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________________________________________________________________________ 
Abstract 

Bayesian approach is applied to evaluate the prediction uncertainty in chain ladder reserving.  First, the 
philosophy of the Bayesian approach to prediction uncertainty is introduced and compared with the 
Frequentist approach.  All parameters in the model are then estimated using the Bayesian approach, 
with multiple types of prior distributions.  A closed-from posterior distribution is derived under non-
informative and conjugate prior distribution for key parameters in the model.   Finally, the theory is 
illustrated by numerical examples.  The paper demonstrates that it is possible to derive closed-form 
estimates for the prediction uncertainty in chain ladder reserving using the Bayesian approach and that, 
for certain prior distributions, the estimated uncertainty could be much higher than estimates of 
uncertainty produced under the Frequentist approach.  
 
Keywords. Bayesian approach; Prediction uncertainty; Chain ladder; Reserving; Student t distribution; 
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1. INTRODUCTION 

The prediction uncertainty of chain-ladder claim reserving has been widely studied in the 
last twenty years.  Based on three key assumptions, a closed-form formula is derived in [1].  
In [2] a recursive formula solution is provided, and it gives slightly different results to [1] 
under three similar key assumptions.  [3] and [4] present a nice picture of stochastic claim 
reserving but the formula used to calculate prediction uncertainty is the same as [1].  More 
recently the BBMW’s closed-form formula in [5] is based on time-series model and gives the 
same numerical results as [2].  The debate on which formula gives most accurate estimation 
of prediction uncertainty attracts lots of interest [6]-[8]. 

The approach taken so far to derive prediction uncertainty is classified as the Frequentist 
approach, which believes that the truth is fixed and the estimator has a distribution.    
Typically there are two types of error that leads to prediction uncertainty: the process error 
and the parameter error.  The maximum likelihood estimation (MLE) is used to estimate all 
parameters in the model and the process error is calculated based on these MLE parameters.  
Then by assuming all MLE parameters are random variables, the parameter errors are 
calculated as the variance of the MLE parameters around their true values. 

Paralleling the Frequentist approach, the Bayesian approach is another statistical 
approach.  In the Bayesian approach, the true value of an unknown parameter can be 
thought of as being a random variable to which a prior probability distribution is assigned.  
The observed sample data is then synthesized with the prior probability distribution by a 
likelihood function to give the posterior probability distribution. Statistical measures, such as 
mean and variance, are derived from the posterior probability distribution. 

The debate between the proponents of these two approaches (Frequentist and Bayesian) 
has lasted for nearly a century without a clear outcome [13].  However, in the context of 
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prediction uncertainty for chain ladder claims reserving, there have been limited studies on 
the Bayesian approach, to author’s knowledge.  The Bayesian approach is mentioned and 
studied in [3], [4], [8] and [9].  However, not all parameters are analyzed in a Bayesian 
approach: for example, although the parameter 2  in Mack’s model [1] is defined as 
unknown, it is assumed as known in [8] or estimated by MLE and used as a known 
parameter in [3] and [4].  These approaches are termed as a semi-Bayesian approach in this 
paper.  In [9], although the 2  is included in the Bayesian analysis, the author mainly uses 
simulation techniques, such as the bootstrap method, to estimate the parameter. 

The purpose of this paper is two-fold.  The first intention is to apply the Bayesian 
approach in estimation of parameters as well as evaluation of prediction uncertainty.  The 
Bayesian approach has a notorious reputation of making mathematics really difficult and 
almost always ends up with open-form solutions and simulation.  However, it will be 
shown that, under certain prior assumptions, it is possible to have closed-form solutions. 

The second intention of this paper is to provide more evidence into the debate of which 
formula gives the most accurate estimation of prediction uncertainty [6]-[8].  It might not be 
fair to compare results from the Frequentist and Bayesian approaches. However, the fact 
that the Bayesian approach can make assumptions more explicit might help to understand 
the difference between these approaches. 

There are different models and assumptions about stochastic reserving, see for example 
[3] and [4].  This paper focuses on the Mack’s model as one of the most widely used, but the 
general theory could be applied to other models. 

The remainder of the paper proceeds as follows. Section 2 introduces the basic claim 
reserving model and the Bayesian approach to prediction error.  Section 3 illustrates the 
assumptions of the model.  Section 4 calculates the prediction uncertainty under the 
assumptions consistent with the Mack’s model.  Section 5 estimates the parameters in the 
model using a Bayesian approach.   Numerical examples are presented in Section 6 and 
finally conclusions are made in Section 7. 

2. THE BAYESIAN APRROACH TO PREDICTION 
UNCERTAINTY  

Let ,i jX  be the random variables of accumulated claim amounts of the accident year 

i  1 i N  and development year j  1 j N  .  By the end of N th year, the variables in 

the upper left-hand section of the rectangle of ,i jX  have been observed, as illustrated in (2.1).  

