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Abstract: The popular chain ladder model forms its estimate by applying age-to-age factors to the latest reported 
cumulative claims amount – fixed numbers.  This paper proposes two models that replace these fixed claim amounts 
with estimated parameters, which are subject to parameter estimation error.  This paper uses a Bayesian Markov-Chain 
Monte Carlo (MCMC) method to estimate the predictive distribution of the total reported claims amountsfor these 
models.  Using the CAS Loss Reserve Database, it tests its performance in predicting the distribution of outcomes on 
holdout data, from several insurers, for both paid and incurred triangles on four different lines of insurance.  Their 
performance is compared with the performance of the Mack model on these data.  
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_____________________________________________________________________________________________  

1. INTRODUCTION 

This paper presents two more stochastic loss reserving models.  Probably the most generally 
accepted stochastic models, as evidenced by their inclusion in the CAS Syllabus of Examinations, are 
those of Mack [3] and England and Verrall [1].  The former paper estimates the moments of the 
predictive distribution of ultimate claims based on cumulative triangles of claims data.  While 
providing a nice overview of the research to date, the latter paper focuses on estimating the 
predictive distribution of ultimate claims based on incremental triangles using a Generalized Linear 
Model (GLM).     

While each of the models has a reasonable rationale and when implemented produce a predictive 
distribution of outcomes, large scale testing of the predictive distributions on actual outcomes was 
almost nonexistent until recently.  One of the first to address the problem was Jessica Leong in her 
2010 CLRS presentation1 where she concluded that the predictive distribution was too narrow for 
the homeowners’ data she analyzed. Last year, Meyers and Shi [6] created the CAS Loss Reserve 
Database.2

                                                           
1Ms. Leong’s presentation can be downloaded from the CAS website at 

 This database was constructed by linking Schedule P reported losses over a period of ten 
years to outcomes of predictions made based on data reported in the first year.  Meyers and Shi then 
tested two different models based on paid incremental losses and found that the performance of 

http://www.casact.org/education/clrs/2010/handouts/VR6-Leong.pdf. 

2The data and a complete description of its preparation can be found on the CAS Web site 
athttp://www.casact.org/research/index.cfm?fa=loss_reserves_data 

http://www.casact.org/education/clrs/2010/handouts/VR6-Leong.pdf�
http://www.casact.org/research/index.cfm?fa=loss_reserves_data�
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these predictions left much to be desired.  Moreover, they also compared the mean of their 
predictive distributions to the reserves actually posted by the insurers in their original statement and 
found that the reserves posted were closer to the reported outcomes than the means estimated by 
the two models.  One has to wonder what the insurers saw that we did not see in the data. 

I see two ways to try to remedy this situation.  First, we can try to improve the model.  Second, 
we can add information that we previously did not include.  This paper attempts to do both.  My 
proposals for improving the model will be described below.  The new information is to use the 
reported losses that include both paid claims and the case reserves, which will be referred to as 
incurred claims.  In Schedule P, this means the reported claims in Part 2 (Incurred Net Losses) 
minus the corresponding reported claims in Part 4 (Bulk and IBNR Reserves). 

In my mind, using incurred claims should rule out the use of models based on incremental 
claims.  Negative incremental claims cause a problem with these models and they are much more 
common in incurred claim data than they are in paid claim data.  Thus this paper focuses on 
cumulative claims data and uses models that are appropriate for cumulative claims.  A good place to 
start is with the popular chain ladder model. 

This paper’s proposed new models will make two departures from the standard chain ladder 
model as identified in Mack [3].  Its goal is to improve upon the performance of the predictive 
distribution given by Mack’s formulas, as measured by the outcomes of 50 insurers in four separate 
lines of insurance in the CAS Loss Reserve Database. 

As we proceed, the reader should keep in mind that this paper describes an attempt to solve a 
math problem – i.e., predict the distribution of the reported losses after ten years of development.  
This paper does not address the issue of setting a loss reserve liability.  The loss reserve liability 
could be as simple as subtracting the claims already paid from the projected ultimate losses, but it 
could also involve discounting and a risk margin.  These topics are beyond the scope of this paper.  
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2. THE HIDDEN PARAMETERS IN THE CHAIN LADDER MODEL. 

