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Abstract  

Every 50 years or so a study of workers compensation mortality patterns is done, generally finding that after 
medical stabilization – 10 or more years after injury – mortality for seriously injured workers is comparable to 
that of the overall population. It has been about 25 years since the latest study, so we might be half way to the 
next one. But in the meanwhile there are trends in population mortality, and these impact loss reserve risk.  

Mortality data over time can be arranged in triangles, and models fit to such data are similar to those used in ca-
sualty loss development – particularly those that model trends in the three dimensions of calendar year of finali-
zation, age at finalization, and origin year. We fit such models to U.S. population male and female mortality data 
for death (finalization) ages 55 to 89, with several distributions of residuals. The information matrix is used to es-
timate parameter standard deviations.  

Although there is an extensive literature on fitting these models, most of the papers do not address parameter 
significance through t statistics, etc. and doing so finds problems with the standard models. One problem is over-
parameterization, and a conclusion here is that parameter reduction methods such as smoothing should be used. 
Other authors have tried this, but a sticky issue is finding parameter reduction methods that actually produce im-
provements in goodness of fit, as measured by AIC, etc. This is an open problem as far as we know and a direc-
tion for future research. 

Typically the starting point for the distribution of model residuals is Poisson, but several authors have found that 
negative binomial fits better. Unfortunately, some of these have misinterpreted the derivation of the negative bi-
nomial as a gamma-mixed Poisson to conclude that the negative binomial arises because there are different sub-
populations each with different Poisson distributions. But a sum of subpopulations each Poisson distributed is it-
self Poisson distributed. The mixture becomes interesting when you are drawing at random from a subpopulation 
whose parameter you do not know. Probably the negative binomial arises from other contagion effects, like 
weather, disease outbreaks, etc. Unfortunately, these also make residuals across cells not independent, and this ef-
fect has been found in other studies as well. 

A few alternative ways of parameterizing negative binomial residuals are discussed, and these are also applied to 
the Poisson-Inverse Gaussian distribution and its generalization, the Sichel. For females the negative binomial fits 
best but the male data is a bit more skewed than the negative binomial. However the Poisson inverse-Gaussian 
appears to be too skewed for this data. The Sichel is more flexible, with one more parameter, and fits best. 

Further insight into the shifts in mortality over time is provided by fitting Makeham-like curves to each year of 
death. One implication from this exercise is that male mortality trends at the older ages had a shift in 1988, pos-
sibly data related. Probably data older than that is not reliable, or at minimum comes from a different process. 
The overall conclusion is that more work is needed to come up with reasonable models for mortality trend, with 
parameter reduction a leading candidate. 

For trending, ARIMA models have often been fit to the calendar-year parameters after first differencing for sta-
bility. But since the parameters are estimated with error, differencing induces an autocorrelation, so the ARIMA 
models could be mostly fitting this artifact. Alternatives are discussed. 

Keywords: Mortality Risk; Lee-Carter Model; Cohort Effects; Parameter Risk; Model Risk 

______________________________________________________________________________ 

MORTALITY TREND MODELS 

The general categories of process, parameter and model risk are applicable to mortality projec-

tion. Model risk is particularly problematic, as it turns out that the better fitting models have aspects 

that make them questionable for projection purposes. Lee-Carter models with and without cohort 
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effects with a few distributions of residuals are fit to the population mortality data from the Human 

Mortality Database (HMD) and are compared based on penalized maximum likelihood.  

The models were fit to years of death starting with 1971. Preliminary analysis found different 

trends for ages of death below 55, due perhaps to reproductive health issues and the impact of HIV 

during some of this period. Female mortality below age 55 improved dramatically in the 1970s and 

has changed little since, whereas for males there was a sharp increase in mortality in the 1990s that 

has since recovered. The oldest age used is 89, as older ages had quite unusual mortality patterns be-

fore 1990—mortality reducing with age, etc. These could be data issues. The data available for this 

study ends with year of death 2006. This resulted in using year-of-birth cohorts 1882 to 1951. The 

cohort is year of death minus latest attained age at death, so is close to year of birth. 

The fits with cohort parameters turn out to be problematic in part because the oldest cohorts 

have only a few observations, which makes their parameters very responsive to just a few data 

points, and this in turn creates distortions in other parameters. Adding the data for all years of death 

55 – 89 for cohorts 1882 and later, reduces this problem. Another problem with the fits is that in the 

case of female death rates, the correlations among parameter estimates is high, which reduces the 

significance of the parameters and leads to questionable values. 

Section 1 discusses the models used; Section 2 looks at the fits; Section 3 tries to interpret the pa-

rameters; Section 4 address adding more years of death; Section 5 looks at Makeham-like fits; and 

Section 6 gets to projection risk. 

1. MODELS 

HMD data comes in the form of number of deaths and number of living, who are considered the 

exposures to death. These are in cells by year of death and age at death. Subtracting age from year 

gives the cohort, which is approximately the year of birth, but can be slightly different depending on 

the time of year that birth and death occurred. Data is also available by actual year of birth but in 

most models that is considered less important, and cohort is used instead.  

Here arrays are taken to have rows for year of death and columns for age at death. The years are 

1971 to 2006, and the ages 55 to 89, so the arrays are 36x35, with 1260 elements. The years are in-

dexed by t and the ages by d. The cohort is t – d and is constant along the NW-SE diagonals of the 

arrays. 

