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Abstract 
 Once cost models have been constructed, insurers spend a significant amount of time translating 
those expected cost models into a rating algorithm.  Today, competitive analytics are widely used to 
support this effort.  However, companies often fail to fully integrate competitive analytics into the 
pricing process.  The intent of this paper is to provide the basic tools needed for insurers to make more 
effective pricing decisions using customer price elasticity of demand.  To achieve this, we will explore 
demand modeling techniques, as well as practical applications of demand modeling in pricing.   
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1. INTRODUCTION 

We learned in our introductory economics courses that price elasticity of demand (PED) 

is loosely defined as the change in demand for a given change in price.  It measures a 

consumer’s sensitivity to a change in price for a given good or service, ranging from high 

sensitivity (elastic) to low sensitivity (inelastic).   In equation form,  

ܧ                                                 ൌ െ	ሺఓುభିఓುబሻ/ఓುబ
ሺଵିሻ/

   (1.1) 

Where  ܧ = PED 

  ܲ0 = Initial Price 

  ܲ1 = New Price 

  = Demand at initial priceߤ	 

 ଵ = Demand at new priceߤ	 

One of the benefits of PED is that it enables a firm to enhance its pricing strategies 

through a better understanding of the price sensitivity of its target market.  Let’s look at a 

basic example.  Suppose an accountant has been operating a private firm for the past five 

years and has built a base of loyal customers. Although sales are stable, growth is stagnant 

and he is becoming concerned with the long-term viability of the firm.  He decides to 

implement a 20% discount on first-time tax returns to bring in new business.  As an 

accountant, he understands the need to maintain profitability and simultaneously raises the 

price of a tax return from $250 to $275.  Knowing that his current customers are extremely 
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loyal, he believes the majority of them will accept the slight increase rather than face the risks 

associated with switching accountants (i.e. lower quality).  In other words, he is altering his 

pricing strategy based on the price elasticity of his target market.  For new business, which 

tends to be more price sensitive, he is lowering the price of first-time tax returns to $220 

($275 x 80%).  He offsets the discount by raising the price for his existing business, which 

tends to be less price sensitive.  Through this pricing strategy, he expects to increase his 

customer base and revenue in the long term.   In reality, there are a number of factors that 

must be considered when altering pricing strategy, but hopefully this example provides some 

insight into how PED can be utilized. 

Another benefit of PED is the accurate measurement of revenue changes in response to 

pricing changes.  In the above example, the accountant increased the price of tax returns for 

current customers by 10% (275/250 - 1).  Although a majority of customers will accept the 

increase, some customers are expected to switch accountants.  Ignoring growth, consider the 

following: 

(1) 

Current 

 Price 

(2) 

Proposed 

 Price 

(3) 

# of Current 

Customers 

(4) 

# of Customers 

Expected to Leave 

Due to Rate Change 

(5) = (1) * (3) 

Expected Revenue 

Under Current 

Rates 

(6) = (2) * ((3) – (4)) 

Expected Revenue 

Under Proposed Rates 

(7) = (6)/(5) - 1 

Expected % 

Change in 

Revenue 

$250 $275 100 5 $25,000 $26,125 4.5% 

 

Although the accountant is still profitable, the expected percentage change in revenue is less 

than half of the proposed rate change.  But what if the number of customers expected to 

leave were ten rather than five?  In that case, the expected percentage change in revenue 

would actually be negative, resulting in an overall loss to the business.  Understanding the 

effects of demand on revenue is crucial to making pricing decisions that improve the overall 

position of the firm. 

As an actuary in the P&C insurance market, PED opens up a whole new realm of 

possibilities.  Although competitive analytics are widely used in the industry today, many 

companies fail to fully integrate them into the pricing process.  For a specific firm, what does 

Table 1.1 Price change vs. revenue change
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it mean to be competitive?  Is it purely a function of price or should more abstract concepts 

such as brand and loyalty also be considered?  How can a firm systematically incorporate 

that information into its pricing strategy?  The rest of this paper will attempt to answer these 

questions, with a focus on basic techniques that can be used to model demand.   In Section 

2, we discuss demand modeling including model form and model structure.  In Sections 3 & 

4, we explore practical applications of PED in the context of price simulation and price 

optimization.  Finally, in Section 5, we provide our concluding remarks. 

Before moving into demand modeling, the authors would like to provide a clarification 

on the intent of this paper.  Due to minimal actuarial literature regarding PED, this paper 

strives to offer an introductory review of the topic as opposed to an actual practitioner’s 

guide.  As such, concepts deserving of numerous pages receive little treatment for the sake 

of brevity.  Our hope is that this paper provides a springboard for further work on PED.  

2. DEMAND MODELING 

In statistical models, there are two basic types of data variables.  The fitted response 

variable is the output of the model whereas predictor variables are inputs to the model.  

Given a set of predictors, the model will provide a fitted response.  The actual response in 

the data has two elements.  The signal represents the predictive behavior and the noise is the 

random behavior.  The goal of the model is to separate the signal from the noise.  Thus, we 

are trying to identify a function that, when applied to the predictors, produces a fitted 

response which represents the signal in the actual response.   

When modeling the price elasticity of demand, the first task is to clearly define the actual 

response.   In addition, it is useful to classify the different types of predictors that are to be 

studied.  There are significant challenges in clarifying the data for elasticity modeling.  For 

example, many companies wrestle with the definition of a quote – questions such as how 

long a quote can stay open before it is considered a rejection, how do you deal with multiple 

changes to endorsements, among many other such issues.  These issues are outside of the 

scope of this paper.   

