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The Maximum Likelihood Estimation (MLE) is one of the most popular methodologies used to fit a 
parametric distribution to an observed set of data. MLE’s popularity stems from its desirable 
asymptotic properties. Maximum Likelihood (ML) estimators are consistent, which means that as 
the sample size increases the researcher becomes increasingly confident of obtaining an estimate that 
is sufficiently closer to the true value of the parameter; they are asymptotically normal with the 
lowest possible variance (achieve the Cramer-Rao lower bound on variance), which makes inference 
tests relatively easy and statistically more powerful. In addition, they are translation-invariant, which 
means that all  functions of the ML estimates are by default the MLE predictors of the respective 
functions. For instance, if a pricing analyst computes pure premium from relativities estimated by 
MLE, the predicted pure premium is also an ML estimate and, hence, satisfies all the desirable 
aforementioned properties. 
 
Because of the known asymptotic distribution of ML estimators, there are numerous asymptotic 
tests to help researchers make statistical inferences about their ML estimates: examples include, 
among others, the Likelihood Ratio Test, the Lagrange Multiplier Test, and the Schwarz Bayesian 
Criterion (SBC).  In general, all of these aforementioned tests are used to determine if the measured 
signals (the ML estimates) are statistically different from some pre-specified values. For instance, 
suppose a researcher believes that frequency follows a Poisson distribution with mean λ, and 
computes the sample mean as the MLE for λ. To test whether or not the measured signal is noise, 
the researcher may use one of these tests to check whether the ML estimate is statistically different 
from zero. In addition, the researcher may use one of these tests to check whether the ML 
estimate(s) is (are) statistically different from some pre-conceived or historic values. However, the 
aforementioned tests may not be used to make inferences about the functional form of the 
distribution of the data. In other words, as an example, one may not compare the ML values (as is 
implicitly done by these tests) to choose between a Poisson and a Negative Binomial distribution.  
This article argues why such a comparison is incorrect and would be no better than an apple to 
orange comparison. 
 
A critical assumption underlying MLE is that the researcher knows everything but a finite number of 
parameters of the specified distribution. (The functional form of a distribution has an infinite 
dimension). An implication of this is that this estimation technique could only be used after the 
functional form of the distribution (hence forth, simply referred to as the distribution) has 
been pre-specified. That is, a researcher needs to first specify whether the data is Poisson, Negative 
Binomial, Exponential, Lognormal, etc. before she could use the MLE technique to estimate the 
unknown parameters of the pre-specified distribution. Hence, the reader should easily see that the 
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MLE technique doesn't have the capability to determine the distribution of an observed data; 
otherwise, such a pre-specification of distribution would be unnecessary. 
 
There is even a subtle contradiction invoked by comparing ML values obtained under different 
distribution assumptions as these tests implicitly do. For instance, if we assume data follows a 
Normal distribution and hence use the sample mean as the MLE of the shape parameter, it is easy to 
see that the sample mean would no longer be an MLE upon discovery that our data actually follows 
a Pareto distribution. In other words, since a given data could only follow one distribution and 
since the ML estimator is valid only when the assumed distribution is right, comparing 
MLEs obtained under different distributions is self-contradictory! 
 
The reader should note, however, that distributions with different names do not necessarily have 
different functional forms. For instance, the Exponential and the Gamma distributions have the 
same functional form but differ only in the value of the shape parameter. (In other words, they 
differ in a finite number of parameters.) In fact, the Exponential distribution is a special form of the 
Gamma distribution. Hence, the ML tests are valid and can be used to make inferences about 
whether or not the shape parameter is one (and hence Exponential). However, when the two 
distributions are rather distinct in functional form, but not in parameter values (such as the 
Weibull and Lognormal distributions), the ML tests are invalid!2

 
 

In light of the above argument, all MLE inference tests such as the Likelihood Ratio Test, the 
Lagrange Multiplier Test, and the Schwarz Bayesian Criterion (SBC) are not appropriate under 
different distributions. Unfortunately, many researchers unknowingly misapply these tests to choose 
between distributions, e.g., Poisson vs. Negative Binomial). Even in much of the exam oriented  
actuarial literature such as Manuals for Actuarial Exam 4/C, as well as some past exams, have 
questions that mistakenly ask candidates to use one of these ML tests to make inferences about 
different distributions. It is also worthy to point out that, under such scenarios, the inference 
statistics such as the Likelihood Ratio Statistic and the SBC are not only meaningless, but do not 
even follow a Chi-square distribution (as they traditionally do); hence, using the Chi-square critical 
regions to accept or reject the null hypothesis is erroneous.  
 
An important question, therefore, is what tests can a researcher use to choose between different 
distributions. There are numerous statistical tests of distribution fit: Kolmogorov-Smirnov tests and 
Chi-square Goodness of Fit tests are examples of such tests. These tests tell the modeler whether or 
not there is good reason to trust the fitted distribution. Unfortunately, each of these tests could 
accept multiple distributions as good fits. When this happens, the modeler could choose the 
distribution with the maximum3

                                                 
2 There is, however, a hot debate about the validity of MLE when functional forms are parameterized so that they differ 
by a finite number of parameters. For instance, the Tweedie distribution could be parameterized by a p-parameter so 
that,  by changing the p-parameter, the assumed functional form of the distribution changes.  

 p-value.  

3 Notice that for most inference tests about distributions, a high p-value is  support for the null hypothesis (the 
distribution being tested). 