These variables are denoted in lower case as all are observed and therefore fixed.  The whole 
observed triangle is denoted as x .  The task of claims reserving is to project the ultimate 
claim amounts based on this observation.  In this paper it is assumed that the claim amount 
in the 1st year has fully developed and therefore ,i NX   2 i N   are considered the 

ultimate claim amounts to be estimated. 
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 (2.1) 

Among various reserving methods, chain-ladder method is the most widely used.  Given 
x , the development factor jf  is estimated by 

 , 1 ,
1 1

ˆ
N j N j

j i j i j
i i

f x x
 


 

  x  (2.2) 

and the ultimate claim amount for the i th  2i   year, denoted as ,ˆi Nx , is estimated as 

 
1

, , 1
1

ˆˆ
N

i N i N i j
j N i

x x f


 
  

 x . (2.3) 

(2.2) is only one of the common choices to estimate the development factors. Other 
calculations, such as a straight average of the observed ratios, can be used to come up with 
development factors in (2.2). It is important to note that (2.2) and (2.3) are deterministic in 
nature, given the observation x , at least from the Bayesian point of view. 

Having estimated the ultimate claim amount using (2.2), it is important to know how 
accurate this estimator is and what the prediction uncertainty is.  One measure commonly 
employed for this purpose is the mean square error (MSE).  Although this measure is initially 
formulated in the Frequentist approach, it can be adjusted to the Bayesian approach and has 
been widely used to evaluate the prediction uncertainty in [3], [4], [8] and [9].  For each 
individual year, MSE is defined as 

  2

, ,ˆi i N i NMSE E x X    
x , (2.4) 

and for the aggregation of all years, MSE is defined as 

 
2

, ,
2 2

ˆ
N N

i N i N
i i

MSE E x X
 

     
   
  x , 

where the summation starts from 2nd year because the ultimate claim amount of 1st year has 
already been observed. 

Because ,ˆi Nx  is a fixed number given x , (2.4) becomes 

 2

, ,ˆi i N i NMSE E x X    
x  
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            2 2

, , , , , , , ,ˆ ˆ2i N i N i N i N i N i N i N i NE x E X x E X X E X X E X         
x  

     2 2

, , , ,ˆi N i N i N i Nx E X E X E X      
x x x .  (2.5) 

If ,ˆi Nx  is an unbiased estimate of ,i NX , that is 

  , ,ˆi N i Nx E Xx x  

which is the case for chain ladder reserving method under the assumptions of [1], MSE of 
the i th year is further simplified as 

     2

, , ,vari i N i N i NMSE E X E X X     
x x , (2.6) 

If ,ˆi Nx  is biased, (2.6) only gives a lower bound of MSE as the second term in (2.5) above 

represents an additional bias error necessary to calculate the total MSE [10].  Similarly, the 
minimum MSE for the aggregate ultimate claim amount is 

 ,
2

var
N

i i N
i

MSE X


 
  

 
 x . (2.7) 

A comparison with the Frequentist approach is interesting at this stage.  In the 
Frequentist approach, as explained in [1], MSE is split into two parts, that is 

     2

, , ,ˆvari i N i N i NMSE X E X x  x x . (2.8) 

Comparing (2.6) with (2.8) suggests that the Bayesian approach misses one term.  However, 

this is not the case because of the different meaning of  ,var i NX x .  In the Frequentist 

approach,  ,var i NX x  is actually the variance of ,i NX  conditional on the MLE of all 

parameters.  So stringently it is better to express (2.8) in this way 

     2

, , ,ˆvari i N i N i NMSE X MLE parameters E X x  x . 

By contrast, the Bayesian approach includes all uncertainty in  ,var i NX x .  So the key to 

the Bayesian approach is to calculate the posterior distribution of all the model parameters 
which contain uncertainty, and therefore the posterior distribution of the ultimate claims 
amount ,i NX . 
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3. MODEL ASSUMPTIONS 

To proceed with this analysis, a particular model has to be chosen.  The Mack model is 
used in this paper, but the methodology can be applied to other models.  The key 
assumptions are 

 , 1 ,1 , ,,...,i j i i j j i jE X X X f X  ; 

 ,1 ,,...,i i NX X ,  ,1 ,,...,k k IX X  are independent;  (3.1) 

and   2
, 1 ,1 , ,var ,...,i j i i j j i jX X X X  . 

Mack’s model is claimed to be distribution-free, that is, the results from Mack’s model don’t 
depend on the assumption of the conditional distribution of ,i jX .  However , to make this 

model comparable to other models and make simulation possible, it is often slightly changed 
to assume that  , 1i jX   is Normally distributed with mean  ,j i jf X  and variance  2

,j i jX  [3], 

[8], that is 

    2
, 1 ,1 , , ,,..., ,i j i i j j i j j i jX X X N f X X  . (3.2) 

Let , , 1 ,i j i j i jY X X , then this assumption is equivalent to 

   2
, ,1 , ,,..., ,i j i i j j j i jY X X N f X . 

Lower case ,i jy  is also defined as , 1 ,i j i jx x  if both ,i jx  and , 1i jx   are known. 

The Normal distribution is not the only  distribution possible.  Moreover, the assumption 
of normality is not the best from a theoretical standpoint, as the Normal distribution could 
take negative values while cumulative claims amount usually cannot.  However, in common 
parameterization of the distribution, the probability to take negative value is fairly low.  This 
assumption also provides a mathematically tractable result and was widely used in [3], [4] and 
[8].  

As the distribution of ,i jX  is defined by parameters  2,j jf  , the posterior distribution 

of  2,j jf  will be first calculated so that the posterior distribution of ,i jX  can be evaluated.  

