L(y;X ′w) is an exponential family negative log-likelihood or some other convex loss func-
tion and D is a block matrix which evaluates discretized derivatives of the coefficients for each
binned explanatory variable:

D =


D1

D2

· · ·
Dm

 . ()

As shown in section ., we can choose appropriateDi depending on the structure of the problem
and our objectives. Finite difference matrices of up to third order are likely to be sufficient for
most applications. e parameter λ can then be chosen by cross-validation. Sometimes itmay also
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Figure : Le: Sum insured vs. age interaction for claim frequency in a motor portfolio (same
data as Figure ) using the incidence matrix penalty (“fused lasso”). Right: Same interaction but
penalising the second order discrete derivative in both coordinates.

be appropriate to introduce independent smoothing parameters (but will make their estimation
more difficult):

minimize
w

L(y;X ′w) + λ1∥D1w1∥q + . . . + λm∥Dmwm∥q. ()

Notably we can still perform variable selection analogous to the standard ℓ1-norm regularisation
() by adding a “group lasso” penalty []:

minimize
w

L(y;X ′w) + λ∥Dw∥q + µ
m∑
i=1

∥wi∥2. ()

Here the term∑m
i=1 ∥wi∥2 encourages the individual components ofw to go uniformly to zero as

the parameter µ is increased.

.. Variable interactions

In a Gaussian additive model with identity link function the effect of all the explanatory variables
is a sum of their individual effects. Individual effects show how the expected response varies as
any single explanatory variable is changed with the others held constant at arbitrary values. For
example in order to maximize the expected response we only need to separately maximize each of
the component functions of the additive model.

In general there are no guarantees that an additive model will provide a satisfactory fit in any
given situation. Non-additivity means that, as one explanatory variable is varied, the effect on the
expected response depends on the fixed values of the other variables. Below is an example of how
we would change equation () if the model is non-additive in variables x1 and x2:

g(µ) = w0 + h(x1, x2) + f3(x3) + · · ·+ fm(xm). ()

We can model non-additivity by including the corresponding interactions. Using the notation
from equation  we can define the interactionX ′

(1,2) as:

[X ′
(1,2)]i,∗ = [X ′

1]i,∗ ⊗ [X ′
2]i,∗, ()

where e.g. [X ′
1]i,∗ denotes the i-th row ofX ′

1 and ⊗ is the Kronecker product.
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In the resulting model, we can penalize first, second or higher order derivatives in x1 and x2
coordinates (see Figure ), cf. smoothing over a regular grid in section (.). Another possibility
is to work with the graph Laplacian, which in this case has a particularly simple form:

L(1,2) = I ⊗D′ +D′ ⊗ I, ()

withD′ a k × k variant of the second differences matrixD(2,k) with zero padding.

.. Spatial smoothing and clustering

As geographic regions are not usually arranged in a regular grid the approach in the previous sec-
tion is not directly applicable for spatial smoothing. Instead, we can introduce indicator variables
for each geographic grouping present in the data (postcode, census zone or even unique coor-
dinates) and use a suitably constructed graph representing distance and adjacency information
for regularization. Depending onwhether we use the graph incidencematrix or the Laplacian, for
q = 1we can obtain either a piecewise constant or a smoothly varying surface (see Figure ) jointly
with the other model parameters:

minimize
w

L(y;X ′w) + λ ∥Dw∥1 , ()

whereD is a block diagonal matrix (cf. equation ) and one of the blocks is either the aforemen-
tioned graph incidence matrix or the graph Laplacian. As before, the value of λ can be chosen by
cross-validataion.

. Kalman filter and dynamic models
Kalman filter [] and related ideas have played a central role in the development of state space
methods in engineering control through out s (culminating in the linear quadratic Gaussian
theory). Remarkably, the first practical application of the Kalman filter was to improve the ac-
curacy of navigation for the Apollo program, quickly followed by adoption for a wide range of
aerospace problems. In these applications the goal is typically to track the “state” of a missile or
a spacecra obeying Newtonian dynamics. e state vector would contain the current position
together with velocity and acceleration vectors and the goal would be to repeatedly re-estimate
the state using measurements coming in from a range of sensors, such as inertial, optical, ground
based radar etc.

