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Abstract 
Motivation.  Selecting loss ratio trends is an integral part of NCCI aggregate ratemaking.  The trend selection 
draws on an exponential trend (ET) regression model that is applied, alternatively, to the latest 5, 8, and 15 
observations (dubbed 5-point, 8-point, and 15-point ET).  Then, using actuarial judgment (which may account 
for a variety of influences), the three estimates are aggregated into a single forecast.  This process of decision 
making under uncertainty can be formalized using Bayesian model selection. 
Method.  A Bayesian trend selection (BTS) model is introduced that averages across the three ET models.  
Using a double-exponential likelihood, this model minimizes the sum of absolute forecast errors for a set of 
(overlapping) holdout periods.  The model selection is accomplished by means of a categorical distribution with a 
Dirichlet prior.  The model is estimated by way of Markov chain Monte Carlo simulation (MCMC). 
Results.  The BTS is validated on data from past ratemaking seasons.  Further, the robustness of the model is 
examined for past ratemaking data and a long series of injury (and illness) incidence rates for the manufacturing 
industry.  In both cases, the performance of the BTS is compared to the 5-point, 8-point, and 15-point ET, using 
the random walk as a benchmark.  Finally, for the purpose of illustration, the BTS is implemented for an 
unidentified state. 
Availability.  The model was implemented in R (cran.r-project.org/), using the sampling platform JAGS (Just 
Another Gibbs Sampler, www-ice.iarc.fr/~martyn/software/jags/).  JAGS was linked to R via the R package 
rjags (cran.r-project.org/web/packages/rjags/index.html). 
 
Keywords.  Model Selection, Model Averaging, Model Robustness, Aggregate Ratemaking, Trend Estimation, 
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______________________________________________________________________________ 

1. INTRODUCTION 

Selecting loss ratio trends is an integral part of NCCI aggregate ratemaking.  The trend selection 

draws on an exponential trend (ET) regression model that is typically applied to the latest 5, 8, and 

15 observations; these three alternative regressions are dubbed the 5-point, 8-point, and 15-point 

ET.  Then, using actuarial judgment (which may account for a variety of influences), the three 

estimates are aggregated into a single forecast.  This process of decision making under uncertainty 

can be formalized using Bayesian model selection. 

In what follows, a Bayesian trend selection (BTS) model is introduced that averages across the 

three ET models.  Using a double-exponential likelihood, this model minimizes the sum of absolute 

forecast errors for a set of (overlapping) holdout periods.  The model selection is accomplished by 

means of a categorical distribution with a Dirichlet prior.  The model is estimated by way of Markov 

chain Monte Carlo simulation (MCMC). 

The BTS is validated on data from past ratemaking seasons.  Further, the robustness of the 

model is examined for past ratemaking data and a long series of injury (and illness) incidence rates 

for the manufacturing industry.  In both cases, the performance of the BTS is compared to the 5-
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point, 8-point, and 15-point ET, using the random walk as a benchmark.  Finally, for the purpose of 

illustration, the BTS is implemented for an unidentified state. 

The BTS, as any model, is limited in the scope of information that it is capable of processing—at 

the same time, this statistical model is not subject to potential biases of human decision making.  On 

one hand, human judgment is capable of considering influences beyond the scope of statistical 

models, such as changing economic conditions.  On the other hand, research pioneered by Amos 

Tversky and Daniel Kahneman shows that human decision making is subject to systematic errors.  

Although decision making under uncertainty is liable to random errors (if only due to measurement 

errors in the data), systematic errors lead to predictable biases.  Most interestingly, Tversky and 

Kahneman [10] argue that the prevalence of biases is “not restricted to the layman.  Experienced 

researchers are also prone to the same biases—when they think intuitively.” 

Among the biases identified by Tversky and Kahneman [10] is one related to the availability of 

events, that is, the ease with which occurrences can be retrieved from the memory bank.  The more 

available an event is, the more this event weighs on the decision, all else being equal.  Among the 

factors shaping the availability of an event is its salience.  Events that occur more recently or have 

greater degrees of immediacy (for instance, seeing a house burn, as opposed to reading about the fire 

in the newspaper) loom larger on the human mind.  The salience bias poses a risk of overreacting to 

recent events and extreme outcomes.  For an extensive discussion of the availability bias, see Taylor 

[9]. 

1.1 Research Context 

Past work on trend modeling in the context of ratemaking in workers compensation includes 

Brooks [2], Evans and Schmid [4], and Schmid [7].  All of these approaches face a major challenge in 

the shortness and comparatively high volatility of the available time series. 

