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Abstract: Of necessity, users of complex simulation models are faced with the question of “how many 
simulations should be run?” On one hand, the pragmatic consideration of shortening computer runtime with 
fewer simulation trials can preclude simulating enough of them to achieve precision.  On the other hand, 
simulating many hundreds of thousands or millions of simulation trials can result in unacceptably long run times 
and/or require undesirable computer hardware expenditures to bring run times down to acceptable levels. 
Financial projection models for insurers, such as Dynamo, often have complex cellular logic and  many random 
variables.   Users of insurance company financial models often want to further complicate matters by considering 
correlations between different subsets of the model’s random variables.  Unfortunately, the runtime / accuracy 
tradeoff becomes even larger when considering correlations between variables. 
Dynamo version 5, written for use in high performance computing (HPC)1

This paper begins by examining the effect that varying the number of simulations has on aggregate distributions 
of a series of seven right-tailed, correlated lognormal distributions.  Not surprisingly, the values were found to be 
more dispersed for smaller sample sizes.  What was surprising was finding that the values were also lower when 
using smaller sample sizes.  Based on the simulations we performed, we conclude that a minimum of 100,000 
trials is needed to produce stable aggregate results with sufficient observations in the extreme tails of the 
underlying distributions. 

, as used for this paper, has in excess 
of 760 random variables, many of which are correlated.  We have used this model to produce probability 
distribution and risk metrics such as Value at Risk (VaR), Tail Value at Risk (TVaR) and Expected Policyholder 
Deficit (EPD) for a variety of modeled variables.  In order to construct many of the variables of interest, models 
such as Dynamo have cash flow overlays that enable the projection of financial statement accounting structures 
for the insurance entity being modeled.  The logic of these types of models is enormously complex and even a 
single simulation is time consuming.  

Similar conclusions are drawn for the modeled variables simulated with Dynamo 5.  Sample sizes under 100,000 
produce potentially misleading results for risk metrics associated with projected policyholders surplus.  Based on 
the quantitative values produced by the HPC version of Dynamo 5 used in this article, we conclude that sample 
sizes in excess of 500,000 are warranted.  The reason for the higher number of simulations in Dynamo 5 as 
compared to the seven variable example is the greater complexity of Dynamo, specifically the much larger 
number of random variables and the complexity of the correlated interactions between variables.  As support for 
this, we observe that simulated metrics for Policyholders Surplus decreased by 2% to 3% when simulations were 
increased from 100,000 to 700,000.  They decreased by 3% to 6% when simulations were increased from 10,000 
to 700,000.  
 _________________________________________________________________________________________  
 

. 

                                                 
1 High performance computing involving the parallelization of the Dynamo model so it would run in computer clusters 
offers a potential solution to the trade-off between precision and runtime.  A small HPC cluster can reduce runtime by 
1/3 for 100,000 trials, from about 1.5 hours to 33 minutes. 
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INTRODUCTION 

Dynamo is an open access dynamic financial analysis (DFA)2 model built in Microsoft Excel.  It 
is available on the Casualty Actuarial (CAS) web site.3

Participants are encouraged to develop any needed enhancements, such as add-on 
programs/macros to Dynamo 4.1. This call for papers is intended to foster the use of 
Dynamo 4.1 and to generate publicly available improvements to the model. 

  The call paper program (herein after referred 
to as Call) encouraged model redesign but probably did not anticipate the reformation of the model 
to run in a high performance computing (HPC) environment. 

HPC Dynamo4 still retains standalone properties, but it was redesigned to run with high-volume 
simulations in the hundreds of thousands5 instead of a few thousand6

In this fashion it is possible to run simulations with as many as 750,000 trials on a moderate-sized 
cluster in about 30 minutes.

 simulations.  The model was 
parallelized and runs in a services oriented architecture (SOA) wherein server computers 
simultaneously use multiple instances of Excel and the Dynamo model.  Empirical probability 
distributions are built from the simulations being done in parallel across many computers.  A pool of 
such computers is called an HPC cluster.  Further, any single computer in the cluster may have many 
processing units or cores.  So, where a cluster has 100 computers, each with four cores, it would be 
possible to run 400 instances of Excel in parallel. 

7

To facilitate the evaluation of what we considered to be interesting and relevant metrics, we 
extended HPC Dynamo to calculate value at risk (VaR), tail value at risk (TVaR) and expected 

  The technology affords an interesting opportunity to examine the 
effects of sample size on various risk metrics being calculated in the Dynamo model. 

                                                 
2 DFA involves simulation to obtain an empirical probability distribution for accounting metrics.  As such, an accounting 
convention such as statutory or GAAP is required.  Cash flows are generated for many dependent random variables, and 
these cash flows are evaluated within the accounting framework.  Realizations of financial values from balance sheets or 
income statements obtained during the simulations are used to construct probability distributions for the financial 
values. 
3 Dynamo model, version 4.1 and documentation can be obtained at:  
http://www.casact.org/research/index.cfm?fa=padfam. 
4 HPC Dynamo version 5.x can be obtained at: http://www.casact.org/research/index.cfm?fa=dynamo.  Please note 
there is a vast amount of both written material and video clips available on-line for version 5.x.  This help 
documentation is directly accessible to users of Dynamo 5x from some new dialogs. 
5 HPC Dynamo must be run in Excel 2010 (Microsoft Office version 14). 
6 Dynamo 4, the model from which HPC Dynamo 5 was created, can, in theory, also generate several hundred thousand 
scenarios, but this may not be practical when it takes approximately three hours to run 5,000 simulations. 
7 The work done for this paper was generated on two clusters.  One had about 240 cores and a smaller one had about 24 
cores.  There was a mixture of computer types involving both 64- and 32-bit computers.  Two operating systems were 
used: Windows Server 2008 R2 and Windows 7.  In our experience, neither of these platforms would be considered large 
HPC clusters.  Each computer supporting the cluster had eight cores.  As noted, HPC Dynamo also can be run on single 
instance of Excel 2010 without HPC functionality. 