First, let’s describe the chain ladder model.  Following Mack [3], let Cw,d denote the accumulated 
claims amount, either paid or incurred, for accident year, w, and development period, d, for 
1 ≤ w ≤ K and 1 ≤ d ≤ K.  Cw,d is known for w + d ≤ K + 1.  The goal of the chain ladder model is to 
estimate Cw,Kfor w  = 2,…, K.  The chain ladder estimate of Cw,K is given by 

 Cw,K= Cw,K+1-w∙fK+1-w∙…∙fK-1  (2.1) 

where the parameters {fd}, generally called the age to age factors, are given by     
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It will be helpful to view the chain ladder model in a regression context.  In this view, the chain 
ladder model links K – 1 separate, one for each d, weighted least-squares regressions through the 
origin with dependent variables {Cw,d+1}, independent variables {Cw,d}, and parameters fd for w=1,…, 
K – 1.  Since each parameter fd is an estimate, it is possible to calculate the standard error of the 
estimate, and the standard error of various quantities that depend upon the set {fd}.  Mack [3] 
derives formulas for the standard error of each Cw,K  given by Equation (1) and of the sum of the 
Cw,Ks for w = 2,…, K.   

Given a cumulative claims triangle {Cw,d}, the R “ChainLadder”  package calculates the chain 
ladder estimates for each Cw,K and the standard errors for each estimate of each Cw,K and the sum of 
all the Cw,Ks.  This paper will use these calculations in the chain ladder examples that follow. 

Now let’s consider an alternative regression type formulation of the chain ladder model.  This 
formulation treats each accident year, w, and each development year, d, as independent variables.  
The proposed models work in logarithmic space, and so the dependent variable will be the logarithm 
of the total cumulative (paid or incurred) claim amount for each w and d 3

  

.  The first model takes the 
following form. 

                                                           

3If the reported claim amount is zero, we set the logarithm of the claim amount equal to zero.  This should not be a 
serious problem as it is rare for reported claim amount to be zero, and in most cases, the claim amounts are much larger 
than zero. 
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Cwd~ lognormal(αw +βd, σd),                                            (2.3) 

i.e., the mean of the logs of each claim amount is given byαw + βd and the standard deviation of the 
logs of each claim amount claim amount is given by σd.   

Let’s call the parameters {αw} the level parameters and the parameters {βd} the development 
parameters.  Also set β1 = 0.  As more claims are settled with increasing d, let’s assume that σd 
decreases as d increases.    

If we assume that the claim amounts have a lognormal distribution, we can see that this new 
model is a generalization of the chain ladder model in the sense that one can take the quantities on 
the right hand side of Equation (2.1) and algebraically translate them into the parameters in 
Equation 2.3 to get exactly the same estimate.  One way to do this is to set 
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 0dσ = . 

Note that the chain ladder model treats the claims amounts {Cw,K+1-w} as independent variables, 
that is to say, fixed values.  In this model, the role of the claims amounts, {Cw,K+1-w}, is (indirectly) 
taken by the level parameters, {αw}, that are estimates and subject to error. From the point of view 
of this model, the chain ladder model “hides” the level parameters, and hence the title of this 
section.  Due to its similarity with the chain ladder model and the fact that it explicitly recognizes the 
level parameters, let’s now refer to the models in this paper as Leveled Chain Ladder (LCL), 
Versions 1 and 2, models. 

Cross classified models such as the LCL models have been around for quite some time.  For 
example, Taylor [8] discusses some of these models in his 1986 survey book.  The cross classified 
model is often confused with the chain ladder model, but Mack [4] draws a clear distinction between 
the two types of models. 
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3. BAYESIAN ESTIMATION WITH MCMC SIMULATIONS 

This paper uses a Bayesian Markov Chain Monte Carlo (MCMC) program, called JAGS (short for 
“Just Another Gibbs Sampler”), implemented from an R program to produce a simulated list of 
{αw}, {βd} and {σd} parameters from the posterior distribution.  Meyers [7] illustrates how to use 
JAGS and R to produce such a list. 

In an attempt to be unbiased, I chose the prior distributions for the {αw}, {βd} and {σd} 
parameters to be wide uniform distributions.  Specifically, 

αw ~ uniform(0, log(2·max(Cw,d) forw+ d≤ K + 1)) 

βd ~ uniform (-5,5) for d = 2,…,10                                                                                          (3.1) 

10

d i
i d

a
=

σ = ∑  , ai ~ uniform (0,1).   (This forces σd to decrease as d increases.) 

