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Abstract:  
This paper examines different ways of pricing catastrophe (CAT) coverage for reinsurance treaties and large 
insurance accounts.  While all the methods use CAT loss simulation model statistics, they use different 
statistics and different algorithms to arrive at indicated prices.  This paper will provide the reader with the 
conceptual foundations and practical insights for understanding alternative approaches.   
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1. INTRODUCTION 

This paper will examine different ways of pricing the property catastrophe (CAT) coverage 

provided by reinsurance treaties and by insurance policies written on large accounts.   All the 

approaches utilize CAT loss simulation models to estimate key statistics.  However, they differ in the 

choice of statistics and their ways of translating statistics into premiums.  

For the type of business under discussion, all widely-accepted methods use a Return on Risk-

adjusted Capital (RORAC) approach.  Indicated prices are defined as those that hit the specified 

target return on an amount of required capital that has been adjusted for risk.  Where the methods 

differ is in how they arrive at the amount of required capital.   They employ different risk measures 

and they use risk measures in different ways.   

One objective of this paper is to bridge the gap of understanding between abstract formulas and 

black-box simulation software.  It will provide definitions and also demonstrate how to apply them.   

It will show, in particular, how to properly define relevant risk measures on sets of discrete data such 

as those found in a deck of simulated CAT losses by year.    The paper will feature a comparison of 

pricing indications for a few hypothetical accounts.  In the end, the reader should have a better 

understanding of the formulas and a balanced framework for evaluating the alternatives.   

1.1 Existing Literature  

In 1990, Kreps [13] published an influential paper on Marginal Capital methods for pricing 

reinsurance treaties.  He used Marginal Variance as a metric for determining Marginal Capital. 

Mango [15] observed that applying Marginal Variance or Marginal Standard Deviation to CAT 

pricing led to pricing that was Order Dependent.   He proposed an application of game theory to 

eliminate the order dependency.    
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In the late 1990’s, the Value at Risk (VaR) concept moved from the financial literature into rating 

agency capital requirement models.   It was then but a short step before Incremental VaR (also 

referred to as Marginal VaR) approaches to required capital made their way into CAT pricing 

algorithms.  However, theoreticians, such as Artzner, Delbaen, Eber, and Heath [4], had proposed a 

set of fundamental axiomatic properties called coherence and observed that VaR is not coherent.  

Others, including Acerbi and Tashce [1] and Wang [24], also objected to VaR, citing its incoherence 

along with other objections.   Order dependence is also a problem for Marginal VaR.   Meyers, 

Klinker, and Lalonde [19] also highlighted the point that the Marginal VaR method does not 

calibrate automatically with the portfolio and introduced an overall adjustment factor to achieve 

such calibration.    

Rockafellar and Uryasev [22], Acerbi and Tasche [1] and others have promoted use of Tail Value 

at Risk (TVaR) as a risk metric, citing its coherence as a key advantage.  As Uryasev and Rockafellar 

[22] explained, TVaR may not be the same as Conditional Tail Expectation (CTE) in discrete cases.1 

This paper will explain and demonstrate the difference.     

Kreps [14] developed a general riskiness leverage model and also proposed co-statistics as an 

alternative to incremental statistics. Co-statistics provide a method for allocating portfolio capital 

based on account contributions to portfolio results.  This approach has great intuitive appeal, but 

the application of the contribution concept to tail statistics such as VaR and TVaR does not produce 

perfectly well-behaved risk measures. As will be shown later with a simple example, Co-VaR is 

unstable in that modest changes in the inputs can lead to wild swings in the resulting statistic2.  A 

new result in this paper is that Co-TVaR fails subadditivity, a defining property of coherence.  This 

is perhaps a bit surprising since TVaR is coherent and one might have hoped co-measures would 

inherit coherence properties.        

Other authors such as Bodoff [6] and Wang [24] have questioned the exclusive focus on the tail 

inherent in VaR and TVaR.  Bodoff proposed a Percentile Allocation approach and Wang proposed 

use of Distortion Measures.   

Venter [23] and Goldfarb [12] have published excellent survey articles that provide useful 

                                                           
1 Many authors incorrectly assume TVaR and CTE are the same, but this is only true for continuous distributions.  For 
example, D’Arcy [9] wrote, “…Tail-Value-at-Risk (TVaR), which is also termed Tail Conditional Expectation (TCE), 
takes the average of all values above a particular percentile….TVaR only provides the average loss if a loss in excess of 
the TVaR threshold were to occur.”       
2 From informal discussions, the author is aware that this behavior is known to several analysts.  However, it does not 
seem to have been previously noted in the literature. 
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background and discussion.  What is clear from a review of existing literature is that the field is not 

settled.  Practitioners use approaches decried by theoreticians and shrug off anomalies. Yet, the 

experience of 2010-2012 suggests that sub-optimal approaches were used that may have 

inadvertently promoted “de-worsification”.3  Overall, there is no want of proposals and opinions.     

1.2 Organization of the Paper 

The discussion will begin in Chapter 2 with a definition of the indicated account premium based 

on required CAT capital. Chapter 3 will present an overview of risk measure theory and then 

examine several commonly used risk measures.  Chapter 4 will discuss the different algorithms used 

to set CAT capital for an account.   

Then in Chapter 5 several particular algorithms will be reviewed.  Finally in Chapter 6, simulation 

will be used to generate hypothetical years of CAT loss data for a portfolio and two sample 

accounts.  Then risk measures and algorithms will be applied to this set of simulated data to arrive at 

prices based on different procedures.  Chapter 7 will provide several general observations and 

Chapter 8 will have a summary and conclusion. 

2. INDICATED PREMIUM ALGORITHMS 

Let X denote the CAT Loss for a particular account and let P(X) denote the indicated premium 

prior to any loading for expenses.  We may write the indicated premium as the sum of the expected 

CAT Loss, E[X] plus a risk load, RL(X). 

 

 
 

 
Equation (2.1)

We define some basic properties that an indicated pricing algorithm formula should obey.   

Table 1   

Premium Algorithm Basic Properties 

1. Monotonic:  If X1  X2, then P(X1)  P(X2). 

2. Pure:  If X a constant, then RL(X) =0 and P(X)=E[X] =  

                                                           
3 “De-worsification” is a term used ( see article by Brodsky [7] ) to describe overzealous diversification to the point that 
business is written with minimal or no profit load in order to diversify a portfolio.     



Catastrophe Pricing: Making Sense of the Alternatives 
 

Casualty Actuarial Society E-Forum, Spring 2013  4 

3. Bounded:  If X  K, then P(X)  K. 

4. Continuous(Stable):  P(X) is a continuous function4 of  X. 

We say a premium calculation algorithm is coherent if it also satisfies:  

Table 2   

Premium Algorithm Coherence Properties 

1. Scalable:  P(X) =P(X) 

2. Translation Invariant:  P(X+) = P(X)+ 

3. Subadditive:   P(X1 +X2)  P(X1) + P(X2) 

Other authors first define coherence as a set of properties of risk measures, but from our 

perspective it seems more natural to define it first with respect to the indicated premiums.   

2.1 RORAC Pricing Formula 

Write C(X) to stand for the Required CAT Capital for the account.  Applying the RORAC 

approach to pricing, the risk load is given by applying a target return, rTarget, against required capital.  

Thus the indicated premium is given as:  

  Equation (2.1.1)

Note Equation 2.1.1 produces a premium equal to the Expected Loss when the required capital is 

zero.    

3. RISK MEASURES 

The different premium calculations use different formulas for computing Required CAT Capital 

for an account.  They employ different functions, called risk measures, to quantify risk.  The risk 

measures are also used in different algorithmic procedures.  

3.1 Risk Measures 

We define a risk measure simply as a mapping from real-valued random variables to the non-

negative real numbers.  It is desirable that a risk measure, , obey basic properties that correspond to 

                                                           
4 Continuity is with respect to the L1 topology.  
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the basic premium algorithm properties in Table 1:   

Table 3   

Risk Measure Basic Properties 

1. Monotonic:  If X1  X2, then E[X1]+(X1)  E[X2]+(X2) 

2. Pure:  If X a constant, then (X)=0 

3. Bounded:  If X  K, then  (X)  K. 

4. Continuous(Stable):   (X) is a continuous function of  X. 

Note monotonicity for risk measures is more complicated than the corresponding property for 

indicated premiums.  The reason is that if one random variable always exceeds another, it need not 

have more risk.   However, under Property #1 in Table 3, the sum of its measured risk plus its 

expected value should exceed the corresponding sum for the smaller random variable.   The idea of 

purity in a risk measure is that, if the outcome is known and fixed, a pure risk metric will say there is 

no risk.5   Some popular risk measures such as VaR are not pure.  However, unless a risk measure is 

pure, it may produce a pricing algorithm that does not satisfy Basic Property 2 in Table 1 and thus 

may generate a strictly positive risk load even if the loss is fixed and constant. Boundedness requires 

that the measured risk be no greater than the largest possible loss, if there is such a largest loss.  

