The Retrospective Testing of Stochastic Loss Reserve Models
Glenn Meyers, FCAS, MAAA, CERA, Ph.D.
ISO Innovative Analytics
and
Peng Shi, ASA, Ph.D.
Northern Illinois University

Abstract

Given an n x n triangle of losses, Xayiag (AY = 1,..,n, Lag = 1,...,n, AY + Lag < n + 2), the goal of a
stochastic loss reserve model is to predict the distribution of outcomes, Xay1ag (AY + Lag > n +1),

and sums of losses such as Z Z Xav1ag - This paper will propose a set of diagnostics to

AY=2Llag=n+2—-AY

test the predictive distribution and illustrate the use of these diagnostics on American insurer
data as reported to the National Association of Insurance Commissioners (NAIC).

The data will consist of incremental paid losses for the commercial automobile line of
insurance. This data will come from a database containing both the original loss
triangles and the outcomes. This database will contain data for hundreds of American
insurers, and it will be posted on the Casualty Actuarial Society (CAS) website for all
researchers to access.

The retrospective tests are performed on the familiar stochastic loss reserve model, the
bootstrap chain ladder overdispersed Poisson model. The paper will also perform the
retrospective tests on a model proposed by the authors.

The authors’” model will assume that the incremental paid losses have a Tweedie
distribution, with the expected loss ratio and calendar year trend parameters following
an AR(1) time series model. The model will be a hierarchical Bayesian model with the
posterior distribution of parameters being estimated by Markov-Chain Monte-Carlo
(MCMC) methods.
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1. Introduction

In the classic reserving problem for property-casualty insurers, the primary goal of actuaries
is to set an adequate reserve to fund losses that have been incurred but not yet developed. In
this regard, the reserving actuaries are more interested in a reasonable reserve range rather
than a best estimate. Traditional deterministic algorithms are often sufficient for the best
estimation of outstanding liabilities, but often insufficient in estimating the downside potential
in loss reserves. Over the past three decades, stochastic claims reserving methods have

received extensive development, emphasizing the role of variability in claims reserves.

In claims reserving literature, different stochastic methods are proposed to calculate the
predictive uncertainty of reserves and, ideally, to derive a full distribution of outstanding
payments. The variability of claims reserves could be decomposed into two components, a
process error which is intrinsic to the stochastic model and an estimation error that describes
the uncertainty in parameter estimates. Both non-parametric and parametric approaches have
been discussed along this line of studies. The so-called non-parametric models (various Chain-
Ladder techniques among others) are considered by some to be distribution-free and focus on
(conditional) mean-squared prediction error to measure the quality of reserve estimates.
Parametric models, in contrast, are based on distributional families and thus could lead to a
distribution of outstanding claims. Because of the small sample size typically encountered in
loss reserving context, the bootstrapping technique and Bayesian method are often involved to
incorporate the uncertainty in parameter estimates and thus to provide a predictive
distribution for unpaid losses. We refer to Taylor (2000), England and Verrall (2002), and

Woithrich and Merz (2008) for excellent reviews on stochastic loss reserving methods.

With an increasing number of stochastic claims reserving methods emerging in the
literature, one critical question to ask is how to evaluate their predictive performance. This
guestion could only be answered based on retrospective tests using the actual realized claims in
the lower triangle. Unfortunately, such issue has rarely been addressed in the current

literature. Shi et al. (2011) is one recent example.
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The goals of this paper are threefold: 1) We will propose a stochastic loss reserving model
based on a Tweedie distribution that captures the calendar year trend in claims development.
2) A set of diagnostics will be discussed to test the predictive distribution of outstanding
liabilities. The retrospective evaluation will be performed for the proposed method as well as
standard formulas. 3) We emphasize the importance of retrospective testing in both loss
reserving and risk management practice, and we anticipate that this work will initialize more

relevant studies and draw attention from both practitioners and researchers in this perspective.