The starting point for recent models of mortality is the LC model from Lee and Carter (1992). It 

models the mortality ratio m, which is deaths divided by exposures, in log form the mean is: 

log mt,d = ad + bdht. (1.1)
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Here ad is the base mortality for age d, ht is the trend level at year t, which generally goes down 

over time as mortality decreases, and bd allows different ages to have trend rates that are factors 

times the overall trend. This is useful in the case of male mortality, for example, where mortality 

rates for ages 55 to 60 have improved at a greater rate than those for 85 to 89. However, this is 

where the LC model can run into differences from actual data, as some ages might trend faster or 

slower for a while but not always. 

A popular extension of LC is LC plus cohorts, from Renshaw-Habermann (2006) (RH): 

log mt,d = ad + bdht + cdut–d. (1.2)

The cohort term u allows for mortality to also vary by year of birth, independently of year of 

death and age. It is not always clear why it should, but allowing it to seems to substantially improve 

the goodness of fit of the models. The c factor allows the cohort effect to vary by age; e.g., it might 

wash out at older ages, or it might be stronger at older ages. 

There are some identifiability problems with these models. For instance, increasing every b by a 

factor and reducing every h by the same factor does not change the fitted values. This is similar for c 

and u. Here the constraints used for this are to set b1955  =  c1955 = 1 and h1971 = u1917 = 0. The cohort 

1917 was chosen as it is the last cohort that includes all calendar years. It is also one of the highest 

mortality cohorts for both males and females. The result of these constraints is that in the LC model 

ad is the fitted mortality for t = 1971 and ht is the trend level for age 55. All the other parameters are 

relative to these. In the RH model, every u is the cohort effect at age 55, where the cohort values are 

relative to cohort 1917. Traditionally sums of parameters have been constrained as a way to address 

the identifiability problems, but the approach here eliminates a few parameters, which is necessary to 

make the information matrix non-singular. 

Fitting is done by maximum likelihood estimation (MLE). Denote the exposures in the t,d cell by 

Et,d and the deaths by Dt,d. The Poisson model is that Dt,d is Poisson in mt,dEt,d, where mt,d could 

come from either the LC or RH model. With mean , the log of the Poisson probability at k is 

klog() – – log(k!). The loglikelihood is then: 

t,d{Dt,dlog[mt,dEt,d] – mt,dEt,d – log[Dt,d!]}. (1.3) 

Two forms of the negative binomial distribution are also fit. The negative binomial has two pa-

rameters r and, with mean r and variance r(1+). But in modeling a whole array of negative bi-

nomial variates it is customary to make the mean a parameter and model it with the covariates. In 

this case the mean would still be t,d = mt,dEt,d, as in the Poisson case. 

To make the mean a parameter, set  = r. The two forms arise by either eliminating r by setting 

r = , or eliminating  by setting  = r. Here these are called NB1 and NB2, respectively. Both 
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have mean , but NB1 has variance (1+) and NB2 has variance (1+/r), which are linear and 

quadratic in , respectively. Denoting the log of the gamma function by lgamma, the log of the 

probability at k for the negative binomial in r and  is: 

lgamma(r+k) +klog() – lgamma(r) –lgamma(1+k) – (r+k)log(1+). (1.4)

The loglikelihoods for NB1 and NB2 can be obtained by substituting  for r or r for , then 

Dt,d  for k and mt,dEt,d for , and summing over the observations. 

2. FITS 

Goodness of fit of different models can be compared using penalized likelihood. The traditional 

comparison is to start with the negative loglikelihood (NLL) and add a penalty. Here the traditional 

criteria divided by 2 are used, as these are more directly related to the NLL, but the standard names 

are retained. Thus the Akaike Information Criterion (AIC) uses a penalty of 1 for each parameter. If 

N is the sample size (number of observed cells), the Bayesian Information Criterion (BIC) uses a 

penalty of ½ log N for each parameter. There is some feeling among information theorists that the 

AIC is too lenient on extra parameters, but the BIC is too punitive. The Hannan-Quinn Information 

Criterion (HQIC) is intermediate. It gives a penalty of log log N for each parameter. It turns out that 

most of the conclusions are the same for each criterion, so until a difference arises, only the BIC will 

be used, but HQIC will be the fallback if there is a difference. For N = 1260, the penalty is about 

3.57 per parameter. Thus an extra parameter has to improve the NLL by that much to be justified. 

LC and RH Poisson models were fit to male and female mortality. For both datasets, the RH 

model fit quite a bit better than LC. The RH NB1 and NB2 models were then fit. Table 1 shows the 

NLL for each model and the improvement in NLL required to meet the BIC requirement for the 

extra parameters from the model above it. After the parameter constraints there are 35 a parameters, 

34 b parameters and 35 h parameters, so the LC model has 104 parameters. In the RH model there 

are 34 c parameters and 69 u parameters, for cohorts 1882 to 1951, ex 1946. Thus it has 207 para-

meters. The negative binomial versions have yet one more parameter. 
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Table 1. Fit Comparisons 

 NLL 

Parameters 
Added 

BIC Needed NLL 
Improvement 

NLL Improvement 

Model Female Male Female Male 

LC Pois 13670 14868  

RH Pois 9598 10081 103 368 4072 4787 

RH NB1 8798 8996 1 3.6 800 1085 

RH NB2 8748 8972 0 0 50 24 

 