Finally, the property of continuity means that small changes in the points or probabilities do not lead 

to large changes in the measured value of risk.  As we will see later, some commonly used premium 

algorithms are not stable.   

Going beyond the basic properties, we now turn to the special properties of coherence.  We say a 

risk measure is coherent if it is scalable, translation invariant, and subadditive.    

Table 4   

Coherence Properties of Risk Measures 

1. Scalable:  (X) =(X) 

2. Translation Invariant:  (X+) = (X) when 0 

3. Subadditive:  (X1 +X2)    (X1) + (X2) 

                                                           
5 Panjer and Jing [20] present a similar property called “riskless allocation” under which a risk with no uncertainty gets a 
zero capital allocation.   
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These definitions are arranged so they are consistent with the comparable coherent premium 

calculation properties.    

Some (see Panjer and Jing [20]) believe scalability is a fundamental property expressing the idea 

that currency conversion should not impact measured risk.  Unfortunately, some commonly-used 

measures of risk, such as variance, do not obey the scaling property.    Acerbi and Tasche [1] refuse 

to refer to a function as a risk measure if it does not obey coherence properties.   While we agree 

with the points these authors have made, we choose to use a very broad definition of a risk measure.   

This is for convenience.  We need a ready way to refer to the various functions that are used, rightly 

or wrongly, to measure risk in pricing CAT covers. 

3.1.1 Sign Conventions    

Our approach to sign conventions is the same as that taken in most papers on property and 

casualty insurance.   However, in reviewing the academic and financial literature, a reader may find it 

confusing because sign conventions are the reverse of what we have used.  For example, many 

authors, including Artzner, Delbaen, Eber and Heath [4] as well as Acerbi and Tashce [1], state the 

property of translation invariance as (X + ) = (X) -   

From this perspective, the random variable X represents the net outcome: so a positive result is 

favorable.  Adding a constant reduces the measured amount of risk.   For our work, the random 

variable X represents the CAT loss; so larger positives are less favorable.   

Many of the other financial and academic authors also allow the risk measure to be negative, 

while for our purposes we always want the risk measure to be non-negative.  Again most of the 

writers focusing on property and casualty insurance assume, implicitly or explicitly, that risk 

measures are non-negative.6      

3.1.2 Risk Measure Definitions on Distributions with Mass Points    

In a CAT pricing context, it is important to understand just how to apply the definition of any 

particular risk measure to a loss distribution that has mass points.   There are three reasons for this.  

First, it is common practice to use a CAT simulation model to generate thousands of simulated years 

of results.  So any measure needs to be defined on such a set of discrete sample points.  Second, the 

impact of catastrophic events on underlying building values may produce real mass points.  For 

                                                           
6 In Wang [24] the translation invariance property is presented with all positive signs and in Venter [23] all the risk 
measures are non-negative.  
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example, if a risk has a $100 million beachfront hotel in a hurricane prone locale and no other 

property nearby, there could be a natural mass point at $100 million.  Finally, limits and layering 

could also give rise to mass points.       

3.2 Specific Risk Measures 

We will now list several risk measures, discuss them briefly, and then show how they work on a 

small set of hypothetical sample loss data.   

Table 5   

Specific Risk Measures 

1. Variance:    

2. Semivariance:    

3. Standard Deviation:    

4. Semi Standard Deviation:     

5. Value at Risk:  for 0< < 1 

6. Tail Value at Risk: 

 

7. Excess Tail Value at Risk:		  

8. 

 

Distortion Risk Measure:   
where F*(x) = g(F(X))  for g a distortion function 
 

9. Excess Distortion Risk Measure:   

where E*[X] is the mean under a distortion risk measure 
and  = E[X] 

3.2.1 Variance and Standard Deviation 

Variance and Standard Deviation are well-known.   Both are pure risk measures in the sense we 

have defined that term.   However, Variance is not scalable and is therefore not coherent, but 

Standard Deviation is.    
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Semivariance has been advocated by Fu and Khury [11] and SemiStandard Deviation does obey 

the scaling property (Property 1 in Table 5).   A major appeal of both is that they do not count 

favorable deviations as part of the risk.  Exhibit 1, Sheet 1 shows the computation of these measures 

in an example with twenty sample points.   

3.2.2 VaR, TVaR, and XTVaR 

VaR is a well-known metric that was developed in financial and investment risk analysis settings.  

VaR() is the th  percentile.  It is intuitively the “best of the worst”, the least unfavorable outcome 

from the worst (1- ) % of outcomes.  This may not be precisely correct when there are mass points 

and the cumulative distribution jumps discontinuously.  To make the definition work in the general 

case, the “infimum” formulation is used7.   VaR is not pure: its value on a constant is equal to that 

constant.  VaR is not subadditive and therefore not coherent.    

TVaR is intuitively the average loss in the worst (1- ) % of outcomes.  As the definition in Table 

5 indicates, the computation of this average entails evaluating two terms.  The first term is the 

product of the Conditional Tail Expectation (CTE) where CTE =  and the 

probability weight corresponding to the tail of X values strictly larger than VaR().  The second term 

is the product of VaR() times the residual probability needed so that the total of the two 

probabilities equals (1- ).  The sum of these two terms is then divided by (1 -) to obtain TVaR.  

For example, suppose VaR(99.0%) = 150 and assume the probability of X values strictly larger than 

150 is 0.8%.  It follows the mass at 150 is equal to or larger than 0.2%.  Also assume the CTE is 200.  

Then TVaR(99.0%) equals 190 since 190 =(200*0.8% + 150*0.2%)/1.0%. 

In the general case, the residual probability will be non-zero only when there is a strictly positive 

mass point at VaR().   When there is no mass point, TVaR is equal to CTE. However, in the 

discrete case, 1-F(VaR()), the probability of exceeding VaR(), may be less than 1- .  If that 

scenario, CTE is not truly an average of the worst (1-) of outcomes and the second term is needed.  

Our definition follows that of several authors (Rockafellar and Uryasev [22], and Acerbi and Tasche 

[1]) by including a portion of the mass point at VaR() in the definition of TVaR.    

When evaluating VaR and TVaR on a sample of trial data as might be generated by a simulation 

model, the formulas can be stated in a more straightforward way using the rankings of ordered data.   

                                                           
7 The infimum is this context is the lower bound of the tail. 
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Table 6  

Ranking Definitions of VaR and TVaR  

Let X1≥ X2 ≥ …≥Xn  be an ordering of n trails of X.   

If k=(1-)n, then: 
 

1. VaR(Χ 
 

2. TVaR(   


k

j jk 1
  

1
 

 
 

For instance, if there are 20 trials, the largest trial is VaR(95%) since 1= (1-.95)*20 and the 

smallest trial is VaR(0%) since 20= (1-0)*20.  Also observe that TVaR(0%) is the average of all 20 

sample points. Under these definitions VaR(75%) is the 5th largest point and TVaR(75%) is the 

average of the 5 largest points.8   Exhibit 1, Sheet 2 shows the computation of these measures using 

the “ranking” definitions in the simple example of twenty samples points.  Note the repetition of 

some of the sample point values does not cause any difficulty for the ranking definitions.    

TVaR is not pure, but it is subadditive.   As Acerbi and Tasche [1] and others have noted, the 

CTE may fail subadditivity in the discrete case9.  XTVaR captures the average amount by which the 

worst (1-)% of loss outcomes exceeds the mean.   Note TVaR is automatically larger than the mean 

so XTVaR is non-negative.   In cases where X is constant, TVaR will be equal to the expectation, 

while XTVaR will be zero.   Thus XTVaR is a pure risk measure, while TVaR is not.  

3.2.3 Distortion Risk Measures   

Wang [24] has proposed use of distortion risk measures and shown that they are coherent when g 

is continuous.  We have not seen the excess risk measure in the literature, but we list it as an obvious 

extension that leads to a coherent and pure risk measure.    

One particular distortion is the Wang shift10: 

  Equation (3.2.3.1)

                                                           
8 One alternative is to use the average of the 4 largest points out of 20 for TVaR(75%) and more generally use the 
average of the k-1, instead k largest points, as the definition for TVaR().  In our view, the definition with k points is 
better, for one, because it results in TVaR(0) being equal to the average.     
9 Acerbi and Tasche[1] use the terminology Tail Conditional Expectation (TCE) where we use CTE. 
10 Wang also introduced the Proportional Hazards transform [26].  
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  Here  is the standard unit normal and  is the Wang shift parameter. 