We note that the sparsity of studies on retrospective tests might be attributed to the
unavailability of the data on realized claims. Our access to a rich database from the National
Association of Insurance Commissioners (NAIC) provides us an opportunity to perform such
evaluation. A great deal of effort has been devoted to the preparation of a quality dataset for
loss reserve studies. The detailed summary of the loss reserve dataset is given in Section 2 and
the Appendix. We will also post the dataset on the website of the Casualty Actuarial Society
(CAS)™.

The NAIC database contains information on both posted reserves and subsequent paid
losses, which allows us to evaluate: 1) the performance of the predictive distribution based on
actual losses; 2) the predictive distribution based on posted reserves; 3) the sufficiency of the
posted reserves. We will compare the predictive performance between the proposed method
and a standard formula. Our analysis will focus on claims-reserve models for a single line of
business. It is worth mentioning the emerging reserve studies for dependent lines of business.
The retrospective tests for multivariate loss reserving methods could be a direction of future

research.

The structure of this article is as follows: Section 2 describes the run-off triangle data from
the NAIC and discusses the selection process for the insurers in our analysis. Section 3 presents
two stochastic loss reserving method, the chain-ladder over-dispersed Poisson and the Bayesian
Tweedie model. Section 4 and Section 5 report the results of retrospective tests for a single

insurer and multiple insurers, respectively. Section 6 concludes the paper.

! The link for these data is http://www.casact.org/research/index.cfm?fa=loss reserves data
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2. Data

The claims triangle data used for the retrospective test are from Schedule P of the NAIC
database. The NAIC is an American organization of insurance regulators that provides a forum
to promote uniformity in insurance regulation among different states. It maintains one of the
world's largest insurance regulatory databases, including the statutory accounting report for all

insurance companies in the United States.

We consider Schedule P of property-casualty insurers, which includes firm-level run-off
triangles of aggregated claims for major personal and commercial lines of business. And the
claims are available for both incurred and paid losses®. The triangles of paid losses in Schedule P
of year 1997 will be used to develop stochastic loss reserving models. Each triangle contains
losses for accident years 1988-1997 and at most ten development years. The net premiums
earned in each accident year are available for the measurement of business volume. For any
insurer, the triangle for a single line of business could be illustrated as in Figure 1. The crosses

indicate the data point extracted from 1997 Schedule P.

Figure 1. Schedule P of 1997

Settlement Lag
Accident Year Premium 1 2 3 4 5 6 7 8 9 10

1988 XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX

1989 XXX XXX &< 1998
1990 XXX XXX & 1999
1991 XXX XXX &< 2000
1992 XXX XXX < 2001
1993 XXX XXX < 2002
1994 XXX XXX < 2003
1995 XXX XXX < 2004
1996 XXX XXX &< 2005
1997 XXX XXX &< 2006

To perform the retrospective test, one needs the realized claims in the lower triangle. We

square the triangles from Schedule P of year 1997 with outcomes from the Schedule P of

2 By “losses” we mean “Incurred net losses and defense & cost containment expenses reported at year end” as
specified by the NAIC Schedule P instructions.
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subsequent years. To be more specific, as shown in Figure 1, the losses in accident year 1989
are pulled from the Schedule P of year 1998, the losses in accident year 1990 are pulled from
the Schedule P of year 1999, and so on. The overlapping observations from the Schedule P of
year 1997 and subsequent years are used to validate the quality of our data. The insurers with
inconsistency in the overlapping period are dropped from this study. The detailed process of
data preparation can be found in the Appendix. In addition to the actual losses in the lower
triangle, the NAIC database provides posted reserves of year 1997. The posted reserves
represent the actual amount of fund set by reserving actuaries, based on the predictions from

certain claim reserving models, as well as actuarial judgments.

We focus on the run-offs of commercial auto in the retrospective test. Commercial auto is a
relatively short tail line and thus the claims are very likely to be closed within ten years. This
fact makes the Schedule P data an appropriate first candidate for the retrospective evaluation.
The triangles consist of losses net of reinsurance, and quite often insurer groups have mutual
reinsurance arrangements between the companies within the group. Consequently, we limit

our analysis to single entities, be they insurer groups or true single insurers.