Price elasticity modeling builds a model in which the actual response is the individual 

customer’s acceptance or rejection of a quote or renewal offering.  The predictors in these 
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models can be classified as price and non price related.  The fitted elasticity is derived from 

the coefficients that are associated with the price related predictors in the model.  Note it can 

be useful to further categorize price factors as external (reflecting pricing activities of 

competitors) and internal (reflecting pricing activities of the company). 

In the following sections, we will be discussing the structural form of a model where, 

given the actual response and predictors, we will be able to calculate fitted responses and 

derive fitted elasticity.  In discussing the model form, we will focus on the following three 

areas: 

 Error distribution of the actual response 

 Functional form that relates the actual response to the predictors 

 Structural design of the predictors 

Furthermore, we will discuss key validation techniques to assess the quality of the 

projections.  The result of the form and modeling exercise is to improve understanding of a 

consumer’s behavior toward price.  

2.1. Error Distribution 

Unlike many other responses that practitioners model, it is a relatively straight forward 

exercise to select the error distribution function of a price elasticity model.  Since the actual 

response is of the form yes/no, the binomial distribution is the most appropriate choice.  

Note that it is possible to have intermediate phases that are associated with different degrees 

of acceptance or rejection, but that is outside the scope of this article.   

Before continuing, it is useful to understand what it means to have a binomial 

distribution.  Error distributions are defined in empirical terms as well as functional forms.  

Empirically, the actual response can only be 0 or 1, meaning the selection of a binomial 

structure is clearly supported.  The functional form of an error distribution relates the 

variance of the actual response to the fitted response.  Another interesting interpretation is 

to understand how the variance function plays a part in model form.  The relationship of the 

variance to the mean in a binomial distribution assumes the following form: 

Variance = Mean x (1 – Mean) 
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Because a binary response is modeled, the fitted response will lie between 0 and 1 (more 

on this later).  Given that constraint, the following picture shows the relationship between 

the mean and the variance: 

	

 

The variance of a result represents the degree of uncertainty associated with the predictions 

of that result.  In a cost model, it is common to assume that the larger the fitted value, the 

greater the uncertainty (variability) of the estimate.  In elasticity models, both large and small 

estimates have lower variability whereas mid-range estimates have higher variability.  This is 

the inherent nature of binomial models.  If all the records are always rejecting offers (actual 

response is low - zero), then the modeler can feel fairly confident that future offers will be 

rejected.  Similarly, if all records are always accepting offers, (actual response is high - one) 

then the same high level of confidence can be said about forecasted results.  Now if the 

actual response is mid range, i.e. 50%, then there would be much greater uncertainty 

associated with the fitted value.  Once the distribution function has been selected, the next 

key structure is the link function. 

2.2. Link Function 

The link function is the functional form that relates the response to the predictors.  There 

are two key requirements when selecting a link function for elasticity modeling.  The first is 

that the fitted response of the probability of acceptance or rejection of a price offer should 

lie between 0 and 1.  The requirement of the link function is to transform the resulting 

coefficients from the structural design into a result that is consistent with the laws of 

probability.  Note that in common statistical terminology, the combination of coefficients 

Figure 2.1 Variance mean relationship of binomial distribution
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from the structural design of the model is called a linear predictor.  It is not necessary for the 

linear predictor to be purely linear, as will be discussed in following sections. 

 The second requirement, though less stringent, is that the fitted responses approach pure 

acceptance or rejection but never actually reach it.  This asymptotic behavior is best 

visualized as the following S-shape curve: 

	
 

Allowing the fitted response to reach pure acceptance or rejection implies too much 

certainty in the forecast. 

Unlike error distributions, there are many choices of link functions that satisfy these 

requirements.  Two functions commonly used in practice are: 

1. The logit or logistic function 

ߤ                                                                     ൌ ݂ሺݔሻ ൌ 	
ଵ

ଵାଵ/ୣ୶୮	ሺ௫ሻ
 (2.1)

Where x is the linear predictor 

2. The probit or normal function 

	=	f(x)	=	(x)	 (2.2)	

Where		is the cumulative normal distribution 

When selecting between different functions, it can be useful to perform validation tests using 

the elasticity concept.  Recall that because we cannot observe individual elasticity, we have to 

derive it from the fitted responses from the model.  There are many ways to define elasticity, 

and we will focus on the following two: 

Figure 2.2 Shape of modeled response for elasticity modeling 
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1. Classical Elasticity, which is the percentage change in demand due to the percentage 

change in price.  As defined in the introduction, for a given customer, 

ܧ	                                                       ൌ െ	ሺఓುభିఓುబሻ/ఓುబ
ሺଵିሻ/

 (2.3) 

Assume P1 > P0 so that the numerator is negative and the denominator is positive.  

From this formula, the initial expected demand is ‘fixed’ so elasticity has a linear 

relationship with demand.  Note that Pi is the expected probability of success 

associated with the price Pi. 

2. Linear Predictor Elasticity, which we define as the change in the linear predictor due 

to the percentage change in price.  Specifically, for a given customer: 

ܧ                                                        ൌ 	െ
ቀఉబା∝ൈ	

ುభ
ುబ
	ቁିቀఉబା∝ൈ	

ುబ
ುబ
ቁ

ሺଵିሻ/
	 (2.4) 

Assuming a simple linear predictor with no nonlinear components and one price 

factor: 

ܧ                                                                       ൌ	െ∝	 (2.5) 

Where		is the coefficient associated with the price factor  

Note that in this simple case, E does not vary with demand.  Thus, as the expected 

demand increases, we expect E to be constant.  This relationship holds true 

regardless of the number of non-price factors in the model structure. 