  Exhibit 1, Sheet 3 has an example with columns showing how the original cumulative 

distribution is transformed.   To pick a particular row, the second ranking point out of twenty 

sample points has an empirical cumulative distribution (cdf) of 0.950.  The standard unit normal 

inverse of 0.950 is 1.645.  The Wang shift in the example is 0.674.  Subtracting this from 1.645 yields 

0.971 and the standard normal has a cdf of 0.834 at 0.971.  So the cdf is transformed from 95.0% to 

83.4%. New transformed mass densities are derived by subtracting the transformed cdfs in 

sequence.  Using the resulting transformed densities moves the mean from 10.0 to 16.7; so the 

resulting excess mean is 6.7.    

4. ALGORITHMIC PROCEDURES 

There are three different ways of using risk measures to arrive at a capital calculation algorithm.  

In this chapter, we will review these and define properties of such algorithms.   

First is a Standalone capital computation.  This simply involves looking at the value of a selected 

risk measure on an account’s own CAT loss distribution.  Even if this is not the final selected 

approach, it is usually a good idea to know the standalone value for any account as it provides a 

baseline for comparison.  Some analysts would stop there and say the standalone capital from a 

coherent pure risk measure is the right answer.  A variation of the standalone approach is the market 

equilibrium approach.  This method attempts to find the theoretical price that should be charged for 

a given risk in a hypothetical fair and efficient market in equilibrium.  While this may seem the direct 

opposite of a standalone approach, it can be rightly classed as a variant of a standalone concept in 

that the indicated price for an account does not depend on other risks in the portfolio.      

Other methods do reflect the portfolio in their computations.  The second general algorithm, the 

Marginal approach, determines required capital for an account by computing how it changes 

required capital for the portfolio.   The third general algorithm, Real Allocation, entails use of a risk 

measure as an allocation base to allocate portfolio capital.  This methodology may use one risk 

measure to compute required portfolio capital and then possibly another one as an allocation base.           

Let X stand for the CAT Loss for a particular account and let R denote the portfolio CAT Loss 

excluding that account.   Write C(X) to stand for the Account CAT Capital for the account.  

Equations for the three general procedures are:  
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Table 7 

 General CAT Capital Calculation Procedures 
 

1. Standalone	:      XXC   
  

2. Marginal:   	     )R(RXR|XC  
	

3. Real Allocation:      
 

 RR |X C 1

)RX(Y
2

2 


























We say the Marginal and Real Allocation procedures are Portfolio Dependent because the 

required capital amounts depend on the portfolio as well as on the account.   We define several 

properties of Portfolio Dependent Algorithms.         

Table 8   

Portfolio Dependent Capital Properties 

1. Standalone Capital Cap:   A portfolio dependent algorithm is capped by 
standalone capital if C(X|R)  C(X). 

2. Automatically Calibrated:   A portfolio dependent algorithm is 
automatically calibrated if   

 
3. Order Dependent:   A portfolio dependent algorithm is order dependent if   

C(X1 | R+X2)   C(X1 | R) for some X1    and X2.. 

.    

4.1 Calibration and Consolidation Benefits or Penalties  

With both Standalone and Marginal approaches, there is a potential mismatch between the sum 

of individual account required capital amounts and the required capital for the portfolio taken as a 

whole.  In other words, they are not automatically calibrated. If the portfolio requires less capital 

than the sum of the account capital requirements, as would be true for a subadditive measure, the 

difference will be called the consolidation benefit.   However, not all risk measures are subadditive 

and therefore it is possible to have a consolidation penalty.  So, even though it is a near universal 

truth in insurance that risk is reduced by pooling, that may not necessarily be the case with respect to 
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CAT coverage.  Further, when subadditivity fails with a marginal algorithm, it is possible that 

required standalone capital is less than the indicated marginal capital. Such an algorithm would not 

satisfy the standalone cap.   

Exhibit 2 has an example showing VaR is not subadditive.  In the exhibit there are 20 trials with 

results for an account, “A”, and a Reference Portfolio.  The next column shows the computed sum, 

“A+ Ref”, for each trial.  Then there is a block labeled “Ordered Loss Data” showing the resulting 

rank-ordered losses for risk A, the Reference Portfolio, and the sum.   The ordering is done 

separately for each.   Since the 5th largest loss for account A is 4 and the 5th largest loss for the 

Reference Portfolio is 34, it follows that VaRA(75%) is 4.and  VaRRef(75%) is 34.  Yet the 5th largest 

loss for the combined portfolio after A is added is 39.   So the Marginal VaR for account A is 5 ( = 

39-34), which exceeds its Standalone VaR.     

There are two general options for achieving calibration if desired when it does not occur 

automatically.  A simple and direct idea is to apply a calibration factor to each initial required capital 

amount.11  The other approach is to use game theoretic methods or other approaches to “auction 

off” any portfolio consolidation benefit (or penalty).  Another view is that there is no need to 

reconcile the sum of the individual account required capital amounts and required capital for the 

portfolio.  The key point is that users should be aware of the calibration properties of any proposed 

method and make adjustments or not according to their own philosophy.    

4.2 Incoherence and Order Dependence 

Marginal methods are also prone to generating required capital amounts that fail one or more of 

the coherence properties. They inherit incoherence if they are based on an incoherent measure, and 

they are also subject to order dependence12 and other vulnerabilities arising from the nature of the 

incremental process.   

For example, the scaling property does not necessarily hold if capital is based on Marginal VaR.  

This means that capital for a 50% share of a treaty is not necessarily twice the capital needed for a 

25% share.  See Exhibit 3 for an example demonstrating this. 

TVaR has been shown to be coherent.   However, if one is not careful with definitions and uses 

TCE (Tail Conditional Expectation) instead of TVaR, the resulting capital formula is not necessarily 

                                                           
11 Meyers, Klinker, and LaLonde [19] proposed such a factor to calibrate capital requirements based on the Marginal 
VaR.  
12 Mango [15] showed the order dependence of marginal variance and marginal standard deviation. 



Catastrophe Pricing: Making Sense of the Alternatives 
 

Casualty Actuarial Society E-Forum, Spring 2013  13 

even monotonic.  In other words, adding an account may decrease the conditional tail expectation.   

Exhibit 4 demonstrates this.     

4.3 Portfolio Allocation Methodologies  

True allocation methodologies are less subject to calibration and order dependence issues than 

marginal methods.  There are several different approaches to real allocation.   Some are effectively a 

reprise of the methods used to set account capital; only in this context they are used to allocate a 

portfolio total already determined.  

Table 9  
 Allocation Procedures 

 
1. Stand Alone: Allocate portfolio capital in proportion to account Stand-alone 

risk measures 
  

2. Marginal:  Allocate portfolio capital in proportion to account marginal impact 
on portfolio risk measure.  

 Game Theory Modified Marginals:  Adjust Marginals via Game Theory 
so allocations are not order dependent. 

	
3. Co-Measure:  Allocate portfolio capital using a co-measure. 

4. Percentile Allocation:  Allocate surplus based on allocations of each percentile 
of portfolio loss. 

 

4.4 Standalone and Marginal Allocations 

The first method uses an allocation base equal to the standalone value of a risk measure.  This 

measure could be the same or different than the one used to compute required portfolio capital.   

The second approach uses allocations proportional to the account marginal increments.   The order 

in which an account is added to a portfolio can have a strong influence on its marginal impact.  This 

can lead to pricing anomalies.  Mango [15] has developed a refinement of the marginal allocation 

approach in which game theoretic averaging over all orderings produces a more stable allocation.     

4.5 Contribution Statistics 

The third allocation concept is based on Contribution Statistics (Co-Statistics).  The Co-

Statistic for an account is conceptually the amount it contributes to the portfolio statistic, where the 

computation is based on an examination of the scenarios that determine the portfolio statistic.   
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Given that the portfolio had an adverse result, how much of it was due to a particular account?  If 

portfolio capital is determined by a particular risk measure, the associated account co-measures are 

automatically additive and consistent with the portfolio total. 

4.5.1. Co-VaR Instability 

Though intuitively appealing, Co-Statistics may exhibit troublesome behavior. One significant 

problem is that Co-VaR can be unstable.13   Specifically, this means Co-VaR can change dramatically 

due to small changes in the data.  Even more troubling, different sets of simulations can yield quite 

different answers and increasing the number of trials may or may not yield convergence.     

How does this arise?  Consider the simulated events for the portfolio put in descending order.  

For each event, the contribution due to a specific treaty is also known from the simulation.  

However, depending on how the events line up at the portfolio level, the Co-stats for the treaty may 

vary considerably.     The treaty may contribute a sizeable portion of loss to the event corresponding 

to the portfolio 100-year VaR, yet it may add nothing to many of the events close by in the list.   Or 

the opposite may be true.    

Exhibit 5 shows an example in which the portfolio 100-year VaR is $405 and the associated Co-

VaR for the account is $20.  But for the events on either side, the account loss is $0.   Averaging 

over a band of nearby points (the set {6, 0, 20, 0, 4} in the example in Exhibit 5) will produce a 

more stable and meaningful answer.  This will be called the Co-Stat Band approach.   How large a 

neighborhood to include is a matter of judgment.          