For the retrospective tests, we wanted to test only those insurers we deemed to be “going
concern” insurers. Our criterion for selecting insurers was that: (1) earned premium was not
subject to wide swings; and (2) the insurers were generally profitable. To implement these
criteria we first calculated the coefficient of variation for the earned premium over each of the
ten accident years. We then sorted the insurers in increasing order of this coefficient of
variation. Then we individually examined the profitability of each insurer, rejecting those

insurers that we deemed unprofitable. In the end we selected 50 insurers for this analysis.

Figure 2 shows the earned premiums and cumulative paid losses by accident year for the
first insurer we accepted, and Figure 3 shows the earned premium and losses by accident year
for the first insurer we rejected. Table 1 gives the Group Codes for all insurers included in this

analysis.
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Table 1

Insurer Group Codes

1236 353 14974 21270 1406 914 4839 7080 833 1767
37036 5428 26077 13641 86 1538 38733 2674 388 1759
3492 6947 11037 1090 4731 3240 2623 3034 18767 5185
2500 14176 2135 620 26433 31550 44130 2208 10022 310

2283 1066 8427 10839 19020 26905 671 13528 715 9504
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Figure 3

Premiums and Losses for Group Code 11118
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3. Two Loss Reserving Models

Our analysis focuses on incremental paid data. In each run-off triangle, we use Xay(qq to
indicate incremental paid losses for accident years, AY = 1,..,10 and settlement lags,
Lag = 1,...,10. Thus, the paid losses in the upper triangle (training data) and unpaid losses in the

lower triangle (test data) could be represented by X” and X', respectively:
XU={XAy,Lag :AY +Lag <11} and XL={XAy,Lag :AY + Lag > 11}.

The retrospective test will be performed for the predictive distributions of elements or

functions of elements in set X".

The predictive distribution of outstanding liabilities could be obtained either through
bootstrapping techniques or Bayesian methods. In this study, we will propose a Bayesian
Autoregressive Tweedie (BAT) model for the prediction of unpaid loss, which is described in the
next section. We compare the performance of the proposed method with an industry
benchmark, the bootstrap chain-ladder (BCL) model, where the predictive variability of unpaid
losses is derived through bootstrapping technique with an over-dispersed Poisson process
error. A common thread running through the two models is that they both treat parameter risk
by producing simulations of possible parameters for the model (BCL — bootstrap , BAT — Markov
Chain Monte-Carlo). Both models treat process risk (BCL — the overdispersed Poisson

distribution, BAT - the Tweedie distribution).
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3.1 The Bootstrap Chain Ladder (BCL) Model

Bootstrap chain-ladder is simply a chain-ladder algorithm where bootstrapping is employed
to accommodate estimation uncertainty. This technique has been applied to both univariate
and multivariate loss reserving context; for example, see England and Verrall (2002) and
Kirschner et al. (2008). To make this work self-contained, we briefly review the method as

follows:

o Apply chain-ladder algorithm to cumulative payments and obtain the fitted incremental

payments )A(Amg for AY+ Lag < 11.

e Calculate scale parameter and adjusted Pearson residual

X

~ 1 AY,Lag XAYLag AYLag AYLag
Q= TAvleg  TAVles | gng R
AY+Lag<n+1 AYLag ’
m-—p X b%
AY,Lag AY,Lag

respectively, where m = n(n + 1)/2=55 and p = 2n — 1=19.

e Resample the residuals R,(AsiLag (AY + Lag < 11) and create pseudo-triangle by
(s 5 [y 5 _
XAYLag RAVLag XAY,Lag +XAY,Lag fors=1,..,S.

e Apply chain-ladder algorithm to the cumulative pseudo-payments obtained from X%

AY,Lag
(AY + Lag < 11) and project the incremental payments in the lower triangle Xﬁ&iag for AY
+ Lag > 11.

e For each cell (AY,Lag) (AY + Lag > 11), simulate a payment from a process distribution

with mean X%ag and variance (pr,)aag, fors=1,..,5.

