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Abstract 
In developing countries such as Malaysia, the availability of reinsurance arrangements provides several 
advantages to primary insurers, such as keeping their risk exposures at prudent levels by having large risk 
exposures reinsured by another company, meeting client requests for larger insurance coverage by having their 
limited financial sources supported by another company, and acquiring another company’s underwriting skills, 
experience and complex claim handling ability. These are essential considerations for primary insurers that wish 
to expand their insurance business and reduce the size of their loss exposure, especially in countries like 
Malaysia, where the number of primary insurers is large and the size of their resources is small. This paper aims 
to model the amount of insurance loss, to provide a range of deductibles and policy limits based on Loss 
Elimination Ratios (LER), to compute insolvency probabilities via linear loading and PH-Transform 
assumptions, to calculate Increased Limit Factors (ILF), to apply a frequency and severity approach to pricing 
excess-of-loss layers, and to assess the insolvency probability of a reinsurance treaty. In particular, the PH-
Transform assumption is applied throughout as a means of incorporating a risk load, thus lowering the 
insolvency probability of a single excess-of-loss layer as well as multiple layers of a reinsurance treaty. 
 
Keywords: Loss elimination ratio; insolvency probability; reinsurance; general insurance, PH-Transform. 

1. INTRODUCTION 

Reinsurance premiums in the Malaysian non-life insurance industry may be categorized into those 

ceded abroad and those ceded within Malaysia. In 1965 and 1975, for instance, reinsurance 

premiums ceded abroad were RM12 million and RM60 million, equivalent to 17% and 21% of 

written premiums respectively. These amounts increased to RM296 million and RM1223 million in 

1985 and 1995, equivalent to 24% and 27% of written premiums respectively, but decreased to 

RM957 million in 2005, equivalent to 10% of written premiums (Lee [9], Bank Negara Malaysia [1], 

Bank Negara Malaysia [2]). Figures 1-2 show the reinsurance premiums ceded abroad (1965-2005) in 

terms of volume and proportion of written premium. It should be noted that the currency of Ringgit 

Malaysia (RM) was pegged at RM3.80=USD1 on 2 September 1998 and shifted to a managed float 

against a basket of currencies as of 21 July 2005.  
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Figure 1: Volume of reinsurance premium ceded abroad (RM million) 

 

0

5

10

15

20

25

30

1965 1975 1985 1995 2005

proportion of written
premium (%)

 

Figure 2: Proportion of reinsurance premium ceded abroad (% of written premium) 

 

Based on the proportion of written premiums, there was a marked deterioration in 1985 and 

1995 in terms of domestic retention compared to 1965 and 1975, due to the fact that Malaysia never 

imposed restrictions on foreign exchange outflows for reinsurance purposes. For most companies, 

their limited financial resources and expertise in underwriting and handling complex claims increased 

their dependence upon outside reinsurers, leading to the issue of unsatisfactory domestic retention 

of premium (Lee [9]). The level of retention improved in 2005, however, largely due to the 

continuous efforts taken by regulatory bodies and industry players, especially in encouraging 

domestic insurers and reinsurers to absorb higher proportions of large risks. 

Over the past decade, there were many discussions on trade liberalization not only in 

Malaysia but also in the rest of the world, involving the removal of trade barriers or easing of 

regulations that inhibit the workings of the free market (Lau [8]). In March 2001, the central bank of 



Deductibles, Policy Limits, and Reinsurance: A Case Study in Malaysia 

Casualty Actuarial Society E-Forum, Winter 2011-Volume 2 3 

Malaysia, Bank Negara Malaysia (BNM), launched the Financial Sector Masterplan (FSMP). This 

fairly extensive ten-year road map for the banking and insurance sectors includes specific 

recommendations that are to be implemented in phases over a ten-year period to deregulate and 

liberalize the country’s financial industry (Bank Negara Malaysia [3]). Even though the local tariff on 

motor and fire insurance has served its purpose well since its implementation, it is now considered 

outdated and not reflective of market realities (Lau [8]). The tariff mechanism specified floor rates 

for various risk classes, but sometimes resulted in cross-subsidization among risk classes, and also 

within risk classes, whereby better risks subsidized the worse ones (Cummins [9]). In addition, 

limitations on deductibles and limits have not been appropriately revised to reflect inflation and 

other economic changes (Rao [10]). 

This study aims to model the amount of insurance loss, to provide a range of deductibles 

and policy limits based on Loss Elimination Ratios (LER), to compute insolvency probabilities via 

linear loading and PH-Transform assumptions, to calculate Increased Limit Factors (ILF), to apply a 

frequency and severity approach to pricing excess-of-loss layers, and to assess the insolvency 

probability of a reinsurance treaty. In particular, the PH-Transform assumption is applied 

throughout as a means of incorporating a risk load, thus lowering the insolvency probability of a 

single excess-of-loss layer as well as multiple layers of a reinsurance treaty. 

Several studies focusing on reinsurance, deductibles and policy limits have been carried out 

in the insurance and actuarial literature. Zhuang [14] established orderings of optimal allocations of 

policy limits and deductibles with respect to the distortion of risk measures; Hua and Cheung [9] 

applied the equivalent utility premium principle and studied the worst allocations of policy limits and 

deductibles; Dimitriyadis and Oney [5] modeled loss distributions using the Allianz tool pack, 

derived premiums at different levels of deductibles, and computed ruin probabilities; and Wang [12] 

introduced the Proportional Hazard (PH) Transform and applied this method to price ambiguous 

risks, excess-of-loss coverage, increased limits, risk portfolios and reinsurance treaties.   

In this study, the modeling of loss amount, the computation of insolvency probability and 

the pricing of excess-of-loss layers are based on loss data obtained from one of the leading insurers 

in Malaysia. The approach suggested in this study can be considered to be fair, as it serves to lower 

insolvency probability. The suggested approach can also be considered to be efficient, since it can be 

computed in a straightforward manner using R programming. 
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2. LOSS MODEL 

2.1 Maximum Likelihood Method 

Claims data on health insurance’s critical illnesses was obtained from one of the leading insurers in 

Malaysia, providing information on gender (male and female) and age of policyholders (below 25, 

25-50 and above 50) in year 2008. In particular, the loss data of sample size n =192 for female aged 

25-50 is fitted using a maximum likelihood method. Preliminary analysis has been conducted prior to 

the fitting procedure to ensure that the sample data is trended and does not contain any anomalies 

or outliers.  

 The likelihood function for complete individual data is 

            



n

i
ixfL

1

)|()(  ,                      (1) 

where )|( ixf  denotes the probability density function (p.d.f.) with parameters k ,...,, 21 . 

 The maximum likelihood estimators are obtained by maximizing the
t
log likelihood function: 

          




n

i
ixfL

1

)|(ln)(ln  .            (2) 

 Table 1 shows the estimated parameters and the log likelihood of several parametric 

distributions fitted on the amount of loss, sorted by decreasing values of log-likelihood within the 

number of parameters. The best models for one-parameter, two-parameter and three-parameter 

distributions are selected by choosing the largest value of the log likelihood function, )(ln L .  

2.2 Model Selection 

The next step to select the best model is to perform the Kolmogorov-Smirnov (K-S) and Anderson-

Darling (A-D) tests. The K-S statistical test is defined as (Klugman et al. [7]) 

                 *max  ( ) ( ) ,                1, 2, ... , t x u n i iD F x F x i n                            (3) 

where *( )iF x  denotes the parametric cumulative distribution function (c.d.f.), and ( )n iF x  the 

empirical c.d.f. evaluated at ix  respectively. The best model is chosen by selecting the lowest D . 
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Table 1: Estimated parameters  

Parametric 
distribution  

Number of 
parameters

Estimated 
parameters    

)(ln L  

    
Exponential 1 0.000025  

 
-2,207 

Best one-parameter model 
Inverse exponential 1 8582.61  -2,349 
    
    
Gamma 2 4637.1  

57.279,26  
-2199.9 

Best two-parameter model 
Weibull 2 46.256,41  

2401.1  
-2200.4 

 
Loglogistic 2 99.628,29  

9801.1  
-2,205 

 
Pareto 2 3.026,350  

8929.9  
-2,211 

 
Inverse Paralogistic 2 54.728,20  

4871.1  
-2,219 

 
Lognormal 2 1786.10  

0639.1  
-2,227 

 
Inverse Pareto 2 44.487,13  

8890.1  
-2,243 

 
Inverse Weibull 2 71.301,14  

6626.0  
-2,291 

 
Inverse Gamma 2 5573.0  

70.782,4  
-2,321 

 
Inverse Gaussian 2 16.607,8  

000,000,6  
-2,322 

 
    