http://www.casact.org/research/index.cfm?fa=padfam�
http://www.casact.org/research/index.cfm?fa=dynamo�
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policyholder deficit (EPD) values for the DFA variables.  We have extended HPC Dynamo in this 
manner in response to the direction that global insurance company solvency and financial 
regulations (i.e., Solvency II, IFRS) appear to be headed.  Other standard statistics also are 
computed. 

SECTION 1: COMPARISON OF SOLVENCY II AND OTHER RISK 
METRICS USING MULTIVARIATE SIMULATION OF LOGNORMAL 
DISTRIBUTIONS 

Introduction 
In this section we illustrate sampling phenomena for lognormal distributions that are correlated.  

This section is a simplification of the Dynamo 5 example that will be the focus of the next section.  
In this section we focus on a series of seven lognormally distributed variables.  In the next section, 
we will work with the Dynamo model and its 760 random variables, of which only some are 
lognormally distributed. 

We also use this occasion to review several risk metric constructs, including those being used for 
Solvency II (S II).   

Solvency II Risk Aggregation 
The Solvency II regime’s standard formula is predicated on risk aggregation of different capital 

charges through an approach similar to classical portfolio theory, i.e., there is an assumed reduction 
in volatility arising from risk diversification.  The derivation of the Basic Solvency Capital 
Requirement (BSCR)8 Table 1 uses a subjective correlation matrix similar to the one shown in  to 
capture this reduction in volatility, and it is calculated using (1). 

                                                 
8 European Commission Internal Market and Services DG, Financial Institutions, Insurance and Pensions, “QIS4 
Technical Specifications (MARKT/2505/08), Annex to Call for Advice from CEIOPS in QIS4(MARKT/2504/08),” 
pp. 286.  This document is hereinafter referred to as QIS4.  The CEIOPS Solvency II Directive is the globally operative 
document.  It can be found, with highlights for “easy reading” in English, at http://www.solvency-ii-
association.com/Solvency_ii_Directive_Text.html.   The Committee of European Insurance and Occupational Pensions 
Supervisors (CEIOPS) web site has the latest rendering of the Solvency II Framework Directive.  
http://www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//TEXT+TA+P6-TA-2009-
0251+0+DOC+XML+V0//EN. 

http://www.solvency-ii-association.com/Solvency_ii_Directive_Text.html�
http://www.solvency-ii-association.com/Solvency_ii_Directive_Text.html�
http://www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//TEXT+TA+P6-TA-2009-0251+0+DOC+XML+V0//EN�
http://www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//TEXT+TA+P6-TA-2009-0251+0+DOC+XML+V0//EN�
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Table 1:  QIS5 Correlation Matrix for BSCR9 

CorrSCRr,c SCRmarket SCRdefault SCRlife SCRhealth SCRnon-liife 

SCRmarket 1     

SCRdefault 0.25 1    

SCRlife 0.25 0.25 1   

SCRhealth 0.25 0.25 0.25 1  

SCRnon-life 0.25 0.5 0 0.25 1 

 

 

 ,r c r crxc
BSCR CorrSCR SCR SCR= ⋅ ⋅∑  (1) 

where 

CorrSCRr,c = the cells of the correlation matrix mandated by Solvency II10

SCRr, SCRc 

 

= Capital charges for the individual SCR risks according to the rows 
and columns of the correlation matrix CorrSCR 

Portfolio Risk Aggregation 
The Solvency II expression for BSCR is identical to the standard deviation of a portfolio of 

equally weighted risks when the marginal standard deviations are the same as the capital charges. This statement 
follows from the definition of the variance of a portfolio shown in (2). 

 

 

2
p i j i j ij

i j
w wσ σ σ ρ=∑∑

 (2) 

Where 

iσ = standard deviation of the i-th risk component. 

                                                 
9 QIS5 Correlation Matrix for BSCR, p. 96.  
https://eiopa.europa.eu/fileadmin/tx_dam/files/consultations/QIS/QIS5/QIS5-
technical_specifications_20100706.pdf 
10 The SCRi shown in Table 1 are defined across broad risk categories identified within the S II.  Each risk component is 
functionally related to a VaR metric.  For example,  SCRnon-life is the non-life (i.e., property/casualty) component.  It is a 
function of geographic and other risk attributes and is intended to calculate parameters of a lognormal distribution and 
VaR associated with that distribution.  Other SCR components attempt to identify market (SCRmarket), life (SCRlife), health 
(SCRhealth) and operational risks (SCRdefault) confronting insurers. 
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When the weights, iw equal 1, equations (1) and (2) are identical.  And, iσ = iSCR , when the i-th 
capital charge in SCR is the standard deviation of some random variable.   