The LC model fits considerably worse for males, with an NLL 1198 higher than for females. The 

RH model fits much better for both, with an improvement in NLL of 4072 for females and 4787 for 

males, compared to an improvement of 368 required to justify the extra parameters according to 

BIC. The difference between males and females is narrowed to 483, so RH is an even more substan-

tial improvement for males. Adding the extra parameter for NB1 also significantly improves both 

fits, and NB2 is a bit better yet. The  parameter for NB1 is about 2.5 for females, and 3 for males, 

so the variance for each cell is 3.5 to 4 times the cell mean, compared to equal to the mean for Pois-

son. That is a substantial difference, and with variances that big it is no wonder the Poisson fit is not 

as good. The r for NB2 is about 8600 for females and 7500 for males, which for this data translates 

to variances of 2 to 7 times the mean, with the higher ratios going to the larger cells.  

The best NB NLLs for LC were 9444 for females and 9652 for males, so Poissoness is the bigger 

culprit for LC – Poisson than the lack of cohort parameters. Still the NB RH model is better than 

NB LC for females by 696 and for males by 680, which are still well above the BIC need of 368, al-

though nowhere near the NLL improvements of 4000+ for the Poisson models. 

To give a visual impression of the fits, the empirical and modeled values of log m are graphed for 

a few years of death by age at death for the Poisson models. The graphs do not look much different 

for the negative binomial models, and in fact the parameters are not that different either. The advan-

tage of the negative binomial models is more in the error distributions than in the fitted means. Es-

sentially the cells with higher variance are not penalized as much in the likelihood functions for be-

ing different from their means, so the fit gets better for the smaller cells. This is not enough to be 

very noticeable in the graphs, however. 

Figures 1 and 2 show the female data and fits. The mortality rates increase by age and this is close 

to a linear function for the log rates. In a graph of the rates for several calendar years of death, most 
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of the vertical range is taken up by this increasing trend, which makes it difficult to see the differ-

ences among the calendar years. To look at goodness of fit, the linear trend by age is not so critical, 

so in the graphs this is eliminated by subtracting age at death / 11 from each log mortality rate, es-

sentially rotating the graph to make the lines roughly horizontal. This makes all the vertical range 

available to compare the actual and fitted rates for the various calendar years. A constant of 10.5 has 

been added to make the resulting numbers start near zero on the vertical axis. Rates have been de-

clining over time, so the most recent calendar year is at the bottom of the graph. The dotted lines 

are the data, and the solid lines are the model.  

Figures 3 and 4 are similar for males, but more years are able to be shown as the trends are 

greater for males, which separates the years a bit. Also, since the male mortality rates are higher, the 

rotated rates start around 0.45 instead of zero. 

Figure 1. Rotated Graph of LC Female Mortality Rates 
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Figure 2. Rotated Graph of RH Female Mortality Rates 
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Figure 3. Rotated Graph of LC Male Mortality Rates 
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Figure 4. Rotated Graph of RH Male Mortality Rates 
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3. INTERPRETING THE PARAMETERS 

The best-fitting NB2 parameterizations are used in this section. Does the fact that NB2 fits better 

than NB1 have any implications? NB2 is the form that comes from mixing a Poisson by a gamma 

distribution. This arises in experience rating, for instance, if each policy is Poisson-distributed, but 

there is a gamma distribution of Poisson means across the population. Taking a policy at random, its 

claims are conditionally independent given its Poisson mean, but unconditionally correlated due to 

the common Poisson mean. This is a way of modeling non-independent claims, or contagion.  

It is tempting then to argue that the population as a whole is a mixture of groups with different 

mortality, due to different lifestyles, access to medical care, etc., and that is the source of the conta-

gion observed. However that is a different kind of mixture. The population as a whole consists of all 

the groups taken together, not one drawn at random. The sum of independent Poisson distributions 

is itself Poisson, so the mixture argument does not explain contagion at the level of the entire popu-

lation. Moreover, the number of deaths is the sum of Bernoulli processes and would be binomial, 

not Poisson, if there were not already some source of contagion to begin with. 

There are factors affecting mortality rates for the population as a whole, such as weather, flu out-

breaks, etc., that make deaths not independent. This could be the principal source of contagion at 

the population level. The NB1 model makes the variance about 4 times the mean for each cell in the 

data, whereas for the NB2 model it ranges from about 2 to 7 times the mean, with the factor larger 

for the larger cells. The fact that NB2 fits better suggests that the contagion events hit the larger 

cells harder. That is, the ages with the greatest number of deaths also have the greatest increases in 

deaths when adverse conditions arise. 

Figure 5 graphs the ad parameters, which represent the base log mortality rate by age, before ap-

plication of trends and cohort effects, for males and females. Male mortality is higher than female at 

all ages, but that does not show with these parameters. The calendar-year parameters and cohort pa-

rameters interact with these so in themselves they are not that meaningful. 