Brooks [2] studied the determinants of indemnity frequency for California using ordinary least 

squares regression.  Indemnity frequency is defined as the ratio of indemnity-related claim count to 

payroll at the 1987 wage level.  The explanatory variables comprise measures of indemnity benefit 

and medical benefit levels, macroeconomic variables, and the ratio of cumulative injury claims to 

total indemnity claims; the latter variable accounts for more than half the explanatory power of the 

presented models. 

In Brooks [2], all variables are transformed into first differences (on the raw scale; on the scale of 

the natural logarithm, such first differences would represent continuously compounded rates of 
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growth).  The author runs 84 indemnity frequency regressions (the maximum possible number, 

given the set of available explanatory variables), orders them by the adjusted R-squared, and then 

publishes the seven highest ranking models. 

Brooks [2] aims at a high R-squared (adjusted for the degrees of freedom), by having “accounted 

for as much variation as possible.” Brooks [2] reads a high explanatory power of the model as an 

indication that the estimates “are not distorted due to a misspecified model with a large portion of 

unaccounted-for variance.” Yet, there is little relation between a small forecast error and a high R-

squared.  For instance, in a game of (two six-faced) dice, seven is the best forecast for any toss, 

because this is the forecast that minimizes the expected forecast error; at the same time, regressing 

49 sevens on the 49 possible outcomes of this game of dice generates an R-squared of zero.  See also 

Armstrong [1], who argues against the use of the R-squared (and, more generally, measures of in-

sample fit) in selecting the most accurate time-series model. 

The approach of considering a multitude of models, as pursued by Brooks [2], creates a condition 

of multiple comparisons.  Considering a set of statistical hypotheses simultaneously increases the 

probability of false positives in the context of traditional significance tests, and thus invalidates 

conventional measures of statistical significance.  For instance, when applying a type 1 error 

probability of 10 percent in an F-test (that is, in an analysis of variance, which tests the statistical 

significance of the model), 10 percent of a random set of models are statistically significant by 

chance, on average.  Specifically, among the 84 models that Brooks [2] ran, in expected value terms, 

eight will turn out statistically significant by chance. 

Evans and Schmid [4] discuss the use of the Kalman filter for frequency and severity forecasting 

in NCCI aggregate ratemaking.  Although, in general, the Kalman filter is a powerful tool for 

breaking down time-series data into signal and noise, the time series employed in NCCI ratemaking 

are too short to estimate reliably the variances of innovation and white noise.  Specifically, in short 

time series, the Kalman filter may overestimate the innovation variance, thus favoring the random 

walk (over alternative data-generating processes). 

Schmid [7] tries to overcome the problem associated with the Kalman filter in short time series 

by using a random-walk smoother.  The innovation variance of this smoother is calibrated such that 

the root mean squared forecast error for the time horizon of three years is minimized, on average.  

Although this model performs as expected, it is difficult to communicate to the decision maker. 
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The advantage of the approach by Brooks [2] is its use of covariates, which, in a single-equation 

model, may improve the forecasts considerably.  Forecasts for macroeconomic variables that may 

serve as covariates may be readily available from professional forecasting firms.  Conversely, the 

model developed by Brooks [2] requires forecasts for the ratio of cumulative injury claims to total 

indemnity claims, which is the covariate that wields the most explanatory power (Brooks [2]).  This 

ratio may be just as difficult to forecast as the variable of interest.  From this perspective, the use of 

covariates can pose an obstacle when using single-equation regression models for the purpose of 

forecasting. 

1.2 Objective 

The objective is to formalize the actuarial decision making process of trend selection, rather than 

developing a new trend model.  Statistically, this decision making process under uncertainty is a 

problem of model selection.  The models that compete in this selection process are the 5-point, 8-

point, and 15-point ET.  The resulting forecast is a weighted average of the three ET estimates, 

where the weights are the posterior probabilities generated by the model selection process. 

1.3 Outline 

What follows in Section 2 is a description of the forecasting task and the data.  Section 3 offers 

the theoretical framework of Bayesian model selection.  Section 4 presents the validation of the 

model on past ratemaking data.  Section 5 examines the robustness of the model; in addition to 

ratemaking data, the model is applied to a long time series of manufacturing injury (and illness) 

incidence rates.  Section 6 applies the model to an unidentified state.  Section 7 concludes. 

