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______________________________________________________________________________ 
Abstract  

Motivation. Insurance companies and corporations require credible methods in order to measure and manage 
risk exposures that derive from market price fluctuations.  Examples include foreign currency exchange, 
commodity prices and stock indices. 
 
Method. This paper will apply Geometric Brownian Motion (GBM) models to simulate future market prices.  
The Cox-Ingersoll-Ross approach is used to derive the integral interest rate generator. 
 
Results. Through stochastic simulations, with the key location and shape parameters derived from options 
market forward curves, the approach yields the full array of price outcomes along with their respective 
probabilities. 
 
Conclusions. The method generates the requisite distributions and their parameters to efficiently measure 
capital risk levels as well as fair value premiums and best estimate loss reserves. The modeled results provide 
credible estimators for risk based and/or economic capital valuation purposes.  Armed with these distributions of 
price outcomes, analysts can readily measure inherent portfolio leverage and more effectively manage these types 
of financial risk exposures.  
 
Availability. An Excel version of this stochastic GBM method is available from the CAS website, E-Forum 
section under filename MPiR.xlsm. 
 
Keywords. Dynamic risk models; capital allocation; geometric Brownian motion; options market volatility; 
stochastic process; Markov Process, Itō’s lemma, economic scenario generator. 

______________________________________________________________________________ 

1. PRICE FORECASTING AND ECONOMIC CAPITAL MODELS 

There are various methods actuaries may use to generate future contingent market prices. This 
paper provides the theoretical construct and detailed calculation methodology to model market 
prices for any asset class with a liquid exchange traded options market (i.e., foreign currency 
exchange, oil, natural gas, gold, silver, stocks, etc.).  

The critical input parameters used in this approach are taken directly from the options market 
forward curves and their associated volatilities.  For example, an insurer wants to determine the 
range of likely price movements over the next year for the British Pound (GBP) versus the U.S. 
Dollar (USD).  The requisite mean and volatility input assumptions for this approach are readily 
available from real time financial market sources (i.e., Bloomberg, Reuters, etc.). 

There are two fundamentally different approaches to modeling financial related risks, namely, 
fully integrated and modular.  
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The fully integrated approach applies an enterprise-wide stochastic model that requires complex 
economic scenario generator (ESG) techniques and the core inputs are aligned to either real-world 
or market-consistent parameters.  

Real-world ESGs generally reflect current market volatilities calibrated via empirical time series 
better suited to long-term capital requirements.  Market consistent ESGs reflect market option 
prices that provide an arbitrage-free process geared more toward derivatives and the analytics to 
manage other capital market instruments. Market consistent ESGs have fatter tails in the extreme 
right (i.e., adverse) side of the modeled distributions.   

Outputs from the ESGs provide explicit yield curves that allow us to simulate fixed income 
“bond” returns.  Interest rates (both real and nominal) are simulated as core outputs and the 
corresponding equity returns are derived as a function of the real interest rates.   

Fully integrated models provide credible market price forecasts but they are complex and require 
highly experienced analysts to both calibrate the inputs and translate the modeled outputs. The 
findings derive from an apparent “black box” and are not always intuitive or easily explained to 
executive managers and third-party reviewers (i.e., rating agencies or regulators).   

Proponents of the fully integrated approach assert that it provides an embedded covariance 
structure, reflecting the causes of dependence. However, a pervasive problem arises when using the 
fully integrated approach in that no matter how expert the parameterization of the ESG, the model 
by necessity will reflect an investment position on the future market performance.   

Appendix A provides sample input vectors for a typical ESG.  A cursory review of the input 
parameters confirms that any resulting simulation reflects the embedded investment position on the 
myriad of financial market inputs including short-term rates, long-term rates, force of mean 
reversion, variable correlations, jump-shift potential, etc.  

The approach described in this paper is geared to analyze asset (and liability) risk components 
that are modeled individually.  This is referred to as the modular approach.  In this approach capital 
requirements are determined at the business unit or risk category level (e.g., market, credit and 
liquidity risk separately) and then aggregated by either simple summation of the risk components 
(assuming full dependence) or via covariance matrix tabulations (which reflect portfolio effects).   

The main advantage of the modular approach is that it provides a simple but credible 
spreadsheet-based solution to economic capital estimation.  Other advantages include ease of 
implementation, clear and explicit investment position derived from the market and covariance 
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assumptions, and communication of basic findings. 