Kalman filter also has quite a long history in the actuarial literature both as a generalization of
the classical linear credibility models [, ] and applied to optimal updating of claim reserves
[, ]. Below we formulate the Kalman filter as an optimization problem and describe some in-
tuitive extensions thatmake the technique directly applicable to tasks such as ongoingmonitoring
of conversion rates, claim frequencies or other aspects of portfolio performance.

.. Kalman filter as an optimization problem

Consider the standard least squares problem (see also Appendix B.):

minimize
w

∥y −Xw∥22, ()
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and partition the design matrixX and the response vector y intom row blocks, corresponding to
time periods:

X =

 X1

· · ·
Xm

 , y =

 y1

· · ·
ym

 . ()

We can then equivalently transform () by introducing m copies of the parameter vector and
some linear equality constraints:

minimize
w1,...,wm

m∑
t=1

∥yt −Xtwt∥22

subject to wt+1 −wt+1 = 0, t = 1, . . . ,m− 1.

()

e above model can also be written in the state space form with the identity state transition
matrix, no state transitionnoise and i.i.d. Gaussianobservationnoise, wherewt is the unobserved
state vector and yt are the observations associated with time dependent observationmatricesXt:

wt+1 = wt, yt = Xtwt + ϵt,

ϵt ∼ N (0, I).
()

By introducing i.i.d. Gaussian state transition noise:

wt+1 = wt + νt, yt = Xtwt + ϵt,

νt ∼ N (0, I), ϵt ∼ N (0, I)
()

we effectively relax the equality constraints in () replacing themwith a squared ℓ2-norm penalty
term. It is then possible to perform estimation by solving the following convex optimisation prob-
lem:

minimize
w1,...,wm

m∑
t=1

∥yt −Xtwt∥22 +
m−1∑
t=1

∥wt+1 −wt∥22, ()

which amounts to substituting every independent variable in the model by its interaction with
the time index variable t and regularizing the differences in the corresponding parameters. e
estimation problem can be either solved directly or transformed back to the standard least squares
form:

minimize
w

∥y′ −X ′w∥22, ()

where the design matrixX ′ and the response vector y′ are redefined as follows:

X ′ =


X1

−I I

· · ·
−I I

Xm

 , y′ =


y1

0

· · ·
0

ym

 , w =

 w1

· · ·
wm

 . ()

e formulation in () simultaneously performs both “filtering” and “smoothing” condi-
tional on all the observations up to timem. If new information becomes available the augmented
optimization problem should be solved again to obtain new estimates of the entire history of state
transitionsw∗ = [w∗

1, . . . ,w
∗
m,w

∗
m+1]

T . StandardKalmanfilter given informationup to timem+1,
on the other hand, only updates the estimate of the current state w∗

m+1 and requires a backward
Wecan in fact avoid theGaussianity assumptionbypositing a quadratic loss function instead. eestimators obtained

are the same in both cases.
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“smoothing” pass to update estimates of past statesw1, . . . ,wm.
Indeed, the Kalman filter followed by a “smoothing” step can be viewed as a computationally

efficient recursive procedure for solving the normal equations of the least squares problem ()
which exploits block tri-diagonal structure of the matrix X ′. With advances in numerical linear
algebra routines for sparse matrices and increasing computer speeds very large problems of this
kind can be solved directly.

So far we focused on the special case with the identity state transition matrix and i.i.d noise,
however state estimation in the the general linear Gaussian state space model:

wt+1 = Fwt + νt, yt = Xtwt + ϵt,

νt ∼ N (0,Σν), ϵt ∼ N (0,Σϵ)
()

can also be expressed as a convex optimisation problem. Denoting ∥a∥P = (aTPa)
1
2 , P -quadratic

norm for a positive definite matrix P , it is:

minimize
w1,...,wm

m∑
t=1

∥yt −Xtwt∥2Σ−1
ϵ

+
m−1∑
t=1

∥wt+1 − Fwt∥2Σ−1
ν
. ()

Notably we can recover bothWhittaker graduation and Jones-Gerber “evolutionary” credibil-
ity [] as state space models by choosing a one dimensional state vector wt with the observation
matrixXt a constant vector 1 [, ]:

minimize
w1,...,wm

m∑
t=1

∥yt − 1wt∥22 +
m−1∑
t=1

∥wt+1 − wt∥22. ()

When there is only a single observation per time step, this is identical to Whittaker graduation
with first order differences as in (), while the Gerber-Jones model allows multiple observations
per time period.