To simplify further denotation, these vectors are defined 

  1 2 1, ,..., Nf f f f   

and   2 2 2
1 2 1, ,..., N   2σ . 
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4. CALCULATION OF PREDICTION ERROR 

To calculate (2.6), the first step of the Bayesian approach is to calculate the posterior 
distribution of all parameters by 

      p p p 2 2 2f,σ x x f,σ f,σ  (4.1) 

where  p 2f,σ  is the joint prior distribution of f  and 2σ , and  p 2f,σ x  is the joint 

posterior distribution.   p 2x f,σ  is determined by the assumptions of model.   Assuming 

independence in (3.1) and (3.2), this probability is 

   ,1 ,2 , 1
1

, ,...,
N

i i i N i
i

p p x x x  


2 2x f,σ f,σ  

   
1

,1 , ,1 ,2 , 1
1 2

, ,..., ,
N N i

i i j i i i j
i j

p x p x x x x
 


 

 
  

 
 2 2f,σ f,σ  

   
1

,1 , , 1 , 2 ,1
1 2 1

, ..., ,
N jN N

i i j i j i j i
i j i

p x p x x x x
 

 
  

  
   
   
  2 2f,σ f,σ  

 
 

 

2
1

, 1 , 1

22
2 1 1 , 11 , 1

1
exp

22

N jN
i j j i j

j i j i jj i j

x f x

xx  

 
 

    

               
   

 
 

2
1

,

22
1 1 ,

1
exp

2

N jN
i j j

j i j i jj

y f

x



 

               
  .  (4.2) 

There are several options for the prior distribution  p 2f,σ , which will be discussed in 

detail in Section 5.  By definition,  p 2f,σ  is a multi-dimensional distribution and generally 

there is no guarantee of independency between pairs  2,j jf  .  However, in the Bayesian 

theory, any appropriate distribution can be chosen as prior distribution, so it is reasonable to 
assume that the chosen prior distribution have the feature of independency, i.e., any  pair 

 2,j jf   is independent to other pair, so that 

    
1

2

1

, ,
N

j j
j

p p f 




2f σ . (4.3) 
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Note that the non-informative prior distributions used in [3], [4] and [8] satisfy this 
assumption and all prior distributions used in Section 5 meet this criteria as well. Substituting  
(4.2) and (4.3) into (4.1), results in: 

    
   

2
1

, 2

22
1 1 ,

1
, exp ,

2

N jN
i j j

j j
j i j i jj

y f
p p f

x






 

                   
 2f σ x  (4.4) 

which shows that the joint posterior distribution can be factorized.  This gives an important 
conclusion that if the prior distribution is independent, the joint posterior distribution of the 

pair  2,j jf  x  is also independent of other pairs.  And each pair has a similar formation as 

    
   

2

,2 2

22
1 ,

1
, exp ,

2

N j
i j j

j j j j
i j i jj

y f
p f p f

x
 







           
x  

                              2 22 2
, ,2

1

1
exp ,

2

N j
N j

j i j i j j j j
ij

x y f p f 


 



 
    

  
 . (4.5) 

So the analysis on (4.4) can be done individually on each component. 

The second step of the Bayesian approach is to calculate the marginal posterior 

distribution  jp f x  and  2
jp  x .  This could be calculated by integrating out the 

unwanted variables in the joint posterior distribution as 

      2 2 2

0
,j j j j jp f p f p d  


 x x x  

  2 2

0
,j j jp f d 


  x  (4.6) 

and similarly 

      2 2

0
,j j j j jp p f p f df 


 x x x  

  2

0
,j j jp f df


  x . (4.7) 

In cases where the integration in (4.6) and (4.7) cannot be performed analytically, numerical 
techniques have to be used to calculate the posterior marginal distribution.  This is where the 
Bayesian approach becomes tricky and has to resort to simulation techniques.    However, as 
will be shown in section 5, these two integrations could give closed-form distribution under 
certain prior distributions, which gives interesting standard statistical distributions. 

Having derived the marginal posterior distribution, the final step is to calculate the 

variance in (2.6). In this paper, this is done in a recursive way.  Because any pair  2,j jf  x  
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is independent of another pair  2,k kf  x  j k ,  2,j jf  x  is also independent of 

, 1i kX  x  if j k .  Using this independence, the mean of  , 1i jX  x  (for j i ) is 

        , 1 , ,i j j i j j i jE X E f X E f E X  x x x x  (4.8) 

and the second central moment is 

    22 2
, 1 , ,i j j i j j i jE X E f X X

    
x x        2 2 2

, ,j i j j i jE f E X E E X x x x x . 

So the variance of , 1i kX  x  is 

     2 2
, 1 , 1 , 1var i j i j i jX E X E X   x x x  

           2 2 2 2 2
, , ,j i j j i j j i jE f E X E E X E f E X  x x x x x x  

           2 2 2
, , ,var varj i j j i j j i jf E X E f X E E X  x x x x x x . (4.9) 

The value of  jE f x ,  var jf x  and  2var j x  can be calculated from the posterior 

distribution in (4.6) and (4.7).  