Consider the financial risk exposure that derives from stock/equity investments. The expected 
returns originate from non-stationary distributions and the correlation parameters of the various 
equities likely derive from non-linear systems.  Thus, it may be more appropriate to simulate stock 
prices with a model that eliminates any need to posit future returns but rather simply translates the 
range of likely outcomes defined by the totality of information embedded within open market 
trades. Selecting the location and scale parameters from the options markets data yields price 
forecasts which are devoid of any actuarial bias on the expected “state” of the financial markets. The 
results provide reliable measures of the range of price fluctuation inherent in these capital market 
assets. 

Financial traders may scrutinize buy/sell momentum and promulgate their own view of the 
dependency linkages amongst and in between these asset variables, attempting to determine where 
arbitrage opportunities exist.  The net sum of all of the option market trades collectively reflects an 
aggregate expectation.  The market is deemed credible and vast amounts of trade data are embedded 
within these two key input parameters. 

2. PRICE MODELING—THEORY 

Markov analysis looks at sequences of events and analyzes the tendency of one event to be 
followed by another. Using this analysis, one can generate a new sequence of random but related 
events that will mimic the original.  Markov processes are useful for analyzing dependent random 
events whereby likelihood depends on what happened last.  In contrast, it would not be a good way 
to model coin flips, for example, because each flip of the coin has no memory of what happened on 
the flip before as the sequence of heads and tails is fully independent.  

The Weiner process is a continuous-time stochastic process, W(t) for t ≥ 0  with W(0) = 0 and 
such that the increment W(t) – W(s) is Gaussian (e.g., normally distributed) with mean = 0 and 
variance “t - s” for any 0 ≤ s ≤ t, and the increments for non-overlapping time intervals are 
independent.  Brownian motion (i.e., random walk with random step sizes) is the most common 
example of a Wiener process. 

Changes in a variable such as the price of oil, for example, involve a deterministic component, 
“a∆t”, which is a function of time and a stochastic component, “b∆z”, which depends upon a 
random variable (here assumed to be a standard normal distribution).  Let S be the price of oil at 
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time = t and let dS be the infinitesimal change in S over the infinitesimal interval of time dt.  Change 
in the random variable Z over this interval of time is dz. This yields a generalized function for 
determining the successive series of values in a random walk given by dS = adt + bdz, where “a” and 
“b” may be functions of S and t. The expected value of dz is equal to zero so thus the expected value 
of dS is equal to the deterministic component, “adt”. 

The random variable dz represents an accumulation of numerous random influences over the 
interval dt. Consequently, the Central Limit Theorem applies which infers that dz has a normal 
distribution and hence is completely characterized by mean and standard deviation.  

The variance of a random variable, which is the accumulation of independent effects over an 
interval of time is proportional to the length of the interval, in this case dt. The standard deviation of 
dz is thus proportional to the square root of dt. All of this means that the random variable dz is 
equivalent to a random variable √W(dt), where W is a standard normal variable with mean equal to 
zero and standard deviation equal to unity. 

Itō’s lemma1

∆X = a(x,t)∆t + b(x,t)∆z 

 formalizes the fact that the random (Brownian motion) part of the change in the log 
of the oil price has a variance that is proportional to the square root of this time interval.  
Consequently, the second order (Taylor) expansion term of the change of the log of the oil price is 
proportional to the time interval. This is what allows the use of stochastic calculus to find the 
solutions. The formula for Itō’s Lemma is as follows:   

 

(2.1) 

Itō’s Lemma is crucial in deriving differential equations for the value of derivative securities such 
as options, puts, and calls in the commodity, foreign exchange and stock markets.  A more intuitive 
explanation of Itō’s Lemma that bypasses the complexities of stochastic calculus is given by the 
following thought experiment: 

Visualize a binomial tree that goes out roughly a dozen steps whereby the price at 
each step is determined by, drift +/- volatility. The average of returns at the end of 
these steps will be (drift - ½ volatility2) x dt. This is as Itō’s Lemma would expect.  
However, when you do this averaging to get that number, all of the outcomes (i.e., 
each of the individual returns) have the same weighting.  It is as though you weighted 
each outcome by its beginning value or price. Since all of the paths started at the 
same price, it turns out being a simple average (actually, a probability-weighted 
average with equivalent weights). 