The R/JAGS code distributed with this paper produces 10,000 parameters sets{αw}, {βd} and 
{σd}for 10 x 10 loss development triangles that are in the CAS Loss Reserve Database.  For each set 
of parameters, it simulates 10 claim amounts, Cw,10 for w = 1,…,10 from a lognormal distribution 
with log-mean = αw + β10 and log-standard deviation σ10.  At a high-level, the code proceeds as 
follows. 

1. The R code reads the CAS Loss Reserve Database, such as that given in Table 3.1, and 
arranges the data into a form suitable for exporting to the JAGS software. 

2. The JAGS code contains the likelihood function (Equation 2.3) and the prior 
distributions of the parameters (Equation 3.1).  JAGS produces 10,000 samples from the 
posterior distributions of{αw}, {βd} and {σd}.  

3. The R code takes the {αw}, {βd} and {σd} from the JAGS program and calculates 10,000 
simulated losses from the lognormal distribution implied by these parameters. 

4. With the 10,000 losses it calculates various statistics of interest such as the mean and 
standard deviation of the claims amounts, either by accident year or in total. 

Let’s consider a specific example.  Table 3.1 has a triangle of incurred losses for the Commercial 
Auto line of insurance taken from the CAS Loss Reserve Database. 
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Table 3.1 

w\d 1 2 3 4 5 6 7 8 9 10 
1 1,722 3,830 3,603 3,835 3,873 3,895 3,918 3,918 3,917 3,917 
2 1,581 2,192 2,528 2,533 2,528 2,530 2,534 2,541 2,538 

 3 1,834 3,009 3,488 4,000 4,105 4,087 4,112 4,170 
  4 2,305 3,473 3,713 4,018 4,295 4,334 4,343 

   5 1,832 2,625 3,086 3,493 3,521 3,563 
    6 2,289 3,160 3,154 3,204 3,190 

     7 2,881 4,254 4,841 5,176 
      8 2,489 2,956 3,382 

       9 2,541 3,307 
        10 2,203 

         

Table 3.2 gives the first three (of 10,000) parameter sets {αw}, {βd} and {σd}that were calculated 
by the JAGS program.  Table 3.3 shows the calculation of the mean of the lognormal distribution 
for the 10th development period.  Table 3.4 shows the simulated claims amounts, {Cw,10}, given the 
log-means from Table 3.3 and the log-standard deviations, σd, in Table 3.2.  This table also gives the 
mean and standard deviation of the claims amounts over all 10,000 simulations. 
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Table 3.2 
Parameter 1st 3 of 10,000 

 α1 7.6199 7.6098 7.6223 … 
α2 7.1817 7.1806 7.1965 … 
α3 7.6588 7.6434 7.6720 … 
α4 7.7178 7.7072 7.7280 … 
α5 7.5112 7.5143 7.4643 … 
α6 7.4168 7.4145 7.4853 … 
α7 7.9104 7.8930 7.9435 … 
α8 7.6811 7.5237 7.6143 … 
α9 7.7174 7.6937 7.8590 … 
α10 7.8280 7.7604 7.8515 … 
β1 0 0 0 … 
β2 0.4836 0.4783 0.4069 … 
β3 0.5203 0.5545 0.5303 … 
β4 0.6348 0.6230 0.6285 … 
β5 0.6511 0.6593 0.6286 … 
β6 0.6518 0.6633 0.6731 … 
β7 0.6661 0.6689 0.6509 … 
β8 0.6615 0.6555 0.6460 … 
β9 0.6663 0.6607 0.6440 … 
β10 0.6580 0.6638 0.6534 … 
σ1 0.2270 0.3140 0.2790 … 
σ2 0.1736 0.1853 0.1198 … 
σ3 0.0956 0.0632 0.0597 … 
σ4 0.0373 0.0363 0.0520 … 
σ5 0.0186 0.0140 0.0455 … 
σ6 0.0180 0.0122 0.0430 … 
σ7 0.0169 0.0113 0.0210 … 
σ8 0.0157 0.0102 0.0188 … 
σ9 0.0155 0.0063 0.0142 … 
σ10 0.0055 0.0035 0.0121 … 

 

Table 3.3 
Calculation 1st 3 of 10,000 

 α1+β10 8.2779 8.2736 8.2757 … 
α2+β10 7.8398 7.8444 7.8499 … 
α3+β10 8.3168 8.3072 8.3254 … 
α4+β10 8.3759 8.3710 8.3814 … 
α5+β10 8.1692 8.1781 8.1177 … 
α6+β10 8.0749 8.0783 8.1387 … 
α7+β10 8.5685 8.5567 8.5969 … 
α8+β10 8.3391 8.1874 8.2677 … 
α9+β10 8.3754 8.3574 8.5124 … 
α10+β10 8.4861 8.4241 8.5049 … 

Table 3.4 

 
1st 3 of 10,000 

 
Mean 

Std. 
Dev. 