The limiting properties of large numbers of component risks may be thought to have the 
convergence properties of the Central Limit Theorem.  Applying this assumption, a VaR measure 
for a portfolio of risks with mean, pµ , and portfolio standard deviation, pσ  can then defined by (3). 

 *p pVaRα αµ σ= +Θ  (3) 
Where, 

αΘ = standard normal value at a cumulative probability of α . 

The assumption of a Gaussian process in (3) has rankled many observers.  N.N. Taleb, for 
example, sees “Black Swans” showing up as extreme realizations in risk processes that are distinctly 
non-normal.11 (3)  The chance-constrained metric in  for a portfolio of risks may understate the 
chance-constrained point derived without Gaussian assumptions.  We believe Taleb would 
characterize marginal distributions for many insurance-related loss processes to be Black Swan 
candidates. 

The aggregation method for BSCR indicated in  is likely predicated on a methodology in which 
each component SCR can be thought of as a portfolio component standard deviation.  This same 
approach is widely used among all of the SCRx risk components throughout most S II capital 
charges.  

A solvency capital charge can be a chance-constrained portfolio value such as a multiple of 
standard deviations as shown in (4). 

 ' * pSCR α σ= Θ  (4) 

But, the portfolio mean pµ is defined by (5). 

 
p i i

i
wµ µ=∑  (5) 

So, the portfolio capital charge, SCR’, is given by (6)  after substitution of   and  into  and noting 
that the weights in   equal 1. 

 ' pSCR VaRα µ= −  (6) 
And, as noted at the beginning of this section, the Solvency II expression for BSCR is the 

standard deviation of a portfolio of equally weighted risks when the marginal standard deviations are the same 

                                                 
11 Black Swan theory explains high-impact, hard-to-predict, and rare events.  They arise from non-normal, non-Gaussian 
expectations.  N.N. Taleb, The Black Swan: The Impact of the Highly Improbable, ISBN-13: 9781400063512, 2007, 400 pp.  Taleb is 
not without his critics. A summary of the more cogent ones is found at 
http://en.wikipedia.org/wiki/Taleb_distribution#Criticism_of_trading_strategies 

http://en.wikipedia.org/wiki/Taleb_distribution%23Criticism_of_trading_strategies�
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as the capital charges.   

Solvency II and Portfolio Aggregation 
If we assume that SCR capital charges will, in practice, be larger than the marginal standard 

deviations of the SCR components, it means that the SCR, in equation (1) will be larger than iσ  in 
equation (2).  This, in turn, would mean that the Solvency II standard formula approach to deriving 
a capital requirement would be inflated relative to the portfolio approach for defining a capital 
charge.   The capital charges used in S II aggregation are typically more complex measurements than 
are illustrated in (7).  Here the capital charge is a standard normal multiple, αΘ , of the distribution’s 
standard deviation.  

 ( )i i i i iSCR α αµ σ µ σ= +Θ − = Θ  (7) 
 

We will examine this in the context of a portfolio of lognormal random variables with known 
parameters, { iµ , iσ }.  The values of these parameters appear in Table 2.  Please note that the term, 
“Var x” means a lognormally distributed variable and does not mean value at risk or variance.  The 
correlation matrix used both for the S II and portfolio approaches to developing capital charges is 
shown in Table 3. 

Table 2:  Parameters for Lognormal Distributions  
Name Var 1 Var 2 Var 3 Var 4 Var 5 Var 6 Var 7 
Risk Model Log 

Normal 
Log 
Normal 

Log 
Normal 

Log 
Normal 

Log 
Normal 

Log 
Normal 

Log 
Normal 

Mean 10000 50000 90000 130000 170000 210000 250000 
Standard 
Deviation 

5000 6000 7000 8000 9000 10000 11000 

Table 3:  Correlation Matrix for Lognormal Distributions 
 Var 1 Var 2 Var 3 Var 4 Var 5 Var 6 Var 7 

Var 1 1.0000 0.1315 -0.0986 0.1972 0.3945 0.1972 -0.0723 
Var 2 0.1315 1.0000 -0.1972 0.1315 0.3944 0.3945 0.0328 
Var 3 -0.0986 -0.1972 1.0000 0.3287 0.1315  0.3945 0.1972 
Var 4 0.1972 0.1315 0.3287 1.0000 0.0000 -0.0657 0.1315 
Var 5 0.3945 0.3945 0.1315 0.0000 1.0000 0.0328 0.0131 
Var 6 0.1972 0.3945 0.3945 -0.0657 0.0328 1.0000 0.5260 
Var 7 -0.0723 0.0328 0.1972 0.1315 0.0132 0.5260 1.0000 

 

In the next section we describe aggregation based on a third approach to a capital charge—the 
difference between VaR and the mean of the multivariate aggregate loss distribution for the lognormal 
marginal variates described in Table 2 and rank correlated by Table 3.  
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However, at this point it is instructive to present all three values for these aggregation approaches 
using this simplified seven variable model.   The capital charges appear in Table 4.  These capital 
charges reflect the range of outcomes achieved after 750,000 simulations and taking the .995 
percentile of the resulting aggregate distribution. 

Table 4:  Capital Charges Under Solvency II, Portfolio, and Aggregate Loss Aggregation 
Methods 
Method of Aggregation Capital Charge 

Aggregate Loss 81,268 

Solvency II BSCR 85,654 

Portfolio 77,597 

The capital charge using the S II methodology exceeds the portfolio approach, and by a sizable 
margin.  Of course, in actual application, this margin will depend on the underlying loss distributions 
and the correlation matrix. 