                                                           
1 Kiyoshi Itō (1951). On stochastic differential equations. Memoirs, American Mathematical Society 4, 1–51. 
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Now run the experiment again, but this time by averaging each of the outcomes by their ending 
value, which will yield an average mean = (drift + ½ volatility2) x dt.  Note the change in the sign 
from - to +.  Consequently, the formula has a minus sign if you use beginning value weights and a 
plus sign if you use ending value weights. Conceivably, somewhere in the middle of the process (or 
maybe the average drift of the process) is just the initial drift with no volatility adjustment. Why is 
this? When you weight by initial price, all of the paths share equal weightings – the bad performance 
paths carry the same weight as the good, in spite of the fact that they get smaller in relative size. 
Consequently they are bringing down the average return (thus the “minus ½ sigma2”). The opposite 
happens when you use ending values as weights, whereby the top paths get really large versus the 
bottom paths and appear to artificially lift up the returns (in a manner similar to that often observed 
with some stock indices). 

The “reality” is likely somewhere in between, where the number is the initial drift and thus, in 
this context, Itō’s Lemma is just a weighted averaging protocol. 

By inserting Itō’s Lemma into the generalized formula yields a Geometric Brownian Motion 
(GBM) formula for price changes of the form:  

 

∆S = µS∆t + σS∆z; such that St+1= St + St [µ∆t+σεN(0,1)√∆t]. 

 

(2.2) 

µ is the expected price appreciation, which can be taken directly from the forward mean curves 
for any liquid market option (i.e., F/X, Oil, Gold, etc.). 

σ is the implied volatility, which can also be taken directly from the option markets price data 
available on Bloomberg (for example).  

S is typically assumed to follow a lognormal distribution and this process is used to analyze 
commodity and stock prices as well as exchange rates.  

A critical input to this market price modeling approach is the interest rate assumption.   

A general model of interest rate dynamics may be given by:  

 

∆rt = k(b-rt)∆t + σrγt∆zt. (2.3) 

In this method we utilize the Cox-Ingersoll-Ross Model (CIR) as follows: 
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ri = ri-1 + a(b-ri-1)∆t + σ√ri-1 ε 

ri = spot rate at time = i. 

ri-1 = spot rate at time = i-1. 

a = speed of reversion = 0.01. 

b = desired average spot rate at end of forecast: set to spot rate on n-year high-grade, corporate-
zero, coupon bond at beginning of forecast; therefore, there is no expectation for a change in the 
level of yields over the forecast period. 

σ = volatility of interest rate process = .85% (the historical standard deviation of the Citigroup 
Pension Discount Curve n year spot rate). 

∆t = period between modeled spot rates in months = 1. 

ε = random sampling from a standard normal distribution. 

The CIR interest rate model characterizes the short-term interest rate as a mean-reverting 
stochastic process. Although the CIR model was initially developed to simulate continuous changes 
in interest rates, it may also be used to project discrete changes from one time period to another. 

The CIR model is similar to our market price model in that it has two distinct components: a 
deterministic part k(b-rt) and a stochastic part σrγt . The deterministic part will go in the reverse 
direction of where the current short-term rate is heading. That is, the further the current interest rate 
is from the long-term expected rate, the more pressure the deterministic part applies to reverse it 
back to the long-term mean. 

The stochastic part is purely random; it can either help the current interest rate deviate from its 
long-term mean or the reverse. Since this part is multiplied by the square root of the current interest 
rate, if the current interest rate is low, then its impact is minimal, thereby not allowing the projected 
interest rate to become negative. 

3. PRICE MODELING—APPLICATION AND PRACTICE 

When implementing this modular approach to model these types of risks, there are key 
considerations that need be thought through by the actuary.  The first and most important is 
correlation.  For this paper, we are assuming independence for simplicity and clarity in the approach.  
A fully independent view does have value in that it defines a lower boundary region of the result and 
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a fully dependent view defines an upper boundary.  Correlation of financial variables is difficult 
because they are hard to estimate and can be unstable.  For example, consider the chart below, 
which tracks the relationship between stocks and bonds over time. 

 

Source: GMO as of January 2011. 

Another key consideration is the form of the random walk variable.  For this example, we are 
using a normal distribution to model the random walk of the results.  The normal distribution is 
commonly used in financial modeling and does simplify the ideas shown.  Depending on the use and 
application of the model, consideration should be given to this assumption and possible 
modifications. 