C1,10 3,949 3,929 3,922 … 3,917 72 
C2,10 2,542 2,556 2,525 … 2,545 60 
C3,10 4,103 4,060 4,143 … 4,113 107 
C4,10 4,339 4,304 4,272 … 4,309 123 
C5,10 3,507 3,577 3,375 … 3,548 113 
C6,10 3,186 3,209 3,364 … 3,316 136 
C7,10 5,247 5,218 5,502 … 5,313 270 
C8,10 4,193 3,575 3,967 … 3,777 300 
C9,10 4,304 4,275 5,065 … 4,203 564 
C10,10 4,768 4,569 4,900 … 4,081 1,112 
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4. COMPARISIONS WITH THE MACK MODEL 

This section compares results obtained on the example above from Version 1 of the LCL models 
with those obtained from the Mack [3] model as implemented in the R “ChainLadder” package.  A 
summary of these results are in Table 4.1. 

Table 4.1 

 Leveled Chain Ladder – V1 Mack Chain Ladder  
w Estimate Std. Error CV Estimate Std. Error CV Actual 
1 3,917 72 0.0184 3,917 0 0.0000 3,917 
2 2,545 60 0.0236 2,538 0 0.0000 2,532 
3 4,113 107 0.0260 4,167 3 0.0007 4,279 
4 4,309 123 0.0285 4,367 37 0.0085 4,341 
5 3,548 113 0.0318 3,597 34 0.0095 3,587 
6 3,316 136 0.0410 3,236 40 0.0124 3,268 
7 5,313 270 0.0508 5,358 146 0.0272 5,684 
8 3,777 300 0.0794 3,765 225 0.0598 4,128 
9 4,203 564 0.1342 4,013 412 0.1027 4,144 
10 4,081 1,112 0.2725 3,955 878 0.2220 4,181 

Total 
w=2,…,10 35,206 1,524 0.0433 34,997 1,057 0.0302 36,144 

What follows is a series of remarks describing the construction of Table 4.1 

• The estimates in both models represent the expected claims amounts for d = 10. 
• The LCL estimates and standard errors were calculated as described in Section 3 above. 
• The Mack [3] standard errors represent, as described in the ChainLadder package user 

manual, “the total variability in the projection of future losses by the chain ladder 
method.” 

• The Mack [3] standard error for w = 1 will, by definition, always be zero.  Since the α1 
and β10 parameters are estimates and hence have variability, the standard error for C1,10 

given by the LCL models will be positive.  How to make use of this feature (e.g., 
uncertainty in further development) might make for an interesting discussion, but since 
our goal is to predict {Cw,10}, I chose to omit consideration of the variability of C1,10 in any 
analyses of variability of the totals. 

• The CAS Loss Reserve Database contains the completed triangles for the purpose of 
retrospective testing.  The actual outcomes for {Cw,10} are included here for those who 
might be curious. 
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Figure 4.1 is a graphical representation of the information in Table 4.1. 

Figure 4.1 

 

 

 

 

 

 

 

The actual claims amounts points are connected by the line.  The darker colored points slightly to 
the right of the “actual” points are the result of a sample of 100 simulated claims amounts taken 
from the LCL model.  The lighter colored points slightly to the left of the “actual” points are from 
100 simulations from a lognormal distribution matching the first two moments given by the 
Mack [3] model. 

The simulated points from the Mack [3] model have smaller standard errors than the standard 
errors of simulated points from the LCL model.  This is to be expected, since the LCL model has 
more “estimated” parameters. In inspecting other triangles I have found that this is almost always 
the case, as illustrated in Figure 4.2,  where most of the standard errors of the Mack [3] model lie 
below the diagonal line that represents equality of the standard errors.  

At least for this triangle, the span of the simulated points from both models contains the actual 
outcomes.  But for some accident years, this is barely the case. 