Comparing these two definitions with respect to demand yields the following two lines on 

this theoretical graph: 
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As shown in Figure 2.3, the linear predictor elasticity (dashed) does not vary by demand 

whereas classical elasticity (solid) has a linear relationship with demand.  While there is 

limited interpretative appeal of linear predictor elasticity, we developed this particular 

definition because it has useful properties when assessing link functions.   

Consider the following validation exercise.  A model was built using quote data from 

months one through six.  During months seven and eight, the number of quotes and 

converted policies were captured.  Also assume that a rate change took effect between 

months seven and eight.  The model was used to score the expected close rates of the month 

seven and month eight quotes.  Using these scores, the two months of data were ranked 

from highest to lowest and placed into 17 bins each having approximately the same number 

of quotes.  For each bin, the average linear predictor elasticity was calculated as follows: 

Month 7 Linear Predictor = ln(CR7/(1-CR7)) 

Month 8 Linear Predictor = ln(CR8/(1-CR8))  

Where CRi is the Close Rate in month i 

Then, the change in the observed linear predictor divided by the change in average price 

between the two months was calculated.  This yields the following graph where the model 

used a logit link function: 

 

Figure 2.3 Classical and linear predictor elasticity vs. demand 
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In this graph, the x-axis is the expected conversion for the quotes in both months.  This 

score was used to create approximately equal weighted buckets as identified by the bars from 

the right hand y-axis.  On the left hand y-axis, the average linear predictor elasticity was 

calculated for each group as the change in the aggregate observed linear predictor divided by 

the change in average price between months seven and eight.       

Building a similar graph with the same model structure using a probit link function 

produces the following: 
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Figure 2.4 Linear predictor elasticity vs. demand for logit link function 
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For this particular data set, the actual linear predictor elasticity line in the logistic model is 

flatter than the actual linear predictor elasticity line in the probit model.  From the prior 

theoretical discussion, the linear predictor elasticity would be expected to be flat when 

plotted against the expected demand.  In this case, the logistic link function outperforms the 

probit link function as it results in a linear predictor elasticity that is more constant relative 

to demand.   

As with any modeling exercise, the practitioner’s choice should be validated to ensure the 

best possible model.  Now that the distribution and link function have been selected, the 

next step is to identify the structural design of the predictors. 

2.3. Model Structure 

Building the model structure is a balance between over-fitting and under-fitting.  When 

the model structure is too complex, there is a greater likelihood of over-fitting the data.  This 

generally results in the loss of predictive power.  However, when the structure is too simple, 

there is a likelihood of under-fitting the data, also resulting in the loss of explanatory power.  

When building the model structure, there are a variety of tests the analyst performs to ensure 

that each element in the model reflects this balance.  These include: 
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Figure 2.5 Linear predictor elasticity vs. demand for probit link function 
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 Statistical Tests - these include but are not limited to basic Type III tests, standard 

errors, etc. 

 Consistency Tests – typically these test consistency across different time frames in 

the data.  Alternatively, consistency can be tested across different random data splits. 

 Judgment – the best models reflect the balance of technical information and 

knowledge of the underlying process. 

The structural design of the model is often called the linear predictor.  It reflects the 

combinations of parameters or coefficients that are applied to a particular observation.  Note 

that the modeler specifies the structural design, the link function, and error distribution.  The 

model then calculates a set of parameters that are based on these assumptions.   

The linear predictor contains a variety of different objects to reflect the different 

predictors.  In addition to categorizing predictors as price and non-price factors, they can 

also be classified as categorical and continuous elements.  When a predictor is considered 

categorical, a parameter is calculated for each level in the predictor.  When a predictor is 

considered continuous, a parameter is based on the form of the function introduced.   The 

following example illustrates this concept.  Without loss of generality, assume the following 

simple model structure: 

Base + RatingArea + NamedInsuredAge + f1(RateChange) +f2(CompetitivePosition) 

In this case, the CompetitivePosition is defined as the MarketPrice/CompanyPrice, where 

the MarketPrice is a straight average of five competitors.  This particular metric was useful in 

this model.  There are many other competitive metrics that can be used in demand modeling 

(rank, cheapest ratios, etc.) and there are many challenges in obtaining this external data.  

These concepts are outside of the scope of this paper.   

Looking back at the model form in the example, RatingArea and NamedInsuredAge are 

treated as categorical elements whereas RateChange and CompetitivePosition are continuous 

elements which are introduced as first degree polynomials.  Consider the following output 

from a model: 
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Level Predictor Component 

Base  -0.37876 

NamedInsuredAge 25 0.39105 

RatingArea 1A 0.07411 

RateChange 1.09 -0.9235 * 1.09 + 1.0389 

CompetitivePosition 1.07 -0.9414 * 1.07 + 1.1767 

Linear Predictor 0.28809 

Fitted Value 0.57153 

  Table 2.1 Model structure example; no interactions 

The component represents the parameter applied to the predictor.  For categorical factors, 

the parameter and component are the same.  For continuous factors, the parameter is a 

coefficient applied to the predictor to yield the component.   So the linear predictor for this 

particular observation is the sum of the components.  These components are either specific 

parameters for categorical concepts OR functions of continuous concepts.  The fitted value 

is then the inverse link function applied to the linear predictor.  In the example, the model is 

using a logit link function as defined earlier.   