2. FORECASTING TASK AND DATA 

The objective is to forecast, in the context of aggregate ratemaking, compound annual growth 

rates for the indemnity and medical loss ratios or, alternatively, compound annual growth rates for 

frequency and the indemnity and medical severities.  Severity is defined as the ratio of (on-leveled, 

developed-to-ultimate, and wage-adjusted) losses to the number of lost-time claims (developed to 

ultimate).  Frequency is defined as the ratio of the lost-time claim count (developed to ultimate) to 

on-leveled and wage-adjusted premium.  The loss ratio is the product of frequency and the 

respective severity. 

The forecasts apply to the time period between the midpoint of the respective policy (accident) 

year included in the experience period and the midpoint of the proposed rate effective period—this 
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time interval is called the trend period.  For the latest policy (accident) year that is included in the 

experience period, the length of the trend period usually amounts to slightly more than three years.  

The rate effective period is the time period during which the rates are expected to be effective, based 

on the rate filing.  In NCCI rate filings, the experience period comprises at least two policy 

(accident) years. 

All data are state-level observations and are on an annual basis.  From the perspective of the 

model, there is no difference between processing policy year and accident year data.  (In NCCI 

ratemaking, nearly all states operate on policy year information.) 

The ET and, hence the BTS, do not make use of covariates or an autoregressive process.  As a 

result, the forecast compound annual growth rate (CAGR) can be scaled up to the trend period 

simply by means of compounding. 

In NCCI ratemaking, where the experience period comprises more than one policy (or accident) 

year, the ET models make use of policy (or accident) year observations through the end of the 

experience period.  Then, different scale factors are applied for the individual policy (or accident) 

years in the experience period when compounding the CAGR. 

3. STATISTICAL MODELING 

The BTS is a tool for decision making under uncertainty.  Statistically, this concept of decision 

making is implemented by means of model selection in a Bayesian framework.  The objective of the 

approach is to arrive at a forecast by means of weighted averaging across a set of candidate models.  

This set of models arises from the ET applied to a set of time intervals, all of which end with the 

most recent observation but differ by the degree to which they extend into the past.  The weights of 

the average originate in the posterior probabilities by which each of the approaches is deemed to be 

the “true” model. 

3.1 Exponential Trend (ET) 

The ET model regresses the (natural) logarithm of (for instance) frequency on a linear trend.  The 

forecast CAGR is then backed out of the regression coefficient that captures this linear time trend. 
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The semi-logarithmic regression equation reads 

 ln  ,  1,...,      t tY t t T , (1) 

where  ln tY  is the dependent variable (e.g., the natural logarithm of frequency),   is the intercept, 

  is the parameter that captures the time trend, t  is an error term, and T  equals the number of 

observations of the time series. 

The forecast CAGR equals 

ˆ
1e  ,  (2) 

where ̂  is the ordinary least squares estimate of the parameter that reflects the influence of time. 

Note that the least squares approach makes no assumption about the distribution of the 

conditional mean of the dependent variable.  In particular, the conditional mean of y  need not be 

normally distributed for the ET to deliver meaningful estimates. 

Due to the loss ratio being equal to the product of frequency and the respective severity, the 

following relation holds for the CAGR forecasts: 

 
ˆ ˆˆ

1 1
           

   
frequency severityloss ratioe e e  .  (3) 

In NCCI ratemaking, the ET is typically applied to the latest 5, 8, and 15 data points.  The 

forecast growth rate is judgmentally determined and may be interpreted as a weighted average of the 

resultant three CAGR.  By applying judgment, it is possible to factor in influences that lie outside 

the model, such as additional trend estimates or changes in economic conditions. 

3.2 Bayesian Trend Selection (BTS) 

In what follows, the nature of the BTS approach is illustrated for the frequency trend selection; 

the loss ratio trend selections are implemented accordingly and independently.  The CAGR for the 

severity rates of growth are then backed out of the CAGR of frequency and the respective loss ratio.  

Loss ratio modeling is given preference over the modeling of severity, since loss ratio rates of 

growth are generally smoother than severity (and frequency) rates of growth.  This is because the 

numerator of frequency equals the denominator of severity and, as a result, some of the variation of 

the frequency and the severity series cancels out at the level of the loss ratio. 