Commonly used process distributions include gamma and over-dispersed Poisson. We report
the results based on the latter process error since it is well known that the over-dispersed
Poisson model using incremental payments reproduces chain-ladder predictions under certain
regularity conditions (see Renshaw and Verrall (1998) and Verrall (2000) for details).
Furthermore, a preliminary analysis shows the difference in the predictions based on the two
types of process distributions is negligible. We implemented the bootstrap chain-ladder

method using the “ChainLadder” package in the statistical computing software R.
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3.2 The Bayesian Autoregressive Tweedie (BAT) Model

The objective of this model is given the observed data XY, predict the distribution of the sum of

all amounts in X.

The high-level considerations made in formulating this model include:

1.

The model should use the reported premiums as a measure of exposure. This
consideration has precedent with the Bornhuetter-Ferguson method, but it differs from
other popular models such as the chain-ladder. Given that the model uses premiums, it
should recognize that competitive conditions in the American insurance industry lead to

slowly changing loss ratios over time.

As the settlement lag increases, the payments follow no discernable natural pattern

other than ultimately, they approach zero.

The model should reflect inflationary changes in loss levels by calendar year. This
consideration has precedent with other models such as the one proposed by Barnett
and Zehnwirth (2000). The model should recognize that inflation can change slowly

over time.

Process risk is present and important for (AY,Lag) cells with low expected losses. In
general, the coefficient of variation of the process risk should decrease as the expected
loss increases, but it should never approach zero. Also, the process risk in the later

settlement lags should reflect the larger claims that take longer to settle.

The model is Bayesian. Loss reserve models tend to have many parameters. As
demonstrated by Meyers (2007a), loss reserve models fit by maximum likelihood with a
large number of parameters tend to understate the variance of the outcomes. Bayesian
approaches will correct for this by incorporating parameter risk into calculating the
variance of the outcomes. Other approaches, such as bootstrapping, also incorporate

parameter risk.
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The unknown parameters for this model are as follows.

ELR4y, for AY = 1,..,10. These parameters represent the expected loss ratio for

accident year AY.

Dev,qq, for Lag = 1,...,10. These parameters represent the paid incremental loss

development factors for settlement lag Lag. To prevent overdetermining the

10

model we imposed the constraint that Z Dev
Lag=1

_1'

Lag —

CYT;, for i = 1,..,19. These parameters represent the calendar year trend factor.
For a given (AY,Lag) cell, we have i = AY + Lag — 1. To prevent overdetermining the

model we set CYT; = 1.

Sev represents the claim severity for claims that settle in the 10" settlement lag.
For Lag < 10, the claim severity is given by Sev-(l—(l—Lag/lO)a) . This expression

for the claim severity guarantees that the claim severity increases as the

settlement lag increases.

c represents the contagion parameter as described in Meyers(2007b). Its role is to
keep the coefficient of variation of the process risk from decreasing to zero as the
expected loss increases. Its precise role will be specified in the likelihood function

below.

To allow the {ELR4y} parameters to change slowly over time, we impose the following AR(1)

structure on the parameters.

ELRay = pa* (1 - pa) + paELRay-1 + €a.

From the standard properties of the AR(1) model we have that:

e The long-term average of the ELR,y parameters = .

o Corr(ELRay, ELRayx) = pa~.

[ ] 8A

~ N(O,GA).
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The prior distribution of {{ELRay},l1a,pa,04} takes the form:

10
p({ELRAY}uuA'pA'O-A):f(,uA)'g(pA)'h(O-A)' Hq)(ELRAY —Hy '(1_pA)_pA 'ELRAY—l IO'O-A)

AY=2

where:
e @ is the standard normal distribution.
e fisagamma distribution with mean 0.7 and coefficient of variation 0.18.
e gisauniform (0,1) distribution.

e hisagamma distribution with mean 0.025 and coefficient of variation 0.5.