 

  



Mortality Trend Models 

Casualty Actuarial Society E-Forum, Winter 2011-Volume 2 11 

Figure 5. ad Parameters 
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Figure 6. ht Parameters 
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Figure 7. The surprise here is the accentuation of the trend effect for male octogenarians, whose 

trend has actually been less than for other ages. In the model the cohort effects offset this effect to 

match the data. The last cohort that affects ages 87, 88 and 89 is 1899, and cohorts prior to 1900 do 

not get into this dataset at ages less than 72, leaving room for the parameters to adjust themselves to 

produce the best possible fit at older ages without affecting younger ages. This raises questions, 

however, about the applicability of the parameters beyond this data range. 

Figure 7. Trend Age Modifiers bd 
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Figure 8. Cohort Parameters ut-d 
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Figure 9. Cohort Effect by Age Parameters cd 
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starting with 1937 (assuming zero at 1936) instead of from 1972, so the models have 33 more para-

meters. There are no additional a, b, c or u parameters. Thus the LC model now has 137 parameters, 

and the RH negative binomial models have 242 parameters. The full sequence of models above was 

fit, but now the NB1 fits better for males. To resolve this, more distributions were fit for the RH 

model. The NB3 is intermediate between the NB1 and NB2; the Poisson-inverse Gaussian (PiG) is 

similar to the negative binomial, but is more skewed; and the Sichel is a three-parameter generaliza-

tion of the PiG, which can be more or less skewed than the PiG but not less skewed than the NB. 

These distributions are discussed further in Appendix 1. The results are: 

Table 2. Triangle Fit Comparisons 

 NLL Parameters 
Added 

BIC Needed 
Improvement 

BIC Improvement 
Model Female Male Female Male 

LC Pois 21,726 24,047     

RH Pois 15,452 16,630 103 388 6274 7417 

RH NB1 13,176 13,567 1 3.8 2276 3063 

RH NB2 13,172 13,576 0 0 4 -9 

RH NB3 13,163 13,568 0 0 9 -1 

RH PiG 13,172 13,567 0 0 -0.4 0.015 

RH Sichel 13,172 13,565 1 3.8 0 2.2 

Again the RH model provides a tremendous improvement in the Poisson fit, as does moving 

from Poisson to negative binomial. The NB3 is the best fit for females, but the NB1 is the best NB 

for males. The difference between the NB models is that VM, the variance/mean ratio, is fixed at 

1+ for the NB1, is 1+/r for the NB2, and is 1+ (/r)½ for the NB3. For females the cell means 

range from 6000 to 44,000. With the fitted parameters, this gives VM of 5.1 for NB1, 2.4 to 11.1 for 

NB2, and 3.4 to 7.4 for NB3, which gives the best fit. For males the NB1 VM is 6.1. Another ver-

sion of the NB discussed in Appendix 2 fits slightly better with a range for VM of 5.3 to 6.7, but 

uses an additional parameter which does not give enough better fit to justify it.  

The improvements shown for the last three models are from the better of NB1 and NB2. The 

PiG and Sichel models also have 1, 2 and 3 versions like the NB. For females, the 2 version of the 

PiG was found to be slightly worse than the NB2, indicating that the additional skewness was not 

helpful. The corresponding Sichel has the NB2 as a limiting case, but otherwise has higher skewness 

than the NB2 with the same mean and variance. The fact that it did not give any improvement over 

the NB2 suggests that, if anything, less skewed distributions may fit better for females. 

For males the PiG, version 1, was very slightly better than the NB1. The Sichel fit even better 

with an intermediate skewness. However, the improvement in NLL is problematic. At 2.2 it is less 
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than the 3.8 required by the BIC, but better than 1, which the AIC requires, or 2.0, which the HQIC 

calls for. There is a good deal of literature suggesting that BIC is too stringent in rejecting parame-

ters. Burnham and Anderson (2004) make a strong push for AIC and the small sample AIC, based 

on the idea that the sample is not generated from the model being fit, but rather the model is a fairly 

compact representation of a more complex process. For a sample size of N and p parameters, the 

small sample AIC penalizes the NLL by Np/(N–p–1). With N = 1855, the additional penalty for the 

243rd parameter over the 242nd is 1.32. Thus the AIC, HQIC and small sample AIC all support the 

additional parameter for the Sichel distribution in this case. Thus it will be taken as the best-fitting 

model. 

The parameters shown below are from the best-fitting Sichel model for males and NB3 model 

for females. It appears that the full data helps with the male model but does not solve the problems 

with correlation in the female model. 

Figure 10. Base Mortality—a Parameter  
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males but trend upward for females. In this parameterization for females, the downward mortality 

trend over time ends up as a cohort trend, partially offset with an opposing calendar-year trend.  
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Figure 11. Calendar-Year h Parameters 

 
 

Figure 12. Trend Effect by Age at Death – b Parameters 

 
 

For the b parameters in Figure 12, the sharp upward movement at the oldest ages for females 

probably has something to do with the lower base mortality at the corresponding points. 

The female cohort trend is in Figure 13, which shows a sharp downward trend in mortality in the 
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direction of later years. This overwhelms the upward trend by calendar year to produce an overall 

downward trend in mortality, which matches the data, but is not intuitive as an explanation of the 

data. The h and u parameters with the full cohorts for females are mirror images of what they are for 

the partial cohorts. This is discussed further below. 