In a first step, for a given state, three values for the CAGR of frequency are estimated using the 

5-point, 8-point, and 15-point ET.  A holdout period of three years applies to each of the three ET 

specifications, which means that the time windows of the ET models shift into the past by three 
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years.  This estimation process is performed for the S  most recent ratemaking data sets (inclusive of 

the ongoing ratemaking season).  Currently, S  equals three but may be allowed to increase with 

future ratemaking seasons.  By employing such a holdout period, the CAGR forecasts can be 

compared to the realized values three years hence.  The three-year holdout period is motivated by 

the length of the trend period in aggregate ratemaking, which typically amounts to slightly more than 

three years, as mentioned.  (Note that the S  holdout periods are overlapping, since they are three-

year time windows that move in increments of one year.)  The realized CAGR three years hence that 

is compared to the ET forecast defined in Equation (2) is calculated as 3
3/ 1T TY Y   , where Y  is 

the observed value of frequency. 

In the BTS framework, the forecasts and the realized values three years hence are related to each 

other by means of a double exponential distribution.  In this model, there are S  observations, since 

every frequency data set generates one data point.  The three ET forecasts compete for being 

considered as the location parameter of the double-exponential distribution.  This selection process 

is accomplished by means of a categorical distribution with a Dirichlet prior. 

In relating forecasts to realized values, the double exponential distribution minimizes the sum of 

absolute forecast errors, as opposed to the sum of squared forecast errors.  In the context of the 

BTS, minimizing the sum of squared forecast errors would be equivalent to minimizing the root 

mean squared forecast error, which Armstrong [1] has shown to be “unreliable, especially if the data 

might contain mistakes or outliers.” Instead, by minimizing the sum of absolute forecast errors, the 

BTS is robust to outliers. 

The BTS model reads 

 Dexp , ,  1,...,s sy s S  � , (4) 

 , 1,...,f
s sy s S  

 , (5) 

 Cat p 
� , (6) 

 Dirchp 


� , (7) 

 1,1,1 
 , (8) 

 ~ Ga 0.001,0.001 , (9) 

= 2 /  , (10)
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where the suffix 1,...,s S  indicates the respective ratemaking data set.  The most recent data set 

pertains to the ongoing ratemaking season, whereas the remaining 1S   data sets originate from 

ratemaking seasons of the immediate past. 

Equation (4) presents the double exponential distribution, which defines the likelihood of the 

Bayesian model; as mentioned, a double exponential likelihood minimizes the sum of absolute 

errors, which are the S  forecast errors from as many holdout periods. 

The model selection mechanism comprises Equations (5) through (8).  In Equation (5), the 

conditional mean of the double exponential distribution is chosen from the vector of the three 

competing CAGR forecasts fy


 that arise from as many ET models.  The parameter  , which takes 

on integer values between (and inclusive of) unity and three, selects the element of the vector fy


 

that is to serve as the location parameter of the double exponential distribution.  This parameter   is 

generated by a categorical distribution (Equation [6]) with a Dirichlet prior (Equation [7]).  The 

parameters of the Dirichlet distribution (Equation [8]) are identical, thus affording each of the three 

ET models equal prior probability of being the “true” model. 

Equation (9) depicts the gamma prior for the scale parameter of the double exponential 

distribution.  Equation (10) denotes the standard deviation of the double exponential errors, as an 

informational item. 

The model is estimated by means of MCMC.  Every iteration of the Markov chain generates a 

draw from the categorical distribution.  The relative frequency with which a model is selected equals 

the posterior probability of this model representing the “true” data-generating process.  The CAGR 

for frequency (and, similarly, for the loss ratios) is then computed as a weighted average of the 

CAGR values of the three ET models estimated without a holdout period, using the latest available 

observations.  The weights of this average are the relative frequencies of the values assumed by the 

parameter  .  The CAGR values for the severities are backed out of the CAGR values for frequency 

and the loss ratios according to Equation (3). 

Finally, in a sensitivity analysis, the BTS is re-estimated S  times, each time leaving out one of the 

S  data sets.  This leave-out-one cross-validation (CV) generates a range of forecasts that do not 

necessarily include the original forecast (that was obtained when including all S  data sets).  Further, 

this range of forecasts can be comparatively narrow, because only the posterior probabilities (of the 

ET models) are cross-validated, not the ET estimates themselves.  A CV range that lies below the 

BTS forecast indicates that the risk is skewed toward the downside, thus implying that the decision 
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maker should be cautious about selecting a value greater than the BTS forecast.  Similarly, a CV 

range that lies entirely above the BTS forecast indicates a risk of the forecast being too low. 

The JAGS code of the BTS outlined in Equation (4) through Equation (10) is documented in 

Appendix 8.1. 