    
Burr 3 43.426,86  

5169.1  
7783.3  

-2,197 
Best three-parameter model 

 
 

Generalized Pareto 3 4.790,731  
5305.1  

1434.30  

-2,200 
 
 

Transformed Gamma 3 96.270,30  
0664.1  
3183.1  

-2,200 
 
 

Inverse Transformed 
Gamma 

3 
 

12108   
1684.0  

3012.27  

-2,238 
 
 

    

 



Deductibles, Policy Limits, and Reinsurance: A Case Study in Malaysia 

Casualty Actuarial Society E-Forum, Winter 2011-Volume 2 6 

 The A-D statistical test, defined as the weighted average of the squared differences of the 

empirical and parametric c.d.f.s, emphasizes the goodness of fit of the tail over the middle of 

distribution (Klugman et al. [7]), 

         

2 2
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                    (4)            

where uyyyy kk  110 ...  denote the unique non-censored data, *( )jF y  the parametric 

c.d.f. and ( )n jF y  the empirical c.d.f. The best model is chosen by selecting the lowest  2A .
 

 Finally, the Schwarz Bayesian Criterion (SBC) penalizes models having a greater number of 

parameters. The SBC is defined as (Klugman et al. [7]) 

           ln ln
2

r
SBC L n  ,                              (5) 

where r  denotes the number of parameters and n  the sample size. The best model is chosen by 

selecting the highest
 
SBC. Table 2 shows the results of the K-S, A-D and SBC tests carried out on 

loss data. The best-fitting distribution for the loss amount is Burr with parameters 86,426.43  , 

1.5169   and 3.7783   and thus, the following discussion will use this distribution. 

 

Table 2: Results of K-S, A-D and SBC tests  

Parametric 
distribution 

Numbers of 
parameters 

K-S test A-D test SBC 

     
Exponential 1 0.18655 389.31 -2209.63 
Gamma 2 0.11098 384.68 -2205.16 
Burr 3 0.09454 383.87 -2204.40 
     

 

 

3. LOSS ELIMINATION RATIO (LER) 

The Loss Elimination Ratio (LER) is the ratio of the decrease in expected loss for an insurer writing 

a policy with a deductible and/or policy limit to the expected loss for an insurer writing a full-

coverage policy. 
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3.1 Deductible Policy  

When an insurer introduces a deductible to a policy, say at the value of d , the loss retained by the 

insured may be represented by the random variable Y , where 

                                                     








dXd

dXX
Y

,

,
   ,                                                (6) 

whereas the loss covered by the insurer and paid as claim may be represented by the random 

variable W , where 

                                                   








dXdX

dX
W

,

,0
  ,                                                   (7) 

so that X Y W  . 

Therefore, in terms of an insurer’s perspective, the Loss Elimination Ratio (LER) is equal to 

             
)(

);(

XE

dXE
LER  ,                              (8) 

where 

         
0

( ; ) ( ) ( )
d

d

E X d xf x dx d f x dx


   ,   

and 

0 0

( ) ( ) ( )E X xf x dx S x dx
 

   , 

where ( )S x  denotes the survival function, which is equal to 1 ( )F x . 

Table 3 shows the LER, written in the currency of Ringgit Malaysia (RM), for several 

deductible values, assuming individual losses follow a Burr distribution with parameters 

43.426,86 , 5169.1  and 7783.3 . As an example, the LER at d RM10,000  is 0.25, 

implying that 25% of insurer’s losses is eliminated by introducing a deductible of RM10,000. 

Appendix 1 shows the calculation of LER using R programming with the assistance of the actuar 

package. 
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Table 3: Values of d  and LER 

Burr distribution, ( ) 38,131E X RM  

 d (RM) ( ; )E X d  (RM) LER LER
    
0 0 0.000 - 

1000 998.27 0.026 0.026 
2000 1990.13 0.052 0.026 
3000 2972.73 0.078 0.026 
4000 3944.03 0.103 0.025 
5000 4902.40 0.129 0.026 
6000 5846.51 0.153 0.024 
7000 6775.27 0.178 0.025 
8000 7687.74 0.202 0.024 
9000 8583.16 0.225 0.023 
10000 9460.91 0.248 0.023 
11000 10320.45 0.271 0.023 
12000 11161.40 0.293 0.022 
13000 11983.42 0.314 0.021 
14000 12786.30 0.335 0.021 
15000 13569.87 0.356 0.021 
16000 14334.05 0.376 0.020 
17000 15078.82 0.395 0.019 
18000 15804.21 0.414 0.019 
19000 16510.29 0.433 0.019 
20000 17197.19 0.451 0.018 

    

 

 

The graph of LER vs. d  is shown in Figure 3, indicating that the ratio of eliminated loss is 

directly proportional to the deductible. However, after a certain point, a higher deductible can no 

longer provide a significant proportion of eliminated loss to an insurer. 

In practice, the criteria for deductible may differ depending on the requirements and 

preferences of each insured. Nevertheless, an insurer may use the values shown in Table 3 and the 

graph shown in Figure 3 to indicate whether the deductible proposed by the insured provides a 

significant proportion of eliminated losses to the insurer. The insurer should also recognize that a 

high deductible is not attractive to policyholders since they have to retain a large portion of losses on 

their own. 
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Figure 3: Graph of LER vs. deductible 

 

 

3.2 Policy Limit 

When an insurer introduces a policy limit in its coverage, say at the value of u , the loss covered by 

the insurer and paid as claim may be represented by the random variable K , where 

                                                        








uXu

uXX
K

,

,
,                                                     (9) 

whereas the loss covered by a reinsurer may be represented by the random variable L , where 

                                                     








uXuX

uX
L

,

,0
 ,                                                 (10) 

so that X K L  . 

 

Therefore, in terms of an insurer’s perspective, the Loss Elimination Ratio (LER) is 

         
)(

);()(

XE

uXEXE
LER


 ,                    (11) 

where 

                   
0

( ; ) ( ) ( )
u

u

E X u xf x dx u f x dx


   ,          
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and 

            
0 0

( ) ( ) ( )E X xf x dx S x dx
 

   .                                                   

Table 4 shows the LER for several policy limit values, assuming individual losses follow a 

Burr distribution with parameters 43.426,86 , 5169.1  and 7783.3 .  

 

Table 4: Values of u and LER  

Burr distribution,  ( ) 38,131E X RM  
u  (RM) ( ; )E X u  (RM) LER LER

    
40000 27332.77 0.283 -0.010 
41000 27686.41 0.274 -0.009 
42000 28028.2 0.265 -0.009 
43000 28358.49 0.256 -0.009 
44000 28677.63 0.248 -0.008 

    
60000 32528.78 0.147 -0.005 
61000 32705.46 0.142 -0.005 
62000 32876.09 0.138 -0.004 
63000 33040.89 0.133 -0.005 
64000 33200.05 0.129 -0.004 

    
80000 35123.51 0.079 -0.002 
81000 35212.36 0.077 -0.002 
82000 35298.28 0.074 -0.003 
83000 35381.36 0.072 -0.002 
84000 35461.7 0.07 -0.002 

    

 

 

As an example, the LER at u =RM60,000 is 0.15, implying that 15% of losses can be 

eliminated by introducing a policy limit of RM60,000. The graph of LER vs. u  is shown in Figure 4, 

indicating that the ratio of eliminated loss is inversely proportional to the limit. However, after a 

certain point, a higher limit can no longer provide a significant proportion of eliminated loss to an 

insurer. 
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Figure 4: Graph of LER vs. policy limit 

 

 

In practice, the criteria for policy limit may also differ depending on the requirements and 

preferences of both insurers and reinsurers. Nevertheless, an insurer may use the values shown in 

Table 4 and the graph illustrated in Figure 4 to indicate whether the proposed limit provides a 

significant proportion of eliminated losses.  

 

4. LINEAR LOADING ASSUMPTION  

4.1 Insolvency Probability of Deductible Policy 

When an insurer introduces a policy with a deductible, at the value of d , the loss covered by insurer 

and paid as a claim may be represented by the random variable W as shown in equation (7). For an 

individual risk model, the aggregate claims of a deductible policy, with a deductible of d , may be 

defined as 

            nWWWS  ...21 ,               (12) 

where nWWW ,...,, 21  denote independent and identically distributed (i.i.d.) random variables. 