Figure 13. Female Cohort Effect u 

 
 

The male cohort parameters are on a completely different scale and so are graphed separately in 

Figure 14. The full and partial cohort parameters are consistent for males and so can be graphed to-

gether. The effect of conditioning on attaining various ages is clearer in the partial cohorts, where 

the conditioning is on progressively older ages, peaking in about 1910. There is a similar but much 

smaller effect in the full cohorts, perhaps due to a changing significance on the fact of attaining age 

55. In both cases, there is an increase in the mortality in the most recent cohorts, but this is based on 

very few data points. Also for the male model, the c parameter, set to 1 at age 55, stays that low only 

for a few ages then goes to much higher values at older ages, as shown in Figure 15. Thus, the high-

er cohort parameters for the latest cohorts are getting relatively low c parameters applied, and are 

not likely to remain so low when more data comes in, with higher c parameters.  
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Figure 14. Male Cohort Effects for Partial and Full Cohorts 

 

Figure 15. Age Impact on Cohorts—c Parameter 
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An idea of the statistical significance of the parameters can be gained by estimating the parameter 

covariance matrix as the inverse of the Fisher information matrix from the MLE estimation. Recall 

that this is the matrix of all 2nd partial derivatives of the NLL. This yields parameter standard devia-

tions and so t-statistics for each parameter and also covariances, and so correlations, among parame-

ters. 

For the male triangle parameters, virtually all the parameters had t-statistics with absolute values 

above 2. The few exceptions are parameters very close to zero, usually near points that were forced 

to be zero. With 242 parameters, there are over 25,000 correlations, so they are not printed here. 

However, the averages of the absolute value of the correlations by type of parameter (excluding pa-

rameters with themselves) are shown in Table 3 for males and Table 4 for females.  

Table 3. Average Absolute Value of Correlations by Parameter Types—Males 

  a h b u c 

a 52.7% 31.9% 36.1% 43.7% 25.3% 

h 31.9% 35.6% 22.3% 45.9% 37.3% 

b 36.1% 22.3% 42.7% 27.3% 22.0% 

u 43.7% 45.9% 27.3% 79.0% 67.3% 

C 25.3% 25.3% 22.0% 67.3% 67.4% 

Table 4. Average Absolute Value of Correlations by Parameter Types—Females 

  a h b u c 

a 98.9% 98.2% 9.4% 97.6% 34.1% 

h 98.2% 98.9% 8.4% 98.4% 31.6% 

b 9.4% 8.4% 40.9% 8.5% 30.5% 

u 97.6% 98.4% 8.5% 97.9% 31.3% 

c 34.1% 34.1% 30.5% 31.3% 56.5% 

 

The extremely high correlations among the a, h and u parameters in the female model make the 

individual parameters highly questionable. There could be many local maxima of the likelihood func-

tion, and there is no guarantee that the parameters found are a global maximum. Even if they are, 

the correlations make the parameter values unstable. In fact, the partial and full datasets gave oppo-
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site but similarly offsetting directions for the female calendar-year and cohort trends. 

This shows up in the t-statistics as well, which are near 1 in absolute value, so not significant, for 

all the h and u parameters in the female model. 

Moving to the full cohorts then appears to improve the male model, which has reasonable para-

meters and correlations among parameters, as well as significant t-statistics. For the female model, 

the high correlations (which, though not shown, are similar for the partial cohorts) make the fit 

problematic.  

Usually when there are high correlations, the solution is to leave out some variables. But the 

greatly improved fit of the RH model over the LC model appears to rule out omitting the cohort 

parameters. Parameter reduction through smoothing would still leave quite problematic parameter 

values as well. One option may be to keep the cohort parameters but not the calendar-year parame-

ters, making the trend a purely cohort matter. It does not seem likely that this would give a good fit, 

but it might be worth trying.  

Another option would be to set the base mortality a parameters as the average or some weighted 

average of the mortality rates for each age in the full data. This was actually Lee and Carter’s initial 

recommendation. This would give the other parameters less opportunity for mischief. A similar ap-

proach could be to use a parameterized curve, like Makeham or splines, for the base mortality. Yet 

another possibility might be to multiply the cohort and calendar-year parameters, and then apply a 

single age parameter to the product. This type of model is used extensively in casualty loss reserving, 

but has had mixed results (informally communicated) in mortality studies. 

5. MORTALITY CURVES 

The raw mortality rates for each year of death are somewhat noisy, and so cannot be readily 

compared graphically. However fitting mortality curves, like Makeham curves, to each year 

smoothes the data and lets the trends stand out more clearly. Here a generalized Makeham (GM) 

function is fit to the raw death rates, although fitting to force of mortality is more typical. Richards 

(2008) discusses some such generalizations, based on earlier work by Beard (1959) and Perks (1932). 

Using a curve to fit the ad parameters requires a log transform, and the form used here takes 4 para-

meters : 

ad =  + log[(1+d)/(1+d)]. (5.1)

Fitting such curves with four parameters to the log death rates in each year 1971 – 2006 results in 

the use of 144 parameters, compared with 104 for LC and 207 for RH with partial cohorts. Using 

the best-fitting negative binomial, the following values of the NLL were produced: 
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Table 5. Comparative Fits Including GM 

 NLL Parameters 
Added 

HQIC Needed 
Improvement 

NLL Improvement 

Model Female Male Female Male 

LC 9444 9652     

GM 9482 9553 40 79 -38 99 

RH 8748 8972 63GM, 103LC 124GM, 202LC 696 LC 581 GM 

The goodness of fit test here is the HQIC, which requires an improvement in NLL of 

log(log(sample size)) for each extra parameter, where here the sample size is 1260, requiring an im-

provement of 1.96555 per parameter. This is intermediate between the AIC and BIC. As can be 

seen, every model fit the female data better than the male data, and the RH model gave the best fit 

to both data sets, even though it is of dubious interpretation here. The generalized Makeham curve 

fit better than LC for the males, where the mortality curve was changing more over time, but LC fit 

better for females. 