A boundary condition is needed to calculate (4.9) properly.  For the first term , 1i N iX    in 

the recursive formula, because  

 , 1 , 1i N i i N iX x   x , 

its  mean is 

  , 1 , 1i N i i N iE X x   x  (4.10) 

and its variance is 

  , 1var 0i N iX   x . (4.11) 

So by recursive formula (4.8), (4.9) and boundary condition (4.10), (4.11), MSE in (2.6) can 
be calculated for any i . 

A comparison with the results from MLE approach is very interesting.  One difference is 
the value of 2

j , which is due to the different philosophy between the Frequentist and 

Bayesian approaches.  In the Frequentist approach, the MLE 2ˆ j  is used while in the 

Bayesian approach the mean of 2
j x  is used.  As will be shown in Section 5, this difference 

is very large when there are few data points available, such as at the tail of reserving triangle. 
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Another difference is that MSE of the Bayesian approach is larger than that of the 
Frequentist approach.  Because the Frequentist approach always splits the total MSE into 
process error and parameter error, for comparison purposes, (4.9) is artificially split into a 

process component and a parameter component, denoted as  ,varpro i jX x  and 

 ,varpar i jX x , respectively.  That is 

      , , ,var var vari j pro i j par i jX X X x x x  (4.12) 

Substitute (4.12) into (4.9) and (4.9) becomes 

   , 1 , 1var varpro i j par i jX X x x  

             2 2 2
, , , ,var var varj i j j i j j pro i j par i jf E X E E X E f X X      x x x x x x x . 

  (4.13) 

If it is assumed that the process component follows the same recursive formula for the 
process risk as in the Frequentist approach [2], [10], then 

  , 1varpro i jX  x        2 2
, ,varj pro i j j i jE f X E E X x x x x . (4.14) 

Substituting (4.14) into (4.13) gives the recursive formula for the parameter component 

 , 1varpar i jX  x  

           2 2
, , ,var var var varj i j j pro i j j par i jf E X f X E f X  x x x x x x . (4.15) 

The equivalent recursive formula for Mack’s formula [10] is 

  , 1varpar i jX  x    2
,var j i jf E X x x    2

,varj par i jE f X x x , (4.16) 

which doesn’t have the term    ,var varj i jf Xx x  compared with (4.15).   Murphy’s 

formula [2], which is the recursive formula underlying BBMW’s formula [5], is  

  , 1varpar i jX  x    2
,var j i jf E X x x    2

,varj par i jE f X x x , (4.17) 

which doesn’t have    ,var varj pro i jf Xx x  compared with (4.15).  So the parameter error 

component of the Bayesian approach is always larger than parameter error of the Frequentist 
approach.  However, because this separation of process component and parameter 
component is artificial for the Bayesian approach, the only conclusion that can be made is 
that the total MSE of the Bayesian approach is larger than that of the Frequentist approach.  
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To calculate the variance of the aggregate claim amount in (2.7), a new sequence of 
random variables jZ  are introduced to express the aggregate ultimate claim amount in 

another way.  jZ  is defined as 

 1, ,
2

N

j N j j i j
i N j

Z x X 
  

    (4.18) 

It is apparent that NZ  is the aggregate ultimate claim amount.  Based on (3.2), it is shown in 
Appendix A that  

    2
1 2, 3, , , 1, ,... ,j N j j N j j N j j j N j j j jZ X X X N f Z x Z       . (4.19) 

Then the total risk can be calculated in the same way as the individual year claims amount.  
For the boundary condition, 1 ,1NZ x , which is fixed, so the mean and variance of 1Z  are 

  1 ,1NE Z xx  

and  

  1var 0Z x , 

respectively. 
The recursive formula for mean of 1jZ   is 

        1 , 1 , 1j j j N j j j j N j jE Z E f Z x E f E Z x       x x x x  (4.20) 

and for variance is 

     2 2
1 1 1var j j jZ E Z E Z   x x x  

           2 2 2 2 2
j j j j j jE f E Z E E Z E f E Z  x x x x x x  

           2 2 2var varj j j j j jf E Z E f Z E E Z  x x x x x x , (4.21) 

which is exactly same as the recursive formula for individual year. 

5. PARAMETER ESTIMATION 

As shown in last section, the posterior distributions for each pair of parameters  2,j jf   

can be calculated individually and the posterior distributions in (4.5) have similar forms for 
different j ’s.  To make the notation in further analysis more concise, the analysis in this 
section focuses on the term 
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        2 22 2 2
2

1

1
, exp ,

2

KK

i i
i

p f x y f p f  






      
x , (5.1) 

with K  replacing N j  in (4.5). In this paper, f  is always assumed unknown, while 2  
could be known or unknown. 