For the total claims amount over w going from 2 to 10, the actual total, 36,144, lies at the 76th 
percentile as measured by the LCL predictive distribution.  It lies at the 86th percentile as measured 
by the Mack predictive distribution.  The Mack predictive distribution was determined by fitting a 
lognormal distribution to the first two moments of the total estimate and standard error.  Taken by 
themselves, these observations do not favor one model over the other.  To measure the relative 
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performance of the models, we turn to fitting these models to a large number of triangles taken 
from the CAS Loss Reserve Database. 

Figure 4.2 
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5. RETROSPECTIVE TESTS OF THE PREDICTIVE DISTRIBUTIONS 

This section tests considers the LCL – Version 1 model that predict the distribution of unsettled 
claims using holdout data that is in the CAS Loss Reserve Database. As stated above, the model 
provides predictions for the sum of the losses {Cw,10} for w = 2, …,10 using {Cw,d} for w + d ≤ 11 as 
observations.  The database contains the actual outcomes available for testing. 

This paper’s goal is not to produce the smallest error.  Instead it is to accurately predict the 

distribution of outcomes.  For a given sum of claims amounts, 
10

,10
2

,w
w

C
=

∑ the model can calculate its 

percentile.  If the model is appropriate, the set of percentiles that are calculated over a large sample 
of insurers should be uniformly distributed.  And this is testable. 

The most intuitive test for uniformity is to simply plot a histogram of the percentiles and see if 
the percentiles “look” uniform.  If given a set of percentiles {pi} for i = 1,  , n, a more rigorous test 
would be to use PP plots.  To do a PP plot, one first sorts the calculated percentiles, {pi}, in 
increasing order and plots them against the expected percentiles, i.e., the sequence {i/(n+1)}.  If the 
model that produces the actual percentiles is appropriate, this plot should produce a straight line 
through the origin with slope one.  In practice, the sorted percentiles will not lie exactly along the 
line due to random variation.  But we can appeal to the Kolmogorov-Smirnov test. See, for example, 
Klugman [2] to account for the random variation.  This test can be combined with the PP plot by 

adding lines with slope one and intercepts ± 1.36/ n   to form a 95% confidence band within 
which the points in the PP plots must lie. 

This section shows the results of the above uniformity tests for both paid and incurred losses 
reported in Schedule P for four lines of insurance, Commercial Auto, Personal Auto, Workers 
Compensation and Other Liability.  After filtering out bad data, I selected 50 insurers for each line 
of insurance from the CAS Loss Reserve Database.  Appendix A lists the insurers selected and 
describes the filtering criteria. 

The results of the uniformity tests are in Figures 5.1-5.10. 
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Figure 5.1 
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Figure 5.2 
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Figure 5.3 
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Figure 5.4 
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Figure 5.5 
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Figure 5.6 
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Figure 5.7 
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Figure 5.8 
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Figure 5.9 
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Figure 5.10 
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The results are mixed when looking at the individual lines of insurance for these incurred claims 
data.  The PP-plots lie within the 95% confidence bands for three of the four lines for the LCL 
Version 1 model.  They lie within two of the 95% confidence bands for the four lines for the Mack 
model.  The results are less mixed for these paid claims data.  The PP-plots lie within the 95% 
confidence bands for only the line “Other Liability” for the Mack model.  The remaining PP-plots 
for paid claims data lie well outside the 95% confidence bands. 

The picture become clearer when we combine the percentiles in all four lines, as is done in 
Figures 5.9 and 5.10.  While outside the 95% confidence bands, the PP-plots for the incurred claims 
are close to the band, with the Version 1 model performing somewhat better than the Mack model.  
The histograms of the percentiles indicate that there are more outcomes than expected in both the 
high and the low percentiles, i.e., the ranges indicated by both models are too narrow.  As indicated 
by Figure 4.2, the Version 1 model estimates of the standard error are higher than the Mack model 
estimates, so it should come as no surprise that the Version 1 model performs better than the Mack 
model on these incurred claims data. 

The plots for these paid claims data indicate that neither model is appropriate.  I consider that the 
most likely explanation is that the paid data is missing some important information, some of which 
is included in the incurred data. 

6. CORRELATION BETWEEN ACCIDENT YEARS 

One possible reason that the LCL Version 1 model produces ranges that are too narrow is that it 
fails to recognize that there may be positive correlation between claims payments between accident 
years.  In this section I will propose a model that allows for such correlations, and test the 
predictions of this model on the holdout data. 