Nonetheless, for both males and females, the curves provide continuous versions of the mortality 

functions for each year which are smooth enough to show all years on a chart, thus providing some 

insight into what the changes in the mortality functions have been.  

The male curves in Figure 16 (with age/12 subtracted) actually divide into three periods. First for 

1971 until 1987, which is the light line with the square markers, the curves are straight or downward-

curving. Then starting in 1988 (dark with diamond markers) the curves bend upward. Until around 

2001 or 2002 (first dotted curve) the mortality at age 55 is steadily improving, but the improvement 

at the other end of the curves is slower and sometimes non-existent. Then somewhere around 2000 

to 2002 the improvement at age 55 stops and the improvement at the older ages accelerates. The last 

three years show a different shaped curve from the earlier years.  

The changes in shape show why LC has problems fitting this data, but the fact that the biggest 

changes were at the ends of the lines shows why RH can give a big, albeit artificial, improvement in 

the fit. The graph suggests that projecting future changes in longevity has a high degree of uncertain-

ty involved. Should you just project the last five years, or from 1988 on, or average improvements in 

mortality over all the data? This could make quite a difference, especially at some ages. 
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Figure 16. Generalized Makeham Male 

 
 

The recent lack of improvement at age 55 is particularly problematic. That could be related to the 

recent reduced access to health care in the US for people under 65. If so, you would expect it to 

eventually improve over time as access improves. At the other end of the curve, it might be reason-

able to assume that the older ages will improve at the same rate as most of the curve, as there seems 

to be a trend in that direction over quite some time. Nonetheless this is an assumption imposed on 

the projection process and thus adds to the projection uncertainty. 

The generalized Makeham model did not fit as well as LC for females, but the fits in Figure 17 

still provide some insights. Here age/10 was subtracted to remove the upward trend. It is apparent 

that there has not been as much change in the shapes of the curves as in the male model. What does 

stand out, however, is variation in the rate of mortality improvements across the age groups. For 

instance, for ages 75 and above, there were fairly long periods with very little improvement in mor-

tality, punctuated here and there with years of substantial improvement. Ages 65 and below, on the 

other hand, had much more steady generally small improvements. As with the male data, there has 

been little improvement at age 55 in the latest few periods. Also since about 2000 there has been 

somewhat similar year-to-year improvements in the male and female graphs, even by age.  
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Figure 17. Generalized Makeham Female 

 
 

As with the male model, this graph brings out some problems in projecting future trends. Can 

you assume the greater improvement in the last 5 or 6 years will now continue? Would a time-series 

model with highly fluctuating rates of improvement be better at the older ages? Perhaps in both 

genders it would be appropriate to calculate trends under different assumptions then include all the 

scenarios, with selected weights, in the overall longevity improvement uncertainty model. 

6. PROJECTION RISK 

Projection risk can be calculated for a particular dataset of annuitants, which is not what is availa-

ble here, but some general observations on how to carry out such a calculation using LC and RH 

models are presented. 

To begin, the calendar-year trend levels have to be projected. Standard time-series methodologies 

produce ever-widening ranges as the trend continues. However, here there is another wrinkle, as the 

h parameters being trended are estimated parameters, and so are observed with error. An area of 

regression studies is errors-in-variables models, which has a number of potential methods. If the va-

riances of the h parameters have been estimated and they are relatively constant, then a simple rea-

sonable simulation of a future level could assume that same variance, and first simulate the future 
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levels with errors and then simulate actual future levels from there using that variance. 

A number of mortality modelers have used AR1 models for the annual difference in levels, usual-

ly with a negative autocorrelation, to project the trend. Most of these do not take into account the 

errors-in-measurement issue, however. For an independent series measured with a constant error 

variance, differencing induces an autocorrelation of -50 percent, arising from the same error having 

opposite signs in consecutive observations, so the AR1 model may be distorted by the induced auto-

correlation. Other mortality projection studies have used the Kalman filter, which recognizes mea-

surement errors, to project the levels, but the simple Kalman filter is based on a random walk, which 

can have too much autocorrelation. An alternative to AR1 and the Kalman filter is state-space mod-

els, which provide common generalizations of both.  

If projections are needed for cohorts not in the study, then trending of cohorts also has to be 

considered. Even the use of the recent cohort parameters should take into account their potential 

measurement errors, perhaps with a state-space model. 

Parameter uncertainty can be implemented by simulating the parameters from the covariance ma-

trix from the Fisher information matrix, which gives an estimate of the covariance matrix of the pa-

rameters. Asymptotically the parameters have a multivariate normal distribution with this covariance 

matrix, so they can be simulated using the normal copula, Cholesky decomposition, etc. However, 

even though the error distributions are asymptotically normal, they may not be normal for a finite 

sample, and other distributions could be used to simulate parameter risk, perhaps gamma, which is 

the exact error distribution for some models, and approaches the normal asymptotically. Other dis-

tributions that approach the normal could also be used. One criterion is that the normal should not 

be used if there is too much probability that a parameter that has to be positive could be simulated 

as negative from the normal. 