The data for this sample exercise is from the forward call options for the British Pound (GBP) 
versus the U.S. Dollar (USD) currency pair from June 2010 through December 2011.  This time 
interval was selected so that the user can compare the modeled results to the actual results. 
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GBP v USD Foreign Exchange Futures 

Source: (Bloomberg) 

Ticker Month Option 
Mean Volatility 

NRM0 Comdty Jun-10 1.4558 14.890 
NRN0 Comdty Jul-10  14.920 
NRQ0 Comdty Aug-10  14.860 
NRU0 Comdty Sep-10 1.4557 14.850 
NRV0 Comdty Oct-10   
NRX0 Comdty Nov-10  14.830 
NRZ0 Comdty Dec-10 1.4556  
NRF1 Comdty Jan-11   
NRG1 Comdty Feb-11  14.795 
NRH1 Comdty Mar-11 1.4555  
NRJ1 Comdty Apr-11   
NRK1 Comdty May-11  14.730 
NRM1 Comdty Jun-11 1.4554  
NRN1 Comdty Jul-11   
NRQ1 Comdty Aug-11   
NRU1 Comdty Sep-11 1.4553  
NRV1 Comdty Oct-11   
NRX1 Comdty Nov-11  14.760 

 

The first step is to complete the columns for the missing data fields with simple linear 
interpolation.  Other interpolation options are available and should be reviewed when doing the 
analysis.  In this case, a linear interpolation was selected due to the small changes expected in the 
mean market forward curve.  When larger relative price movements are expected, then different 
interpolations may be used such as geometric means.  
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Interpolating the missing values generates the following table: 

 

Ticker Month Option 
Mean Volatility 

NRM0 Comdty Jun-10 1.4558 14.890 
NRN0 Comdty Jul-10 1.4558 14.920 
NRQ0 Comdty Aug-10 1.4557 14.860 
NRU0 Comdty Sep-10 1.4557 14.850 
NRV0 Comdty Oct-10 1.4556 14.840 
NRX0 Comdty Nov-10 1.4556 14.830 
NRZ0 Comdty Dec-10 1.4556 14.818 
NRF1 Comdty Jan-11 1.4556 14.807 
NRG1 Comdty Feb-11 1.4555 14.795 
NRH1 Comdty Mar-11 1.4555 14.773 
NRJ1 Comdty Apr-11 1.4555 14.752 
NRK1 Comdty May-11 1.4554 14.730 
NRM1 Comdty Jun-11 1.4554 14.735 
NRN1 Comdty Jul-11 1.4554 14.740 
NRQ1 Comdty Aug-11 1.4553 14.745 
NRU1 Comdty Sep-11 1.4553 14.750 
NRV1 Comdty Oct-11  14.755 
NRX1 Comdty Nov-11  14.760 

 

The CIR interest rate model is then applied in this example as follows: 

r(i) = (ab - (a+y) x r(i-1))dt + srgdZ 
a = 0.25 
b = 0.06 

y = 0 
s = 0.05 
g = 0.50 

dt = 1/12 
r(0) = 0.0028 (1 month LIBOR). 

The above parameterization was provided by life actuarial advisors. Derivation of the CIR 
parameters is beyond the scope of this paper.  
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Adding the interest rate calculation expands the table as follows: 

Month 
Market 
Forward 

GBP/USD 

Implied 
Volatility 

Interest 
Rate Z 

Jun-10 1.4558 14.89%   
Jul-10 1.4558 14.92% 0.28% 0.00% 

Aug-10 1.4557 14.86% 0.40% 0.00% 
Sep-10 1.4557 14.85% 0.52% 0.00% 
Oct-10 1.4556 14.84% 0.63% 0.00% 
Nov-10 1.4556 14.83% 0.74% 0.00% 
Dec-10 1.4556 14.82% 0.85% 0.00% 
Jan-11 1.4556 14.81% 0.96% 0.00% 
Feb-11 1.4555 14.80% 1.06% 0.00% 
Mar-11 1.4555 14.77% 1.17% 0.00% 
Apr-11 1.4555 14.75% 1.27% 0.00% 
May-11 1.4554 14.73% 1.37% 0.00% 
Jun-11 1.4554 14.74% 1.46% 0.00% 
Jul-11 1.4554 14.74% 1.56% 0.00% 

Aug-11 1.4553 14.75% 1.65% 0.00% 
Sep-11 1.4553 14.75% 1.74% 0.00% 

 

Where Z is N(0,1). 