5.1 Known 2  
For completeness and in order to make the comparison, this section includes a brief 

analysis of the case when 2  is known, even though that was already been done in [8].  With 
known 2 , (5.1) is simplified to 

      2

2
1

1
exp

2

K

i i
i

p f x y f p f
 

      
x  (5.2) 

One typical non-informative prior distribution is  

   1p f  . (5.3) 

By substituting (5.3) into (5.2), there is 

    2

2
1

1
exp

2

K

i i
i

p f x y f
 

     
x  

              2

2
1

1 ˆexp
2

K

i
i

f f x
 

     
 , 

where  

 
1 1

ˆ
K K

i i i
i i

f x y x
 

  . (5.4) 

So the posterior distribution of f  is a Normal distribution 

 2

1

ˆ ,
K

i
i

f N f x


 
 
 

x  , (5.5) 

and the mean is 

   ˆE f fx  (5.6) 

and the variance is 

   2

1

var
K

i
i

f x


 x  (5.7) 
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If there is prior knowledge of f , it is useful to use an informative prior distribution.  
One common option is the Normal distribution, i.e., 

    2

0
22
00

1
exp

22

f
p f




 
  

  
 (5.8) 

where 0  is the prior knowledge of f  and 2
0  indicates the confidence about the prior 

knowledge - a larger variance implying lower confidence.  By this prior, the posterior 
distribution in (5.2) becomes 

      2 2

02 2
1 0

1 1
exp

2 2

K

i i
i

p f x y f f 
 

 
     

 
x  

                     

2

0
2 2

1 0
2 2

1 0
2 2

1 0

ˆ

1 1
exp

1 12 2

K

iK
i

i K
i

i
i

f
x

x f
x


 

 
 







  
               
   





 

which shows that posterior distribution is Normal distribution 

 

0
2 2

1 0

2 2 2 2
1 10 0

ˆ

1
,

1 1 1 1

K

i
i
K K

i i
i i

f
x

f N
x x


 

   



 

 
 

 
 

  
 



 
x  . 

5.2 Unknown 2  

When the parameter 2  is unknown, there are usually three types of prior distributions 
depending on the philosophical view of the prior distribution. 

5.2.1 Non-informative Prior 

In a non-informative prior approach, the intention is to use a prior distribution as simple 
as possible, which provides the smallest amount of information.  One option would be 

  2 2, 1p f   . (5.9) 

which is an improper prior distribution. Substitute this prior distribution into (5.1), the joint 
posterior distribution becomes 

        2 2 22 2
2

1

1
, exp

2

KK

i i
i

p f x x y f 


 



     
  (5.10) 
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As shown in Appendix B, the marginal posterior distribution f  is 

 
 
 

2
2

1
2

ˆ

1
1

KK

i
i

f f x
p f

K s





      
  


x , (5.11) 

where f̂  is defined in (5.4) and 

  2
2

1

1 ˆ
1

K

i i
i

s x y f
K 

 
  , (5.12) 

which is the MLE of variance 2  that is widely used in [1]-[8] for the Frequentist and semi-
Bayesian approach.  The distribution shown in (5.11) is the standard t -distribution [10] with 

shift and scale, that is,   2

1

ˆ
K

i
i

f f s x


   has the standard t -distribution with 

1K  degrees of freedom.  So the posterior distribution of f  is the t -distribution 

 2
1

1

ˆ ,
K

K i
i

f t f s x


 
 
 

x  . (5.13) 

By feature of the t -distribution, the mean of f  is 

   ˆE f fx  (5.14) 

and the variance is 

    2

1

1
var

3

K

i
i

K
f s x

K 

    
x . (5.15) 

So  var f x  is not defined for 3K  . 

Similarly, Appendix C shows the marginal distribution of 2  is 

         2
1 22 2

2

1
exp

2

K K s
p  


   

  
 

x  (5.16) 

which indicates that 2  has inverse Gamma distribution with parameter  1 2K   and 

  21 2K s , that is, 

     2 21 2, 1 2IG K K s  x  . 

So the mean of 2  is 
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 
 

 
 

2
2 21 1

32 1 2 1

K s K
E s

KK


         
x . (5.17) 

Similar to  var f x , this is not defined for 3K  . 

5.2.2 Conjugate Prior 

In the conjugate prior approach, the philosophy is to choose a prior distribution that 
provides convenience of calculation.  Typically the conjugate distribution will be used, that is 
the distribution which makes prior and posterior belong to same distribution family.  For the 
likelihood formation as in (5.1), the conjugate distribution is the Normal-Inverse-Gamma 
distribution, which is defined as 

      2 2 2,p f p f p    (5.18) 

where 2  has inverse Gamma distribution 

  2 2
0 02, 2IG    

and f  has Normal distribution with variance related to 2  

  2 2
0 0,f N    . 

0 , 2
0 ,  0  and 0  are all parameters that can be chosen based on prior knowledge.  In 

this prior distribution, f  is no longer independent of 2 . 

By these prior distributions, the posterior distribution (5.1) becomes 

       2
2 2 0 02 2

2 22
1

1 1
, exp exp

2 22

KK

i i
i

f
p f x f y

 
 

 





             
x  

    0
2

2 12 0
2

exp
2

 


   
  

 
 

       0 3 2 2 22 2
0 0 02

1

1
exp

2

KK

i i
i

f x f y


   


  



           
 . (5.19) 

As shown in Appendix D, the marginal distribution of f  is 

        1 22 2

1

K

K K K K

K

f
p f


   



 
 
  
  

x  (5.20) 

where  
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 0 1
0

0 0
1 1

ˆ

K

i
i

K K K

i i
i i

x
f

x x

 
 



 

 
 



 
, (5.21) 

 0
1

K

K i
i

x 


  , (5.22) 

 0K K   , (5.23) 

and    2
2 2 2 0

0 0
1

ˆ1
K

K i
iK

K s f x
  
 

      . (5.24) 

So   2
K K K Kf      has the standard t -distribution with K  degrees of freedom, 

that is   

  2,
K K K K Kf t    x  , 

which gives the mean 

   KE f x  (5.25) 

and the variance 

    
2 2

var
2 2

K K K

K K K K K

f
  

    
  

 
x . (5.26) 

Similarly, the marginal posterior distribution of 2  is 

       2
2 22 2

2
exp

2
K Kp

  


   
  

 
x  (5.27) 

which is proved in Appendix E.  (5.27) shows that 2  has inverse Gamma distribution with 
parameter 2K  and 2 2K , i.e., 

  2 22, 2K KIG  x  . 