Aggregate Loss Distribution Using the Iman-Conover Method of Inducing 
Correlations 

The multivariate simulation methods we deploy use the Iman-Conover approach for inducing 
correlation into independent distributions.12

Table 5

 The first step is to simulate values from each of the 
seven lognormal variables independently of one another to produce a table of n rows by seven 
columns, where each row represents one scenario in the overall simulation exercise. The second step 
is to reorder the rows by sorting them from low to high using the values in the first column as the 
sort field. The matrix being illustrated in  show the results of 10 scenarios after reordering 
them based on the simulated values for Var 1.13

Table 3
 The matrix is then shuffled so that the 

rearrangement has the Spearman rank correlations shown in . The result of this Iman-
Conover induction of correlation into independent distributions appears in Table 6. This approach 
is particularly useful when correlation is subjective, and the loss processes are developed and 
parameterized by independent groups of actuaries. It is especially useful for multivariate simulation.  
Each row of Table 6 contains an n-tuple from a multivariate distribution with Spearman correlations 
shown in Table 3. The rows are realizations for the seven variables that may be used for different 
trials in a simulation. 

                                                 
12 The Iman-Conover method is described in the report of the Casualty Actuarial Society’s  Working Party on 
Correlations and Dependencies Among All Risk Sources found at 
http://www.casact.org/pubs/forum/06wforum/06w107.pdf.  Also see Kirschner, Gerald S., Colin Kerley, and Belinda 
Isaacs, "Two Approaches to Calculating Correlated Reserve Indications Across Multiple Lines of Business," Variance 2:1, 
2008, pp. 15-38. 
13 The table shows the first ten rows of 25,000 used with the Iman-Conover method. 

http://www.casact.org/pubs/forum/06wforum/06w107.pdf�


Effects of Simulations Volume on Risk Metrics for Dynamo DFA Model 

Casualty Actuarial Society E-Forum, Summer 2012 7 

Table 5:  Lognormal Variates Before Induction of Rank Correlation 
Var 1 Var 2 Var 3 Var 4 Var 5 Var 6 Var 7 

1,261 56,244 86,464 139,679 184,313 207,222 220,879 

1,350 41,798 82,325 125,670 177,085 201,510 260,059 

1,404 53,743 91,548 119,955 167,478 233,410 246,224 

1,525 44,553 80,663 142,115 158,827 208,627 235,541 

1,620 47,549 77,273 127,529 157,531 197,469 247,044 

1,671 47,671 82,639 125,521 183,718 208,845 237,500 

1,721 54,840 86,908 132,476 173,432 224,805 265,150 

1,734 61,729 83,191 122,804 176,781 201,987 249,738 

1,743 55,287 91,678 130,586 169,779 207,816 251,302 

1,808 52,759 97,670 133,850 181,218 206,202 266,005 

 

Table 6:  Lognormal Variates After Induction of Rank Correlation  
Var 1 Var 2 Var 3 Var 4 Var 5 Var 6 Var 7 Aggregate 

1,261 48,005 97,603 128,608 151,988 212,276 261,124 900,866 

1,350 53,071 103,625 121,782 160,720 224,589 259,898 925,035 

1,404 40,877 87,598 125,819 153,027 189,504 249,399 847,627 

1,525 51,668 96,151 135,583 169,766 191,346 238,395 884,434 

1,620 50,617 91,693 127,287 161,166 202,703 255,470 890,555 

1,671 50,021 90,844 123,747 149,731 208,077 244,267 868,359 

1,721 58,834 83,220 122,938 147,002 219,338 261,585 894,638 

1,734 39,731 102,377 129,503 153,077 200,082 244,553 871,057 

1,743 38,745 85,285 121,838 143,780 192,489 243,678 827,558 

1,808 44,030 89,124 130,296 153,196 190,989 240,596 850,038 

 

Each of the variables in a row of Table 6 is added to produce an observation in the aggregate loss 
distribution as shown in the final column of each row.  This is a multivariate empirical distribution, 
but there is no available multivariate probability distribution that defines it.  That is, the aggregate 
loss distribution is not constructed with a variance/covariance matrix, and it does not use 
Pearsonian correlation.  Nevertheless, it is an aggregate distribution based on independently derived 
probability distributions that are observed to have pairwise Spearman rank correlations.  It is 
multivariate in that sense. 

We note that this empirical probability distribution is not directly used in Dynamo.  Instead, the 
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multivariate Iman-Conover trials are available for use in Dynamo.  The multivariate variables may be 
used in dependent cells so that a simulation in Dynamo is using random variates that are correlated.  
It is possible to have many clusters of such correlated variables where each is used for different cell 
dependencies.14  For example, new business growth among lines of business could be a function of 
random variables within a pod or cluster that are correlated. 15

  

  DFA variables dependent on them 
will be generated with the underlying correlation structure of the pod or cluster. 

                                                 
14 The technique is very useful when the underlying correlation structure of a cluster of variables is subjective.  It is 
important to remember, however, that subjective correlations must be reckoned as rank correlations. 
15 The term “pod” and “cluster” are used interchangeably in this paper.  Each refers to a collection of variables with a 
correlation structure and multivariate properties defined within the Iman-Conover methodology.  
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Sensitivity to Sample Size 
We begin our discussion of simulation volume effects, or sample size effects, with the example in 
Table 2.   Except for small sample sizes, both the S II and portfolio methodologies should be 
relatively insensitive to sampling error because they depend on first and second moments of 
distributions and sampling error will rapidly diminish with simulation volume.  But, because the 
underlying distributions are lognormal, we would expect sampling error to have a more profound 
impact on the variables with the highest second moments, i.e., Var 6 and Var 7.  This expectation is 
confirmed in Table 7.   