.. Some extensions to the dynamic models:

We can use any convex loss for the observations, such as quantile or logistic, and still end up with
a convex optimization problem:

minimize
w1,...,wm

m∑
t=1

L(yt;Xtwt) +

m−1∑
t=1

∥wt+1 −wt∥22. ()

In the context of dynamic generalized linear models this corresponds to posterior mode estima-
tion as proposed by Fahrmeier [, ]. Non-Gaussian state noise is another possibility. It may be
appropriate to apply ℓ1-norm penalty to state changes provided most of the time parameters stay
constant with occasional large jumps (cf. Figure ):

minimize
w1,...,wm

m∑
t=1

L(yt;Xtwt) +
m−1∑
t=1

∥wt+1 −wt∥1. ()

Another possibility is a combination of norms, e.g. an approach combining squared ℓ2-norm and
ℓ1-norm penalties will attempt to decompose the state trajectory into a smooth and a piecewise
constant component:

minimize
w,c

m∑
t=1

L(yt;Xt(wt + ct)) + λ
m−1∑
t=1

∥wt+1 −wt∥1 + µ
m−1∑
t=1

∥ct+1 − ct∥22. ()
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Wecan also allow linear trends in the parameters (this formulation can be reduced to the standard
state space model by expanding the state vector):

minimize
w1,...,wm

m∑
t=1

L(yt;Xtwt) +
m−2∑
t=1

∥wt+2 − 2wt+1 +wt∥1. ()

Finally it is possible to add arbitrary convex inequality and linear equality constraints (see section
..), so e.g. seasonality adjustments can be handled by introducing new variables c1, . . . , cm and
equality constraints:

minimize
w,c

m∑
t=1

L(yt;Xt(wt + ct)) +

m−1∑
t=1

∥wt+1 −wt∥22

subject to ct = ct+k, t = 1, . . . ,m− k
m∑
t=1

ct = 0.

()

Formulating state space models as regularized regression can make them considerably more intu-
itive for those lucky not to have a background in control theory.

. Other applications

.. Hierarchical credibility

We can describe hierarchical credibility [, ] models (closely related to both “random effects”
from statistics literature [, ] and linear filtering [, ]) in the optimization framework pro-
vided variances are known. is can be achieved by introducing additional variables to the opti-
mization problem. Consider a simple setup with two risks I1 and I2 with observations yi, i ∈ Ij ,
for j ∈ {1, 2} with unit variance and the following group mean:

Eyi = wj , ∀i ∈ Ij , ()

where wj are themselves random variables with group mean w and known variance:

Ewj = w, Var(wj) = σ2, j = 1, 2. ()

We can then obtain the linear credibility estimator as a solution of the following optimization
problem:

minimize
w1,w2,w

2∑
j=1

∑
i∈Ij

(yi − wj)
2 +

1

σ2

2∑
j=1

(wj − w)2. ()

While the notation above is rather cumbersome, complex models are easy to implement in prac-
tice. is can be achieved by augmenting the data with indicator variables for the lowest level of
the hierarchy and regularizing by the squared Euclidean norm of the product of the (tree) graph
incidence matrix representing the hierarchical structure and the parameter vector.

.. Constraints on relativities

Treating maximum likelihood estimation of GLM parameters as a convex optimization prob-
lem allows us to introduce arbitrary convex constraints on rate relativities in addition to various
smoothness penalties described earlier. One such constraint in the classical GLM theory is the
“offset”, used e.g. to allow for exposure in Poisson models. It amounts to setting the coefficient
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associated with the offset term xi equal to one:

minimize
w

L(y;Xw)

subject to wi = 1.
()

Given the range of practical insurance applications of this simple device [], the overall approach
seems promising.

Consider for example an additive model with binned variables and the associated regulariza-
tion term (). Possible constraintswould include bounds on the absolutemagnitude of the effect
wi associated with the i-th risk factor or its rate of growth (first differences):

minimize
w

L(y;X ′w) + λ∥Dw∥1

subject to wi ≥ −ϵ11

wi ≤ ϵ11

minimize
w

L(y;X ′w) + λ∥Dw∥1

subject to D(1,k)wi ≥ −ϵ21

D(1,k)wi ≤ ϵ21.