We impose a similar structure on {CTY;} with the prior distribution taking the form:

p({CYT}},,uC,,OC,O'C)=f(yc)~g(pc)-h(O'C)-HCD(CYE — Hc '(1_pc)_pc CYT, |O,O'C)

where:

e @ isthe standard normal distribution.
e fisagamma distribution with mean 1 and coefficient of variation 0.18.
e gisauniform (0,1) distribution.

e hisagamma distribution with mean 0.025 and coefficient of variation 0.5.
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The prior distributions for the remaining parameters were gamma distributions with the
parameters given in Table 2. These were derived by fitting a similar model by maximum

likelihood to a large number of insurers.

Table 2
Implied

Parameter o 0 Mean Std. Dev.

Sev 1.3676 136.248 186.3386 159.3400
c 0.074 0.1391 0.0103 0.0379
Dev, 15.81 0.0135 0.2137 0.0537
Dev, 42.8538 0.0059 0.2517 0.0385
Devs 56.4944  0.0036 0.2028 0.0270
Dev, 30.4528 0.0046 0.1403 0.0254
Devs 10.2309 0.0085 0.0870 0.0272
Devs 5.8094 0.0083 0.0480 0.0199
Devy 3.6954 0.0068 0.0250 0.0130
Devg 2.3934 0.0057 0.0135 0.0087
Devq 1.3559 0.0066 0.0090 0.0077
Devyy 0.4552  0.0200 0.0091 0.0135

The joint prior distribution for all the parameters is the product of all the individual prior

distributions given above.

We used the Tweedie distribution with index p = 1.67 to describe the process risk. For a

given (AY,Lag) cell, the expected loss is given by:

AY+Llag-1

E[XAY'L"Q :I = PremiumAY ’ ELRAY ’ DevLag ’ H CYT, .
i=1

The scale parameter for the Tweedie distribution for each (AY,Lag) cell is given by:

E[XAWQT‘” .Sev-(l—Lag

)3
¢= 5 0/ e E( Xy | -
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This expression for ¢ can be explained by noting that the variance for the Tweedie
distribution is usually written in the form ¢-u”. Substituting 1= E[Xay4e] and the value above
for ¢ into the expression for the Tweedie variance vyields a variance of
E[XAy,Lag]/(Z-p)+c-E[XAy,Lag]2. The coefficient of variation squared is then equal to

1
E[ Xuy o0 ](2-P)

E[Xay,1agl, increases.

+ ¢ . This coefficient of variation squared decreases to c as the expected loss,

The likelihood function for the data® in the upper triangle is the product of the Tweedie

density functions over all the (AY,Lag) cells in the upper triangle, X".

With the prior distribution and the likelihood function specified above, we used the
Metropolis Hastings algorithm® to generate a sample of size 1,000 parameter sets from the

posterior distribution.

Figures 4 to 14 below graphically show how the data reduces the uncertainty in the range in
the parameters by comparing the prior and posterior distributions of the parameters. We

produced these plots using the data of the insurer with group code 914.

*In fitting the data, we dropped all (AY,Lag) cells with negative paid incremental losses.

* See Meyers (2009) for an explanation of the Metropolis Hastings Algorithm. For each parameter, we used a
gamma distribution with a shape parameter, a = 2,000, for the proposal density function. To obtain convergence
and guard against autocorrelation, we ran 50,000 iterations and took a sample of size 1,000 from the last 25,000
iterations.
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Figure 4
Prior Distribution of 'rho’ for ELR Model
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Figure 6

Prior Distribution of 'mu’ for ELR Model

o
(o8]
z g
C
[
o o
5 I —
e T T T T 1
04 06 08 1.0 1.2
mu
Posterior Distribution of 'mu’ for ELR Model
o
w
=
w w
C
[
[} =T
™
[en]
T T T T 1
04 06 08 1.0 1.2
mu
Figure 7
ELR Parameters
3 -| = Posterior Quantiles
Prior Paths
w |
£ o |
o -

00
|

Accident Year

Casualty Actuarial Society E-Forum, Summer 2011

15



The Retrospective Testing of Stochastic Loss Reserve Models

Figure 8
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Figure 10

Prior Distribution of ‘sigma’ for CYT Model
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Figure 12

Calendar Year Trend Parameters
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Figure 14