4.5.2. Co-TVaR Fails to be Subadditive 

To calculate Co-TVaR for Treaty A when it is added to a given Reference Portfolio, the first step 

is to rank-order events by the sum of combined Reference Portfolio plus Treaty A losses. This is 

shown in Exhibit 6, Sheet 1 where the ordered total is displayed in the far right column.  Then the 

contribution of Treaty A to the sum is posted in the column labeled Co-A.  To obtain Co-TVaR of 

the 75th percentile, we average the Co-A amounts for the first 5 out of 20 of the events ordered on 

the sum14 and arrive at Co-TVaR = (1+7+0+4+3)/5= 3.   

It is known that TVaR is coherent and that has helped spark interest in using Co-TVaR as an 

                                                           
13 The behavior of co-VaR is important because VaR is often used to define required capital at the portfolio level.   
Perhaps the most natural way to allocate VaR-based portfolio capital would be to use co-VaR.   
14 In cases where several events have the same total loss equal to the VaR of the target percentile, results from all 
orderings of those events should be averaged to get the resulting co-stat.   
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allocation metric.  However, as we demonstrate by example in Exhibit 6, Co-TVaR is not coherent 

because it is not necessarily subadditive.   This is a new result that has not been previously presented 

in the literature.  Continuing with the example, we already know Co-TVaR of Treaty A is 3.0 and 

Sheet 2 and Sheet 3 of Exhibit 6 show the Co-TVaR of Treaty B is 3.0 and the Co-TVaR for the 

combination of the two, Treaty A+B, is 11.0.  To be subadditive, the Co-TVaR for Treaty A+B 

would needs to be less than 6.0.       

4.6 Percentile Allocation 

Bodoff [6] has proposed the concept of percentile allocation.  This starts with the observation 

that capital is needed to cover not just the large event losses, but also all losses up to and including 

those due to large events.   For the first dollar of capital that is needed to cover losses, an allocation 

is done proportional to how often an account will use that first dollar relative to the other accounts.   

This entails looking at all events, seeing which ones tap the first dollar of capital, and then looking at 

account losses for each of those events.  Event probabilities are then used to allocate the first dollar 

of capital.   After the first dollar is allocated, the same procedure is followed to allocate the second 

dollar and so forth. This method is fairly stable and is not order dependent.       

5. PRACTICAL APPLICATION ISSUES 

Before going further, we need to address several practical issues that directly impact which 

methods can realistically be used to price CAT business.   

5.1 Reference Portfolios 

The first is that all the portfolio approaches are fundamentally impractical in their pure form.  

This is because reality differs from the one-by-one pricing paradigm implicit in portfolio approaches.   

Under this paradigm, the model is run, a quote is generated, and the account is bound in an instant 

during which no other changes take place to the portfolio.    In the real world, time is not frozen.   

The portfolio changes as other accounts expire or are bound15 in the time lag between quoting and 

binding a particular account.  So the indicated price at the time of binding could be different than 

the indicated price at the time of quoting.    

In principle, one should rerun and derive updated indications for all existing unbound quotes 

                                                           
15 Or possibly those that are authorized but not yet bound.  Since the authorized share of treaty may not be the final 
share, a more careful treatment would use an estimate of the expected final share. 
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each time the portfolio changes.  But this is unworkable.   It would slow down the process of 

providing quotes to underwriters and put a huge strain on models and analysts during peak renewal 

season.  Further, even if the modeling could be done, the market will not accept quotes that change 

after they are made.   Thus, in practice, it is likely very few companies attempt to use the actual up-

to-date portfolio as the base for their pricing calculations.  None that we are aware of revise existing 

open quotes.   Rather most of them use a defined Reference Portfolio.  This is fixed for a week or a 

month or a quarter.  The possible conceptual advantage in using a portfolio-based pricing algorithm 

may be partially undercut if the Reference Portfolio differs materially from the real one.         

In some shops, a renewal account is run against a Reference Portfolio that includes the expiring 

policy.  While that is technically wrong and can lead to inaccurate results, the alternative entails 

setting up a custom Reference Portfolio for each account.  That can become somewhat 

cumbersome. 

5.2 Impracticality of Game Theoretic Averaging   

In theory, averaging over all possible orders of accounts is the ideal solution to order dependence 

anomalies.   However, in practice that is generally unworkable.   While Mango found a closed form 

solution for a particular risk measure so that one did not need to actually run impact statistics for 

each ordering, such closed form solutions do not exist for many risk measures.   The number of 

different orderings explodes in factorial fashion with the number of accounts so that performing all 

the brute-force computations is usually not feasible.  This is one reason the order dependence issue 

is often ignored and Marginal statistics are computed against the Reference Portfolio with each 

account added on a last-in basis.    

6. DEMONSTRATION 

We will now demonstrate various pricing algorithms on hypothetical CAT loss data.  We start 

with 50 events as shown in Exhibit 7.  Each has a 2% annual probability of occurring.   We also 

show the loss amounts for a Reference Portfolio and for two risks, denoted Treaty A and Treaty B.  

Both these risks have the same theoretical mean loss; however Treaty A losses are much more 

volatile.   Total Annual Treaty A losses are theoretically independent of the Annual Reference 

Portfolio losses as Treaty A was constructed so that it has zero loss for events that generate losses 

for the Reference Portfolio.  Under this construction, events with IDs from 1 to 25 have zero loss 

for Treaty A and non-zero loss for the Reference Portfolio.  The situation is reversed for events 
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with IDs from 26 to 50.  Treaty B was constructed so that it has significant correlation with the 

Reference Portfolio because it has losses on many of the events that give rise to Reference Portfolio 

losses.  It was also constructed to be theoretically independent of Treaty A.  To summarize Treaty A 

is independent and volatile, while Treaty B is relatively well-behaved but correlated.  

We then simulated 1,000 trial years and created a matrix with 1,000 rows and 50 columns to 

record which events if any occurred in each year.  An excerpt of that matrix is shown in Exhibit 8.   

This sample size of 1,000 is too small to drive sampling error down to the fine decimals.  This is 

true, even though with 2% annual probabilities each event should turn up in roughly 50 of the 1,000 

trial years.   We computed linear and rank correlations on the simulated data for each of our two 

risks.  These are consistent with our construction.  In the 1,000 trial years, Treaty A has a 1% linear 

correlation with the Reference Portfolio, while Treaty B has a 60% linear correlation.  The 

corresponding sample rank correlations over these trials are -2% and 93% for treaties A and B 

respectively.   

  Indicated capital amounts and indicated premiums were then computed using Standalone and 

Incremental algorithms with the VaR, TVaR, and XTVaR risk measures.  Required capital amounts 

and premium indications were also computed using Real Allocation based on the standalone 

amounts and the co-statistics of these risk measures.   For Co-VaR, we used a banded approach for 

stability.  Results are detailed in Exhibit 9 and a pricing comparison for the two risks is shown on 

Sheet 3 of Exhibit 9.  

As might be expected, the incremental portfolio and co-statistic methods produce very modest 

risk loads for Treaty A.   Indications using Co-XTVaR in particular have very little risk load.    The 

standalone pricing for Treaty A is much higher.  It is up to the reader to decide whether it makes 

sense to charge negligible risk load on this volatile account because it diversifies the portfolio or to 

go with substantial risk load because it is risky on a standalone basis. The situation is reversed for 

Treaty B.   It has significant risk load under all the portfolio based methods, but standalone pricing 

is lower than it was for Treaty A.      

7. GENERAL OBSERVATIONS 

This chapter contains several key general observations that impact catastrophe pricing.    

7.1 Sampling Error 

In the background one should always be aware that simulation models are being used to generate 
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the results and that simulation statistics are prone to sampling error.  When adding a small account 

to a large initial portfolio, such sampling error may mask or distort the impact of adding the new 

account.  The resulting relative error in pricing may be quite significant.   As well, the pricing of 

relatively small changes in treaty layers may be prone to inaccuracy due to sampling error. 

The event probabilities in simulation models are often quite small.  Many events have return 

periods on the order of 10,000 years.   To get even a roughly accurate estimate that has a 

representative number of such events, one needs to run the model with the number of trials set as a 

multiple of the return period of rare events in the models.         

Beyond that, there are other pricing pitfalls stemming from sampling error.  One of the most 

common is pricing a layer by taking differences of other layers that were priced using results from 

several different simulations.  Statistical fluctuations could lead to an inconsistent result.  All layers 

of interest need to be run in one set of simulation trials to achieve more accurate differentials in 

layer prices.   Of course, sampling error can be reduced by running more simulation trials.16  The 

analyst needs to balance the extra time and cost against the need for accuracy. 