This currency model has the following basic structure: 

Currency price (end of month) = currency price (beginning of month) x (random walk) x (1 + 
drift rate adjustment). 

The first two elements are typical of standard GBM models.  The third component adjusts the 
model so that the mean of the modeled currencies match the market forward curve.  By 
implementing this adjustment factor, the model is transformed to be price taking. That is, the GBM 
model is modified to realign the simulated forward means with the current options market 
expectation2

  

.   

                                                           
2 The GBM model may be adjusted to use different forward curves than the market aggregate expectation, but then the 
model would by definition be taking a market pricing position on the variable.  However, if that is the case use caution 
since that analysis may be construed as offering investment advice. Please note the relevant actuarial statements of 
practice related to investment advice. 
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Next we introduce the Brownian motion component.   

random walk = exp((r(i)- ½ x σ2)dt + σ (dt)½dZ). 

Where dZ, dt, r(i) are from the interest rate calculation, and σ is the implied volatility of the 
currency prices from the Bloomberg table. 

Adding these calculations to the table yields the following: 

 

Month 

Market 
Forward 
GBP/ 
USD 

Implied 
Vol. 

Interest 
Rate Z 

Price in 
Month 

Weiner 
Drift 
Rate 
Adj. 

Modeled 
Mean 

 

Beg End 

Target v. 
Modeled 

Mean 
Difference 

Jun-10 1.4558 14.89%    1.4558     
Jul-10 1.4558 14.92% 0.28% 0.00% 1.4558 1.4548 0.9993 0.00% 1.4548 0.0006715 

Aug-10 1.4557 14.86% 0.40% 0.00% 1.4548 1.4539 0.9994 0.00% 1.4553 0.0003007 
Sep-10 1.4557 14.85% 0.52% 0.00% 1.4539 1.4532 0.9995 0.00% 1.4560 (0.0001773) 
Oct-10 1.4556 14.84% 0.63% 0.00% 1.4532 1.4527 0.9996 0.00% 1.4568 (0.0007546) 
Nov-10 1.4556 14.83% 0.74% 0.00% 1.4527 1.4522 0.9997 0.00% 1.4577 (0.0014195) 
Dec-10 1.4556 14.82% 0.85% 0.00% 1.4522 1.4519 0.9998 0.00% 1.4589 (0.0022343) 
Jan-11 1.4556 14.81% 0.96% 0.00% 1.4519 1.4518 0.9999 0.00% 1.4602 (0.0031548) 
Feb-11 1.4555 14.80% 1.06% 0.00% 1.4518 1.4517 1.0000 0.00% 1.4616 (0.0041686) 
Mar-11 1.4555 14.77% 1.17% 0.00% 1.4517 1.4518 1.0001 0.00% 1.4633 (0.0053047) 
Apr-11 1.4555 14.75% 1.27% 0.00% 1.4518 1.4520 1.0001 0.00% 1.4651 (0.0065532) 
May-11 1.4554 14.73% 1.37% 0.00% 1.4520 1.4524 1.0002 0.00% 1.4670 (0.0078706) 
Jun-11 1.4554 14.74% 1.46% 0.00% 1.4524 1.4528 1.0003 0.00% 1.4690 (0.0092570) 
Jul-11 1.4554 14.74% 1.56% 0.00% 1.4528 1.4534 1.0004 0.00% 1.4712 (0.0107382) 

Aug-11 1.4553 14.75% 1.65% 0.00% 1.4534 1.4541 1.0005 0.00% 1.4735 (0.0123158) 
Sep-11 1.4553 14.75% 1.74% 0.00% 1.4541 1.4549 1.0005 0.00% 1.4760 (0.1403333) 

 

The final step is to determine the Drift Rate Adjustment values, which is accomplished with a 
recursive iteration technique.  The first drift rate adjustment calculation is found in the last column 
(“Target vs. Modeled Mean Difference”).  The formula in that column is equal to: (Market Forward 
Price) / (Modeled Mean) – 1. 