So the mean is 

 
2

2

2
K

K

E



    

x . (5.28) 
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5.2.3 Other priors 

The third option is to use any distribution that is ‘subjectively’ chosen based on prior 
knowledge.  One commonly used prior distribution is that f  and 2  are independent while 

f   has normal distribution and 2  has inverse Gamma distribution, that is, 

      2 2,p f p f p   (5.29) 

where 

  2
0 0,f N    

and  

  2 2
0 02, 2IG   . 

This prior is quite similar to conjugate prior distribution in (5.18) but f  and 2  are 
independent.   Substitute this into (5.1), the joint posterior distribution is 

       2
2 2 02 2

2 22
1 00

1 1
, exp exp

2 22

KK

i i
i

f
p f x f y


 

 





             
x  

    0
2

2 12 0
2

exp
2

 


   
  

 
. (5.30) 

So the marginal posterior distribution is 

         0

2
2 2 20 2 2 2

02 20
10

1
exp exp

2 2

KK

i i
i

f
p f x f y d


  

 
   



                 
x  

   

 
 0

2
00

2 2
0 2 2

0
1

2
exp

2 1
2

K
K

i i
i

Kf

x f y










        
           


 

   
 02 2

20 2
02

10

exp
2

KK

i i
i

f
x f y






 



            
 , 

which doesn’t follow any standard distribution but is still a closed-form distribution.  The 
marginal distribution of 2  could be calculated in a similar way, but it does not give a closed-
form result.  However, the mean and variance of f  and 2  can be calculated by numerical 
technique based on marginal posterior distribution.  This approach is not developed further 
in this paper. 
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6. NUMERICAL EXAMPLE AND RESULTS 

The data from Taylor and Ashe [12], which is in Table 1, is used to illustrate the analytical 
results from previous sections.   

Table 1.  Cumulative claims amount triangle. 

i  j  1 2  3  4  5  6  7  8  9  10  

    
1  

   
357,848  

   
1,124,788  

   
1,735,330  

  
2,218,270 

  
2,745,596 

  
3,319,994 

  
3,466,336 

   
3,606,286  

   
3,833,515  

  
3,901,463 

    
2  

   
352,118  

   
1,236,139  

   
2,170,033  

  
3,353,322 

  
3,799,067 

  
4,120,063 

  
4,647,867 

   
4,914,039  

   
5,339,085  

  

    
3  

   
290,507  

   
1,292,306  

   
2,218,525  

  
3,235,179 

  
3,985,995 

  
4,132,918 

  
4,628,910 

   
4,909,315      

    
4  

   
310,608  

   
1,418,858  

   
2,195,047  

  
3,757,447 

  
4,029,929 

  
4,381,982 

  
4,588,268       

    
5  

   
443,160  

   
1,136,350  

   
2,128,333  

  
2,897,821 

  
3,402,672 

  
3,873,311         

    
6  

   
396,132  

   
1,333,217  

   
2,180,715  

  
2,985,752 

  
3,691,712           

    
7  

   
440,832  

   
1,288,463  

   
2,419,861  

  
3,483,130             

    
8  

   
359,480  

   
1,421,128  

   
2,864,498  

              

    
9  

   
376,686  

   
1,363,294  

                

  
10  

   
344,014  

                  

 

Four prior distributions are used; they are: 

Prior 1: (5.3) with known variance 2 equaling 2s  defined in (5.12). For the last variance 
of 2

9 , the formula does not work as there is only one observation of development factor, a 

common issue in the Frequentist approach as well.  The 2
9  is estimated according to 

Mack’s suggestion in [1] as 

   2 4 2 2 2
9 8 7 7 8min ,min ,     ; 

Prior 2: (5.9) 

Prior 3: (5.18)  with parameters  0 0  , 0 0.001  , 0 0.001   and 0 0.001  

Prior 4: (5.18) with parameter 0 0  , 0 0.001  , 0 1.001   and 0 0.001 

Prior 1 is the prior used by [3], [4], and [8] and served as benchmark in this example.  Prior 2-4 
are the priors where 2  is unknown.  Prior 2 gives the least information about jf  and 2

j , 

which is  often called non-informative.  Prior 3 is almost non-informative for 2
j , but it does 

give more information for jf  compared with Prior 2 because the variance of jf  could be 
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very small when 2
j  is small.  Prior 4 has same implication for jf  as Prior 3, and it gives 

more information about 2
j . 

It is important to note that the chosen parameters uniquely define the prior distribution.  
However, that does not necessarily guarantee that statistical measures of the distribution, 
such as the mean and variance, exist.  For example, for a non-informative prior, it is common 
to have infinite mean or variance. 