7.2 Tails   

A key area of distinction concerns how much influence the tail has on the answer. Under some 

methods, capital allocation is determined solely by the tail.  “Tail-Only” advocates implicitly or 

explicitly believe the tail should be regarded as the one true indicator of risk.  Others argue that any 

event that could potentially consume capital needs to be considered; not just the tail events that 

would consume all the capital.     

 Beyond the philosophical divide, one should be aware that tail dependence tends to increase the 

volatility in the results.    This is partly due to statistical sampling error.  Further, as models change 

over time, the tails often move quite a bit more than the expected CAT losses.    

For strict empiricists, an additional concern is that there is effectively no empirical way to validate 

the distribution of events in the extreme tail.   What is the average size of portfolio losses that 

happen less frequently on average than once in every 250 years?  It would take more than twenty 

samples of 1,000 simulated years to obtain a tentative estimate of this average.   The simulation 

                                                           
16 The author is advocating the analyst estimate beforehand how many simulated years are needed to achieve a desired 
level of accuracy in the estimated value of the risk measure.  This is not the same as the flawed procedure of running sets 
of trials and stopping when results seem to stabilize.  When the trial sets are too small to reliably capture the big but rare 
events, results from two or three sets of trials may be fairly stable.  However, such “stable” results could underestimate 
the true tail of losses.       
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modeling software can do this without any problem, but our available empirical history is 

insufficient to validate the estimate.    

This line of thinking also highlights the high-end cut-off problem.   The size and frequency of 

mega-events included in a model may have an inordinate impact on any particular tail metric.  

Whether there are enough extreme events in a model is subject to some debate.17  However, once 

very rare events are put into a model, it is not clear on what philosophical grounds we can exclude 

geologically significant asteroid strikes or comet impacts or events relating to ice ages.  Many 

practicing analysts feel that discussion of such calamities is a vast digression and that such events 

should not be in the model as they could unduly impact tail metrics.    

7.3 Diversification Benefit  

If required capital for the portfolio is less than the sum of the standalone requirements, then 

there is effectively a diversification benefit to the portfolio as a whole.  Many pricing methods would 

translate this into a reduction in the overall level of pricing of the whole portfolio as compared to 

the total pricing that would otherwise result if each account were priced on a standalone basis.  For 

example, if the portfolio required 10% less capital than the sum of the standalone capital 

requirements, indicated standalone account pricing for each account could be given a 10% haircut to 

arrive at the final indication reflecting the portfolio diversification benefit.    

Another sense of diversification benefit arises at the account level even if there is no overall 

benefit to the portfolio.  Some methods effectively surcharge risks in peak zones, and provide 

discounts for those written in off-peak zones.   It had been an accepted truism for many that CAT 

pricing indications should reward such geographic diversification.  But the experience of recent years 

(2010-12) has led some to question the uncritical acceptance of diversification and warn of the 

dangers of “de-worsification”.18    

Our comparisons indicate that some algorithms lead to bargain-basement prices for exposures in 

zones where the company has little existing exposure.  This highlights the issue: how much of a 

discount in the indicated price is justifiable in order to achieve the benefits of diversification?    
                                                           
17 No vendor we are aware has said it included an event as large as the Japanese earthquake of March 2011 in its event 
set for events associated with faults in that region of Japan.    

18  Brodsky [7] quoted the noted CAT modeling expert Karen Clark as saying , “… some reinsurers may want diversification a little 
too much …”  and  "How much do you want to write of this underpriced risk just to get diversification?”.  
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7.4 Treatment of Premiums, Commissions, and Loss-sensitive Features   

As argued in Robbin and DeCouto [21], capital should be based on the distribution of Bounded 

Underwriting Loss, B, where  

B= Max(0, Loss + Commission – Premium)   Equation (7.6.1) 

Notice there is a floor in the definition which prevents any negative result.  In effect this prevents 

reduction in capital for scenarios where a profit is made.  

In practice, capital is often based on just the loss and no adjustment is made for the premium or 

expense.  The advantage is that this is straightforward to implement.  An excess metric, such as 

XTVaR, captures the amount by which loss is above the mean and that partly incorporates the more 

complete approach.  However, the reader is cautioned that the more sophisticated methodology is 

needed to model reinstatements and loss-sensitive features.   

8. SUMMARY AND CONCLUSION 

We started with the theory and basic equations of CAT pricing within the RORAC framework 

and saw that the crux of the issue comes down to how to set capital for an account.  We looked at 

basic properties of risk measures, examined several specific ones, and demonstrated that some fail 

key theoretical properties.  We have also systematically reviewed the Standalone, Marginal, and Real 

Allocation algorithms for computing CAT capital.  We have shown the theoretical formulas, 

demonstrated how they work with accessible discrete examples, and illustrated why some need to be 

modified to be practical.  We emphasized the “ranking” definitions as a clear way to define and 

compute the VaR and TVaR metrics.   We also explained why TVaR on a discrete data set of CAT 

loss data is not the same as the Conditional Tail Expectation, and why a banded version of Co-VaR 

is necessary.  We presented the new result that Co-TVaR is not subadditive.    

Our work led to a concrete comparison of how various alternatives performed on two 

hypothetical accounts.  A key goal of our presentation was to provide an understandable illustration 

of the process for generating the answers.  We started with an event loss table showing account and 

portfolio losses for each event in a modest set of hypothetical CAT events.  We then used this to 

generate simulated random results by year. With this generated data, we computed capital under 

several alternatives.  Our examples showed that incremental or co-statistic tail based pricing could 

lead to pricing barely above expectation for a non-correlated, but risky, account.   
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If nothing else, we would urge any reader considering different CAT pricing methodologies to 

examine their properties and see how they work on simple examples.   We hope this paper helps to 

increase understanding of the alternatives.  We also hope it motivates readers to investigate, test, and 

achieve insights beyond those we have offered.  



Catastrophe Pricing: Making Sense of the Alternatives 
 

Casualty Actuarial Society E-Forum, Spring 2013  22 

 

Exhibit 1
Sheet 1

Risk Measure Definitions -Discrete Example
Variance, Standard Dev, SemiVariance and SemiStnd Dev 

Statistic Value Statistic Value
Trials 20 Variance 88.4

Average 10.0 Standard Dev 9.4
Semivariance 64.2

SemiStnd Dev 8.0

Ordered Loss Data

Rank Loss
Variance 

Contribution
Semivariance 
Contribution

1 40.0 900 900
2 26.0 256 256
3 18.0 64 64
4 14.0 16 16
5 14.0 16 16
6 14.0 16 16
7 14.0 16 16
8 10.0 0 0
9 8.0 4 0

10 8.0 4 0
11 6.0 16 0
12 6.0 16 0
13 6.0 16 0
14 4.0 36 0
15 4.0 36 0
16 2.0 64 0
17 2.0 64 0
18 2.0 64 0
19 2.0 64 0
20 0.0 100 0
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Exhibit 1
Sheet 2

Risk Measure Definitions -Discrete Example
VaR, TVaR and XTVaR

Statistic Value Statistic Value
Trials 20 Rank for VaR 5.0

Average 10.0 VaR 14.0
Percentage 75.00% TVaR 22.4

XTVaR 12.4

Ordered Loss Data

Rank Loss VaR Percentage
Conditional 

Tail Avg
1 40.0 95% 40.0
2 26.0 90% 33.0
3 18.0 85% 28.0
4 14.0 80% 24.5
5 14.0 75% 22.4
6 14.0 70% 21.0
7 14.0 65% 20.0
8 10.0 60% 18.8
9 8.0 55% 17.6

10 8.0 50% 16.6
11 6.0 45% 15.6
12 6.0 40% 14.8
13 6.0 35% 14.2
14 4.0 30% 13.4
15 4.0 25% 12.8
16 2.0 20% 12.1
17 2.0 15% 11.5
18 2.0 10% 11.0
19 2.0 5% 10.5
20 0.0 0% 10.0
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Exhibit 1
Sheet 3

Risk Measure Definitions -Discrete Example
Transformed Mean and XSTransformed Mean

Statistic Value Statistic Value
Trials 20 Wang Shift Parameter 0.674

Average 10.0 Transformed Mean 16.7
Percentage 75.00% XS Transformed Mean 6.7

Ordered Loss Data

Rank Loss Empirical CDF
Transformed 

CDF
Transformed 

Density
1 40.0 100.0% 100.0% 16.6%
2 26.0 95.0% 83.4% 10.6%
3 18.0 90.0% 72.8% 8.7%
4 14.0 85.0% 64.1% 7.5%
5 14.0 80.0% 56.6% 6.6%
6 14.0 75.0% 50.0% 6.0%
7 14.0 70.0% 44.0% 5.4%
8 10.0 65.0% 38.6% 4.9%
9 8.0 60.0% 33.7% 4.5%