 The conditional mean and variance of iW , respectively, are           
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                       ( | 0)i WE W X                                  (13) 

and 

           2( | 0)i WVar W X   ,                          (14) 

where the probability of loss greater than zero or equivalently the probability of incurring a claim is 

equal to 

                Pr( 0)X q  .                          (15) 

 Therefore, for a deductible policy, )0|( XWE  and )0|( 2 XWE  can be written as 

               ( | 0) ( ) ( ) ( ) ( ; )W

d

E W X x d f x dx E X E X d


                  (16) 

and 

               

2 2 2 2( | 0) ( ) ( ) ( ) (( ; ) ) 2 ( ) 2 ( ; )
d

E W X x d f x dx E X E X d dE X dE X d


       ,       (17) 

so that 

                  2 2 2( | 0) ( ( | 0))W E W X E W X     .                            (18) 

 Finally, the distribution of aggregate claims, S , for a single portfolio of risk in an individual 

risk model may be estimated by applying Central Limit Theorem (CLT). In particular, if the number 

of policies, n , is large, the distribution of S  may be estimated by a normal distribution with mean,  

               qnSE WWS   )(, ,               (19) 

and variance, 

                      
2 2 2

, ( ) ( (1 ))S W W WVar S n q q q      .                    (20) 

 The same approach can also be applied to multiple portfolios of risks, whereby equation (19) 
is rewritten as 

i
iiWiWS qnSE ,, )(   where i  denotes the i th portfolio. Equivalently, equation 

(20) can be rewritten as 2 2 2
, , ,( ) ( (1 ))S W i W i i W i i i

i

Var S n q q q      . 

  If the premium is calculated using a linear loading assumption, i.e., premium= )1(,  WS , 

where   denotes the relative loading, a simple definition of the probability of insolvency for a single 
portfolio of risk may be expressed as the probability of having aggregate claims larger than aggregate 
premiums, or, equivalently,  

               , , , ,
,

, , ,

(1 )
Pr( (1 ) ) Pr 1 PrS W S W S W S W

S W
S W S W S W

S
S Z

    
  

  
     

            
   

.          (21) 
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It should be noted that when  =0, the premium is equivalent to the expected aggregate claims of 

policies with a deductible at d . The linear loading assumption indicates that the relative loading,  , 

is fixed as a constant proportion of ,S W  regardless of any values of d . 

Tables 5-7 show the values of the insolvency probability for several values of  , n  and q , 

assuming the amount of loss follows Burr with parameters 43.426,86 , 5169.1 , and 

7783.3 .  

The graphs of insolvency probability vs. deductible for several values of d ,  , n , and q  are 

shown in Figures 5-7, indicating that under the assumption of linear loading, the insolvency 

probability increases as the deductible increases. One possible justification for this increase in the 

insolvency probability can be explained by observing the values of WS ,  and WS ,  displayed in 

Table 5. Even though both WS ,  and WS ,  decrease when the deductible increases, WS ,  decreases 

faster than WS , , causing the quantity 1
, ,( )S W S W    to decrease. Based on equation (21), the 

probability of insolvency is therefore expected to increase. 

In addition, the graphs in Figures 5-7 also show that the insolvency probability: 

 decreases as the relative loading,  , increases 

 decreases as the probability of incurring claim, q , increases 

 decreases as the number of policies, n , increases 

When the probability of incurring a claim or the number of policies increases, WS ,  

increases faster than WS , , causing the quantity 1
, ,( )S W S W    to increase. Therefore, based on 

equation (21), the probability of insolvency is expected to decrease.  

Appendix 2 shows the calculation of the insolvency probability for a deductible policy using 

R programming with the assistance of the actuar package, assuming the amount of loss follows a 

Burr distribution. 



Casualty Actuarial Society E-Forum, Winter 2011-Volume 2 14 

Table 5: Values of d and insolvency probability ( 3000n , 2.0q ) 

 
d  ,S W ,S W  0.25   0.20   0.15   0.10   0.05   0.00   

(RM) (RM) (RM) Insolvency 
probability

 Insolvency 
probability

 Insolvency 
probability

 Insolvency 
probability

 Insolvency 
probability

 Insolvency 
probability

 

         
5,000 19,937,056 1,071,492 0.000002 0.000099 0.002627 0.031395 0.176097 0.50 
10,000 17,201,950 998,232 0.000008 0.000284 0.004871 0.042422 0.194448 0.50 
15,000 14,736,570 929,117 0.000037 0.000757 0.008677 0.056360 0.213877 0.50 
20,000 12,560,178 864,187 0.000140 0.001826 0.014624 0.073055 0.233703 0.50 

         

 

Table 6: Values of d and insolvency probability ( 3000n , 15.0 ) 

 
d  0.40q   0.30q   0.20q   
 

,S W
 ,S W

 
Insolvency 
probability

 ,S W
 ,S W

 
Insolvency 
probability

 ,S W
 ,S W

 
Insolvency 
probability

 

          
5,000 39,874,112 1,425,201 0.000014 29,905,584 1,273,880 0.000215 19,937,056 1,071,492 0.002627 
10,000 34,403,900 1,340,023 0.000059 25,802,925 1,191,941 0.000583 17,201,950 998,232 0.004871 
15,000 29,473,141 1,257,672 0.000220 22,104,856 1,113,820 0.001460 14,736,570 929,117 0.008677 
20,000 25,120,356 1,178,332 0.000692 18,840,267 1,039,610 0.003280 12,560,178 864,187 0.014624 
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Table 7: Values of d and insolvency probability ( 15.0 , 2.0q ) 

 
d  3000n   2000n   1000n   
 

,S W
 ,S W

 
Insolvency 
probability

 ,S W
 ,S W

 
Insolvency 
probability

 ,S W
 ,S W

 
Insolvency 
probability

 

          
5,000 19,937,056 1,071,492 0.002627 13,291,371 874,869 0.011338 6,645,685 618,626 0.053546 
10,000 17,201,950 998,232 0.004871 11,467,967 815,053 0.017406 5,733,983 576,329 0.067801 
15,000 14,736,570 929,117 0.008677 9,824,380 758,621 0.026035 4,912,190 536,426 0.084785 
20,000 12,560,178 864,187 0.014624 8,373,452 705,606 0.037533 4,186,726 498,939 0.104071 

          

 

 

 
Figure 5: Graph of insolvency probability vs. deductible ( 3000n , 2.0q ) 
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Figure 6: Graph of insolvency probability vs. deductible ( 3000n , 15.0 ) 

 

 

 
Figure 7: Graph of insolvency probability vs. deductible ( 15.0 , 2.0q ) 
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4.2 Insolvency Probability of Policy Limit 

When an insurer introduces a policy limit, say at the value of u , the loss covered by insurer and paid 

as a claim may be represented by the random variable K  as shown in equation (9). For an individual 

risk model, the aggregate claims of a policy with limit u  may be defined as 

         nKKKS  ...21 ,               (22) 

where nKKK ,...,, 21  denote independent and identically distributed (i.i.d.) random variables. 

 The conditional mean and variance of iK  respectively are 

                     ( | 0)i KE K X   ,                               (23) 

and 

         2( | 0)i KVar K X   .                          (24) 

 Therefore, for a policy limit, )0|( XKE  and )0|( 2 XKE  can be written as 

         
0

( | 0) ( ) ( ) ( ) ( ; )K

u

E K X xf x dx x u f x dx E X u
 

                               (25) 

and 

                      

2 2 2 2

0

( | 0) ( ) ( ) ( ) (( ; ) )
u

E K X x f x dx x u f x dx E X u
 

      ,                           (26) 

so that 

        2 2 2( | 0) ( ( | 0))K E K X E K X     .                                         (27) 

 The distribution of S , by applying Central Limit Theorem (CLT), may be estimated by 

normal distribution with mean,  

           qnSE KKS   )(, ,               (28) 

and variance, 

                  
2 2 2

, ( ) ( (1 ))S K K KVar S n q q q      .              (29) 

 If the premium is calculated using a linear loading assumption, i.e. premium= )1(,  KS , 

the probability of insolvency for a single portfolio of risk may be equated as the probability of 

having aggregate claims larger than aggregate premiums, or, equivalently,  

         
, , , ,

,
, , ,

(1 )
Pr( (1 )) Pr 1 PrS K S K S K S K

S K
S K S K S K

S
S Z

    
  

  
     

            
   

.          (30) 
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It should be noted that when  =0, the premium is equivalent to the expected aggregate claims of 

policies with a policy limit at u . The linear loading assumption indicates that the relative loading,  , 

is fixed as a constant proportion of ,S K  regardless of any values of u . 