The prior example reflects a model structure in which the predictors are all treated as 

main effects.  This is a strictly linear concept in which the relationship between predictors 

does not vary based on other predictors.   Adding main effects to the model should be done 

with great care to ensure the main effect is both statistically valid and the resulting pattern in 

the parameters is explainable.  These results should be validated within the framework of the 

three classes of tests described previously. 

To remove this constraint in the linear predictor, it is common to introduce interaction 

terms.  An interaction term is a non-linear construct that allows the results of one predictor 

to become dependent on the value of another predictor.  Building on the prior example, 

assume we have the following model structure: 
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Base + RatingArea + NamedInsuredAge + f1(RateChange) + f2(CompetitivePosition) + 

f2(CompetitivePosition.RatingArea) 

For this model structure the curve parameters for the competitive position will vary based 

on rating area.  Specifically: 

Level Predictor Component 

Base  -0.37781 

NamedInsuredAge 25 0.38846 

RatingArea 1A 0.09457 

RateChange 1.09 -0.9216 * 1.09 + 1.0368 

CompetitivePosition 1.07 -0.9234 * 1.07 + 1.1542 

CompPosit.RatingArea 1A - 1.07 -0.4548 * 1.07 + 0.5685 

Linear Predictor 0.38550 

Fitted Value 0.59520 

           Table 2.2 Model structure example; interactions between competitive position and rating area 

Similar to the discussion related to the main effect, adding interaction terms to the model 

should be done within the context of model testing.  Identifying interactions are a great way 

to complicate the model structure to improve its explanatory power.  This process is 

generally a non-trivial task.  The various strategies for identifying interactions are outside the 

scope of this paper. 

Recall the main purpose in building a demand model is to project the expected price 

sensitivity of the in-force customer or new business quote – in other words, the elasticity.  

Using the definitions from the prior section, we see that the elasticity is a slope function 

associated with the price factors in the model.  Oftentimes, when building a model structure, 

we are looking for interactions (i.e. non-linear relationships) between the price and non-price 

factors.  Within a traditional linear predictor, the analyst could build a model structure where 
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all price factors interact with all non-price factors.  This model would have a strong chance 

of over-fitting the data, and there is a possibility that a derived negative elasticity could occur 

from such a model.   

Arbitrarily adding interactions is generally not a good idea.  This could lead to over-fitting 

which would weaken the predictive power of the model.  In addition, adding any type of 

complexity to a model should be validated based on statistical, consistency and judgment 

tests.  As in other models, if a structure does not produce coherent results, then that 

structure should not be included in the model form.  However, there are technical solutions 

available to build these complex interactions forms without resulting in the negative elasticity 

issue. 

Localization 

The first approach is to build localized models.  Essentially, the analyst would use a 

decision tree tool to split the data into various subsets.  The local main effects models will be 

built for each subset.  By splitting the data into more homogenous subgroups, the modeler 

can build simpler models on smaller sets of data which would have the same effect of 

building complex models on larger sets of data.  The localization procedure is easy to explain 

and implement; however, depending on the split, the model could produce discontinuities in 

some of the continuous factors.  For example, if the split was based on rate increases versus 

rate decreases, then the resulting elasticity projections around the no rate change would not 

likely be continuous. 

Customer Scoring 

The second approach is to use a form of customer scoring to build the model structure.  

In this approach, a main effect model is built to include price and non-price factors.  

Interactions among the non-price factors are then incorporated as necessary.  The 

parameters from the non-price factors are then combined into a customer score.  This score 

is then interacted with the price factors to yield the necessary complexity.   Clarifying this 

with an example, assume we have the following model form: 

Base + RatingArea + NamedInsuredAge + f1(RateChange) + f2(CompetitivePosition) 

Using the parameters from RatingArea and NamedInsuredAge, the following model form is 

built: 
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Base + Score + f1(RateChange) + f2(CompetitivePosition) 

Where   Score = RatingArea + NamedInsuredAge 

Note at this point both of these models would produce the exact same fitted values. The 

final step is to introduce the interaction: 

Base + Score + f1(RateChange) + f2(CompetitivePosition) + Score.f1(RateChange) +                     

Score.f2(CompetitivePosition) 

The following picture illustrates this effect: 

	

    
 

The x-axis represents the competitive position defined as MarketPrice/CompanyPrice.  The 

MarketPrice is defined as a complex weighted average of a collection of competitors’ prices.  

The left hand side of the x-axis represents less competitive rates and the right hand side 

represents more competitive rates.  The left hand y-axis is the fitted value from the model 

and the right hand y-axis is the quote distribution.  The score of the customer is derived 

from the non-price factors as described earlier.  Sometimes this is labeled as the loyalty of a 

customer because it reflects the component of the expected demand that is not based on 

price.  Each line represents a customer score where the higher the score the greater the 

‘loyalty’ of the customer.  When this customer score is interacted with the competitive price 

Figure 2.6 Interaction between customer score and competitive position
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factor, we see that the steepest lines (i.e. most price sensitive) are evident in the middle of 

the tapestry.  This makes sense because the most loyal customers (the flatter lines on the top 

end of the tapestry) are less price sensitive as they identify with either the brand or other 

services provided by the company.  On the opposite end, the least loyal customers (the 

flatter lines on the bottom end of the tapestry) are less price sensitive as they do not identify 

with the company brand or do not seem to be interested in the additional services provided 

by the company.   The middle of the spectrum represents customers who are more 

influenced by the pricing and less so by branding. 