10 8.0 55.0% 29.2% 4.2%
11 6.0 50.0% 25.0% 3.8%
12 6.0 45.0% 21.2% 3.5%
13 6.0 40.0% 17.7% 3.2%
14 4.0 35.0% 14.5% 2.9%
15 4.0 30.0% 11.5% 2.7%
16 2.0 25.0% 8.9% 2.4%
17 2.0 20.0% 6.5% 2.1%
18 2.0 15.0% 4.4% 1.8%
19 2.0 10.0% 2.5% 1.5%
20 0.0 5.0% 1.0% 1.0%
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Exhibit 2

Statistic Value Mean VaR
Trials 20 2.50 4.00
Percentage 75.00% 25.00 34.00
Rank 5 27.50 38.00

27.50 39.00
0.00 -1.00

5.00

Loss Data by Trial Ordered Loss Data

Trial A Ref A+Ref Rank A Ref A+Ref
1 0.00 12.00 12.00 1 8.00 37.00 41.00
2 0.00 37.00 37.00 2 8.00 36.00 40.00
3 4.00 36.00 40.00 3 7.00 35.00 40.00
4 0.00 35.00 35.00 4 6.00 34.00 40.00
5 6.00 34.00 40.00 5 4.00 34.00 39.00
6 2.00 17.00 19.00 6 4.00 32.00 37.00
7 1.00 16.00 17.00 7 4.00 31.00 35.00
8 8.00 32.00 40.00 8 3.00 30.00 34.00
9 0.00 27.00 27.00 9 2.00 27.00 30.00
10 0.00 14.00 14.00 10 2.00 27.00 27.00
11 3.00 27.00 30.00 11 1.00 26.00 26.00
12 4.00 15.00 19.00 12 1.00 23.00 24.00
13 0.00 20.00 20.00 13 0.00 20.00 20.00
14 4.00 30.00 34.00 14 0.00 18.00 20.00
15 8.00 31.00 39.00 15 0.00 17.00 19.00
16 2.00 18.00 20.00 16 0.00 16.00 19.00
17 1.00 23.00 24.00 17 0.00 16.00 17.00
18 0.00 26.00 26.00 18 0.00 15.00 16.00
19 7.00 34.00 41.00 19 0.00 14.00 14.00
20 0.00 16.00 16.00 20 0.00 12.00 12.00

Consolidation Benefit
Marginal VaR for A

Failure of VaR Subadditivity

Risk A Standalone
Reference Portfolio

Sum
Combined Portfolio
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Exhibit 3
Sheet 1

Failure of Marginal VaR Scalability - Risk A + Portfolio

Statistic Value Mean VaR
Trials 20 2.50 4.00
Percentage 75.0% 25.00 34.00
Rank 5 27.50 38.00

27.50 37.00
0.00 1.00

3.00

Loss Data by Trial Ordered Loss Data

Trial A Ref A+Ref Rank A Ref A+Ref
1 4.00 12.00 16.00 1 8.00 37.00 41.00
2 0.00 37.00 37.00 2 8.00 36.00 40.00
3 0.00 36.00 36.00 3 7.00 35.00 40.00
4 0.00 35.00 35.00 4 6.00 34.00 39.00
5 6.00 34.00 40.00 5 4.00 34.00 37.00
6 2.00 17.00 19.00 6 4.00 32.00 36.00
7 1.00 16.00 17.00 7 4.00 31.00 35.00
8 8.00 32.00 40.00 8 3.00 30.00 34.00
9 0.00 27.00 27.00 9 2.00 27.00 30.00
10 0.00 14.00 14.00 10 2.00 27.00 27.00
11 3.00 27.00 30.00 11 1.00 26.00 26.00
12 4.00 15.00 19.00 12 1.00 23.00 24.00
13 0.00 20.00 20.00 13 0.00 20.00 20.00
14 4.00 30.00 34.00 14 0.00 18.00 20.00
15 8.00 31.00 39.00 15 0.00 17.00 19.00
16 2.00 18.00 20.00 16 0.00 16.00 19.00
17 1.00 23.00 24.00 17 0.00 16.00 17.00
18 0.00 26.00 26.00 18 0.00 15.00 16.00
19 7.00 34.00 41.00 19 0.00 14.00 16.00
20 0.00 16.00 16.00 20 0.00 12.00 14.00

Marginal VaR for A

Risk A Standalone
Reference Portfolio

Sum
Combined Portfolio

Consolidation Benefit
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Exhibit 3

Sheet 2

Statistic Value Mean VaR
Trials 20 5.00 8.00
Percentage 75.0% 25.00 34.00
Rank 5 30.00 42.00

30.00 38.00
0.00 4.00

4.00

Loss Data by Trial Ordered Loss Data

Trial 2A Ref 2A+Ref Rank 2A Ref 2A+Ref
1 8.00 12.00 20.00 1 16.00 37.00 48.00
2 0.00 37.00 37.00 2 16.00 36.00 48.00
3 0.00 36.00 36.00 3 14.00 35.00 47.00
4 0.00 35.00 35.00 4 12.00 34.00 46.00
5 12.00 34.00 46.00 5 8.00 34.00 38.00
6 4.00 17.00 21.00 6 8.00 32.00 37.00
7 2.00 16.00 18.00 7 8.00 31.00 36.00
8 16.00 32.00 48.00 8 6.00 30.00 35.00
9 0.00 27.00 27.00 9 4.00 27.00 33.00
10 0.00 14.00 14.00 10 4.00 27.00 27.00
11 6.00 27.00 33.00 11 2.00 26.00 26.00
12 8.00 15.00 23.00 12 2.00 23.00 25.00
13 0.00 20.00 20.00 13 0.00 20.00 23.00
14 8.00 30.00 38.00 14 0.00 18.00 22.00
15 16.00 31.00 47.00 15 0.00 17.00 21.00
16 4.00 18.00 22.00 16 0.00 16.00 20.00
17 2.00 23.00 25.00 17 0.00 16.00 20.00
18 0.00 26.00 26.00 18 0.00 15.00 18.00
19 14.00 34.00 48.00 19 0.00 14.00 16.00
20 0.00 16.00 16.00 20 0.00 12.00 14.00

Marginal VaR for 2A

Failure of Marginal VaR Scalability - Risk 2*A + Portfolio

Consolidation Benefit

Risk 2A Standalone
Reference Portfolio

Sum
Combined Portfolio
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Exhibit 4

Conditional Tail Expectation is Not Monotonic

Statistic Value Mean VaR TVaR CTE
Trials 20 2.50 4.00 6.60 7.25
Percentage 75.0% 25.00 34.00 35.20 36.00
Rank 5 27.50 38.00 41.80 43.25

27.50 34.00 35.40 35.75
0.00 4.00 6.40 7.50

0.00 0.20 -0.25

Loss Data by Trial Ordered Loss Data

Trial A Ref A+Ref Rank A Ref A+Ref
1 8.00 12.00 20.00 1 8.00 37.00 37.00
2 0.00 37.00 37.00 2 8.00 36.00 36.00
3 0.00 36.00 36.00 3 7.00 35.00 35.00
4 0.00 35.00 35.00 4 6.00 34.00 35.00
5 1.00 34.00 35.00 5 4.00 34.00 34.00
6 2.00 17.00 19.00 6 4.00 32.00 34.00
7 7.00 16.00 23.00 7 4.00 31.00 34.00
8 0.00 32.00 32.00 8 3.00 30.00 33.00
9 4.00 27.00 31.00 9 2.00 27.00 32.00
10 4.00 14.00 18.00 10 2.00 27.00 31.00
11 6.00 27.00 33.00 11 1.00 26.00 26.00
12 8.00 15.00 23.00 12 1.00 23.00 24.00
13 0.00 20.00 20.00 13 0.00 20.00 23.00
14 4.00 30.00 34.00 14 0.00 18.00 23.00
15 3.00 31.00 34.00 15 0.00 17.00 20.00
16 2.00 18.00 20.00 16 0.00 16.00 20.00
17 1.00 23.00 24.00 17 0.00 16.00 20.00
18 0.00 26.00 26.00 18 0.00 15.00 19.00
19 0.00 34.00 34.00 19 0.00 14.00 18.00
20 0.00 16.00 16.00 20 0.00 12.00 16.00

Consolidation Benefit
Marginal Measure

Risk A Standalone
Reference Portfolio

Sum
Combined Portfolio
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Exhibit 5 
Instability of  Co-VaR 

Rank 
VaR 

Percentage
Portfolio 

Loss
Risk A 

Loss 
1 

98 99.02% $422 $6  
99 99.01% $408 $0  
100 99.00% $405 $20  
101 98.99% $395 $0  
102 98.98% $390 $4  

10,000    
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Exhibit 6

Sheet 1
Co-TVaR Subadditivity Failure

Risk A Co-TVaR Calculation

Stat Value Results A Ref A+Ref
Trials 20 Mean 2.50 25.00 27.50
Pct 75.0% VaR 4.00 33.00 36.00
Rank 5 TVaR 6.60 35.80 38.00