To motivate this model, let’s suppose we are given random variables X and Y with means µX and 
µY  with common standard deviation σ.  If we set Y = µY + z·(X – µX) we can calculate the 
coefficient of correlation between X and Y as 

( ) ( ) ( ) ⋅ − µ− µ ⋅ − µ    ρ = = =
σ σ

2

2 2

XX Y
E z XE X Y

z . 

The proposed model will be one where the logarithms of the claims are correlated between 
successive accident years.  We will refer this model as the LCLVersion 2 model. 
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( )
( )( )

1, 1

, 1, 1

~ lognormal ,

~ lognormal ,  for  = 2,...,

d d d

w d w d w d w d d

C

C z C w K− −

α + β σ

α + β + ⋅ − α −β σ
           (6.1) 

Equation 6.1 in Version 2 replaces Equation 2.3 in Version 1.  The coefficient of correlation, z, is 
treated as a random variable with its prior distribution being uniformly distributed between -1 and 
+1.  All other assumptions in Version 2 remain the same as in Version 1.  The Bayesian MCMC 
simulation in Version 2 proceeds pretty much the same as described in Section 3, with the sole 
difference being the presence of the additional parameter z.  Here is a more detailed description of 
the simulation. 

1. Similar to Table 3.2, the JAGS program returns 10,000 vectors {αw}, {βd}, {σd} and z.  
2. Similar to Table 3.3, the R program calculates the mean logs

( )1, 1w d w d w dz C − −α + β + ⋅ − α −β  . 

3. Similar to Table 3.4, the R program simulates claims (sequentially in order of increasing w) 

from a lognormal distribution with mean log ( )1, 1w d w d w dz C − −α + β + ⋅ − α −β  and 

standard deviation log σd. 

While hypothesizing correlation between successive accident years, by choosing the prior 
distribution for z to be uniform between -1 and 1, this model does not force the correlation to be 
any particular value.  If the correlation was spurious, the zs would cluster around zero.  I ran the 
model on the data in Table 3.1. Figure 6.1 provides a histogram that strongly supports the presence 
of positive correlation.  Table 6.1 shows that the predicted standard errors for Version 2 are 
significantly larger than those predicted by Version 1. 

Tables 6.2 – 6.6 provide PP plots for Version 2 that are analogous to the Version 1 plots in 
Section 5.  These plots show that the LCL Version 2 model percentile predictions lie within the 
bounds specified by the Kolmogorov-Smirnov test at the 95% level for incurred claims, but do not 
lie within the bounds for the paid claims. 
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Figure 6.1 

 

Table 6.1 

 
Leveled Chain Ladder V2 Leveled Chain Ladder V1 

 w Estimate Std. Error CV Estimate Std. Error CV Actual 
1 3,918 86 0.0219 3,917 72 0.0184 3,917 
2 2,546 74 0.0291 2,545 60 0.0236 2,532 
3 4,113 135 0.0328 4,113 107 0.0260 4,279 
4 4,324 162 0.0375 4,309 123 0.0285 4,341 
5 3,565 154 0.0432 3,548 113 0.0318 3,587 
6 3,338 179 0.0536 3,316 136 0.0410 3,268 
7 5,237 356 0.0680 5,313 270 0.0508 5,684 
8 3,736 377 0.1009 3,777 300 0.0794 4,128 
9 4,122 699 0.1696 4,203 564 0.1342 4,144 
10 3,937 1,367 0.3472 4,081 1,112 0.2725 4,181 

Total  
w=2,…,10 34,918 2,192 0.0628 35,206 1,524 0.0433 36,144 
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Figure 6.2 
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Figure 6.3 
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Figure 6.4 
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Figure 6.5 
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Figure 6.6 
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7. CONCLUDING REMARKS 

When a model fails to validate on holdout data one has two options.  First, one can improve the 
model.  Second, one can search for additional information to include in the model.  This paper is the 
result of an iterative process where one proposes a model, watches it fail, identifies the weaknesses, 
and proposes another model.  Successful modeling requires both intuition and failure.   

The successful validation of the LCL Version 2 model on the incurred claims data was preceded 
by the failure of a quite elaborate model, Meyers-Shi [6], built with paid incremental data.  This led 
to the decision to try a model based on cumulative incurred claims, and continued through Versions 
1 and 2 of the LCL model.4

The simultaneous successful validation of Version 2 on incurred claims and the failure of any 
model (that I tried) to validate with paid claims suggest that there is real information in the case 
reserves that cannot be ignored in claims reserving. 