()

In the above≥ denotes entrywise vector inequality and the constraints can alternatively bewritten
as:

|wij | ≤ ϵ1, i = 1, . . . , k |wi,j+1 − wij | ≤ ϵ2, i = 1, . . . , k − 1. ()

We can also directly control the shape of the additive effect in a particular variable, requiring it,
for example, to be non-decreasing or convex (these twomight be appropriate for sum insured and
driver age respectively):

minimize
w

L(y;X ′w) + λ∥Dw∥1

subject to D(1,k)wi ≥ 0

minimize
w

L(y;X ′w) + λ∥Dw∥1

subject to D(2,k)wi ≥ 0
()

Here monotonicity constraints can be written without matrix notation as:

wi1 ≤ wi2 ≤ . . . ≤ wik ()

and similarly for convexity we obtain:

wij − 2wi,j+1 + wi,j+2 j = 1, . . . , k − 2. ()

Finally consider a problem where there are two known risks ξ1 and ξ2 for which we want the
percentage difference in premium tobewithin a certain range ϵ (either due tomarket or regulatory
considerations). Assuming the model uses the log link, this yields:

minimize
w

L(y;Xw)

subject to |wT ξ1 −wT ξ2| ≤ log(1 + ϵ).
()

.. Demand based pricing

In recent years optimization has most oen been mentioned in insurance context in relation to
various aspects of “demand driven” pricing which amounts to varying margins in order to maxi-
mize underwritingprofit. Belowwepresent a very simplemodel for pricing renewalswhich admits

Remarkably, there are entire monographs devoted to this topic under the name of otonic regression.
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Figure : Le: Logistic demand ψi(pi) and revenue ri(pi) = (pi − ci)ψi(pi) as functions of price
pi. Right: Revenue r(di) =

(
ψ−1
i (di)− ci

)
di as a function of demand di is concave for di ∈ [0, 1].

a convex reformulation:
maximize
p1,...,pn

n∑
i=1

(pi − ci)ψi(pi)

subject to
n∑

i=1

ψi(pi) ≥ C.

()

emodel maximizes the total revenue objective for a cohort of n policies subject to a constraint
on minimum retention level, where for i-th policyholder pi is the proposed premium, di = ψi(pi)

is the expected demand as a function of premium and ci is the expected cost of claims. is opti-
mization problem is not convex in general, however, for monotone demand functions from cer-
tain parametric families e.g. logistic and probit (see [] for a detailed discussion) we can obtain a
convex equivalent (or rather a maximization problem with a concave objective) parametrized by
expected demand di (see Figure ):

maximize
d1,...,dn

n∑
i=1

(
ψ−1
i (di)− ci)

)
di

subject to 0 ≤ di ≤ 1, i = 1, . . . , n
n∑

i=1

di ≥ C.

()

Here ψ−1
i (di) is the inverse demand function which can be uniquely defined for di ∈ [0, 1].

It is worth noting that both claim costs and demand are usually not known precisely or even
with reasonable accuracy and the rates obtained from () do not in fact maximize the expected
revenue, but rather the “certainty equivalent” objectivewherewe have replaced stochastic demand
and claim costswith their expected values. Amore accuratemodelwouldhave the following form:

maximize
p1,...,pn

Eω

( n∑
i=1

(pi − ci(ωi))ψi(pi, ωi)
)

subject to Eω

( n∑
i=1

ψi(pi, ωi)
)
≥ C,

()

where the expectation is with respect to the joint distribution of individual demand functions and
claims costs. Clearly some simplifying assumptions about the distribution will need to be made
in order to make its estimation tractable. e interpretation of the volume constraint holding in
expectation is also quite difficult. To address the latter point it may be appropriate to consider e.g.
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the expected shortfall (reminiscent of conditional risk measures):

Eω

([
C −

n∑
i=1

ψi(pi, ωi)
]
+

)
≤ ϵ. ()

Techniques that attempt to address this type of problems usually go under the name of stochastic
optimization [].