Tables 8-10 show the values of the insolvency probability for several values of u ,  , n  and 

q , assuming the amount of loss follows Burr with parameters 43.426,86 , 5169.1  and 

7783.3 .  

The graphs of insolvency probability vs. policy limit for several values of  , n  and q  are 

shown in Figures 8-10, indicating that under the assumption of linear loading, the insolvency 

probability increases as the policy limit increases. Based on values of ,S K  and ,S K  displayed in 

Table 8, even though both ,S K  and ,S K  increase when the limit increases, ,S K  increases faster 

than ,S K  causing the quantity 1
, ,( )S K S K    to decrease. Based on equation (30), the probability of 

insolvency is expected to increase. 

In addition, the graphs in Figures 8-10 also show that insolvency probability 

 decreases as the relative loading,  , increases; 

 decreases as the probability of incurring claim, q , increases; and 

 decreases as the number of policies, n , increases. 

When the probability of incurring a claim or the number of policies increases, ,S K  

increases faster than ,S K  causing the quantity 1
, ,( )S K S K    to increase. Therefore, based on 

equation (30), the probability of insolvency is expected to decrease.  
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Table 8: Values of u and insolvency probability ( 3000n , 2.0q ) 

 
u  ,S K ,S K  0.25   0.24   0.23   0.22   0.21   

(RM) (RM) 
 

(RM) 
 

Insolvency 
probability 

Insolvency 
probability

 Insolvency 
probability

 Insolvency 
probability

 Insolvency 
probability

 

        
40,000 16,399,665 674,696 6.13E-10 2.71E-09 1.13E-08 4.46E-08 1.66E-07 
60,000 19,517,266 849,996 4.72E-09 1.79E-08 6.42E-08 2.19E-07 7.11E-07 
80,000 21,074,104 956,995 1.84E-08 6.28E-08 2.04E-07 6.34E-07 1.88E-06 
100,000 21,866,758 1,022,471 4.48E-08 1.43E-07 4.35E-07 1.27E-06 3.54E-06 
        

 

Table 9: Values of u and insolvency probability ( 3000n , 15.0 ) 

 
u  0.40q   0.30q   0.20q   
 

,S K
 ,S K  Insolvency 

probability
 ,S K

 ,S K  Insolvency 
probability

 ,S K
 ,S K

 
Insolvency 
probability

 

          
40,000 32,799,329 855,061 0.0000000 24,599,497 784,592 0.0000013 16,399,665 674,696 0.0001332
60,000 39,034,532 1,091,347 0.0000000 29,275,899 994,238 0.0000050 19,517,266 849,996 0.0002863
80,000 42,148,208 1,239,193 0.0000002 31,611,156 1,123,712 0.0000122 21,074,104 956,995 0.0004780
100,000 43,733,516 1,331,212 0.0000004 32,800,137 1,203,592 0.0000218 21,866,758 1,022,471 0.0006685
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Table 10: Values of u and insolvency probability ( 15.0 , 2.0q ) 

 
u  3000n   2000n   1000n   

(RM) 
,S K

 
(RM) 

,S K
 

(RM)
 

Insolvency 
probability

 ,S K
 ,S K  Insolvency 

probability
 ,S K

 ,S K
 

Insolvency 
probability

 

          
40,000 16,399,665 674,696 0.000133 10,933,110 550,887 0.001456 5,466,555 389,536 0.017644 
60,000 19,517,266 849,996 0.000286 13,011,511 694,019 0.002460 6,505,755 490,746 0.023376 
80,000 21,074,104 956,995 0.000478 14,049,403 781,383 0.003498 7,024,701 552,521 0.028255 
100,000 21,866,758 1,022,471 0.000668 14,577,839 834,844 0.004406 7,288,919 590,324 0.032006 

          

 

 

 
Figure 8: Graph of insolvency probability vs. policy limit ( 3000n , 2.0q ) 
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Figure 9: Graph of insolvency probability vs. policy limit ( 3000n , 15.0 ) 

 

 

 
Figure 10: Graph of insolvency probability vs. policy limit ( 15.0 , 2.0q ) 
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5. PH-TRANSFORM ASSUMPTION 

The determination of expected loss or mean severity based on the Proportional Hazard Transform 

(PH-Transform) assumption introduced by Wang [12] may be used as an alternative to reduce the 

probability of insolvency at a higher deductible or policy limit. In particular, the PH-Transform 

assumption incorporates an “appropriate” risk load in the severity distribution at a higher deductible 

or policy limit, and thus allows the probability of insolvency to be lower.  

  The mean severity under the PH-Transform assumption can be calculated as (Wang [12]-

[13])  

             
0

( ) ( ( ))  ,              0 1rH X S x dx r


   ,                                    (31) 

where r  denotes the index of ambiguity degree. The PH-mean shown in equation (31) represents a 

risk-adjusted premium and is quite sensitive to the choice of r . Index r  can be assigned to the level 

of confidence in the estimation of loss, where a lower value of r  implies a more ambiguous 

situation. For example, a non-ambiguous scenario for the best estimate could occur when there is 

little ambiguity regarding the best estimate of the severity distribution, such as when all experts agree 

with confidence in the estimate, whereas an ambiguous scenario could occur when there is 

considerable ambiguity regarding the best estimate of the severity distribution, such as when experts 

disagree and have little confidence in such estimate. From a broader perspective, examples of 

conditions contributing to greater ambiguity include uncertainty of the underlying loss distribution, 

incomplete information, insufficient data, changes in claim generating mechanisms, extra expenses 

associated with risk-sharing transactions, and difference in local market climates due to differences 

in geographic areas and/or lines of insurance (Wang [11]). 

 The PH-Transform can also be applied using subjective guidelines for the error of 

estimation; an actuary may construct his own table for index r  to reflect different levels of 

ambiguity. One such example is given by Wang [11]: 
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Table 11: Ambiguity level and index r  

Ambiguity level Index r  
  
Slightly ambiguous 0.96 – 1.00 
Moderately ambiguous 0.90 – 0.95 
Highly ambiguous 0.80 – 0.89 
Extremely ambiguous 0.50 - 0.79 
  

Source: Wang [11] 

 

  In addition to the severity distribution, the PH-Transform assumption can be applied on the 

frequency distribution where appropriate. As an example, in pricing a reinsurance contract, the PH-

Transform can be applied separately on the severity and frequency distributions. The choice of r  

depends on the level of confidence in the estimate of claim severity and frequency. If the actuary has 

higher confidence in the estimate of claim frequency distribution but lower confidence in the 

estimate of claim severity distribution, he should chose a higher r  for claim frequency, say 0.95, and 

a lower r  for claim severity, say 0.85. For example, higher confidence for the frequency distribution 

and lower confidence for the severity distribution should be applied on types of insurance risks that 

provide considerable past data on the probability of occurrence but much uncertainty on the size of 

loss due to arbitrary court awards.  

5.1 Insolvency Probability of Deductible Policy 

The same approach may be used to find the expected loss of a deductible policy, 

            ( ) ( ( ))  ,              0 1r

d

H W S x dx r


   .                                    (32) 

where W  is defined as equation (7). 

 For example, assume that the amount of loss follows a Burr distribution with parameters 

( , , )   . The survival function is equal to 

           ( )S x
x



 



 

   
,                                    (33) 

and if the PH-Transform assumption is applied, the survival function also follows a Burr 

distribution, but with parameters ( , , )r   , 
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          ( )
r

S x
x



 



 

   
.                                          (34) 

Therefore, the equation of expected loss shown by equation (32) can also be rewritten as 

);()()( dXEXEWH  , this time assuming that the loss distribution follows a Burr distribution 

with parameters ( , , )r   . In addition, )(WH  can be rewritten as a function of )(WE , 

   )()1()( WEWH                 (35) 

where ( ) ( )  
d

E W S x dx


  , and    denotes the equivalent relative loading of a policy with deductible 

valued at d . 