Table 7:  Capital Charges for Different Trial Volumes 
 Capital Charge Methods  

Name Mean Standard 
Deviation 

VaR Aggregate 
Loss 
Method 

Solvency 
II BSCR 
Method 

Port-
folio  
Method 

Trials 

Var 1 9,843 4,918 27,280 17,436   1,000 
Var 1 9,995 4,993 31,076 21,081   5,000 
Var 1 9,928 5,042 31,394 21,467   10,000 
Var 1 9,952 5,013 30,702 20,750   25,000 
Var 1 9,987 5,051 30,802 20,815   50,000 
Var 1 9,990 5,045 30,663 20,673   100,000 
Var 1 10,005 5,017 30,261 20,256   250,000 
Var 1 10,005 5,006 30,207 20,202   500,000 
Var 1 10,004 5,006 30,233 20,228   750,000 
⁞ ⁞ ⁞ ⁞ ⁞    
Var 7 250,062 11,305 278,418 28,356   1,000 
Var 7 250,128 11,065 279,004 28,877   5,000 
Var 7 250,023 10,926 279,204 29,181   10,000 
Var 7 250,028 10,937 279,340 29,312   25,000 
Var 7 250,000 10,977 279,778 29,778   50,000 
Var 7 249,976 10,980 279,963 29,987   100,000 
Var 7 249,985 10,997 279,866 29,881   250,000 
Var 7 249,986 11,002 279,776 29,790   500,000 
Var 7 249,992 11,005 279,722 29,730   750,000 
        
Aggregate 909,344 30,092 987,239 77,895 82,780 78,377 1,000 
Aggregate 910,016 29,796 990,112 80,096 85,222 77,357 5,000 
Aggregate 909,866 30,135 992,724 82,858 85,856 77,526 10,000 
Aggregate 909,972 30,079 990,519 80,547 85,238 77,419 25,000 
Aggregate 910,065 30,122 991,457 81,392 86,266 77,683 50,000 
Aggregate 909,925 30,063 991,227 81,301 86,184 77,604 100,000 
Aggregate 909,979 30,008 991,009 81,030 85,773 77,549 250,000 
Aggregate 910,005 30,062 991,133 81,128 85,584 77,588 500,000 
Aggregate 910,004 30,045 991,272 81,268 85,654 77,597 750,000 
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The aggregate distribution capital charge is also affected by sample size as can be seen at the bottom 
box of Table 7.  Visual comparison of the two segments of this box show aggregate capital charges 
(left column of box) to be both lower and more dispersed for smaller sample sizes.  (For example, 
the average of the Variables and Aggregate column that aggregates for between 1,000 and 50,000 
trials is 80,558 as compared to an average of 81,182 for the simulations’ runs that used between 
100,000 and 750,000 trials.) 

Higher sample sizes for the lognormal distributions result in more observations in the extreme tails.  
This effect is clearly evident by examining the tail areas of Table 7  where more extreme 
observations occur with the 750,000 sample size relative to a sample size of only 5,000.  The increase 
in sample size from 100,000 to 750,000 (charts B and C) illustrates how significant shifts in 
distribution statistics can unfold even when increasing from a comparatively high sample size of 
100,000 to extreme sampling sizes such as 750,000.  This impact is documented in Table 7 for Var 7.  
The mean increases from 249,976 to 249,992.  However, VaR declines from 279,963 to 279,722.   

Figure 1A:   High-Variance Lognormal Distribution for Different Sample Sizes16

 
 

 
 
  

                                                 
16 The graphics used in this paper are produced by Dynamo 5 for any simulated variable.  The term “Int” in the legend 
refers to interval.  The mean and median intervals are overlaid in their frequency intervals as visualization of where these 
central tendency measures fall.  This information is not particularly useful for this paper, but can be a useful for heavily 
skewed distributions. 



Effects of Simulations Volume on Risk Metrics for Dynamo DFA Model 

Casualty Actuarial Society E-Forum, Summer 2012 11 

Figures 1B and 1C: High-Variance Lognormal Distribution for Different Sample Sizes17

 
 

 
 

 
 

Because prior versions of Dynamo were formulated for sample sizes of only 1,000, the frequency 
distribution graph for this 1,000 sample size appears in Figure 2.  The effects of low sample size are 
clearly evident both in fewer extreme values and discontinuities in shape of the frequency 
distribution as compared to the higher sample volumes shown in Figures 1A, 1B, and 1C. 