The customer scoring approach allows the modeler to introduce a significant level of 

complexity into the model form.  There are interpretative challenges of what makes a more 

loyal customer for the non-price factors.  In addition, the two staged approach implies an 

amount of quantitative certainty associated with parameters from the original main effects 

model. 

Non-linear Modeling 

The third approach defines the scoring parameters and the main effects parameters 

within the same fitting algorithm.  The following nonlinear model form is constructed: 

Base + RatingArea + NamedInsuredAge + f1(RateChange) + f2(CompetitivePosition) + 

Score.f1(RateChange) + Score.f2(CompetitivePosition) 

Where   Score = exp(RatingArea + NamedInsuredAge) 

Essentially, there are two sets of non-price coefficients that are being calculated within the 

model.  The first represent the parameters to be applied to the main effects.  The second set 

correspond to the embedded score function.  This solution is different from the customer 

scoring approach because it is based on deriving the score parameters at the same time as the 

main effect parameters.  Recall the customer scoring solution is a recursive process where 

the customer score is parameterized in the main effect.  This score is then introduced in a 

subsequent model both as a main effect and an interaction term.  The advantage of the non-

linear model is to remove the element of recursion.  Note that the more stable the main 

effects parameters, the less the difference between the prior two model forms. 

As with the customer scoring approach, there are interpretive challenges to the non-linear 

structure.  In addition, the specific structure can produce convergence issues in the fitting 
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algorithm; however, this can be partly alleviated by simplifying the structure.  Finally, this 

approach (along with the customer scoring strategy) ignores the potential for real negative 

elasticity.  This possibility can exist when a company takes massive rate decreases resulting in 

cancellations.  When customers see a large decrease, they tend to believe that they were 

previously and unfairly priced too high.  This jeopardizes the customer/insurer relationship 

and causes many customers to shop and switch insurers. 

2.4. Validation 

The resulting models from these approaches need to be validated using out of time 

samples to test their performance.  In earlier sections, validation techniques which were 

associated with specifying the correct link function were discussed.  In this section, we will 

focus on two additional validation strategies associated with a validation data set. 

The validation data set can either be a random hold out sample from the original data OR 

an out of time sample OR both.  The value of an out of time sample is that it reflects an 

accurate measure of predictive accuracy.  The models built on historical data are applied to 

subsequent data.  What better way to assess the model performance than to use ‘future’ data.  

The disadvantage of an out of time sample is that there could be a significant change in the 

way business operates that is not reflective of the historical data (e.g. sudden increased 

presence of internet aggregators).  So, the lack of predictive power is not a fault of the 

model, but rather due to the fact that the times are changing.  A similar converse statement 

can be made about a random sample – it is a good measure of explanatory power and will 

not be skewed by distributional drifts in the trend; however, the measure provides a weak 

insight into how well the model will perform in the future.  Ultimately, the modeler decides 

on variations of these two themes. 

Once the validation data set has been defined, the model structure and resulting 

parameters that were built from the training and testing data can be used to score the 

validation records.  These scores can then be compared to the actual values to assess model 

performance.  Consider the following example: 
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In this example, two models were compared to actual results based on an out of time 

validation data set in much the same way that was described in the previous section.  As 

before, the out of time data is the number of quotes from months seven and eight.  The first 

model (dotted) was built using a standard logistic regression within a GLM framework.  The 

model form was localized and several interactions were introduced into the localized 

components.  The second model (dashed) was built using the non-linear method described 

in the prior section.  Applying the structure and parameters to the out of time validation data 

set, a modeled elasticity score was generated from both models.  The quote data was then 

ranked into approximately 11 equal weighted buckets based on the ratio of the score from 

both models.  Specifically: 

(GLMFittedElasticty/GNMFittedElasticity – 1) * 100 

This ratio represents the x-axis in Figure 2.7.  For each of these buckets, the aggregate 

modeled elasticities were calculated as described earlier (the change in close rate divided by 

the change in price).  The dashed line and the dotted line intersect when both models 

produce the same score.  To the left of the intersection, the dashed line is higher than the 

dotted.  This represents the set of observations in which the GNM produces a higher 

Figure 2.7 Validation of elasticity models against observed elasticity 
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expected elasticity.  To the right of the intersection, the dashed line is less than the dotted 

which represents when the GNM approach produces a lower expected elasticity.   

Finally, the observed elasticities (solid line) for each of these buckets were plotted.  

Comparing these different lines allow the modeler to assess which structural form is doing a 

better job of predicting the elasticity.  In this particular case, it appears as if the non-linear 

model structure is over-fitting the historical data.  Thus, it has weaker predictive power.  

This result is more apparent when the GNM predicts a higher elasticity than the GLM. 

In the prior example, the model structure and resulting parameters were validated on an 

out of time sample.  From this approach, we can make general statements about the 

appropriateness of the model form; however, we are unable to make specific statements 

about the strengths and weaknesses of particular aspects of the model structure.  For 

example, how predictive is the set of parameters coming from a particular interaction?  An 

approach to deal with this problem is to use the validation data to reparameterize the model 

structure that was built from the historical data.  The modeler can then compare the 

parameters calculated from the training and testing data to the parameters calculated from 

the validation data.  The inconsistencies between the sets of the parameters indicate where 

there are weaknesses in the predictive power of certain aspects of the model structure. 

Modeling the demand and deriving elasticity provides a powerful understanding of the 

customer’s reaction to the presented price.  This understanding is crucial in setting the right 

rate for the risk.  These models require different technical expertise than those of standard 

costs models, as was described by their structure and form.  Ultimately, when building a 

model it is imperative to realize that, regardless of strategy, the best models tend to be a 

mixture of technical expertise combined with business acumen. 