Table 12 shows the expected loss, )(WH , and the equivalent relative loading,  , under the 

PH-Transform assumption for several values of r . For example, the expected loss with no loading, 

i.e. the expected loss at 1r , for a deductible valued at RM5,000 is equivalent to RM33,228. If the 

PH-Transform assumption with 0.9r   is applied, the expected loss is RM36,804 and the 

equivalent relative loading,  , is equal to 0.11.  

 

Table 12: Expected loss and relative loading (deductible policy) 

d  
(RM) 

Expected loss 

1r  
(RM) 

Expected loss
0.9r   

(RM) 

Relative 
loading 

Expected loss 

0.7r   
(RM) 

Relative 
loading 

      
5,000 33,228 36,804 0.11 47,426 0.43 
10,000 28,670 32,203 0.12 42,740 0.49 
15,000 24,561 28,013 0.14 38,382 0.56 
20,000 20,934 24,267 0.16 34,389 0.64 

      

 

 

Figure 11 shows the graph of expected loss vs. deductible for several values of r  under the 

assumption of PH-Transform. It can be seen that the expected loss calculated under the PH-

Transform ( 0.9r   and 0.7r  ) is higher than the basic expected loss  ( 1r ), implying that the 

expected loss is higher when the estimation of loss amount becomes more ambiguous. 
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Figure 11: Graph of expected loss vs. deductible 

 

 

If the probability of insolvency is calculated using equation (21), the linear loading 

assumption and PH-Transform assumption can be compared by using   as the relative loading for 

linear assumption and   as the relative loading for PH-Transform assumption. The main difference 

between the assumptions is that the relative loading for PH-Transform increases when d  increases, 

whereas for linear loading, the relative loading remains fixed when d  increases. Table 13 shows the 

values for insolvency probability for several values of   and   assuming 3000n  and 2.0q . 

Figure 12 shows the graph of insolvency probability vs. deductible under several linear loading and 

PH-Transform assumptions, also assuming 3000n  and 2.0q . It can be seen that the 

insolvency probability is lower for higher deductibles under the PH-Transform assumption. Thus, 

the PH-Transform can be used as an alternative to reduce the probability of insolvency at higher 

deductible values by incorporating an “appropriate” risk load in the severity distribution. 

Appendix 3 uses R programming with the assistance of the actuar package  to calculate the 

expected loss for a deductible policy under the PH-Transform assumption, assuming the amount of 

loss follows a Burr distribution. 

 

 

 

 



Deductibles, Policy Limits, and Reinsurance: A Case Study in Malaysia 

Casualty Actuarial Society E-Forum, Winter 2011-Volume 2 26 

Table 13: Insolvency probability for linear loading and PH-Transform 

d  Linear loading PH-Transform 
(RM)  0.9r 

   Insolvency    Insolvency   Insolvency 
  probability  probability  probability 
       

5,000 0.15 0.003 0.10 0.031 0.11 0.023 
10,000 0.15 0.005 0.10 0.042 0.12 0.017 
15,000 0.15 0.009 0.10 0.056 0.14 0.013 
20,000 0.15 0.015 0.10 0.073 0.16 0.010 

       

 

 

 

 
Figure 12: Graph of insolvency probability vs. deductible 

 

 

5.2 Insolvency Probability of Policy Limit 

Similar to a deductible policy, the expected loss of a policy limit under PH-Transform assumption 

can be calculated as 

        ( ) ( ( ))  ,              0 1
u

r

o

H K S x dx r   ,                                          (36) 
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where K  is defined as equation (9). 

If the amount of loss follows a Burr distribution with parameters ( , , )   , the equation of 

expected loss shown by equation (36) can be rewritten as );()( uXEKH  , this time assuming that 

the loss distribution follows a Burr distribution with parameters ( , , )r   . In addition, )(KH  can 

be rewritten as a function of )(KE , 

    )()1()( KEKH  ,               (37) 

where ( ) ( )  
u

o

E K S x dx  , and   denotes the equivalent relative loading of a policy with limit valued 

at u . 

Table 14 provides the expected loss, ( )H K , and the equivalent relative loading,  , under 

the PH-Transform assumption for several values of r  assuming 3000n  and 2.0q . Figure 13 

shows the graph of expected loss vs. policy limit for several values of r  under the PH-Transform 

assumption, also assuming 3000n  and 2.0q . It can be seen that the expected loss calculated 

under the PH-Transform assumption ( 0.8r   and 0.7r  ) is higher than the basic expected loss 

( 1r ), also implying that the expected loss is higher when the estimation of loss amount becomes 

more ambiguous.  

 

Table 14: Expected loss and relative loading (policy limit) 

u  
(RM) 

Expected loss 

1r   
(RM) 

Expected loss
0.8r   

(RM) 

Relative 
loading 

Expected loss 

0.7r   
(RM) 

Relative 
loading 

      
40,000 27,333 29,286 0.07 30,353 0.11 
60,000 32,529 36,068 0.11 38,106 0.17 
80,000 35,124 39,960 0.14 42,875 0.22 
100,000 36,445 42,228 0.16 45,849 0.26 
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Figure 13: Graph of expected loss vs. policy limit 

 

 

If the probability of insolvency is calculated using equation (30), the linear loading 

assumption and PH-Transform assumption can also be compared by using   as the relative loading 

for the linear assumption and   as the relative loading for PH-Transform assumption. The main 

difference between the assumptions is that the relative loading for PH-Transform increases when u  

increases, whereas for linear loading, the relative loading remains fixed when u  increases. Table 15 

shows the values for insolvency probability for several values of   and  .  

 

Table 15: Insolvency probability for linear loading and PH-Transform 

u  Linear loading PH-Transform 
(RM)  0.8r 

   Insolvency    Insolvency  Insolvency 
  probability  probability  probability 
       

40,000 0.15 0.0001 0.10 0.0075 0.07 0.0412 
60,000 0.15 0.0003 0.10 0.0108 0.11 0.0062 
80,000 0.15 0.0005 0.10 0.0138 0.14 0.0012 
100,000 0.15 0.0007 0.10 0.0162   0.16 0.0003 
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Figure 14 shows the graph of insolvency probability vs. policy limit under several linear 

loading and PH-Transform assumptions. It can be seen that the insolvency probability is lower for 

higher limits under the PH-Transform assumption. Thus, the PH-Transform can be used as an 

alternative to reduce the probability of insolvency at higher limit values by incorporating an 

“appropriate” risk load in the severity distribution. 

 
 

 
Figure 14: Graph of insolvency probability vs. policy limit 

 

 

 

6. EXCESS LAYERS OF A SINGLE RISK 

6.1 Pricing of Excess Layers 

In an insurance contract containing both a deductible d  and a policy limit u , the loss of a layer 

],( udd   of a risk X  can be defined by the random variable M , where 

0,

,

,

X d

M X d d X d u

u X d u


    
  

.              (38) 

Therefore, the average loss or mean severity of a layer ],( udd   may be written as 
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          ( ) ( ) 
d u

d

E M S x dx


  ,               (39) 

whereas under the PH-Transform assumption, the average loss of the same layer is 

                                                      ( ) ( ( ))  
d u

r

d

H M S x dx


  .               (40) 

If the amount of loss follows a Burr distribution with parameters ( , , )   , the equation of expected 

loss or mean severity shown by equation (39) can also be rewritten as 

         
);();()( dXEudXEME  ,              (41) 

whereas under the PH-Transform assumption, equation (40) can also be rewritten as 

         
);();()( dXEudXEMH  ,              (42) 

this time assuming the amount of loss follows a Burr distribution with parameters ( , , )r   .. 

For a single risk, the expected aggregate claims shown by equations (19) and (28) can be 

simplified into 

          qMESE )()(  ,               (43) 

i.e., assuming 1n . 

Under the PH-Transform assumption, the expected aggregate claim amount can also be 

calculated, and it is equal to 

                                                          ( ) ( )E S H M q .          (44) 

( )H M q  can also be rewritten as a function of ( )E M q , 

     ( ) (1 ) ( )H M q E M q  ,                                  (45) 

where   denotes the equivalent relative loading of a policy with deductible d  and limit u . 