4. MODEL VALIDATION 

The BTS is validated by means of comparing its forecast performance to the 5-point, 8-point, 

and 15-point ET.  The forecasts of all four models are benchmarked to the random walk.  If a time 

series follows a random walk, then the best forecast for any future time period is the latest observed 

value. 

Implementing the BTS requires S  data sets of a contiguous time period—the ongoing and past 

1S  ratemaking seasons.  As discussed, S  is set to three but may be increased as the number of 

available data sets grows with future ratemaking seasons. 

Validating the BTS necessitates a total of 3S  data sets.  For instance, applying the BTS during 

the 2012 ratemaking season (where the latest available policy year is 2010) necessitates data from the 

2011 and 2010 ratemaking seasons as well.  Model validation requires, in addition, data sets from the 

ratemaking seasons 2007 through 2009. 

In a first step, the BTS is applied retrospectively to the 2008 ratemaking season, thus making use 

of the 2008, 2007, and 2006 ratemaking data sets.  Then, in a second step, the three-year CAGR 

forecasts associated with the three ET models and the BTS are compared to the CAGR that were 

observed for the time period 2009 through 2011.  For this purpose, the sums of absolute forecast 

errors are computed across the set of analyzed states and normalized by the forecast error associated 

with the random walk.  (For every state, there is one three-year forecast for each model and data 

series; for instance, there is one BTS forecast for the three-year CAGR of frequency.) 

The model validation makes use of 29 states.  States with an insufficient number of observations 

or insufficient number of past data sets could not be considered.  Such data limitations may arise in 

states that switched from accident year to policy year information in the recent past or in states that 

have only recently been added to the data collection process. 

Chart 1 depicts the absolute forecast errors, summed up across the 29 states and normalized by 

the forecast error of the random walk.  Values greater than unity imply that the respective model 

underperforms the random walk, thus adding no information that is not yet comprised in the latest 
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observed data point.  As judged by the loss ratio forecasts, the BTS is the second-best model, behind 

the 15-point ET.  As an informational item, the BTS comes in first for medical severity, second for 

frequency, and third for indemnity severity, each time outperforming the random walk. 

The performance of the ET models relative to the random walk is most interesting.  On one 

hand, it appears that the frequency rate of growth is highly nonstationary, given the performance of 

the random walk compared to the BTS and the ET models.  On the other hand, the only model that 

beats the random walk is the 15-point ET, which is the model that is most appropriate when the 

frequency growth rate is stationary. 

Chart 1: Sum of Absolute Forecast Errors, Validated on the 2011 Ratemaking Season 

 

5. ROBUSTNESS 

The concept of model robustness has been pioneered by Lars Hansen and Thomas Sargent.  

According to this principle, a decision rule should be designed such that it “works well enough (is 

robust) despite possible misspecification of its model” (Ellison and Sargent [3]).  In particular, the 

performance of the model should be adequate even in a worst-case scenario.  For an extensive 

treatment of the concept of robustness, see Hansen and Sargent [5]. 

In the context of the BTS, robustness has two dimensions.  First, the performance of the BTS in 

forecasting the CAGR of the loss ratios should be adequate for any state.  Specifically, for the loss 
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ratios, the largest absolute forecast error of the BTS should be smaller than the largest absolute 

forecast error within the set of four alternative models, that is, the three ET models and the random 

walk.  Chart 2 shows that the BTS satisfies this condition although, for the indemnity loss ratio, the 

advantage of the BTS over the worst-performing ET (5-point) and the random walk is slender.  

Regarding the ratio that defines the normalized largest absolute forecast error in Chart 2, numerator 

(model) and denominator (random walk) may not refer to the same state. 

Second, the performance of the BTS should be adequate in an environment where the nature of 

the time series changes.  As shown by Schmid [8], the data-generating process of the injury (and 

illness) incidence rate in the manufacturing industry has changed over the course of the 20th century 

from one of high variance and small serial correlation in the error term to one with low variance and 

high persistence in the error.  The structural break in the degree of serial correlation occurred in the 

early 1960s and coincided with the end of a two-decade decline in the variance.  In part, the change 

in the nature of the manufacturing incidence rate may be related to changes in the data collection 

process, although it is worthy of note that OSHA (Occupational Safety and Health Administration) 

did not become effective until 1971. 