Once a routine is in place to simulate parameters and to trend the h and u parameters, the num-

ber of deaths can be simulated from the negative binomial or Sichel distribution. If a routine to do 

this is not available, probably simulating from a transformed gamma with the same first three mo-

ments would not be too far off. 

Model risk is a more difficult issue. The RH-Sichel model appears fairly reasonable for the male 

data, but the cohort parameters for the last several cohorts are questionable, being based on few ob-

servations. Parameter uncertainty would be large for such parameters. Perhaps using the models but 

including extra parameter uncertainty for model risk would give usable results. 
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7. SUMMARY AND FUTURE DIRECTIONS 

The Lee-Carter model allows only highly constrained shifts in the shape of the mortality curve 

over time, and adding cohort effects gives much better fits. However these are found to generate 

new problems, such as potential over-fitting, instability for projections, and highly correlated and 

insignificant parameters. Also, the negative binomial fits better than the Poisson, which has been 

seen before and is likely to be a standard result. The best form for the NB is not consistent, howev-

er, and may differ for different datasets, depending on how contagion actually applies. For males, 

the Sichel distribution is better still.  

Model risk is an issue, since the RH model can fit well at the ends of the age range using cohort 

parameters based on few observations. Using full cohorts can reduce this possibility at the older ages 

but not at the youngest ages. Also the RH parameters can be highly correlated, as in the female 

model, suggesting that some other model should be found, possibly by reducing the number of pa-

rameters. 

Projections of mortality risk under current methodologies are thus likely to be unreliable. But bet-

ter-fitting models are not likely to solve this problem as the RH model fits extremely will. Perhaps 

other models can be found with fits intermediate between LC and RH but with more parameter sta-

bility than RH. 

ADDENDUM 

Now 2007 data is available, and some of the recent trends are continuing. Mortality for ages 65+ 

continued to improve compared to 2006, but for ages in the mid-50s, the lack of improvement con-

tinued. Whether this is just a random fluctuation or some underlying trend, such as obesity or re-

duced access to medical treatment, is yet to be established. 

 

  



Mortality Trend Models 

Casualty Actuarial Society E-Forum, Winter 2011-Volume 2 27 

REFERENCES 

[1.] Beard, R. E. 1959. “Note on some mathematical mortality models.” In: The Lifespan of Animals, G. E. W. 
Wolstenholme and M. O’Connor (eds.), Little, Brown, Boston, 302-311.  

[2.] Burnham, K.P., and Anderson, D.R. 2004. “Multimodel Inference: Understanding AIC and BIC in Model Se-
lection.” Sociological Methods Research 33: 261–304.  

[3.] Hannan, E., and Quinn, B. 1979. “The Determination of the Order of an Autoregression.” Journal of the Royal 
Statistical Society B 41: 190–195. 

[4.] Lee, R.D., and Carter, L.R. 1992. “Modeling and Forecasting U.S. Mortality.” Journal of the American Statistic-
al Association 87: 659–675.  

[5.] Perks, W. 1932. “On some experiments in the graduation of mortality statistics.” Journal of the Institute of 
Actuaries 63: 12-40. 

[6.] Renshaw, A.E., and Haberman, S. 2006. “A Cohort-Based Extension to the Lee-Carter Model for Mortality 
Reduction Factors.” Insurance: Mathematics and Economics 38: 556–570.  

[7.] Richards, S.J. 2008. “Applying Survival Models To Pensioner Mortality Data.” Presented to the Institute of 
Actuaries, 25 February 2008, http://www.actuaries.org.uk/sites/all/files/documents/pdf/sm20080225.pdf. 

[8.] Rigby, R.A., D.M. Stasinopoulos, and Akantziliotou, C. 2008. “A Framework for Modelling Overdispersed 
Count Data, Including the Poisson-Shifted Generalized Inverse Gaussian Distribution.” Computational Statis-
tics and Data Analysis 53: 381–393. 

  



Mortality Trend Models 

Casualty Actuarial Society E-Forum, Winter 2011-Volume 2 28 

APPENDIX 1. COUNT DISTRIBUTIONS 

The negative binomial distribution has two parameters, r and, with mean r and variance 

r(1+). In the full data there are 1855 cells, and when the negative binomial is used, each cell has a 

value of r and . The mean  = r is the value given by the RH model, but how r and  vary across 

cells depends on how the model is set up. In the NB1, it is assumed that every cell has the same val-

ue of , so the ratio of variance to mean is 1+ for every cell. In the NB2, every cell is assumed to 

have the same value of r, with  set to /r, which gives variance to mean ratio 1+/r, which is 

higher for the cells with higher means. However there are many other ways the parameters can vary 

across cells. For instance, suppose there is a constant q for all cells, with r and  given by r = q½ 

and  = ½/q. Then the mean is still r = , and the variance to mean ratio for a cell is 1+ ½/q. 

This is what is called the NB3 in the text. Its variance/mean ratio is still higher for the larger cells, 

but not by as much as in the NB2. 