Table 16 shows the expected aggregate claims and equivalent relative loading,  , for several 

values of d  and u  under the PH-Transform assumption, where 1n  , 1.0q  and the individual 

loss amount follows a Burr distribution with parameters 43.426,86 , 5169.1 , and 

7783.3 . For example, the expected aggregate claim amount or the premium with no loading, 

i.e., 1r , for layer (0, 5000], is equivalent to RM490.24. If the PH-Transform assumption with 

92.0r  is applied, the premium is RM491.01 and the equivalent relative loading is  =0.002. It can 

be observed from the table that the relative loading,  , under the PH-Transform assumption 

increases as the layer, ],( udd  , increases. 
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Figure 15 shows the graph of expected aggregate claim amount vs. layer for several values of 

the ambiguity index, r , assuming 1.0q  for the same loss distribution assumption. The graph 

shows that the expected aggregate claim amount decreases when the value of the layer, ],( udd  , 

increases. Equations (39) and (40) imply that the expected aggregate claim amount depends on the 

integrals of )(xS  and rxS )( . Since )(xS  is a decreasing function, the areas under the curves of 

)(xS  and rxS )(  are smaller as the value of ],( udd   is higher, which causes the expected 

aggregate claim amount to decrease. In addition, the graph also shows that the expected aggregate 

claim amount increases when the ambiguity index, r ,  decreases, indicating that the relative loading, 

 , is higher when the estimation of loss is more ambiguous.  

 

Table 16: Expected aggregate claim amount and relative loading (single risk, PH Transform) 

d  
(RM) 

ud   
(RM) 

Aggregate 
claims (RM) 

( 1)r   

Aggregate 
claims (RM) 
( 0.92)r   

Relative 
loading 

Aggregate 
claims (RM) 
( 0.90)r   

Relative 
loading 

       
0 5,000 490.24 491.01 0.002 491.20 0.002 

5,000 10,000 455.85 459.22 0.007 460.07 0.009 
10,000 15,000 410.90 417.38 0.016 419.02 0.020 
20,000 25,000 315.38 327.20 0.037 330.23 0.047 
40,000 45,000 165.32 180.61 0.092 184.65 0.117 
80,000 85,000 41.59 50.74 0.220 53.33 0.282 
100,000 105,000 21.68 27.87 0.285 29.67 0.368 
160,000 165,000 3.93 5.80 0.473 6.39 0.623 

       

 
 
 



Deductibles, Policy Limits, and Reinsurance: A Case Study in Malaysia 

Casualty Actuarial Society E-Forum, Winter 2011-Volume 2 32 

 
Figure 15: Graph of expected aggregate claim amount vs. layer (single risk, 1n  , 1.0q ) 

 

 

Appendix 4 shows the calculation of the expected aggregate claim amount for a single risk 

and a single layer using R programming with the assistance of the actuar package, assuming that the 

severity follows a Burr distribution. 

 

6.2 Increased Limit Factor (ILF) 

In liability insurance, a policy generally provides coverage up to a specified maximum amount that 

will be paid on any individual loss. In the U.S., it is general practice to publish rates for some 

standard limit, the “basic limit” (for example, USD$100,000), to which rates the increased limit 

factors (ILF) are applied to calculate increased limit rates (Wang [11]). In Malaysia, however, the 

practice has not been implemented; therefore, the ILF calculated in this study may be used as some 

indication or basis for possible basic and increased rates. 

If the basic limit is valued at RM100,000,  the ILF can be calculated as the expected loss at 

the increased limit divided by the expected loss at the basic limit, 

    
( ; )

( )
( ;100000)

E X a
ILF a

E X
 .               (46) 
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 If a risk load is to be included, equation (46) can be rewritten as 

                                            
( ; ) ( )

( )
( ;100000) (100000)

E X a RL a
ILF a

E X RL





,                               (47) 

where ( )RL a  and (100000)RL  denote the risk load. 

Under the PH-Transform assumption, equation (47) can be rewritten as 

                                                        
( ; )

( )
( ;100000)

H X a
ILF a

H X
 ,         (48) 

where ( ; )H X a  and ( ;100000)H X  denote the mean severity calculated under the PH-Transform 

assumption. Since );();( aXEaXH   and ( ;100000) ( ;100000)H X E X , the equivalent risk load 

for the PH-Transform assumption can be calculated. Table 17 shows the ILFs under the PH-

Transform assumption assuming that the loss distribution follows a Burr distribution with 

parameters 43.426,86 , 5169.1  and 7783.3 . However, the ILFs calculated appear to be 

extremely flat, indicating that larger claims may be under-represented by fitting a Burr distribution. 

Additional treatment is needed in this situation, such as considering a mixed distribution which may 

produce a more appropriate result for fitting large claims.  

Figure 16 shows the graph of ILF vs. a  under the PH-Transform assumption for the same 

severity distribution. The graph shows that the ILFs increase when a  increases but remain at a fixed 

value for large values of a . In addition, the graph shows that the ILFs increase when the ambiguity 

index, r , decreases, implying that the risk load is higher when loss estimation is more ambiguous. 

 

Table 17: ILF 

a  
(RM) 

( ; )E X a  
(RM) 

ILF 
without 

RL 

Risk Load 
(RM) 

( 0.9)r   

ILF 
( 0.9)r 

 

Risk Load 
(RM) 

( 0.85)r   

ILF 
( 0.85)r 

 
       

100,000 36,444.60 1.000000 2,678.91 1.000000 4,172.73 1.000000
200,000 37,960.89 1.041605 3,412.12 1.057497 5,401.38 1.067581
300,000 38,097.00 1.045340 3,535.89 1.064140 5,624.74 1.076431
400,000 38,120.88 1.045995 3,566.56 1.065534 5,683.37 1.078462
500,000 38,127.10 1.046166 3,576.64 1.065951 5,703.53 1.079112
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Figure 16: Graph of ILF vs. a  

    
 

Appendix 5 shows the calculation of ILFs using R programming with the assistance of actuar 

package, assuming that the amount of loss follows a Burr distribution. 

 
 
7. EXCESS-OF-LOSS FOR REINSURANCE TREATY 

In a developing country such as Malaysia, we seldom have a single local insurer covering a single 

large risk, especially in non-life insurance businesses. In practice, a large risk is usually divided into 

several excess-of-loss layers shared and insured by several local or multinational insurers or 

reinsurers. The pricing of layers, therefore, is crucial, especially in the process of dividing risk and 

pricing risk fairly for each insurer. In this paper, we would like to introduce an approach which may 

be considered as fair and efficient for pricing excess-of-loss layers of a reinsurance treaty. The 

fairness in pricing may be achieved by implementing a PH-Transform assumption whereby the 

insolvency probability is lowered. In addition, the efficiency in pricing may be obtained by using R 

programming with the actuar package to allow the pricing by layer to be computed with less effort.  

Let N  denote the random variable for claim frequency. Hence, the expected frequency can 

be calculated as 

     ,...1,0  ,)()(
0

 




kkSNE
k

,          (49) 
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whereas under a PH-Transform assumption, the expected frequency is equivalent to (Wang [11], 

            
0

( ) ( ( ))r

k

H N S k




 .               (50) 

 Let X  denote the random variable for loss severity. The expected severity is 





0

)()( dxxSXE , whereas under the PH-Transform assumption, the expected severity is equal to 

0

( ) ( ( ))rH X S x dx


  . 

By implementing both frequency and severity approaches, the expected aggregate claims can 

be calculated as 

           )()()( XENESE  ,                     (51) 

whereas under the assumption of PH-Transform, the expected aggregate claims is equal to 

    )()( XHNH .          (52) 

The same approach may also be implemented for calculating the price of several excess-of-

loss layers. The mean severity for layer ],( udd   is the same as equation (41) whereas under a PH-

Transform assumption, the mean severity for the same layer is the same as equation (42). Therefore, 

the expected aggregate claims is 

           )()()( MENESE  ,                     (53) 

whereas under a PH-Transform assumption, the expected aggregate claims is 

     )()( MHNH .          (54) 

If the amount of loss follows a Burr distribution with parameters ( , , )   , the calculation of 

)(MH  in equation (54) also follows a Burr distribution, this time with parameters ( , , )r   .  

If the claim frequency follows a Poisson distribution with parameter  , the aggregate claims, 

S , follow a compound Poisson distribution whereby the variance of aggregate claims can be written 

as 

              )()( 2MESVar  ,                     (55) 

where 2 2 2( ) (( ; ) ) (( ; ) ) 2 ( ; ) 2 ( ; )E M E X d u E X d dE X d u dE X d      . 