 S   
Until recently, solving convex optimization problems required not inconsiderable subject mat-
ter expertise and even increasing availability of high quality open source and commercial solvers
(, , , ) did not allay the situation. e reason for this is that these
solvers require problems to be converted to one of several restrictive standard forms (e.g. a second
order cone program). In some cases such a transformation is not possible and it may be necessary
to develop a custom solver. For a potential user with a focus on applications these requirements
are challenging to say the least.

is has recently changed with the introduction of  [, ], a high level specification
language for general convex optimization. It provides a convenient interface for specifying con-
vex optimization problems and then automates underlying mathematical steps for analysing and
solving them. e underlying solvers can oen handle sparse instances with millions of variables.
While the idea of a an optimization modelling language is not new (e.g. ), existing com-
mercial offerings can not handle general convex problems.

Below is sample / code for the problem ():

n = length(y); %length of timeseries y
m = n-2; %length of Dw
lambda = 15;

I2 = speye(m,m);
O2 = zeros(m,1);
D = [I2 O2 O2]+[O2 -2*I2 O2]+[O2 O2 I2];

cvx_begin
variable w(n)
minimize(sum_squares(y-w)+lambda*norm(D*w,1))

cvx_end

Due to some limitations in the way the current version of  deals with problems that are not
SDP representable (e.g. loss functions involving logarithms and exponentials) for large problems
it may sometimes be necessary to implement an iterative reweighting scheme similar to Fisher
scoring, such as in [], with  in the inner loop. For very large problems decompositionmeth-
ods are available, see [] for an accessible introduction and examples.

Please contact the author for larger examples described in this paper.
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A

A B   
As mentioned earlier, it is oen the easiest to verify convexity by checking whether a given func-
tion is composed from known convex primitives by applying convexity preserving transforma-
tions. Below we list a subset of these sufficient to verify convexity of problems described in this
paper.

A. Functions of a single variable:
• Exponential. eαx is convex on R for any α ∈ R.

• Powers. xα is convex on (0,+∞) for α ≥ 1 or α ≤ 0, and concave for 0 ≤ α ≤ 1.

• Logarim. log x is concave on (0,+∞).

A. Vector norms:
All vector norms on Rn are convex. A function f : Rn → R is called a norm if:

• f(x) ≥ 0 for all x ∈ Rn,

• f(x) = 0 only if x = 0,

• f(αx) = |α|f(x), for all x ∈ Rn and α ∈ R,

• f satisfies the triangle inequality: f(x+ y) ≤ f(x) + f(y), for all x,y ∈ Rn.

Such functions are usually denoted ∥x∥ rather than f(x) with a subscript to indicate the exact
norm being used. ey can be interpreted as measuring the length of the elements of Rn. Most
common is the Euclidean or the ℓ2-norm defined as:

∥x∥2 =
√
xTx =

(∑
i

x2i

) 1
2

. ()

Two other examples of norms on Rn are the absolute value or ℓ1-norm:

∥x∥1 =
∑
i

|xi| ()

and the max or ℓ∞-norm, given by:

∥x∥∞ = max (|x1|, . . . , |xn|) . ()

ese can be generalized as the ℓp-norm, for p ≥ 1:

∥x∥p =
(∑

i

|xi|p
) 1

p

, ()

where ℓ∞-norm obtains as p→ ∞. It is easy to check convexity of norms from the definition.
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A. Other functions on Rn

• Max function. e function max(x1, . . . , xn) is convex on Rn. Note that it is distinct from
the ℓ∞-norm.

• So max. e so called “so max” function log(ex1 + · · · + exn) is convex on Rn. It can be
viewed as a differentiable approximation ofmax(x1, . . . , xn).

• Geomric mean. e geometric mean f(x) = (
∏n

i=1 xi)
1
n is concave for xi > 0, i = 1, . . . , n.

A. Transformations that preserve convexity
Convexity is maintained for certain compositions of convex functions, for example:

A.. Weighted sums:

Aweighted sum of convex functions

f = α1f1 + · · ·+ αnfn ()

is convex if all the weights are non-negative, αi ≥ 0, i = 1, . . . , n. Similarly a weighted sum of
concave functions is concave for non-negative weights.

A.. Composition with an affine function:

If f is a convex function, f : Rm → R, A is anm× nmatrix and b a vector in Rn then g : Rn → R:

g(x) = f(Ax+ b) ()

is also a convex function. Similarly, g is concave if f is concave.