   

A key element in the success of the LCL model is its Bayesian methodology.  The simulations 
done in Meyers [5] suggest that models with a large number of parameters fit by maximum 
likelihood will understate the variability of outcomes, and that a Bayesian analysis can, at least in 
theory, fix the problem.  The recent developments in the Bayesian MCMC methodology make the 
Bayesian solution practical. 

The LCL models were designed to work with Schedule P claims data.  Individual insurers often 
have access to information that is not published in their financial statements.  We should all recall 
that stochastic models produce conditional probabilities that are not valid in the presence of 
additional information.That being said, I suspect that many insurers will find the LCL model useful, 
as it reveals what the outside world could see. 

To the best of my knowledge, no stochastic loss reserve model has ever been validated on such a 
large scale.  In any modeling endeavor, the first is always the hardest.  Now that we have some idea 
of what it takes to build a successfully validated model, I would not be surprised to see better 
models follow. 

 

 

                                                           

4There were numerous other modeling attempts that will remain unreported. 
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8. The R/JAGS CODE 

The code that produced Tables 4.1 and 6.1 and Figure 4.1 is included in the CAS eForum along 
with this paper.  The code is written in R (freely downloadable from www.r-project.org) and JAGS 
(freely downloadable from www.mcmc-jags.sourceforge.net).  The code requires that the CAS Loss 
Reserve Database (www.casact.org/research/index.cfm?fa=loss_reserves_data) be downloaded and 
placed on the user’s computer.  The code requires the use of the “rjags” and the “ChainLadder” 
packages in R. 

The user should place the files “LCL1 Model.R,” “LCL2 Model.R,”“LCL1-JAGS.txt,” and 
“LCL2-JAGS.txt” into a working directory.  In the first four lines of the R code the user should 
specify: (1) the name of the working directory; (2) the name and location of the file in the CAS Loss 
Reserve Database; (3) the group code for the insurer of interest; and (4) the type of loss – either paid 
or incurred.  Then run the code.  The code takes about a minute to complete and two progress bars 
indicate how much of the processing has completed. 

The code should work for any complete 10 x 10 triangle.  Similar code has run for all the group 
ids listed in Appendix A.   

 

 

  

http://www.r-project.org/�
http://www.casact.org/research/index.cfm?fa=loss_reserves_data�
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APPENDIX A – GROUP CODES FOR SELECTED INSURERS 

Commercial Personal Workers’ Other 
Auto Auto Comp Liab 
353 353 86 620 
388 388 337 671 
620 620 353 683 
671 671 388 715 
833 715 671 833 
1066 965 715 1066 
1090 1066 1066 1090 
1538 1090 1252 1252 
1767 1538 1538 1538 
2003 1767 1767 1767 
2135 2003 2135 2003 
2208 2143 2712 2135 
2623 3240 3034 2143 
2712 4839 3240 2208 
3240 5185 5185 2348 
3492 5320 6408 3240 
4839 5690 7080 5185 
5185 6947 8559 5320 
5320 8427 9466 6408 
6408 8559 10385 6459 
6459 10022 10699 6807 
6777 11037 11126 6947 
6947 11126 11347 8079 
7080 13420 11703 10657 
8427 13439 13439 11118 

Commercial Personal Workers’ Other 
Auto Auto Comp Liab 
8559 13501 13501 11126 
10022 13641 13528 11460 
10308 13889 14176 12866 
11037 14044 14257 13501 
11118 14257 14320 13641 
13439 14311 14370 13919 
13641 14443 14508 14044 
13889 15199 14974 14176 
14044 15407 15148 14257 
14176 15660 15199 14370 
14257 16373 15334 14974 
14320 16799 16446 15024 
14974 18163 18309 15571 
18163 18791 18767 16446 
18767 23574 18791 18163 
19020 25275 21172 18686 
21270 25755 23108 18767 
26077 27022 23140 26797 
26433 27065 26433 27065 
26905 29440 27529 28436 
27065 31550 34576 35408 
29440 34509 37370 37052 
31550 34592 38687 38733 
37036 35408 38733 41459 
38733 42749 41300 41580 

 

Selection Criteria 

1. Removed all insurers with incomplete 10 x 10 triangles. 
2. Sorted insurers in order of the coefficient of variation of the premium. 
3. Visually inspected insurers and removed those (very few) with “funny behavior.” 
4. Kept the top 50. 
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