This can be generalized to the NBp distribution, which adds a parameter p to control the va-

riance/mean ratio. It sets r = q1 – p and  = p/q. The mean is again r = , but now the variance 

to mean ratio for a cell is 1+ p/q. The value of p can be found by MLE. For males, the resulting 

value of p is 0.2, but the NLL is not enough better to justify the additional parameter by any of the 

information criteria. For females, the p is 0.53, but again this did not improve the NLL enough to 

justify the extra parameter. It might be argued that the NB3 already has an extra parameter of p = 

½, but this is a bit ambiguous as the parameter is not free to be fit. In this case the NB3 fits the fe-

male data by enough better to justify an additional parameter. 

When fitting a single NB distribution to a dataset, all of these forms are the same. The difference 

comes when fitting a number of distributions to a number of cells where a common relationship of 

variance and mean is desired. The NBp forms discussed here by no means exhaust the possible such 

relationships. In general, if the variance/mean ratio desired is 1+G(), just set r = /G() and  = 

G(). For instance, G() = q log() might work in some cases, possibly even for the male data in 

this paper. 

The Poisson—inverse Gaussian (PiG) distribution can be derived analogously to the NB as a 

Poisson mixture, but now the Poisson parameter is mixed by the inverse Gaussian instead of the 

gamma. Again it has 1, 2, 3 and p versions, etc. The inverse Gaussian is 50 percent more skewed 

than the gamma with the same mean and variance, and the PiG inherits this greater skewness, al-

though not by the same ratio. The third central moment divided by the mean is the 3rd moment ana-

logue of variance/mean for count distributions. For the negative binomial this is 1+3+22, while 

for the PiG it is 1+3+32. For =5, which is fairly typical in the fits here, that gives 66 for the NB 

and 91 for the PiG, both of which would have variance/mean = 6. 
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The Sichel distribution is a generalization of the PiG and is a Poisson mixed by a generalized in-

verse Gaussian. It can be more or less skewed than the PiG but not less than the NB, which is a li-

miting case. It uses the modified Bessel function of the second kind (sometimes called the third 

kind), ܭఔሺݐሻ ൌ
ଵ

ଶ
 ఔିଵݔ exp ቂെ ଵ
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The Sichel distribution with parameters r,  and  can be most readily expressed with two aux-

iliary parameters c and s, with c = K(r)/K+1(r) and s2 = 1+2c. The probability function at j is: 

   ൌ
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This is a reformulation of the version given in Rigby et al. (2008). Their parameters can be 

mapped from these by taking = rs,  = 1/r,  = r, and c = 1/c. 

The PiG is just the case  = –½, for which c = 1. The Sichel mean is still r and the variance is 

(1+h) with h = 2c(+1) + (c2 – 1). For the PiG, this simplifies to h = . The Sichel ratio of the 

third central moment to the mean is 3/ = 1+ 2(c–h) + 3h +2ch(+2). 

The  parameter can be very different than –½, and for the male data here was estimated as 

2155. The  parameter was close to 6, and r was set at /. The resulting third moments were usual-

ly intermediate to those of the PiG and NB. 

APPENDIX 2. FITTING NOTES 

With several distributions to be fit, routines were sought that did not use derivatives of the NLL 

or could use numerical derivatives. The R package subplex uses an efficient form of the simplex al-

gorithm, and was found useful in getting rapid improvement in the NLL from initial guesses. How-

ever it seemed to have difficulty in final convergence, often ending up in a region where the NLL 

was changing very slowly but was not near a minimum. Running subplex two or three times with 

default settings usually helped a good deal.  

From there the optim routine in the Stats package was found to be useful in proceeding more 

toward a minimum. The optim option used most often was BFGS with gr=NULL, which takes fast 

approximate numerical derivatives of the NLL to find the best direction for improvement. Usually it 

would start off with only small improvements, but usually ended up finding a region where more 

rapid improvement was possible, then slowing down again near to convergence. Relative and abso-

lute convergence criteria of 1e-17 and 1e-12 were used, which may be beyond machine precision. 

However the routine would converge, although usually not to a true minimum.  

The next step was to define a gradient function of the parameters using numerical derivatives 

from the numDeriv package. This is a slower but more accurate gradient, and using BFGS with it 

always improved the fit. The problem is that the convergence is defined by the NLL not changing 
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much, which does not always end up with all derivatives very close to zero. Since the 2nd derivatives 

at the minimum are needed for the information matrix, it seemed a good idea to make the deriva-

tives reasonably close to zero. For this the routine dfsane from the BB package was found helpful. 

In perhaps 50 iterations it could find points close to the optim parameters but with a reduction of 2 

or 3 orders of magnitude in the largest (absolute) derivatives. It usually produced only very small 

changes in the NLL from what optim had yielded, however. 

For the Bessel functions, the base R package function does not work with high values of the in-

dex (say  > 1500). There is a Bessel package available for Windows in R-Forge. It has a function 

besselK.nuAsym that does work for large values of the index, but not for small values. It needs an 

additional package Rmpfr, which is available on CRAN. 

There are recursive formulas for the PiG and Sichel probabilities, but these are awkward at best 

for probabilities for tens of thousands of events. 

The parameter constraints that force some parameters to be zero or one are different from much 

of the literature, which uses constraints on the sums of parameters. However doing it this way helps 

guarantee that the information matrix is not singular, which is necessary for its inversion. 

(Yilu Zhang and Lina Ma helped research the R methodology for fitting distributions used here.) 

 