Chart 2: Maximum Absolute Forecast Error, Validated on the 2011 Ratemaking Season 

 

Chart 3 depicts the incidence rate of workplace injuries (and illnesses) for the manufacturing 

industry; the series runs from 1926 through 2010.  The incidence rate is on a logarithmic scale, 

which implies that a straight line signifies a constant rate of growth.  The gray vertical bars indicate 
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economic recessions, as defined by the NBER (National Bureau of Economic Research).  With 

OSHA becoming operational in 1971, the incidence rate started including work-related illnesses.  

For methodological details on the incidence rate and for data sources, see Appendix 8.2. 

Chart 3: Manufacturing Injury (and Illness) Incidence Rate, 1926–2010, per 100 FTE Employees 

 
Chart 4 presents the logarithmic rates of growth (that is, first differences in natural logarithms) of 

the manufacturing injuries (and illnesses) incidence rate; again, the gray bars indicate recessions.  The 

decline in variance and the increase in persistence of variations around zero (as a proxy for the 

negative, possibly time-varying mean) are apparent.  Starting in the early 1960s, frequency increases 

are more likely to be followed by further increases than they were in the first half of the 20th 

century; likewise, frequency decreases show more persistence as well.  Clearly, the nature of the time 

series changed over time. 

In the context of the manufacturing incidence rate, a defining characteristic of a robust decision 

rule is its adequate forecast performance in both the early high-variance low-persistence regime and 

the later low-variance high-persistence regime.  In what follows, the three ET models and the BTS 

are applied to the full series (1926–2010); the early regime, inclusive of the transition period (1926–

1964); and the second regime. 
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Similar to studying model robustness for ratemaking data, the 5-point, 8-point, and 15-point ET 

models are applied with a holdout period of three years, using time windows that roll forward at 

increments of one year.  The three forecast errors that are associated with the three neighboring time 

windows are the basis for the model selection of the BTS.  The BTS forecast is then calculated as a 

weighted average of the 5-point, 8-point, and 15-point ET forecasts, where the ET models have 

been run with data leading up to the start of the forecasting horizon (and, hence, without the three-

year holdout period).  The resulting BTS forecast error is compared to the forecast errors of the 5-

point, 8-point, and 15-point ET that enter the weighted average of the BTS forecast. 

Chart 4: Manufacturing Injury (and Illness) Incidence Rate, Log Growth Rate, 1927–2010 

 
Chart 5 depicts for the full manufacturing incidence rate series the sum of absolute errors of the 

three ET models and the BTS, normalized by the sum of absolute forecast errors of the random 

walk.  The BTS and the 5-point ET perform about equally well, outperforming the random walk and 

the 15-point and 8-point ET models, although the performance differences to the 8-point ET is 

slim. 
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Chart 5: Manufacturing Incidence Rate, Sum of Absolute Errors, Normalized, 1926–2010 

 

Chart 6 presents the analysis of the forecast error for the first, high-variance low-persistence 

regime and the subsequent transition period (1926–1964).  Here again, the BTS and the 5-point ET 

perform about equally well, beating the random walk and the 15-point and 8-point ET models. 

Chart 6: Manufacturing Incidence Rate, Sum of Absolute Errors, Normalized, 1926–1964 
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Finally, Chart 7 offers the analysis for the second regime (1965–2010).  In this low-variance high-

persistence setting, only the 5-point ET outperforms the random walk.  The BTS comes in second, 

although the performance differences to the 8-point and 15-point ET models are slender. 

Whereas, for the ratemaking data, the 15-point ET emerged as the highest performing model, for 

the manufacturing incidence rate, it is the 5-point ET.  At the same time, the BTS outperforms the 

15-point ET for the manufacturing series and beats the 5-point ET on the ratemaking data.  The 

BTS performs well in both environments.  Although the BTS never emerges as the winner, it proves 

to be the most robust model. 

The BTS delivers a robust decision rule due to its ability to draw on any of the ET models; the 

BTS makes its model selection based on recent forecast performance.  As the nature of a time series 

changes, the BTS adapts and leans toward the most suitable model.  At the same time, the BTS is 

conservative in its model selection in that it never unequivocally adopts the highest performing 

model (which explains why it underperforms the 15-point ET on the loss ratios and the 5-point ET 

on the manufacturing incidence rate series). 

Chart 7: Manufacturing Incidence Rate, Sum of Absolute Errors, Normalized, 1965–2010 
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6. APPLICATION 

The BTS is applied to an unidentified state.  The data originates from the 2011 NCCI ratemaking 

season. 