Co-TVaR 3.00 35.00 38.00

Loss Data by Trial Separately Ordered Co-Stats

Trial A Ref A+Ref Rank A Ref Trial Co- A Co-Ref A+Ref
1 2.00 8.00 10.00 1 8.00 39.00 7 1.00 39.00 40.00
2 0.00 38.00 38.00 2 8.00 38.00 3 7.00 32.00 39.00
3 7.00 32.00 39.00 3 7.00 35.00 2 0.00 38.00 38.00
4 0.00 35.00 35.00 4 6.00 34.00 14 4.00 33.00 37.00
5 2.00 14.00 16.00 5 4.00 33.00 6 3.00 33.00 36.00
6 3.00 33.00 36.00 6 3.00 33.00 4 0.00 35.00 35.00
7 1.00 39.00 40.00 7 3.00 32.00 19 0.00 34.00 34.00
8 2.00 16.00 18.00 8 2.00 30.00 15 3.00 30.00 33.00
9 8.00 25.00 33.00 9 2.00 27.00 11 6.00 27.00 33.00

10 0.00 11.00 11.00 10 2.00 26.00 9 8.00 25.00 33.00
11 6.00 27.00 33.00 11 2.00 25.00 12 8.00 22.00 30.00
12 8.00 22.00 30.00 12 1.00 23.00 18 0.00 26.00 26.00
13 0.00 20.00 20.00 13 1.00 22.00 17 1.00 23.00 24.00
14 4.00 33.00 37.00 14 1.00 20.00 16 2.00 18.00 20.00
15 3.00 30.00 33.00 15 0.00 18.00 13 0.00 20.00 20.00
16 2.00 18.00 20.00 16 0.00 16.00 8 2.00 16.00 18.00
17 1.00 23.00 24.00 17 0.00 16.00 20 1.00 16.00 17.00
18 0.00 26.00 26.00 18 0.00 14.00 5 2.00 14.00 16.00
19 0.00 34.00 34.00 19 0.00 11.00 10 0.00 11.00 11.00
20 1.00 16.00 17.00 20 0.00 8.00 1 2.00 8.00 10.00  
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Exhibit 6
Sheet 2

Co-TVaR Subadditivity Failure

Risk B Co-TVaR Calculation

Stat Value Results B Ref B+Ref
Trials 20 Mean 2.50 25.00 27.50
Pct 75.0% VaR 4.00 33.00 36.00
Rank 5 TVaR 6.40 35.80 38.40

Co-TVaR 3.00 35.40 38.40

Loss Data by Trial Separately Ordered Co-Stats

Trial B Ref B+Ref Rank B Ref Trial Co- B Co-Ref B+Ref
1 0.00 8.00 8.00 1 9.00 39.00 7 5.00 39.00 44.00
2 0.00 38.00 38.00 2 7.00 38.00 2 0.00 38.00 38.00
3 4.00 32.00 36.00 3 7.00 35.00 14 4.00 33.00 37.00
4 2.00 35.00 37.00 4 5.00 34.00 4 2.00 35.00 37.00
5 2.00 14.00 16.00 5 4.00 33.00 3 4.00 32.00 36.00
6 1.00 33.00 34.00 6 4.00 33.00 19 1.00 34.00 35.00
7 5.00 39.00 44.00 7 3.00 32.00 11 7.00 27.00 34.00
8 1.00 16.00 17.00 8 2.00 30.00 9 9.00 25.00 34.00
9 9.00 25.00 34.00 9 2.00 27.00 6 1.00 33.00 34.00

10 0.00 11.00 11.00 10 2.00 26.00 15 0.00 30.00 30.00
11 7.00 27.00 34.00 11 1.00 25.00 12 7.00 22.00 29.00
12 7.00 22.00 29.00 12 1.00 23.00 18 2.00 26.00 28.00
13 1.00 20.00 21.00 13 1.00 22.00 17 1.00 23.00 24.00
14 4.00 33.00 37.00 14 1.00 20.00 16 3.00 18.00 21.00
15 0.00 30.00 30.00 15 1.00 18.00 13 1.00 20.00 21.00
16 3.00 18.00 21.00 16 0.00 16.00 8 1.00 16.00 17.00
17 1.00 23.00 24.00 17 0.00 16.00 20 0.00 16.00 16.00
18 2.00 26.00 28.00 18 0.00 14.00 5 2.00 14.00 16.00
19 1.00 34.00 35.00 19 0.00 11.00 10 0.00 11.00 11.00
20 0.00 16.00 16.00 20 0.00 8.00 1 0.00 8.00 8.00
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Exhibit 6
Sheet 3

Co-TVaR Subadditivity Failure

Combined Risk A + Risk B  Co-TVaR Calculation

Stat Value Results A+B Ref
A+B
+Ref

Trials 20 Mean 5.00 25.00 30.00
Pct 75.0% VaR 8.00 33.00 40.00
Rank 5 TVaR 12.80 35.80 42.20

Co-TVaR 11.00 31.20 42.20

Loss Data by Trial Separately Ordered Co-Stats

Trial A+B Ref
A+B
+Ref Rank A+B Ref Trial

Co- 
A+B Co-Ref

A+B
+Ref

1 2.00 8.00 10.00 1 17.00 39.00 7 6.00 39.00 45.00
2 0.00 38.00 38.00 2 15.00 38.00 3 11.00 32.00 43.00
3 11.00 32.00 43.00 3 13.00 35.00 9 17.00 25.00 42.00
4 2.00 35.00 37.00 4 11.00 34.00 14 8.00 33.00 41.00
5 4.00 14.00 18.00 5 8.00 33.00 11 13.00 27.00 40.00
6 4.00 33.00 37.00 6 6.00 33.00 2 0.00 38.00 38.00
7 6.00 39.00 45.00 7 5.00 32.00 12 15.00 22.00 37.00
8 3.00 16.00 19.00 8 4.00 30.00 6 4.00 33.00 37.00
9 17.00 25.00 42.00 9 4.00 27.00 4 2.00 35.00 37.00

10 0.00 11.00 11.00 10 3.00 26.00 19 1.00 34.00 35.00
11 13.00 27.00 40.00 11 3.00 25.00 15 3.00 30.00 33.00
12 15.00 22.00 37.00 12 2.00 23.00 18 2.00 26.00 28.00
13 1.00 20.00 21.00 13 2.00 22.00 17 2.00 23.00 25.00
14 8.00 33.00 41.00 14 2.00 20.00 16 5.00 18.00 23.00
15 3.00 30.00 33.00 15 2.00 18.00 13 1.00 20.00 21.00
16 5.00 18.00 23.00 16 1.00 16.00 8 3.00 16.00 19.00
17 2.00 23.00 25.00 17 1.00 16.00 5 4.00 14.00 18.00
18 2.00 26.00 28.00 18 1.00 14.00 20 1.00 16.00 17.00
19 1.00 34.00 35.00 19 0.00 11.00 10 0.00 11.00 11.00
20 1.00 16.00 17.00 20 0.00 8.00 1 2.00 8.00 10.00
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Exhibit 6
Sheet 4

Co-TVaR Subadditivity Failure

Summary

Value
20

75%
5

Results A B A+B Ref
A+B
+Ref

Mean 2.50 2.50 5.00 25.00 30.00
VaR 4.00 4.00 8.00 33.00 40.00

TVaR 6.60 6.40 12.80 35.80 42.20
Co-TVaR 3.00 3.00 11.00 31.20 42.20

Loss Data by Trial

Trial A B A+ B Ref
A+ B
+Ref

1 2.00 0.00 2.00 8.00 10.00
2 0.00 0.00 0.00 38.00 38.00
3 7.00 4.00 11.00 32.00 43.00
4 0.00 2.00 2.00 35.00 37.00
5 2.00 2.00 4.00 14.00 18.00
6 3.00 1.00 4.00 33.00 37.00
7 1.00 5.00 6.00 39.00 45.00
8 2.00 1.00 3.00 16.00 19.00
9 8.00 9.00 17.00 25.00 42.00

10 0.00 0.00 0.00 11.00 11.00
11 6.00 7.00 13.00 27.00 40.00
12 8.00 7.00 15.00 22.00 37.00
13 0.00 1.00 1.00 20.00 21.00
14 4.00 4.00 8.00 33.00 41.00
15 3.00 0.00 3.00 30.00 33.00
16 2.00 3.00 5.00 18.00 23.00
17 1.00 1.00 2.00 23.00 25.00
18 0.00 2.00 2.00 26.00 28.00
19 0.00 1.00 1.00 34.00 35.00
20 1.00 0.00 1.00 16.00 17.00