The modeled mean is the average of the month ending prices from the simulation results.  The 
first value shown is input into the Drift Rate Adjustment field, and then the GBM model is rerun to 
calculate the next adjustment factor, and so on until all the monthly forward means are aligned and 
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the differences are all zero.   

This can be seen in the following table, shown mid-adjusting: 

 

Month 

Market 
Forward 
GBP/ 
USD 

Implied 
Vol. 

Interest 
Rate Z 

Price in 
Month 

Weiner 
Drift 
Rate 
Adj. 

Modeled 
Mean 

 

Beg End 

Target v. 
Modeled 

Mean 
Difference 

Jun-10 1.4558 14.89%    1.4558     
Jul-10 1.4558 14.92% 0.28% 0.00% 1.4558 1.4558 0.9993 0.07% 1.4558 0.0000000 

Aug-10 1.4557 14.86% 0.40% 0.00% 1.4558 1.4544 0.9994 (0.04%) 1.4557 0.0000000 
Sep-10 1.4557 14.85% 0.52% 0.00% 1.4544 1.4530 0.9995 (0.05%) 1.4557 0.0000000 
Oct-10 1.4556 14.84% 0.63% 0.00% 1.4530 1.4516 0.9996 (0.06%) 1.4557 0.0000000 
Nov-10 1.4556 14.83% 0.74% 0.00% 1.4516 1.4502 0.9997 (0.07%) 1.4556 0.0000000 
Dec-10 1.4556 14.82% 0.85% 0.00% 1.4502 1.4487 0.9998 (0.08%) 1.4556 0.0000000 
Jan-11 1.4556 14.81% 0.96% 0.00% 1.4487 1.4485 0.9999 0.00% 1.4569 (0.0009225) 
Feb-11 1.4555 14.80% 1.06% 0.00% 1.4485 1.4485 1.0000 0.00% 1.4584 (0.0019386) 
Mar-11 1.4555 14.77% 1.17% 0.00% 1.4485 1.4486 1.0001 0.00% 1.4600 (0.0030773) 
Apr-11 1.4555 14.75% 1.27% 0.00% 1.4486 1.4488 1.0001 0.00% 1.4618 (0.0043286) 
May-11 1.4554 14.73% 1.37% 0.00% 1.4488 1.4491 1.0002 0.00% 1.4637 (0.0056489) 
Jun-11 1.4554 14.74% 1.46% 0.00% 1.4491 1.4496 1.0003 0.00% 1.4657 (0.0070384) 
Jul-11 1.4554 14.74% 1.56% 0.00% 1.4496 1.4501 1.0004 0.00% 1.4679 (0.0085230) 

Aug-11 1.4553 14.75% 1.65% 0.00% 1.4501 1.4508 1.0005 0.00% 1.4702 (0.0101040) 
Sep-11 1.4553 14.75% 1.74% 0.00% 1.4508 1.4516 1.0005 0.00% 1.4727 (0.0118254) 

 

It is also possible to derive the drift rate adjustment values directly from an analytic approach 
applied to second differences but the recursive iterative technique was used here for ease of 
explanation.   
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After completing the drift rate adjustment process, the results are summarized as follows: 

 

Month 

Market 
Forward 
GBP/ 
USD 

Implied 
Vol. 

Interest 
Rate Z 

Price in 
Month 

Weiner 
Drift 
Rate 
Adj. 

Modeled 
Mean 

 

Beg End 

Target v. 
Modeled 

Mean 
Difference 

Jun-10 1.4558 14.89%    1.4558     
Jul-10 1.4558 14.92% 0.28% 0.00% 1.4558 1.4558 0.9993 0.07% 1.4558 0.0000000 