There are two types of charts.  The first type of chart displays the observed growth rates, the 5-

point, 8-point, and 15-point ET estimates, and the BTS forecast.  To avoid clutter, the CAGR values 

associated with the three ET models are indicated by boxes (instead of lines), where the horizontal 

distances between the boxes indicate the time intervals associated with 4, 7, and 14 rates of growth.  

Further, there are the CV forecast ranges, which may be close to vanishing in some of the charts. 

The second type of chart displays the posterior probabilities related to the three ET models.  As 

mentioned, these posterior probabilities are the relative frequencies with which any of the three ET 

models was selected during the BTS estimation process.  This second type of chart is available only 

for frequency and the loss ratios—this is because the CAGR forecasts for the severities are backed 

out of the CAGR forecasts for frequency and the respective loss ratio. 

Chart 8 depicts the analysis of the indemnity loss ratio, which displays a clear upward drift.  The 

5-point ET estimate exceeds the 8-point ET estimate, which, in turn, exceeds the 15-point ET 

estimate.  As a consequence of this apparent nonstationarity (that is, time-variation in the mean rate 

of growth), the BTS affords high probabilities to ET models that do not reach deep into the past 

(see Chart 9). 

Chart 10 presents the results for the medical loss ratio.  The growth rate of this time series is 

comparatively stable, as indicated by the close proximity of the 5-point, 8-point and 15-point ET 

estimates to each other.  As a result, the BTS leans toward stationarity (that is, the presumption of a 

time-invariant mean rate of growth), thus preferring estimates based on long time series to estimates 

that rely on only the most recent data points (see Chart 11).  Clearly, if a time series is stationary, the 

CAGR should be calculated from a high number of data points, since this increases the accuracy of 

the estimate. 

Chart 12 displays the frequency analysis.  The rate of frequency growth appears to drift up, as 

indicated by the observation that the CAGR forecasts of the 8-point and 5-point ET models exceed 

the estimate of the 15-point ET.  The BTS forecast is close to the 5-point and 8-point ET estimates, 

as implied by the high posterior probabilities afforded to the two models (see Chart 13). 



Bayesian Trend Selection 

Casualty Actuarial Society E-Forum, Spring 2013 17 

© Copyright 2013 National Council on Compensation Insurance, Inc. All Rights Reserved. 

Chart 8: Indemnity Loss Ratio, Growth Rates, 1996–2009 

 

Chart 9: Indemnity Loss Ratio, Posterior ET Probabilities 
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Chart 10: Medical Loss Ratio, Growth Rates, 1996–2009 

 

Chart 11: Medical Loss Ratio, Posterior ET Probabilities 
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Chart 12: Frequency, Growth Rates, 1996–2009 

 

Chart 13: Frequency, Posterior ET Probabilities 
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severity loss ratio.  Chart 15, on the other hand, indicates that the growth rate of the medical loss 

ratio is highly stationary 

Chart 14: Indemnity Severity, Growth Rates, 1996–2009 

 

Chart 15: Medical Severity, Growth Rates, 1996–2009 
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7. CONCLUSION 

The BTS is an attempt to formalize the trend selection process in NCCI aggregate ratemaking.  

The information processed by the BTS is confined to past forecast errors, which represents both a 

strength and a weakness of this model.  On one hand, the BTS is not prone to biases in human 

decision making.  On the other hand, the model is not capable of processing information that is not 

incorporated in the data, such as changes in the economic or legislative environments that occurred 

between the end of the experience period and the time of decision making. 

Given the relative shortness of the loss ratio data series available in NCCI aggregate ratemaking, 

and considering the high degree of volatility of these series, the use of covariates bears the risk of 

fitting to noise; such overfitting can cause considerable forecast errors.  Further, economic 

conditions tend to mean-revert; for instance, economic recessions usually last less than a year.  The 

comparatively long trend period of slightly more than three years typically suffices for average 

economic conditions to reestablish themselves.  Thus, mean reversion limits the loss of information 

associated with the absence of macroeconomic covariates as long as the decision maker relies on 

long-term averages. 

A major strength of the BTS is its robustness.  Although the BTS underperforms the 15-point 

ET on recent ratemaking data sets, the BTS performs well in an environment where the nature of 

the data-generating process is changing.  Because there is always a degree of uncertainty surrounding 

the process that generates the growth rates of the loss ratios (or alternatively, frequency and the 

severities), the BTS emerges as a robust decision rule. 