Table 18 shows the mean severity, mean frequency, burning cost, loaded rate, and relative 

loading under a PH-Transform assumption for several excess-of-loss layers, assuming N  is Poisson 

with parameter 100  , X  is Burr with parameters 43.426,86 , 5169.1  and 7783.3 , 

and 0.95r   for both frequency and severity distributions. 
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Table 18: Mean severity, mean frequency, burning cost, loaded rate and relative loading 

Layer 
(RM) 

( )E M  
(RM) 

( )H M  
( 0.95)r   

(RM) 

( )E N ( )H N  
( 0.95)r 

Burning 
Cost 

 

Loaded 
Rate 

Relative 
Loading

        
(100 ,300 ]k k  1,652.40 2,033.77 100 100.47 0.016524 0.020434 0.24 
(300 ,500 ]k k  30.10 46.15 100 100.47 0.000301 0.000464 0.54 
(500 ,700 ]k k  2.91 5.04 100 100.47 0.000029 0.000051 0.74 
(700 ,900 ]k k  0.56 1.06 100 100.47 0.000006 0.000011 0.90 

        
(100 ,900 ]k k  1,685.97 2,086.01 100 100.47 0.016860 0.020959 0.24 

        

 

 

The burning cost is calculated as (Wang [11]) 

    
SEP

NEME )()(
,           (56) 

where SEP denotes the subject earned premium. In this study, the SEP is assumed to be 

RM10,000,000. 

The loaded rate is calculated as (Wang [11]) 

    
SEP

NHMH )()(
,           (57) 

whereby it can also be written as a function of the burning cost, 

              
SEP

NEME

SEP

NHMH )()(
)1(

)()(  ,                    (58) 

where   denotes the equivalent relative loading. Based on Table 18, the relative loading,  , under a 

PH-Transform assumption increase as the excess-of-loss layer, ],( udd  , increase. In addition, the 

values of ( )E M  and ( )H M decrease when the layer, ],( udd  , increases. 

The distribution of aggregate claims, S , by applying Central Limit Theorem, may be 

estimated by the Normal distribution with mean )()( MESE   and variance )()( 2MESVar  . 

The probability of insolvency, i.e. the probability of having aggregate claims larger than aggregate 

premiums, for a PH-Transform assumption can be calculated as 
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( )

Pr( ( ) ( )) Pr( (1 ) ( )) Pr
( )

E S
S H N H M S E S Z

Var S
 

 
       

 
.              (59) 

In terms of insolvency probability, the main difference between a linear loading assumption 

and a PH-Transform assumption is that the relative loading for a PH-Transform increases when the 

layer ],( udd   increases, whereas the relative loading remains fixed at   for all layers under the 

linear loading. 

Table 19 provides the value of mean severity, mean frequency, mean aggregate claims, and 

variance aggregate claims. It should be noted that both )(SE  and )(SVar  decrease when excess-of-

loss layer, ],( udd  , increases. 

Table 20 shows the values of premium and relative loading for several excess-of-loss layers 

under the PH-Transform assumptions ( 0.95r  , 0.90r   and 0.85r  ). It should be noted that 

the lower the ambiguity index, r , the higher the premium layer, implying that the relative loading is 

higher when ambiguity increases. In addition, the premium is lower when the layer, ],( udd  , 

increases. The relative loading is also higher when the layer, ],( udd  , increases. 

Table 21 shows the values of insolvency probability under a linear loading assumption for 

several values of relative loading ( 0.10  , 0.15   and 0.20  ), and a PH-Transform 

assumption for several values of ambiguity index ( 0.95r  , 0.90r   and 0.85r  ). The table 

shows that the insolvency probability for the PH-Transform is lower than the linear loading for all 

layers, but the difference is lower when the layer of ],( udd   increases. Therefore, a PH-Transform 

assumption may be used as an alternative to reduce insolvency probability of excess-of-loss layers in 

reinsurance treaties by incorporating “appropriate” risk loads in the frequency and severity 

distributions of all layers. 
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Table 19: Mean severity, mean frequency, mean aggregate claims and variance aggregate claims  

Layer ( )E M  
(RM) 

( )E N )()( MESE 
(RM) 

)()( 2MESVar   
(RM) 

   
(100 ,300 ]k k  1,652.40 100 165,240 12,596,760,695 

(300 ,500 ]k k  30.10 100 3,010 356,232,253 

(500 ,700 ]k k  2.91 100 291 41,096,487 

(700 ,900 ]k k  0.56 100 56 8,650,994 
     

(100 ,900 ]k k  1,685.97 100 168597 14,506,333,740 
   

 

 

Table 20: Premium and relative loading (PH-Transform) 

Layer ( ) ( )H M H N  
(RM) 

( 0.95)r   

Relative 
loading 

( ) ( )H M H N  
(RM) 

( 0.9)r   

Relative 
loading 

( ) ( )H M H N  
(RM) 

( 0.85)r   

Relative 
loading 

 

(100 ,300 ]k k  204,337 0.24 253,397 0.53 315,181 0.91 
(300 ,500 ]k k  4,637 0.54 7,154 1.38 11,055 2.67 
(500 ,700 ]k k  507 0.74 884 2.04 1,543 4.31 
(700 ,900 ]k k  106 0.90 201 2.60 383 5.84 

       
(100 ,900 ]k k  209,587 0.24 261,635 0.55 328,162 0.95 
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Table 21: Insolvency probability 

Layer Linear loading PH-Transform 
(RM) Pr( ( )(1 ))S E S  

 
1.0  

Pr( ( )(1 ))S E S  
 

15.0  
Pr( ( )(1 ))S E S  

 
2.0  

Pr( ( ) ( ))S H X H N
( 0.95)r   

Pr( ( ) ( ))S H X H N
( 0.9)r   

Pr( ( ) ( ))S H X H N
( 0.85)r   

       
(100 ,300 ]k k  0.4415 0.4126 0.3842 0.3638 0.2161 0.0908 
(300 ,500 ]k k  0.4936 0.4905 0.4873 0.4657 0.4131 0.3350 
(500 ,700 ]k k  0.4982 0.4973 0.4964 0.4866 0.4632 0.4226 
(700 ,900 ]k k  0.4992 0.4989 0.4985 0.4932 0.4803 0.4558 

       
(100 ,900 ]k k  0.4443 0.4168 0.3898 0.3668 0.2199 0.0926
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Figures 17-20 show the graphs of insolvency probability for several values of   (under a 

linear loading assumption) and r  (under a PH-Transform assumption) for each layer of ],( udd  . 

Figure 21 shows the graph of insolvency probability for all layers. The equivalent loading,  , for 

each r  is also shown in the figures. As an example, when 0.95r   under the PH-Transform, the 

equivalent   for layer ]300,100( kk  is 0.24  , as shown in Figure 17. 

 

 
Figure 17: Graph of insolvency probability (layer ]300,100( kk ) 

 
 

 
Figure 18: Graph of insolvency probability (layer ]500,300( kk ) 
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Figure 19: Graph of insolvency probability (layer ]700,500( kk ) 

 

 

 
Figure 20: Graph of insolvency probability (layer ]900,700( kk ) 

 

 

The graphs show that under the linear loading assumption, insolvency probability decreases 

when relative loading increases. When the PH-Transform assumption is applied, the insolvency 

probability is reduced to a lower level compared to the linear loading assumption, and the reason for 

this is that the equivalent risk load is higher under the PH-Transform.  
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Figure 21: Graph of insolvency probability (all layers) 

 

 

Appendix 6 shows the calculation of mean severity, mean frequency, mean aggregate claims, 

variance aggregate claims and insolvency probability under linear loading and PH-Transform 

assumptions, using R programming with the assistance of actuar package, assuming the severity 

distribution is Burr and the frequency distribution is Poisson. 
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8. CONCLUSION 
 

In this paper, we have modeled individual loss amount, selected the best model using Kolmogorov-

Smirnov, Anderson-Darling and Schwarz Bayesian Criterion, provided a range of deductible and 

policy limits based on Loss Elimination Ratio (LER), calculated insolvency probability under linear 

loading and PH-Transform assumptions, priced excess-of-loss of layer ],( udd   assuming a single 

risk, calculated increased limit factors (ILF), priced layers of a reinsurance treaty using a frequency 

and severity approach, and calculated the insolvency probability of a reinsurance treaty. Our 

proposed approach may be considered fair and efficient for two main reasons; the PH-Transform 

assumption may be implemented to lower the insolvency probability, and the R programming with 

the actuar package may be used for pricing excess-of-loss layers with less effort. In particular, the 

PH-Transform assumption is applied as a means of incorporating a risk load in the severity and/or 

frequency distributions and can be used to lower the insolvency probability of a single excess-of-loss 

layer as well as multiple layers of a reinsurance treaty. In addition, the ILF calculated in this study 

may be used as some indication or basis for possible basic and increased rates of the Malaysian 

insurance losses.  