A.. Composition of multivariable functions:

Suppose that a function f : Rn → R has the following form:

f(x) = h(g(x)) = h(g1(x), . . . , gm(x)), ()

where gi : Rn → R, i = 1, . . . ,m. en the following holds:

• f is convex if functions gi are convex and h is convex and non-decreasing in each argument,

• f is convex if gi are concave and h is non-increasing in each argument.

B S GLM   

B. Gaussian
Assume yi ∈ R follows a Gaussian distribution with known variance σ2 and mean µi then its
probability density function is:

p(yi) =
1√
2πσ2

exp

(
−(yi − µi)

2

2σ2

)
. ()
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We can then express µi as a linear function (ignoring the intercept term for clarity) of the vector
of explanatory variables xi ∈ Rm, parametrized byw ∈ Rm :

µi = wTxi. ()

e likelihood function for n independent observations (yi,xi) is given by:

p(y;Xw) =
n∏

i=1

1√
2πσ2

exp

(
−(yi −wTxi)

2

2σ2

)
, ()

where X is the design matrix with rows xi for i = 1, . . . , n and the loss or negative log-likelihood
function is as follows:

L(y;Xw) = −
n∑

i=1

log

(
1√
2πσ2

exp

(
−(yi −wTxi)

2

2σ2

))

=
n∑

i=1

1

2σ2
(yi −wTxi)

2 +
1

2
log(2πσ2).

()

We can obtain an estimate ofw by solving a convex optimization problem (to check convexity in
w, observe that it is a square of ℓ2-norm composed with an affine function):

minimize
w

n∑
i=1

(yi −wTxi)
2, ()

which in matrix notation can be restated as:

minimize
w

∥y −Xw∥22. ()

B. Poisson
Take yi ∈ Z+ to be a random variable with Poisson distribution and mean µi > 0:

P (yi = k) =
e−µiµk

i

k!
. ()

e mean µi can be modelled via the log link as a linear function of the vector of explanatory
variables xi ∈ Rm:

µi = exp(wTxi). ()

Herew ∈ Rm is the parameter vecor. Given n independent observations (yi,xi), i = 1, . . . , n, the
likelihood function is as follows:

p(y;Xw) =
n∏

i=1

exp
(
− exp(wTxi)

)
exp(wTxi)

yi

yi!
, ()

with the corresponding loss or negative log-likelihood:

L(y;Xw) =
n∑

i=1

(
exp(wTxi)− yiw

Txi + log(yi!)
)
. ()
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Amaximum likelihood estimate of w can then be obtained by solving the convex loss minimiza-
tion problem (convexity follows directly from the composition rules defined in A.):

minimize
w

n∑
i=1

(
exp(wTxi)− yiw

Txi

)
. ()

B. Logistic
Consider a random variable yi ∈ {0, 1}, with the binomial distribution:

P (y = 1) = µi, P (y = 0) = 1− µi, ()

where µi ∈ [0, 1] is the expected value of yi. It depends on a linear function of a vector of explana-
tory variables xi ∈ Rm via the logistic link:

µi =
exp(wTx)

1 + exp(wTx)
, ()

where w ∈ Rm is the vector of model parameters. Given n independent observations (yi,xi), i =

1, . . . , n and defining I0 = {i | yi = 0} and I1 = {i | yi = 1} we obtain the following likelihood
function:

p(y;Xw) =
∏
i∈I1

exp(wTxi)

1 + exp(wTxi)

∏
i∈I0

(
1− exp(wTxi)

1 + exp(wTxi)

)
. ()

e corresponding negative log-likelihood or loss function has the form:

L(y;Xw) = −
∑
i∈I1

log

(
exp(wTxi)

1 + exp(wTxi)

)
−

∑
i∈I0

log

(
1− exp(wTxi)

1 + exp(wTxi)

)

= −
∑
i∈I1

wTxi +
n∑

i=1

log
(
1 + exp(wTxi)

) ()

It is easy to check that L(y;Xw) is a convex function in w (composition of so max and affine).
Maximum likelihood estimation for logistic regression is then equivalent to a convex loss mini-
mization problem:

minimize
w

−
∑
i∈I1

wTxi +
n∑

i=1

log
(
1 + exp(wTxi)

)
. ()
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