                                                 
17 The graphics used in this paper are produced by Dynamo 5 for any simulated variable.  The term “Int” in the legend 
refers to interval.  The mean and median intervals are overlaid in their frequency intervals as visualization of where these 
central tendency measures fall.  This information is not particularly useful for this paper, but can be a useful for heavily 
skewed distributions. 
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Figure 2:  High-Variance Lognormal Original Dynamo 1K Sample Size 
 

 
 

The impact of sample size also occurs for the aggregate loss distribution.  Here, too, more 
extreme values emerge with the 750,000 sample size.  The .995 VaR for the aggregate loss 
distribution with a sample size of 5,000 is 990,112 as compared to 991,272 for the 750,000 sample 
trial.  But, this leads into the question of how many simulations is enough?  A comparison of Figures 
3A and 3B illustrates visually the effects of the central limit theorem.  Highly skewed lognormal 
distributions when aggregated will, with sufficient sample sizes, produce a normally distributed sum.  
As we move from a clearly insufficient sample size of 1,000 shown in Figure 2 to 750,000 shown in 
Figure 3B we find an unfolding of increasing precision throughout the probability distribution.  
Sample size matters.  The added precision obtained by using Excel in an HPC cluster is valuable, but 
at the same time there is an asymptotic collapse of sampling error.  At some point, enough is 
enough.   If insurance company modeling were as simple as the seven variable example being used in 
this section, one might be tempted to conclude that the time and effort and expense required to 
increase the number of trials from 1,000 to 750,000 does not justify the 0.1% increase in the .995 
VaR.  However, insurance company modeling is not this simple. We now turn to the analysis of 
sample size on Dynamo DFA variables to examine a more complex modeling situation. 
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Figures 3A and 3B:  Effect of Sampling Size on Aggregate Loss Distribution 
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SECTION 2:  EFFECT OF SAMPLE SIZE ON DYNAMO DFA 
VARIABLES DISTRIBUTIONS 

Introduction 
Because Excel is used for Dynamo, it can be relatively easy to model complex interactions for a 

large number of different DFA variables.  Business operations can be modeled with complex cash 
flow and accounting dependencies using many random variables.   Given a set of random variates 
(Dynamo has in excess of 760 inverse probability functions),  a single calculation of the Dynamo 
workbook produces an empirical realization for the DFA variables being monitored.  The 
parallelization of this process results in these realizations being calculated simultaneously in a 
computer cluster.  Hence, HPC Dynamo can produce probability distributions with 500,000 or more 
observations in a short time relative to what time would be required were these observations to be 
done serially in a single instance of Excel.  We have seen in the previous section the effects of 
sample size in the context of a portfolio of lognormal variables, and we now turn to similar 
experiments for DFA variables. 

High-Volume Sampling Illuminates Extremities in Both Tails of a Distribution 
Often we are more concerned about the extreme tail that represents adverse experience.  High-

volume observations enabled by parallelization of the simulation produces enhanced precision 
throughout the probability distribution.  We have more observations at both extremities and, of 
course, a bevy of additional results that are largely unnecessary in the interior of the distribution.  At 
some point, sampling error affecting moments of the distribution decays to a materially insignificant 
amount.  More simulations do not necessarily produce a better answer.  Error in estimating extreme 
percentiles or even moments required for solvency measurement is materially changed at simulation 
volumes that might be considered exceedingly large if attempted in a stand-alone computing 
environment.18

Consider the 0.995 value at risk (VaR) column in 

 

Table 8.  This table contains various statistics 
and risk metrics for the fifth year projection of policyholders’ surplus.  This variable is the result of a 
complex set of cell dependencies in Dynamo.  All of the DFA variables that can be assembled using 

                                                 

18 Recall that the original Dynamo only simulated 1,000 observations.  And, the results reported by Burkett et al. 2010 
were based on 5,000 simulations using Dynamo version 4.1.  Version 4.1 required about 2.0078 sec/simulation on a fast 
desktop computer.  It took about three hours to produce 5,000 trials.  At that rate, over 16 days would be needed to 
create 700,000 simulations.     In addition to the use of HPC, there have been substantial improvements in Dynamo 
VBA coding, all of which enhance performance.  In a small HPC cluster running 29 simultaneous instances of HPC 
Dynamo (a core resource allocation one of several types for HPC jobs), three hours is reduced to 1.25 minutes for 5,000 
trials.  A single trial takes about .015 seconds compared to over two seconds.  And, this calculation involves multivariate 
simulation not available in Dynamo 4.1.  
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Dynamo have this property.  There is no closed form solution for measuring statutory or GAAP 
variables that are based on cash flows which, by themselves have no closed solution.  Simulation is 
the only viable approach to deriving probability distributions on these DFA variates.   

The rows of Table 8 contain results for increasing simulation volumes.  Although measurements 
are shown for samples sizes under 10,000, these small sample sizes have 0.995 VaRs that are heavily 
affected by the algorithm used to extrapolate this extreme percentile.  The number of observations is 
smaller than the precision sought for that extremity.  This algorithmic effect can be seen in the 
bowing of the VaRs between 1,000 and 10,000 observations.  Beginning at 10,000 observations, 
however, a secular decline in VaR values occurs with increased simulation counts.  The VaR for the 
10,000 trial simulation is 12,898. By the time the 700,000 trial simulation is run, the VaR has reduced 
to 12,130, i.e., a 6% reduction.  This 6% reduction is very likely to be considered material when 
considering minimum capital requirements.  Similarly, one observes a 1% reduction in the VaR 
when moving from 500,000 to 700,000—this change may, too, be considered material. 

Statistics relating to central tendency, such as the mean and median, also change, and change 
materially when moving from 100,000 to 700,000 trials.  Both the mean and median are reduced by 
2.3%.    