First, the mean and variance of parameters jf  and 2
j  are calculated.  Equations (5.4), 

(5.14), and (5.25) are used to calculate the mean of jf , shown in Table 2.  As expected, the mean 

is very similar among the different prior distributions. 

Table 2.  Results of  jE f x  

j  Prior 1 Prior 2 Prior 3 Prior 4 

1 3.4906065 3.4906065 3.4906055 3.4906055 

2 1.7473326 1.7473326 1.7473325 1.7473325 

3 1.4574128 1.4574128 1.4574127 1.4574127 

4 1.1738517 1.1738517 1.1738516 1.1738516 

5 1.1038235 1.1038235 1.1038235 1.1038235 

6 1.0862694 1.0862694 1.0862693 1.0862693 

7 1.0538744 1.0538744 1.0538743 1.0538743 

8 1.0765552 1.0765552 1.0765551 1.0765551 

9 1.0177247 1.0177247 1.0177245 1.0177245 
 

The variance of jf  is calculated using (5.7), (5.15) and (5.26), and is presented in Table 3.  

In the tail of the triangle, the formula might not work--a similar issue when estimating 2
9 .  

(5.15) and (5.26) do not work when the number of observation is small, which does not 
mean that the variance does not exist but that there is not enough information to estimate it 
under a non-informative prior.  In such case, the approach suggested in [8] is used: the 
variance is estimated by multiplying the result of Prior 1 with a constant factor. 

The multiplicative factor is chosen, subjectively, as the ratio of estimator of this Prior to 

the estimator of Prior 1 at the nearest year where  var jf x  can be estimated.  So for Prior 

2, the factor is the ratio at year 6, which is 3.  For Prior 3, it is the ratio at year 8, which is 2.  

 var jf x  calculated by these factor are highlighted in Italic in the Table 3.  Table 3 shows 

that the differences in the variance between different prior distributions are quite large, while 

Prior 4 gives very similar results to Prior 1 except that last term of  9var f x .  This is 
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because at the extreme tail of triangle, the observed information is not enough to estimate 
the variance and the estimation largely depends on the prior information.  As stronger prior 
is assumed in Prior 1, so the variance is lower. 

Table 3. Results of  var jf x . 

j  Prior 1 Prior 2 Prior 3 Prior 4 

1 0.04817026 0.06422701 0.05504437 0.04816468 

2 0.00368120 0.00515367 0.00429406 0.00368071 

3 0.00278879 0.00418318 0.00334590 0.00278834 

4 0.00082302 0.00137170 0.00102854 0.00082287 

5 0.00076441 0.00152882 0.00101890 0.00076424 

6 0.00051306 0.00153917 0.00076923 0.00051291 

7 0.00003505 0.00010514 0.00007011 0.00003507 

8 0.00013466 0.00040399 0.00026932 0.00013466 

9 0.00011650 0.00034951 0.00023301 0.00027045 
 

The mean of 2  is calculated using (5.17) and (5.28).  For Prior 1, it is a fixed value given 
by (5.12).  For Prior 2 and 3, if the formula does not work in the tail of triangle, the same 

approach - multiplying results for Prior 1 by a factor - as for  var jf x  is used. All results

are shown in Table 4, which indicates the difference between prior distributions is also quite 
large. 

Table 4. Results of  2
jE  x . 

j  Prior 1 Prior 2 Prior 3 Prior 4 

1 160,280.327 213,707.103 183,153.093 160,261.818 

2 37,736.855 52,831.597 44,019.503 37,731.901 

3 41,965.213 62,947.820 50,348.611 41,958.574 

4 15,182.903 25,304.838 18,974.230 15,180.142 

5 13,731.324 27,462.648 18,302.737 13,728.197 

6 8,185.772 24,557.315 1,2273.111 8,183.437 

7 446.617 1,339.850 893.451 446.949 

8 1,147.366 3,442.098 2,294.732 1,147.379 

9 446.617 1,339.850 893.233 1,036.763 
 

Then the MSE can be calculated.  First, the recursive formulas by Mack (4.16) and 
BBMW/Murphy (4.17) are compared to the Bayesian approach (4.9) under Prior 1, with 
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results presented in Table 5.  The results are exactly matched to results in [1], [3], [4] and [10], 
which shows that the Bayesian approach under Prior 1 is very similar to the Frequentist 
approach with a difference of 0.01% in reserve amount.   

Table 5. MSE by Frequentist and Bayesian approaches under Prior 1. 

Year Mack Murphy/BBMW Bayesian 
2 75,535 75,535 75,535 
3 121,699 121,700 121,703 
4 133,549 133,551 133,556 
5 261,406 261,412 261,436 
6 411,010 411,028 411,111 
7 558,317 558,356 558,544 
8 875,328 875,430 875,921 
9 971,258 971,385 972,234 
10 1,363,155 1,363,385 1,365,456 

Total 2,447,095 2,447,618 2,449,345 
Total MSE in % 13.10% 13.10% 13.11% 

 

Finally, the MSE under four different prior distributions are calculated in Table 6.  The 
MSE under the non-informative prior distribution, i.e., Prior 2, is about 38% larger than that 
under Prior 1 or the MSE of the Frequentist approach, which shows that the MSE is greatly 
underestimated if the variance is assumed known or fixed. 