  It is noteworthy that different distributions for loss severity and frequency can also be 

applied. Besides Burr distribution, Wang [12] showed that the PH-Transform assumption can be 

applied to several loss amount distributions such as exponential, uniform, Pareto and Weibull. The 

mean severity for a PH-Transform assumption, i.e., ( ) ( ( ))
d u

r

d

H M S x dx


  , can easily be computed 

using R programming with actuar package for such distributions. In addition, the computation of 

mean frequency for a PH-Transform assumption, i.e., 
0

( ) ( ( ))r

k

H N S k




 , for other frequency 

distributions such as binomial or negative binomial, can be also be implemented using R 

programming with the actuar package.   
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Appendix 1: R programming for LER (deductible policy, Burr distribution) 

deduktibel <- function(alfa, gama, teta) 

{ 

# to calculate E(X), d, E(X:d) and LER 

EX <- mburr(1, alfa, gama, 1, teta) 

d <- seq(0, 20000, by=1000) 

EX.d <- levburr(d, alfa, gama, 1, teta, 1) 

LER.d <- EX.d/EX 

result.d <- cbind(d, EX.d, LER.d) 

# to plot LER vs. d 

plot.LERvsD <- plot(d, LER.d, type="p") 

# to print result 

list(EX=EX, result.d=result.d, plot.LERvsD) 

} 

deduktibel(alfa=3.778263226, gama=1.516886923, teta=86426.43339) 

 

Appendix 2: R programming for insolvency probability (deductible policy, Burr distribution, 

linear loading) 

insolvent.prob <- function(alfa, gama, teta, n, prob.claim, loading) 

{ 

# to calculate d, E(W), E(W2), Var(W), E(S), Var(S) and insolvency probability 

 d <- seq(0, 20000, by=1000) 



Deductibles, Policy Limits, and Reinsurance: A Case Study in Malaysia 

Casualty Actuarial Society E-Forum, Winter 2011-Volume 2 45 

 EW <- mburr(1,alfa,gama,1,teta) - levburr(d,alfa,gama,1,teta,1) 

 EW2 <- mburr(2,alfa,gama,1,teta) - levburr(d,alfa,gama,1,teta,2) -   

  2*d*mburr(1,alfa,gama,1,teta) + 2*d*levburr(d,alfa,gama,1,teta,1) 

 VW <- EW2 - (EW^2) 

 ES <- n*EW*prob.claim 

 VS <- n*(VW*prob.claim+(EW^2)*prob.claim*(1-prob.claim)) 

 sigmaS <- VS^0.5 

 insolven.prob <- pnorm(ES*loading/sigmaS, 0, 1, FALSE, FALSE) 

 result <- cbind(d, ES, sigmaS, insolven.prob) 

# to plot insolvency probability vs. deductible 

plot.PROBvsD <- plot(d,insolven.prob,type="p") 

# to print result 

 list(n=n, prob.claim=prob.claim, loading=loading, result=result, plot.PROBvsD) 

} 

insolvent.prob(alfa=3.778263226, gama=1.516886923, teta=86426.43339, n=3000, prob.claim=0.2, 

loading=0.25) 

 

Appendix 3: R programming for expected loss (deductible policy, Burr distribution, PH 

Transform) 

explossPH <- function(alfa, gama, teta, r) 

 { 

 # to compute d, E(X) and loading 

  d <- seq(0, 20000, by=1000) 

  EX.basic <- mburr(1,alfa,gama,1,teta) - levburr(d,alfa,gama,1,teta,1) 

  EX.r <- mburr(1,r*alfa,gama,1,teta) - levburr(d,r*alfa,gama,1,teta,1) 

  loading <- (EX.r-EX.basic)/EX.basic 

  result <- cbind(d, EX.basic, EX.r, loading) 

  # to plot E(X) vs. deductible 

  plot.EXvsD <- plot(c(d,d), c(EX.basic, EX.r), type="p") 

  # to print result 

  list(r=r, result=result, plot.EXvsD) 

 } 

explossPH(alfa=3.778263226, gama=1.516886923, teta=86426.43339, r=0.8) 
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Appendix 4: R programming for expected aggregate premium (single layer, single risk, Burr 

distribution, PH Transform) 

layer <- function(alfa, gama, teta, d, u, prob.claim, r) 

{ 

# to compute E(S) and loading 

ES <- prob.claim*(levburr(u,alfa,gama,1,teta,1) - levburr(d,alfa,gama,1,teta,1)) 

ESr <- prob.claim*(levburr(u,r*alfa,gama,1,teta,1) - levburr(d,r*alfa,gama,1,teta,1)) 

loading <- (ESr-ES)/ES 

result <- cbind(d, u, ES, ESr, loading) 

# to print result 

list(prob.claim=prob.claim, r=r, result=result) 

} 

d<-scan(n=8) 

0 5000 10000 20000 40000 80000 100000 160000  

u<-d+5000 

layer(alfa=3.778263226, gama=1.516886923, teta=86426.43339, d, u, prob.claim=0.1, r=0.92) 

 

Appendix 5: R programming for ILF (Burr distribution)  

ILF <- function(alfa, gama, teta, r) 

{ 

# to calculate a, E(X), risk load and ILF 

a <- seq(100000,2000000,by=100000) 

EX.a <- levburr(a,alfa,gama,1,teta,1) 

EX.ar <- levburr(a,alfa*r,gama,1,teta,1) 

EX.100k <- levburr(100000,alfa,gama,1,teta,1) 

EX.100kr <- levburr(100000,alfa*r,gama,1,teta,1) 

riskload <- EX.ar - EX.a 

ILF <- EX.a/EX.100k 

ILF.r <- EX.ar/EX.100kr 

result <- cbind(a, EX.a, ILF, riskload, ILF.r) 

# to print result 

list(r=r, result=result) 

} 

ILF(alfa=3.778263226, gama=1.516886923, teta=86426.43339, r=0.9) 
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Appendix 6: R programming for mean severity, mean frequency, mean aggregate claims, 

variance aggregate claims and insolvency probability (excess-of-loss layers, Burr and 

Poisson distributions) 

reinsurans <- function(alfa, gama, teta, lamda, d, u, r, SEP, loading) 

{ 

# to compute E(M), H(M), E(N) and H(N) 

EM <- levburr(d+u,alfa,gama,1,teta,1) - levburr(d,alfa,gama,1,teta,1) 

HM <- levburr(d+u,r*alfa,gama,1,teta,1) - levburr(d,r*alfa,gama,1,teta,1) 

data.diskret <- 0:10000 

EN <- lamda 

HN <- sum((1-ppois(data.diskret,lamda))^r) 

# to compute E(S), Var(S) and insolvency probability 

ES <- EM*EN 

VS <- lamda*(levburr(d+u,alfa,gama,1,teta,2)-levburr(d,alfa,gama,1,teta,2)- 

          2*d*levburr(d+u,alfa,gama,1,teta,1)+2*d*levburr(d,alfa,gama,1,teta,1)) 

insolvency.prob <- pnorm(ES*loading/(VS^(0.5)),0,1,FALSE,FALSE) 

insolvency.probr <- pnorm(((HM*HN)-ES)/(VS^(0.5)),0,1,FALSE,FALSE) 

# to compute H(M)H(N), burning cost, loaded rate and relative loading 

HMHN <- HM*HN 

burning.cost <- (EM*EN)/SEP 

loaded.rate <- (HM*HN)/SEP 

relative.loading <- (loaded.rate-burning.cost)/burning.cost 

result <- cbind(d, d+u, EM=EM, HM=HM, EN=EN, HN=HN, HMHN=HMHN, 

burning.cost=burning.cost, loaded.rate=loaded.rate, relative.loading=relative.loading, ES=ES, VS=VS, 

insolvency.prob=insolvency.prob, insolvency.probr=insolvency.probr) 

# to print output 

list(r=r, loading=loading, SEP=SEP, result=result) 

} 

d <- scan(n=5) 

100000  300000  500000  700000  100000 

u <- scan(n=5) 

200000  200000   200000  200000  800000 

reinsurans(alfa=3.778263226, gama=1.516886923, teta=86426.43339, lamda=6, d, u, r=0.9, SEP=10000000, 

loading=0.1) 

 