3. PRICE SIMULATION 

In the following two sections, we will look at practical applications of PED, beginning 

with price simulation.  With the help of our demand models, price simulation allows us to 

“predict” how our book of business will change over time with respect to key metrics such 

as profitability and demand.  To gain an understanding of how price simulation can be 

utilized in the pricing process, the remainder of this section will focus on a specific example. 
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3.1. Scenario Testing 

During a rate review, it is not uncommon for an insurance company to have a few 

different scenarios that it would like to test.  Although the company may have a high-level 

idea in mind (such as a 5% rate decrease), there are a number of ways that 5% decrease can 

be allocated.  Price simulation allows us to determine which scenario will help us best 

achieve our goals.  For example, suppose an insurer writes personal auto insurance.  Based 

on initial countrywide planning efforts, the insurer has decided to pursue a 5% rate decrease 

in state X.   In addition, it would like to simulate two price scenarios to help determine 

which one should be implemented.  The scenarios are as follows: 

 Scenario 1 – 5% base rate decrease 

 Scenario 2 – 15% decrease for operators aged 25-30 off-balanced to an overall 5% 

decrease 

Once the scenarios have been determined, the assumptions that feed the simulator must be 

developed.  For this example, assume the following: 

 Datasets 

o Quotes 

o Renewals 

 Conversion Model 

o Price Component - Premium 

 Retention model 

o Price Component – Market Competitiveness (fixed) 

 Time Horizon – Four periods, each lasting six months 

 Quote Growth Rate – 5% each period 

 Quotes do not enter simulation until new rates go into effect at the beginning of 

period 1 

 Quote distribution constant over time (i.e. if 21 year olds represent 15% of the 

quotes in period 0, they will represent 15% in subsequent periods as well) 

 Aging Assumptions 

o Operators age by 1 every other period 

o Vehicles age by 1 every other period 
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3.2. Running the Simulation 

Now that the assumptions have been identified, the insurer can run a simulation.  For 

educational purposes, we will examine “quotes” and “renewals” separately to gain an 

understanding of the mechanics underlying price simulation.  Let us begin with “quotes”: 

 Quotes 

 

(1)  

Period 

(2)  

Policies 

Offered 

(3)  

Policies 

Written 

(4) = (3) / (2) 

Conversion 

Rate 

(5)  

Policies 

Retained 

(6) = (5) / (3) 

Retention Rate 

(7)  

Profit Margin 

(8) 

Elasticity 

Scenario 1 

0 N/A N/A N/A N/A N/A N/A N/A 

1 20,000 5,493 27.5% 4,669 85.0% 1.9% 1.8 

2 21,000 5,767 27.5% 4,902 85.0% 1.9% 1.8 

3 22,050 6,058 27.5% 5,150 85.0% 1.9% 1.8 

4 23,153 6,360 27.5% 5,406 85.0% 1.9% 1.8 

Scenario 2 

0 N/A N/A N/A N/A N/A N/A N/A 

1 20,000 5,646 28.2% 4,743 84.0% 1.8% 2.4 

2 21,000 5,928 28.2% 4,980 84.0% 1.8% 2.4 

3 22,050 6,228 28.2% 5,231 84.0% 1.8% 2.4 

4 23,153 6,538 28.2% 5,492 84.0% 1.8% 2.4 

Table 3.1 Quote simulation 

In period 0, there are no Policies Offered since we assumed quotes do not enter the 

simulation until period 1.  In period 1, the initial quote dataset of 20,000 enters the 

simulation.  In period 2, 21,000 new quotes enter the simulation based on the assumed 5% 

quote growth rate.  Periods 3 & 4 follow similarly.  Polices Written shows the number of 

quotes converted based on the assumed conversion model.  Once policies written are 

determined, an aggregate Conversion Rate can be calculated, as shown in Column (4).  

Policies Retained gives the number of converted quotes that persist to the next period 

based on the assumed retention model.  Once policies retained are determined, an aggregate 

Retention Rate can be calculated, as shown in Column (6).  Column (7) shows the Profit 

Margin changes over time in each scenario.  The conversion rate, retention rate and profit 

margin are the same for each period because the quote distribution remains constant over 

time per our assumptions.    Lastly, Column (8) contains the aggregate elasticity for the quote 

dataset.  Since elasticity is a function of demand and demand is higher in Scenario 2, it 

follows that the Scenario 2 elasticity is higher than the Scenario 1 elasticity.  Based on Table 
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3.1, which scenario is better?   From a growth perspective, Scenario 2 is superior.  However, 

from a profit margin perspective, the insurer would recommend Scenario 1.  Before making 

a final decision, we must consider “existing business”: 

Renewals 

 
(1)  

Period 

(2)  

Policies Offered 

(3)  

Policies Retained 

(4) = (3) / (2) 

Retention Rate 

(5)  

Profit Margin 

Scenario 1 

0 50,000 44,000 88.0% 2.5% 

1 44,000 41,287 93.8% 2.4% 

2 45,9561 44,162 96.1% 2.3% 

3 49,064 47,147 96.1% 2.2% 

4 52,296 49,315 94.3% 2.2% 

Scenario 2 

0 50,000 44,000 88.0% 2.5% 

1 44,000 41,287 93.8% 2.4% 

2 46,030 44,155 95.9% 2.5% 

3 49,135 47,121 95.9% 2.6% 

4 52,352 49,263 94.1% 2.7% 

Table 3.2 Renewal simulation 

In period 0, policies offered equal the initial renewal dataset of 50,000 policies.  In period 1, 

policies offered equal the policies retained from period 0.  This number is the same in both 

scenarios since we assumed the price component in the retention model was fixed (i.e. the 

market price and competitor price were perfectly correlated).  In period 2, converted quotes 

from period 1 have transitioned to renewals.  Thus, policies offered equal the sum of period 