The MSE is about a 3% different between Prior 1 and Prior 4 although the parameters 
estimated in Table 2-4 are very similar between these two prior distributions.  This indicates 
that MSE is quite sensitive to parameters in the tail. 

Table 6.  MSE of different prior distributions. 

Year Prior 1 Prior 2 Prior 3 Prior 4 
2 75,535 130,831 106,823 115,086 
3 121,703 210,810 172,120 149,104 
4 133,556 231,348 188,890 158,383 
5 261,436 452,921 332,284 273,259 
6 411,111 641,245 495,957 419,342 
7 558,544 816,905 655,425 565,685 
8 875,921 1,184,204 995,294 882,037 
9 972,234 1,259,424 1,085,789 976,334 
10 1,365,456 1,664,613 1,488,920 1,367,860 

Total 2,449,345 3,383,619 2,830,505 2,527,166 
Total MSE in % 13.11% 18.11% 15.15% 13.53% 
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7. CONCLUSIONS 

The general Bayesian approach to evaluate prediction uncertainty is first explained and 
compared with the Frequentist approach.  The key difference is that the Bayesian approach 
evaluates the posterior distributions of unknown parameters, rather than point estimates as 
in the Frequentist approach.  Due to this different philosophy, it has been shown that the 
total prediction uncertainty of the Bayesian approach is different from that of the 
Frequentist approach, and under certain assumptions the Bayesian approach gives a higher 
estimate. 

In parameter estimation, the Bayesian approach also takes a different approach.  Closed-
form distributions for f  and 2  are derived for several prior distributions in Mack’s model, 
which is one of the key results of this paper.  It is shown that under non-informative and 
conjugate prior distribution, the posterior distribution of development factor f  is the 

standard t -distribution while 2  has inverse Gamma distribution.  For some other prior 
distributions, it is possible to derive a closed-form distribution which doesn’t match any 
standard statistical distribution.  It is also shown that if the parameter 2  is considered 
known and fixed, which is a very strong prior distribution assumption, the Bayesian 
approach gives the same result as the Frequentist approach.  This indicates that the widely 
used Frequentist approach could underestimate the prediction uncertainty because it doesn’t 
full reflect the uncertainty of 2 .   

The numerical results based on Taylor and Ashe data [12] are presented to confirm these 
conclusions.  The Bayesian approach with strong prior distribution gives essentially the same 
results as Mack’s and Murphy/BBMW’s results.  However, the prior distribution has a 
significant impact on the prediction uncertainty: a non-informative prior could increase 
aggregate prediction uncertainty by as much as 38%.  Most of the difference comes from 

 var jf x  and  2
jE  x .  This highlights the problem of parameter estimations in chain 

ladder method: with no prior knowledge, the estimation of development factor could be very 
volatile. 
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Appendix A. Proof of Equation (4.19) 

It will be proved in recursive approach.  By the assumptions of the model from (3.2), 
there is  

    2
1, 1 1,1 1, 1, 1,,..., ,N j N N j j N j j N jX X X N f X X       

and     2
, 1 ,1 , , ,,..., ,N j N N j j N j j N jX X X N f X X  . 
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So the distribution of    1, 1 , 1 1,1 1, ,1 ,,..., , ,...,N j N j N N j N N jX X X X X X      is 

    1, 1 , 1 1,1 1, ,1 ,,..., , ,...,N j N j N N j N N jp X X x X X X X       

     1, 1 1,1 1, , 1 ,1 ,,..., ,...,N j N N j N j N N jp X t X X p X x t X X dt


    
      

   2 2

1, ,

2 22 2
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1 1
exp exp

2 22 2

j N j j N j
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t f X x t f X
dt

X XX X  

 




     
      
   
   

  

 
  
 

2

1, ,

22
1, ,1, ,

1
exp

22

j N j N j
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x f X X
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



        

, 

which shows that it is Normal distributed with mean  1, ,j N j N jf X X   and variance 

 2
1, ,j N j N jX X   .  Recursively, 2, 1N jX   , 3, 1N jX   ,…, 1, 1N j jX     can be put into 

summation and the sum , 1
1

N

i j
i N j

X 
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  is Normal distribution with mean ,

1

N

j i j
i N j

f X
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  and 

variance 2
,

1

N

j i j
i N j

X
  
 .  So by the definition of 1jZ   in (4.18), there is 

 2
1 , 1 , 1 , , 1 ,

1 1 1

,
N N N

j N j j i j j i j N j j j i j
i N j i N j i N j

Z x X N f X x X     
        

 
   

 
    

                      2
, 1,j j N j j j jN f Z x Z  .   

Appendix B. Proof of Equation (5.11) 

By substituting (5.10) into (4.6), the posterior distribution of f  is  

       2 2 22 2
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Appendix C. Proof of Equation (5.16) 

By substituting (5.10) into (4.7), the posterior distribution is 
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Appendix D. Proof of Equation (5.20) 

Substituting (5.19) into (4.6), there is 
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where K , K , K  and 2
K  are defined in (5.21)-(5.24). 

 

Appendix E. Proof of Equation (5.27) 

Substitute (5.19) into (4.7), the posterior distribution of 2  is 
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