The effect of moving from 10,000 to 700,000 trials is large.  And, it is larger for extreme 
percentiles...profoundly so.  VaR is reduced by about 6%.  The mean is reduced by about 2%.  The 
benefit of increased trial counts is higher at distribution tails than for central tendency.  
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Table 8: Effects of Sample Size on Policyholders Surplus19

Observations 

 

Mean 
Standard 
Deviation 

Coef of 
Variation Minimum Maximum 

.010 
Percentile Median 

.990 
Percentile EPD20 TVaR 21 VaR 22

1,000 
 

21,762 3,277 0.151 11,609 30,682 13,550 21,856 28,604 9,290 3,401 12,188 
5,000 21,678 3,238 0.149 9,311 33,723 13,824 21,719 28,827 9,391 3,415 12,891 

10,000 21,607 3,222 0.149 6,975 33,723 13,769 21,697 28,667 9,203 3,399 12,898 
20,000 21,547 3,231 0.150 6,975 33,723 13,644 21,643 28,511 9,171 3,382 12,749 
30,000 21,519 3,237 0.150 -1,368 33,723 13,592 21,599 28,597 9,224 3,379 12,653 
40,000 21,496 3,242 0.151 -1,368 33,723 13,522 21,572 28,619 9,201 3,373 12,515 
50,000 21,478 3,248 0.151 -1,368 33,918 13,531 21,547 28,628 9,204 3,368 12,545 
60,000 21,463 3,252 0.152 -1,621 33,918 13,507 21,533 28,634 9,194 3,365 12,572 
70,000 21,445 3,259 0.152 -1,621 33,918 13,471 21,521 28,662 9,180 3,359 12,545 
80,000 21,437 3,262 0.152 -1,621 33,918 13,448 21,520 28,651 9,149 3,356 12,503 
90,000 21,429 3,262 0.152 -1,621 33,918 13,427 21,513 28,645 9,142 3,354 12,515 

100,000 21,419 3,263 0.152 -1,621 33,918 13,409 21,504 28,632 9,131 3,351 12,494 
200,000 21,340 3,278 0.154 -15,412 34,368 13,318 21,432 28,584 9,071 3,331 12,405 
250,000 21,312 3,283 0.154 -15,412 34,447 13,264 21,399 28,559 9,063 3,324 12,359 
300,000 21,287 3,285 0.154 -15,412 34,447 13,260 21,375 28,537 9,049 3,318 12,347 
400,000 21,242 3,289 0.155 -15,412 34,643 13,215 21,332 28,512 9,026 3,308 12,317 
500,000 21,201 3,295 0.155 -15,412 34,643 13,150 21,291 28,480 9,003 3,298 12,257 
600,000 21,161 3,301 0.156 -31,483 34,643 13,097 21,251 28,456 8,984 3,289 12,195 
700,000 21,116 3,308 0.157 -31,483 34,643 13,043 21,207 28,427 8,960 3,278 12,130 

 

                                                 
19 Table 8 illustrates the type of statistics available for all Dynamo-simulated variables.  Statutory policyholders surplus for a company with two multi-peril and workers compensation 
lines of business is illustrated in the open source version of Dynamo 5.  This is the source of Table 8, and the lognormal distributions used in Section 1 are among the Dynamo 
distributions used for variates leading to policyholders surplus.  It is available on Casualty Actuarial Society web site http://www.casact.org/research/index.cfm?fa=dynamo. 
20 Expected Policyholder Deficit for area bounded between 0.5 and 0.8. 
21 Tail Value at Risk for tail above 0.995. 
22 Value at Risk for 0.995. 

http://www.casact.org/research/index.cfm?fa=dynamo�
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How Many Simulation Trials Are Enough? 
The results for various statistics and risk metrics shown in Table 8 are clearly impacted by 

simulation volume.  The importance of a high performance computational environment becomes 
apparent when attempting to pragmatically answer the question of how many trials is enough.  In all 
of metrics in Table 8, we believe a minimum of 100,000 trials is essential to reduce sampling error to 
an acceptable minimum level.  A strong argument can be made for 700,000 trials.  The precision 
obtained when increasing trial count from 100,000 to 700,000 is a difference of 1.88%, 2.20%, and 
2.90%, respectively for expected policyholder deficit, tail value at risk and value at risk.  There is no 
risk metric that is immune from a reduction in sampling error achieved with high-volume 
simulations. 

An HPC approach is highly desirable when simulation volumes reach a range of 100,000 and a 
necessity when they reach 700,000.  A single machine just cannot run fast enough to produce this 
volume of trials.  Precision is achieved in a reasonable time frame only by using high-performance 
computing.   

Performance Benchmarks 
The runtimes shown in Table 9 reflect calculation overhead relating to calculation of multivariate 

pods and statistics/risk metrics.  The former occurs at the beginning of each HPC job whereas the 
latter is incurred at job conclusion.  Both of them are done on the client computer.  The simulations 
are done on cluster compute nodes, and they involve primarily the generation of random variables, 
including the lookup of pre-calculated multivariate simulations that were done by the client when the 
Excel workbook is prepared for upload to the HPC cluster.  In order to improve cluster 
performance, the simulations received by the client from the compute nodes is written to disk rather 
than inserted immediately into the client worksheet.   When the simulations are complete, this file is 
read and, at that time, the results are written to the simulation output worksheet.   For trial counts in 
excess of 100,000, the insertion of new rows of data into this output area is a slow operation in 
Excel.  This transfer and the subsequent derivation of statistics add time to the end of the job. 