Aug-10 1.4557 14.86% 0.40% 0.00% 1.4558 1.4544 0.9994 (0.04%) 1.4557 0.0000000 
Sep-10 1.4557 14.85% 0.52% 0.00% 1.4544 1.4530 0.9995 (0.05%) 1.4557 0.0000000 
Oct-10 1.4556 14.84% 0.63% 0.00% 1.4530 1.4516 0.9996 (0.06%) 1.4557 0.0000000 
Nov-10 1.4556 14.83% 0.74% 0.00% 1.4516 1.4502 0.9997 (0.07%) 1.4556 0.0000000 
Dec-10 1.4556 14.82% 0.85% 0.00% 1.4502 1.4487 0.9998 (0.08%) 1.4556 0.0000000 
Jan-11 1.4556 14.81% 0.96% 0.00% 1.4487 1.4472 0.9999 (0.09%) 1.4566 0.0000000 
Feb-11 1.4555 14.80% 1.06% 0.00% 1.4472 1.4457 1.0000 (0.10%) 1.4555 0.0000000 
Mar-11 1.4555 14.77% 1.17% 0.00% 1.4457 1.4441 1.0001 (0.11%) 1.4555 0.0000000 
Apr-11 1.4555 14.75% 1.27% 0.00% 1.4441 1.4425 1.0001 (0.13%) 1.4555 0.0000000 
May-11 1.4554 14.73% 1.37% 0.00% 1.4425 1.4409 1.0002 (0.13%) 1.4554 0.0000000 
Jun-11 1.4554 14.74% 1.46% 0.00% 1.4409 1.4394 1.0003 (0.14%) 1.4554 0.0000000 
Jul-11 1.4554 14.74% 1.56% 0.00% 1.4394 1.4378 1.0004 (0.15%) 1.4554 0.0000000 

Aug-11 1.4553 14.75% 1.65% 0.00% 1.4378 1.4362 1.0005 (0.16%) 1.4553 0.0000000 
Sep-11 1.4553 14.75% 1.74% 0.00% 1.4362 1.4344 1.0005 (0.17%) 1.4553 0.0000000 

 

This modified GBM model has generated a 15-month market aligned foreign exchange price 
forecast. Each of the month ending values are the means from a probability density function unique 
to that point in time. 
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The graph below depicts the modeled end of month prices for GBP/USD. 

 

 The apparent horizontal line is the mean forward curve for this currency pair. The area bounded 
by the light shading represents +/- 1 Standard Deviation and roughly accounts for two-thirds of the 
outcomes. The area bounded by the darker shading is determined as the 5th and 95th percentile 
amounts over time. Note the modest asymmetry whereby price appreciation is expected to be 
greater than price depreciation over time.  This asymmetry is even more pronounced out in the 
extreme tails as summarized in the table that follows. 
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This table relates the modeled prices to their confidence levels modeled as of July, August, 
September, and the subsequent quarter ends: 

 

 Modeled End of Month Price 
Confidence 

Level Jul-10 Aug-10 Sep-10 Dec-10 Mar-10 Jun-10 Sep-10 

0.01% 1.4558 1.2396 1.1606 1.0223 0.9232 0.8566 0.7815 
0.05% 1.4558 1.2626 1.1903 1.0502 0.9832 0.8905 0.8372 
10.00% 1.4558 1.3762 1.3431 1.2787 1.2321 1.1938 1.1583 
20.00% 1.4558 1.4025 1.3806 1.3350 1.3006 1.2720 1.2463 
30.00% 1.4558 1.4219 1.4072 1.3763 1.3525 1.3317 1.3118 
40.00% 1.4558 1.4386 1.4304 1.4132 1.3991 1.3858 1.3735 
50.00% 1.4558 1.4544 1.4531 1.4485 1.4429 1.4384 1.4333 
60.00% 1.4558 1.4703 1.4754 1.4849 1.4893 1.4937 1.4949 
70.00% 1.4558 1.4876 1.5000 1.5249 1.5404 1.5549 1.5643 
80.00% 1.4558 1.5081 1.5294 1.5710 1.6027 1.6286 1.6518 
90.00% 1.4558 1.5370 1.5708 1.6409 1.6945 1.7379 1.7813 
99.50% 1.4558 1.6252 1.7010 1.8607 1.9980 2.1148 2.2281 
99.90% 1.4558 1.6613 1.7553 1.9512 2.1243 2.2844 2.4654 

 

This provides the requisite estimators for risk-based or economic capital valuation purposes. For 
example, under Solvency II type risk level constraints, the 99.50% confidence level estimate at 
December is $1.8607.  Consequently, the 1:200 stress level risk capital charge for this risk 
component is required to provide for the net losses that derive from a 28% weakening of the U.S. 
dollar (= 1.8607/1.4558). 

Note:  Actuaries must use caution in the display and communication of results from this 
modified GBM approach. Recall that we seek to provide an unbiased view of the range of future 
price outcomes. That is, we have not taken an independent view rather we have simply translated the 
aggregate market expectation. 