1 policies retained from the quotes in Table 3.1 and the renewals table in Table 3.2.  Periods 

3 and 4 follow similar logic. Policies Retained shows the number of renewal policies that 

are retained to the next period based on the assumed retention model.   Once policies 

retained are determined, an aggregate Retention Rate can be calculated, as shown in 

Column (4).  Lastly, Column (5) shows how the Profit Margin changes over time in each 

scenario.  Based on Table 3.2, which scenario is better?   From a retention perspective, 

Scenario 1 is best.  However, from a profit margin perspective, the insurer would choose 

Scenario 2.  Since Tables 3.1 and 3.2 failed to provide a consistent solution, we must 

examine the total results to determine which scenario to recommend. 

																																																								
1	45,956	=	41,287	+	4,669	
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Total (Renewals + Quotes) 

 
(1) 

Period 

(2) 

Policies Offered 

(3)  

Policies Written 

(4)  

Policies Retained 

(5)  

Earned Premium 

(6) 

Profit Margin 

(7) 

Absolute Profit 

Scenario 1 

0 50,000 50,000 44,000 $35,250,000 2.5% $881,250 

1 64,000 49,493 45,956 $34,486,258 2.3% $810,152 

2 66,956 51,723 49,064 $36,412,258 2.3% $822,930 

3 71,114 55,122 52,296 $38,800,399 2.2% $842,146 

4 75,449 58,657 54,722 $40,949,798 2.2% $888,759 

Scenario 2 

0 50,000 50,000 44,000 $35,250,000 2.5% $881,250 

1 64,000 49,646 46,030 $34,729,064 2.3% $812,026 

2 67,030 51,958 49,135 $36,692,114 2.4% $891,271 

3 71,185 55,363 52,352 $39,087,466 2.5% $985,029 

4 75,505 58,890 54,755 $41,236,423 2.6% $1,076,159 

Table 3.3 Total business simulation 

After viewing the combined results in Table 3.3, the answer is clear.  Over the stated time 

horizon of two years, Scenario 2 outperforms Scenario 1 from growth, retention, and profit 

perspectives.  Whereas traditional analysis provides little distinction between the scenarios, 

price simulation allowed the insurer to “predict” how its book will change over time in each 

scenario, resulting in the better choice.   

Please note that the above example is intended to illustrate the concept of price 

simulation.  With a slight difference in rate allocation, we see that Scenario 2 yields more 

policies (~30) and higher profit (~$400,000) than Scenario 1 by the end of period 4.  Not 

surprisingly, further rate allocation with a larger book of business could lead to a more 

significant difference in pricing scenarios.  

4. PRICE OPTIMIZATION 

Suppose ABC Insurance wants to increase its new business conversion rate.  One option 

is to decrease the overall premium level.  This will certainly increase the company’s 

conversion rate, but it’s probably not the optimal solution because it affects each insured 

equally.  Another approach is for the company to be more surgical in its approach by 

targeting specific market segments with higher growth potential.  Although this option is 

superior to the first, current techniques rely on sub-optimal human judgment when deciding 

which segments to target.  Price optimization is a mathematical procedure that allows 



Beyond the Cost Model: Understanding Price Elasticity and its Applications 
	

	
	

24	
	

insurers to determine the appropriate rates to charge to maximize some metric over some 

specified time horizon.  As stated above, ABC Insurance wanted to increase its overall 

conversion rate on new business.  Although the approaches described will do that, the result 

will be inferior to a price optimization routine that analyzes thousands of different pricing 

options.   Examples of metrics a company might want to maximize include: 

 Profitability 

o Percentage basis (margin) 

o Absolute basis (total dollars) 

 New Business Conversion 

 Renewal Business Retention 

 Competitive Position 

It is important to note that these metrics are not mutually exclusive.  Typically, a company 

sets a constraint on one metric while maximizing another.  For example, a company may 

want to maximize its new business conversion rate while maintaining its current profitability.   

Similarly, a company may want to maximize its profitability while maintaining its current 

conversion rate.    

4.1. Price Optimization Methods 

In this section, we will discuss two price optimization methods.  The first method 

optimizes prices at the rating structure level by determining optimal rating factors for the 

structures the company has chosen to revise.  This method optimizes on the current rating 

structure directly, and is therefore easy to implement.  However, it fails to identify gaps in 

the current rating structure where growth potential is not being realized.  The second 

method optimizes prices irrespective of the current rating structure by determining an 

optimized premium for each insured in a firm’s book of business.   This has a number of 

advantages: 

 Optimizes premium at the individual insured level 

 Provides opportunity for improvements in a firm’s rating structure by optimizing 

rates outside of the current pricing system 

 Produces an efficient frontier of optimized premiums representing the highest 

possible demand at varying profit levels 
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Despite these advantages, this method has a few drawbacks.  First, it requires more time 

since a rating structure must be reverse engineered from the optimized premiums.   Second, 

some of the benefit gained from the optimization routine is lost during the reverse 

engineering process due to modeling limitations.  In addition to the disadvantages listed 

above, both methods suffer from regulatory constraints, which will be discussed in a later 

section.  The remainder of this section will focus on the second method.  