Prior Distribution of 'c' Parameter
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For each of the 1,000 randomly selected parameter sets {{ELRay}, {Deviqg}, Sev, c}, we then

calculated the mean and variance of the Tweedie distribution of Xay g for each (AY,Lag) cell in

10 10
the lower triangle and then took 10 different random simulations of z Z X,

AY=2lag=12-AY

These

Y,lagx *

simulations produced 10,000 samples of this sum. Given the amount of an outstanding liability,
we calculate the cumulative probability by counting the number of simulations that are less

than or equal to it.
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4. Retrospective Tests for Single Insurers

Loss reserve models are calibrated using the observed run-off triangle and then are used to
forecast outstanding liabilities. From the perspective of risk management, a reasonable reserve
range is of more interest to reserving actuaries and risk managers. Stochastic claims reserving
models achieve this goal by providing a best estimate as well as a variability measure of
reserves; for example, the conditional mean-squared prediction error. This paper focuses on
testing the predictive distribution of outstanding claims. We emphasize that a fair test should
be based on a retrospective evaluation using the realized claims of predictive interests. In this
study, the retrospective test will be performed at two levels: individual firm and portfolio of
insurers. This section focuses on the tests for single insurers and the next section performs tests

for multiple insurers.

At firm level, the retrospective test informs actuaries on the predictive performance of a
stochastic claims reserving method for each individual firm. For a specific insurer, we calculate
the percentile of realized unpaid losses xay 1o for each cell (AY,Lag) in the unobserved triangle,
by paviag = F (Xaviag), Where F (-) denotes the predictive distribution of Xayqg derived from a
certain stochastic reserving method. All these payiag (AY + Lag > 11) are expected to be a
random sample of a uniformly distributed variable on [0, 1], if the model assumptions of the
stochastic reserving method are appropriate for the insurer. The uniformity of percentiles could
be visualized through graphical tools such as Probability-Probability (PP) plot, or could be easily

tested using formal statistics such as a Kolmogorov-Smirnov (KS) test.

We perform the retrospective test for all the insurers in our sample individually. With the
BAT model, we observe that for all the insurers, the PP plots for the training data lie within the
KS bounds. It was with the test data that the PP plots often deviated outside the KS bounds.
The results for the BCL model are similar; i.e., the model fits data well but could produce bad
predictions. We demonstrate these analyses with three insurers. The group code for the three
insurers are 914, 2674 and 310. We present the following results from the BCL and the BAT
model for each insurer: 1) A PP-plot for training data; 2) The percentiles of training data for

accident year, settlement lag as well as calendar year; 3) A PP-plot for test data; 4) The
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percentiles of test data for accident year, settlement lag, as well as calendar year. If the model
fits well, we should expect the PP-plot to lie along the 45° line, and to see no pattern in the
remaining plots by accident year, settlement lag or calendar year. The results are summarized

in Figures 15 — 26.

In terms of goodness-of-fit, the PP-plots of training data suggest that both BCL and BAT
models fit training data well for all insurers. When examining the test data, the retrospective
test shows that the PP plots of both models are within the KS bounds for insurer 914, but
outside the KS bounds for insurer 310. For insurer 2764, the BCL model provides better
predictive distribution than the BAT model. We attribute such observations to the potential
overfitting of the two loss reserving models. Though not reported here, our analysis showed
that the loss development of insurer 914 is rather stable over time, while the payments for
insurer 2764 and 310 are more volatile from year to year, especially for insurer 310. The higher
variability explains the poor predictive performance of both models on insurer 310. Another
factor affecting the predictive performance of loss reserving models appears to be an
environmental change in the projecting period. Our analysis in the next section shows that the

BCL model somehow did a better job in the perceived changing environment.
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Figure 15 — BCL Model for Insurer 914 — Training Data
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Figure 16 — BCL Model for Insurer 914 — Test Data

PP Plot for Test Data AY vs Cell Percentiles
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Figure 17 — BAT Model for Insurer 914 — Training Data
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Figure 18 — BAT Model for Insurer 914 — Test Data
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Figure 19 — BCL Model for Insurer 2674 — Training Data