The strength of the BTS becomes apparent when, for instance, in a given state, the growth rate 

of frequency repeatedly falls short of its long-term average.  Such was the case during the boom in 

the housing market in the early 2000s, as documented in Schmid [6].  On one hand, the 15-point ET 

generates the smallest forecast errors in general; on the other hand, observing the frequency rate of 

growth falling short of trend for many years running poses a challenge to the decision maker.  

Although these frequency growth rates ultimately mean-reverted, the time it takes for the trend to 

reestablish itself in the observed rates of growth may be longer than a decision maker is prepared to 

tolerate. 
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8. APPENDIX 

8.1 JAGS Code (BTS) 
## Bayesian Trend Selection (BTS) 
model 
{ 
  for(series.i in 1:n.series){ 
    for(year.i in 1:n.model.years){ 
      actual[series.i,year.i] ~ ddexp(mu[series.i,year.i],tau[series.i]) 
      mu[series.i,year.i] <- exp.trend[series.i,year.i,model.id[series.i]] 
    } 
 
    tau[series.i] ~ dgamma(0.001,0.001) 
    sigma[series.i] <- sqrt(2)/tau[series.i] 
 
    model.id[series.i] ~ dcat(model.id.p[series.i,1:n.exp.trend]) 
    model.id.p[series.i,1:n.exp.trend] ~ ddirch(lambda[series.i,]) 
  } 
} 

8.2 BLS Manufacturing Injury and Illness Incidence Rate, 1926–2010 

The long series of manufacturing injury and illness rates (1926–2010) is inspired by research at 

the Federal Reserve Bank of Dallas.  In its Annual Report, authored by Michael Cox and Richard 

Alm (dallasfed.org/assets/documents/fed/annual/2000/ar00.pdf), the Bank published a series of 

injury rates per 1,000 full-time workers in manufacturing for the period 1926 through 1999 (page 8). 

The Dallas Fed series of manufacturing injury and illness incidence rates runs from 1926 through 

1999 and draws on four sources: 

 Historical Statistics of the United States: Colonial Times to 1970, Census Bureau, 1975, 

www.census.gov/prod/www/abs/statab.html; incidence rates are available from 1926 

through 1970 

 Statistical Abstract of the United States, various years, 

www.census.gov/prod/www/abs/statab.html 

 Webster [11]; incidence rates are available from 1977 through 1997 

 BLS 

From 1926 through 1970, the rate is the average number of disabling workplace injuries per 

million man hours worked; effective 1958, the industry definition was revised to conform to the 

1957 edition of the Standard Industrial Classification (SIC) Manual.  (The SIC was developed in the 

1930s; www.census.gov/epcd/www/sichist.htm.) 
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From 1972 on, the number of injuries and illnesses per 100 full-time workers is computed as 

(N/EH) × 200,000, where N is the number of injuries and illnesses and EH is the total hours 

worked by all employees during the calendar year; 200,000 is the base for 100 equivalent full-time 

workers (working 40 hours per week, 50 weeks per year). 

The Statistical Abstract of the United States (1976) reports the old incidence series through 1970 and 

the new series for 1972.  The 1971 incidence rate in our data set, which equals 15.4, was obtained by 

means of linear interpolation, since no incidence rate is reported by the Statistical Abstract of the United 

States, issues 1972 through 1974, 1976 through 1977.  The 1970 number equals 15.2, and the 1972 

number equals 15.6.  Although, due to methodological differences, the new series is not comparable 

to the old series, the structural break between the two series is insignificant.  It is worthy of note that 

the record keeping and data reporting process for the incidence rate changed significantly with 

OSHA (Occupational Safety and Health Administration, www.osha.gov/) becoming operational in 

1971. 

Starting in 2003, the manufacturing industry is no longer defined by the Standard Industrial 

Classification Manual, www.osha.gov/pls/imis/sic_manual.html, but instead is based on the newly 

created NAICS, www.census.gov/eos/www/naics/.  Prior to adopting NAICS, the definition of 

manufacturing had been updated periodically to conform to SIC Manual revisions. 
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Abbreviations and Notations 

BLS Bureau of Labor Statistics 
BTS  Bayesian Trend Selection 
CAGR  Compound Annual Growth Rate
CV Cross-Validation 
ET  Exponential Trend 
FTE  Full-Time Equivalent 
MCMC  Markov Chain Monte Carlo Simulation
NAICS  North American Industry Classification System
NBER  National Bureau of Economic Research
NCCI  National Council on Compensation Insurance, Inc.
OSHA  Occupational Safety and Health Administration
RMSE Root Mean Squared Error 
SIC  Standard Industrial Classification 
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