4.2. The Benefit Function 

Assume a firm wants to maximize its new business conversion rate while maintaining its 

current profitability.  The firm has decided to use price optimization to achieve this goal.  In 

order to optimize prices at the individual insured level, we begin with the benefit function.  

In basic terms, the benefit function calculates the expected profit for each insured over a 

specific time horizon.  In equation form, the one-year benefit function might look like this: 

                                       BFi  CDi * (Qi  Li  E i)  (4.1) 

Where  BF  = Benefit Function 

  CD  = Cumulative Demand 

  Q = Proposed Premium 

  L  = Pure Premium 

  E  = Expenses 

  i  = ith  insured 

Let us examine each piece of the equation starting with cumulative demand.  In order to 

calculate cumulative demand, we need a conversion model and a retention model.  Each of 

these models can be created using the techniques described in Section 2 of this paper.  Once 

the models are built, we simply accumulate total demand for each individual over the stated 

time horizon.  For a one-year time horizon, the cumulative demand for new business is the 

probability that the firm acquires the insured in year one.  If the time horizon were three 

years, then the cumulative demand for new business would be the probability that the firm 

acquires the insured in year one, multiplied by the probability that the firm retains the 

insured for two more years.  The proposed premium is derived by solving for the 

optimized premium.  The pure premium is an estimate of the expected loss costs for each 
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insured.  Lastly, we must account for expenses.   Once we have defined each piece of the 

benefit function, we can solve for the proposed premium (i.e. optimized premium) by 

maximizing the benefit function.  This results in an optimized premium for each insured that 

maximizes his or her expected profit over the stated time horizon irrespective of the 

conversion rate.  Although this certainly qualifies as an optimized premium, it is not the 

optimized premium sought by the firm in our example.  Remember, our firm wanted to 

increase its new business conversion rate while maintaining its current profitability.  So, 

where does the firm go from here? 

4.3. The Efficient Frontier 

The efficient frontier is a curve that plots the expected loss ratio against demand.  It is 

“efficient” because each point on the curve represents a set of optimized premiums.  The 

maximized benefit function exists on the efficient frontier at the point where profitability is 

the greatest.  As we saw earlier, it has a set of “optimized” premiums associated with it; 

namely, the ones that maximize profitability over the stated time horizon.  As you move up 

the curve, demand increases and profitability decreases.  Points inside the curve, such as the 

firm’s current position, are considered sub-optimal because the company could improve 

demand while maintaining profitability, improve profitability while maintaining demand, or 

some combination thereof.  If a firm wants to maximize its new business conversion rate 

while keeping its current profitability constant, the firm moves its position up the curve until 

it reaches the optimized location.  To move up the curve, the optimization routine analyzes 

the PED curve for each individual insured to determine the proper price to charge them in 

order to achieve the target expected loss ratio.   
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Once a set of optimized premiums has been determined that meets the firm’s goals, the 

firm can finally reverse engineer a rating structure by modeling the optimized premiums.  In 

general, this just involves fitting the current rating structure onto the optimized premiums.  

However, thanks to the flexible nature of optimizing at the individual insured level, other 

predictors may be used to account for gaps in the current rating structure found during the 

reverse engineering process.   Although there are a number of ways to complete the reverse 

engineering process, we have chosen to omit that discussion due to the limited scope of this 

paper. 

4.4. Implementing Optimized Rates in a Regulatory Environment 

One substantial challenge associated with price optimization is implementing optimized 

rates within the constraints of a regulatory environment.  The important thing to remember 

is that price optimization is a tool designed to help firms make better pricing decisions.  As 

with any rate filing, a company starts by developing indications based on the loss 

propensities, expense loads and rate of return objectives for various segments of its book of 

business.  At this point, the company can choose to stay at the current rates, use the 

indicated rates, or deviate from the indicated rates based on business judgment.   In this 

regard, price optimization can be seen as a deviation from the indicated rates.  Of course, 

this doesn’t mean that a firm can file anything that comes out of the optimization routine.   

Since price optimization relies on PED in addition to loss propensity, it could conflict with 

traditional pricing methods.  For example, suppose a mature segment of a firm’s book of 

business has a traditional actuarial rate indication of -10%.  In addition to this, assume the 

segment has a low PED relative to the rest of the book.  Now, assume the firm runs an 

optimization routine designed to increase overall demand.  Due to the low PED of the 

mature segment, the optimized rate will most likely be higher than the current rate since that 

particular segment is less price sensitive.  However, this conflicts with the indicated decrease 

of -10%.  In this case, the optimized rates could be subject to regulatory challenge and may 

need to be revised to coincide with the loss indications.  As a result, some of the benefit 

from the optimization routine would be lost.  This example is not meant to deter the use of 

price optimization; it’s meant as a reminder that the final rates decided upon still require 

actuarial justification and approval by state agencies. 
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5. CONCLUDING REMARKS 

In this paper, we detailed basic techniques for developing demand models with emphasis 

on model form and model structure.  Next, we examined the use of PED in the context of 

two practical applications: price simulation and price optimization.  Lastly, we described how 

to implement optimized rates in a regulatory environment.    

Despite the sophistication present in the insurance industry today, the integration of 

competitive data within the pricing process continues to invite further exploration.  This 

paper provides the reader with the basic tools needed to begin this process.  With these 

tools, insurers possess the necessary knowledge and skills to implement more targeted 

pricing decisions that better achieve their goals. 
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