Statistic
Trials
Pct

Rank
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Exhibit 7
Sheet 1

Event ID
Annual 

Probability
Treaty A

 Loss
Treaty B

 Loss
Reference 

Portfolio Loss
1 2% 0 500 125,000
2 2% 0 1,000 100,000
3 2% 0 1,000 90,000
4 2% 0 2,000 80,000
5 2% 0 2,500 75,000
6 2% 0 3,000 70,000
7 2% 0 3,000 60,000
8 2% 0 3,000 50,000
9 2% 0 3,000 50,000

10 2% 0 2,500 40,000
11 2% 0 2,000 38,000
12 2% 0 1,000 36,000
13 2% 0 1,000 34,000
14 2% 0 1,000 32,000
15 2% 0 1,000 30,000
16 2% 0 2,000 25,000
17 2% 0 2,500 20,000
18 2% 0 3,000 15,000
19 2% 0 3,000 10,000
20 2% 0 3,000 5,000
21 2% 0 3,000 5,000
22 2% 0 2,500 4,000
23 2% 0 2,000 3,000
24 2% 0 1,000 2,000
25 2% 0 500 1,000

Event Loss table
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Exhibit 7
Sheet 2

Event ID
Annual 

Probability
Treaty A

 Loss
Treaty B

 Loss
Reference 

Portfolio Loss
26 2% 12,500 0 0
27 2% 10,000 0 0
28 2% 7,500 0 0
29 2% 5,000 0 0
30 2% 4,000 0 0
31 2% 3,000 0 0
32 2% 2,000 0 0
33 2% 1,000 0 0
34 2% 900 0 0
35 2% 800 0 0
36 2% 700 0 0
37 2% 600 0 0
38 2% 500 0 0
39 2% 400 0 0
40 2% 300 0 0
41 2% 200 0 0
42 2% 100 0 0
43 2% 90 0 0
44 2% 80 0 0
45 2% 70 0 0
46 2% 60 0 0
47 2% 50 0 0
48 2% 50 0 0
49 2% 50 0 0
50 2% 50 0 0

Event Loss table
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Exhibit 8

Event ID 1 2 3 4 5
Treaty A Loss 0 0 0 0 0
Treaty B Loss 500 1,000 1,000 2,000 2,500
Treaty C Loss 500 0 1,000 0 2,500
Reference Portfolio Loss 125,000 100,000 90,000 80,000 75,000
Ref + A + B 125,500 101,000 91,000 82,000 77,500
Simulated Annual Prob 1.80% 1.60% 1.90% 2.60% 2.40%
Prob Occ 2.00% 2.00% 2.00% 2.00% 2.00%

 Trial Year
Number 
of events

 Event
 ID 1

 Event
 ID 2

 Event
 ID 3

 Event
 ID 4

 Event
 ID 5

1 0 0 0 0 0 0
2 1 0 0 0 0 0
3 0 0 0 0 0 0
4 2 0 0 0 0 0
5 2 0 0 0 0 0
6 2 0 0 0 0 0
7 1 0 0 0 0 0
8 1 0 1 0 0 0
9 1 0 0 0 0 0

10 1 0 0 1 0 0
11 1 0 0 1 0 0
12 1 0 0 0 0 0
13 1 0 0 0 0 0
14 1 0 0 0 0 0
15 0 0 0 0 0 0
16 2 0 0 0 0 0
17 0 0 0 0 0 0
18 0 0 0 0 0 0
19 0 0 0 0 0 0
20 0 0 0 0 0 0

Simulation of  1,000 Trial Years for  50  events

Event Indicator Matrix
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Exhibit 9
Sheet 1

Capital and Pricing Indications
Treaty A

E[L]
Linear 

Correlation
Rank 

Correlation

Percentage 95.0% 19,651

Target Return 15.0% 1,060 1% -2%

Capital Calculation 
Method

Treaty A 
Standalone 

Capital

Reference 
Portfolio

 Capital

Reference 
+ Treaty A

 Capital

Treaty A 
Required 

Capital

Treaty A 
Indicated 
Premium

Treaty A 
Indicated 

Risk Load

Risk Load 
% of 

Premium
Standalone VaR 7,590 N/A N/A 7,590 2,198 1,139 52%

Standalone TVaR 11,255 N/A N/A 11,255 2,748 1,688 61%

Standalone XTVaR 10,195 N/A N/A 10,195 2,589 1,529 59%

VaR Increment N/A 100,000 102,000 2,000 1,360 300 22%

TVaR Increment N/A 130,800 132,206 1,406 1,271 211 17%

XTVaR Increment N/A 111,149 111,495 346 1,112 52 5%

Allocation via
 Standalone VaR

7,590 100,000 102,000 7,196 2,139 1,079 50%

Allocation via
 Standalone TVaR

11,255 100,000 102,000 10,318 2,608 1,548 59%

Allocation via
 Standalone XTVaR

10,195 100,000 102,000 9,437 2,475 1,416 57%

Band Co-VaR 
Allocation

N/A N/A 102,000 3,237 1,545 486 31%

Co-TVaR
 Allocation

N/A N/A 102,000 1,239 1,246 186 15%

Co-XTVaR
 Allocation

N/A N/A 102,000 1,519 1,288 228 18%

Reference Portfolio

Treaty A
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Exhibit 9
Sheet 2

Capital and Pricing Indications
Treaty B

E[L]
Linear 

Correlation
Rank 

Correlation

Percentage 95.0% 19,651
Target Return 15.0% 1,054 60% 93%

Capital Calculation 
Method

Treaty B 
Standalone 

Capital

Reference 
Portfolio

 Capital

Reference 
+ Treaty B

Capital

Treaty B 
Required 

Capital

Treaty B 
Indicated 
Premium

Treaty B 
Indicated 

Risk Load

Risk Load 
% of 

Premium
Standalone VaR 4,000 N/A N/A 4,000 1,654 600 36%

Standalone TVaR 5,480 N/A N/A 5,480 1,876 822 44%

Standalone XTVaR 4,426 N/A N/A 4,426 1,718 664 39%

VaR Increment N/A 100,000 104,000 4,000 1,654 600 36%

TVaR Increment N/A 130,800 134,010 3,210 1,536 482 31%

XTVaR Increment N/A 111,149 113,305 2,156 1,377 323 23%

Allocation via
 Standalone VaR

4,000 100,000 104,000 4,000 1,654 600 36%

Allocation via
 Standalone TVaR

5,480 100,000 104,000 5,403 1,864 810 43%

Allocation via
 Standalone XTVaR

4,426 100,000 104,000 4,408 1,715 661 39%

Band Co-VaR 
Allocation

N/A N/A 104,000 2,588 1,442 388 27%

Co-TVaR
 Allocation

N/A N/A 104,000 2,491 1,428 374 26%

Co-XTVaR
 Allocation

N/A N/A 104,000 2,571 1,440 386 27%

Reference Portfolio
Treaty B

 
 



Catastrophe Pricing: Making Sense of the Alternatives 
 

Casualty Actuarial Society E-Forum, Spring 2013  39 

 
Exhibit 9

Sheet 3

Treaty A vs Treaty B Comparison

Simulated 
Value E[L]

Linear 
Correlation

Rank 
Correlation

Percentage 95.0% 19,651

Target Return 15.0% 1,060 1% -2%

1,054 60% 93%

Treaty A 
Required 

Capital

Treaty A 
Indicated 
Premium

Risk Load 
% of 

Premium

Treaty B 
Required 

Capital

Treaty B 
Indicated 
Premium

Risk Load 
% of 

Premium
7,590 2,198 52% 4,000 1,654 36%

11,255 2,748 61% 5,480 1,876 44%

10,195 2,589 59% 4,426 1,718 39%

2,000 1,360 22% 4,000 1,654 36%

1,406 1,271 17% 3,210 1,536 31%

346 1,112 5% 2,156 1,377 23%

7,196 2,139 50% 4,000 1,654 36%

10,318 2,608 59% 5,403 1,864 43%

9,437 2,475 57% 4,408 1,715 39%

3,237 1,545 31% 2,588 1,442 27%

1,239 1,246 15% 2,491 1,428 26%

1,519 1,288 18% 2,571 1,440 27%

Standalone TVaR Allocation

Standalone XTVaR Allocation

Band Co-VaR Allocation

Co-TVaR Allocation

Co-XTVar Allocation

Standalone VaR Allocation

Capital and Pricing Indications Summary

Reference Portfolio

Treaty A

Treaty B

Capital Calculation Method
Standalone VaR

Standalone TVaR

Standalone XTVaR

VaR Increment

TVaR Increment

XTVaR Increment
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Abbreviations and notations 
CAT, Catastrophe 
cdf, Cumulative Distribution Function 
Co-Statistic or Co-Stat, Contribution Statistic 
CTE, Conditional Tail Expectation 
PML, Probable Maximum Loss 

RORAC, Return on Risk-Adjusted Capital 
TVaR, Tail Value at Risk 
VaR, Value at Risk  
XTVaR, Excess Tail Value at Risk 
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