In the U.S., professionals are licensed specifically to give investment advice to individuals and 
companies.  Although actuaries may present the quantitative results of the GBM model and its 
effects, use caution in providing any qualitative summarization of the findings.  Providing qualitative 
assessments of the company’s expected future performance may be construed as giving unqualified 
investment advice.  
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4. CONCLUSIONS 

The method generates probability distribution functions and their parameters to efficiently 
measure capital risk levels as well as fair value premiums and best estimate loss reserves. The model 
yields credible estimates of either risk-based or economic capital requirements or both.  Equipped 
with these distributions of price outcomes, analysts can readily measure inherent portfolio leverage 
and more effectively manage these types of financial risk exposures.  
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Appendix A 

This exhibit provides a sample of the types of complex inputs required to run economic scenario 
generators. 
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Appendix A
ESG Prototype: Model Parameters
US Economy : Sample Parameters

Valuation Date 2010.12 Observed Term Structure (linearly interpolated between key rates)
1-yr 2-yr 3-yr 4-yr 5-yr 6-yr 7-yr 8-yr 9-yr 10-yr

Projection Period 50             time steps 0.29 0.62 1.06 1.49 1.93 2.20 2.47 2.75 3.02 3.29
Time Step 1.000        in years

Real Estate Time Step 1.000        in years 11-yr 12-yr 13-yr 14-yr 15-yr 16-yr 17-yr 18-yr 19-yr 20-yr
3.35 3.40 3.46 3.52 3.57 3.63 3.69 3.74 3.80 3.86

Current Risk Free Term Structure
Current 3-mo rate 0.14% per year 21-yr 22-yr 23-yr 24-yr 25-yr 26-yr 27-yr 28-yr 29-yr 30-yr
Current 1-yr rate 0.29% 3.91 3.97 4.02 4.08 4.14 4.19 4.25 4.31 4.36 4.42
Current 2-yr rate 0.62%
Current 5-yr rate 1.93% 31-yr 32-yr 33-yr 34-yr 35-yr 36-yr 37-yr 38-yr 39-yr 40-yr

Current 10-yr rate 3.29% 4.43 4.44 4.45 4.46 4.47 4.47 4.48 4.49 4.50 4.51
Current 30-yr rate 4.42%

50-yr Selection 4.60% 41-yr 42-yr 43-yr 44-yr 45-yr 46-yr 47-yr 48-yr 49-yr 50-yr
4.52 4.53 4.54 4.55 4.56 4.56 4.57 4.58 4.59 4.60

Real Rate Parameters Inflation Parameters
Long INT Reversion Mean 0.0432 Long INT Volatility 2.33% Initial Inflation 0.0148

Long INT Reversion Speed 0.3516 INF Mean 0.0259 INF Volatility 0.0215
Short INT Reversion Speed 0.1382 Short INT Volatility 2.18% INF Reversion Speed 0.3852

Large and Small Stock Parameters
Medical Inflation Parameters Prob

Initial MED INF 0.0324 Stage0 Mean LS Return 9.00% Stage0 LS Volatility 10.12% stage: 1 0.9760
Stage1 Mean LS Return -26.16% Stage1 LS Volatility 27.12% stage: 2 0.8507

MED INF Mean 0.0271
MED INF Volatility 0.0088 Stage0 Mean SS Return 8.16% Stage0 SS Volatility 13.86% stage: 1 0.9760

MED INF Reversion Speed 0.0709 Stage1 Mean SS Return 3.60% Stage1 SS Volatility 57.50% stage: 2 0.9000

Dividend Parameters
DIV Reversion Mean 4.17% DIV Volatility 0.85%

DIV Reversion 0.13          Correlation Parameters
Initial DIV 1.83% Correl LS, SS Regime Switch 90% Dependence method to use?

Correl LS, SS Return 90%
Real Estate Parameters Correl DIV, LS -25%

RE Reversion Mean 2.22% RE Volatility 2.82%
RE Reversion Speed 0.87          Correl INF, DIV -50%

Initial RE 4.62%
Correl Short, Long INT 68%

Correl INF, Short Real INT 2%

Correl INF, MED INF 72%

Rank Dependence

Casualty Actuarial Society Forum Spring, 2012
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Abbreviations and notations 
CIR, Cox-Ingersoll-Ross GBP, British pound sterling  
ESG, economic scenario generator USD, United States dollar 
GBM, geometric Brownian motion  
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