The calculation of multivariate simulation variates, particularly for large simulation counts can be 
relatively slow. The setup of multivariate random variables using the Iman-Conover methodology 
requires a Choleski decomposition and a potentially large matrix inversion. When the trial count 
approaches 100,000, this process is relatively slow because it has not been converted yet into 
compiled code in HPC Dynamo 5. The Iman-Conover code implementation relies on VBA code.  
Counts over 100,000 are commensurately slower. Similarly, when the trial counts are large the 
development of statistics and risk metrics after simulations are complete is also relatively slow. The 
effects of this overhead are apparent in Table 9. The simulations per second decline somewhat with 
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increased simulation count. 

 

Table 9: Runtimes for HPC Dynamo 523

 

 

Trials 

Small HPC 
Cluster Runtime 
(27  core 
allocations over 
5 nodes)24

Approximate 
Runtime 
Standalone 
(2 cores 
single node)  

10000 1.15 mins 9 mins 

25000 3.43 mins 22.5 mins 

50000 9.53 mins 45 mins 

100000 33.27 mins 90 mins 

500000 407.34 mins ??? 

700000 946.56 mins ??? 

 

The potential power of parallelization and use of a computer cluster can be seen in Table 9. The 
runtimes using HPC are faster than running on a single computer and, for the larger sample sizes 
most appropriate for risk metrics the improvement is dramatically so.  HPC cluster performance is 
never linear, and this is evident in Table 9.  A substantial overhead occurs in loading an instance of 
Excel for each core and when the Dynamo workbook is opened by each core instance.  There is an 
additional overhead for higher simulation volumes because of additional system activity in 
scheduling those simulations across the cluster.  When a simulated array of DFA variables is 
completed by a cluster computer, it must be inserted into the client Excel instance of Dynamo.  This 
too is an additional and significant source of overhead directly related to simulation volume.   
Pragmatically, even if the small cluster were only two times faster than a single computer for very 
high simulation volumes, 0.66 days for 700,000 simulations of 74 DFA variables is better than an 
estimated 1.31 days it might otherwise take for a single computer. 

                                                 
23 The runtimes are for the simulation of 74 DFA variables and two multivariate pods.  The time includes preparation of 
statistical and risk metric output for these variables.  When simulation counts are large, the derivation of multivariate 
deviates takes more time because of sorting requirements involved in the Iman-Conover method.  The runtimes are for 
the complete setup of multivariate values, simulations and derivation of statistics and risk metrics for all DFA variables. 
24 This is a very small HPC cluster.  The performance gains over a single actuarial workstation are even more impressive 
given that they are derived from a modest extension of the workstation from 1 (standalone) to 5 nodes (computers).   
However, several of the additional computers are multiple-core servers.   
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CONCLUSION 

This paper has used HPC Dynamo to identify the effects of sample size on DFA variable 
probability distributions.  The impact of sampling error is so profound that a dilemma occurs.  The 
number of trials needed to reduce the material impact of sampling error on risk metrics exceeds 
100,000 trials.  On a single computer the runtime becomes prohibitively large.  The parallelization of 
simulations and their calculation on many simultaneous instances of Excel necessitates added 
expenditure for the cluster computers and multiple copies of Excel required for each of the node 
computers in the cluster.  And, of course, each cluster computer must have an operating system.  
HPC Excel requires at least one server computer.  The dilemma arises in that a reduction in 
sampling error to materially insignificant levels requires more trials that only can be achieved for 
increased costs.25

We have set out to answer the question of “How many simulations is enough.”  It is unlikely that 
any analysis of DFA variables involving less than 100,000-500,000 trials should be used, particularly 
when these variables are used to measure the effects of capital attribution or are used as proxies for 
risk-bearing measurements. 

 

In the first part of this paper, the effects of sample size were examined within the context of 
aggregate probability distributions for correlated lognormal variables.  This measurement was done 
using an aggregate loss distribution.  We showed material impacts of sample size on the aggregate 
loss distribution and risk metrics such as Solvency II-styled calculations that rely on the properties of 
the aggregate loss distribution.  The same observation applies across both parts of this paper—
simulation volumes must be large and will require the use of high-performance computing.  DFA 
variables in Dynamo can be constructed from any statutory, GAAP or cash flow variable.   The 
probability distributions for these variables are highly sensitive to the number of simulation trials 
used in their estimation.  Expected policyholder deficit, tail value at risk and value at risk decreased 
by 2% to 3% when simulations were increased from 100,000 to 700,000.  They decrease by three to 
6% when simulations were increased from 10,000 to 700,000.  Variables such as VaR that are used 
in solvency compliance metrics have extreme sensitivity to simulation volume. 

End Notes 
In their 2009 paper, “A Holistic Approach to Setting Risk Limits,” Burkett et al. observed that 

Dynamo 4.1 contained some inaccurate reconciliations among balance sheet, income statement, and 
cash flow statement values. Those inconsistencies remain in the Dynamo 5 model that has been 

                                                 
25 At the time of this writing, HPC Excel running in Azure is only possible using an on-premise head node.  The head 
node is a server computer.  This computer is required if Azure is used and deployed in the VM Node role required for 
HPC Excel. 
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used for this paper. In the authors’ views, these inconsistencies do not change the conclusions we 
have reached in this paper, but we do recommend that any user of Dynamo consider the potential 
effect of these inconsistencies on the results being produced and the usage of the results by their 
organization. 
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