PP Plot for Training Data AY vs Cell Percentiles
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Figure 20 — BCL Model for Insurer 2674 — Test Data
PP Plot for Test Data AY vs Cell Percentiles
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Figure 21 — BAT Model for Insurer 2674 — Training Data
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Figure 22 — BAT Model for Insurer 2674 — Test Data
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Figure 23 — BCL Model for Insurer 310 — Training Data
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Figure 24 — BCL Model for Insurer 310 — Test Data
PP Plot for Test Data AY vs Cell Percentiles
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Figure 25 — BAT Model for Insurer 310 — Training Data

PP Plot for Training Data AY vs Cell Percentiles
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Figure 26 — BAT Model for Insurer 310 — Test Data
PP Plot for Test Data AY vs Cell Percentiles
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5. Retrospective Tests for Multiple Insurers

The retrospective test could be performed for a portfolio of insurers as well. At portfolio
level, the retrospective test helps detect the potential under or over reserving issue if one
single stochastic method is applied to all insurers in the portfolio. The same idea could be
generalized to the industry level. Considering a portfolio of N property-casualty insurers, we
implement the test using total reserves. Specifically, for the k' (k = 1,..,N) insurer in the

portfolio, we calculate the percentiles of realized total unpaid losses in the lower triangle

p,” =F(r/”). Here F(-) and ry indicate the corresponding predictive distribution and realized

unpaid losses, respectively. Whether the stochastic reserving method is suitable for the insurer

portfolio could be answered by examining the uniformity of p**

This section compares the predictions of the Bayesian Autoregressive Tweedie (BAT) model
and the Bootstrap Chain Ladder (BCL) model. Our data also includes the reserve that each
insurer posted in the 1997 Annual Statement. The reserves posted by the insurer differ from
the models in that they are not tied to any particular method or model and can reflect insurer
judgment. Also, it is not difficult to imagine the various incentives that can influence the

judgments in either direction.

Figure 27 compares the predictive means and standard deviations of the total outstanding
losses using the BAT and BCL methods. This figure indicates that for the most part, the
predictive means are fairly close®. There are a noticeable number of instances where the

predictive standard deviation is smaller for the BAT model.

> In one case the mechanical application of the BCL model produced a negative mean because of a negative
incremental paid loss. Any actuary would reject this result, in practice. The BAT model dropped any cell that
contained a negative incremental paid loss.
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Figure 27
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Next, we compare the accuracy of the predictions of the BAT and BCL models with the
posted reserves. For both models, we use the predictive means for the test data. Figure 28
compares the percentage error of the three predictions.6 from the actual outcomes. The mean
absolute percentage error was largest for the BCL model, and smallest for the posted reserve.
It is worth noting that in most cases, all three estimates predicted losses that were high. It is
also worth noting that a previous study of this sort on different data (Meyers 2007c) found that

a Bayesian model produced smaller errors than the posted reserve.

® The BCL model produced one negative and one zero predicted mean. We set the percentage absolute
percentage error at -100% and 200% respectively.
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Figure 28
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When a stochastic loss reserve analysis is performed, a question commonly asked by
actuaries is “What percentile should one post a reserve.” While we do not intend to answer
that question, we can use the BAT and the BCL models to estimate the percentiles of the actual
posted reserve. Figure 29 provides the results. It appears that many insurers post conservative

estimates, while many others (correctly as it turns out) posted lower than expected reserves.
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Figure 29
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If a loss reserve model is appropriate for all insurers, the predicted percentiles of the data
should be uniformly distributed. Figure 30 provides histograms for both models with the
training data and Figure 31 provides histograms for both models on the test data. All four
histograms indicate non-uniformity of the predicted percentiles. It should come as no surprise
that the percentiles tend to be around the middle ranges on the training. Because of the high
parameter to data point ratio, we attribute this to overfitting. We interpret the results for the
test data as an indication that either: (1) something changed in the environment that resulted
in lower claim settlements; or (2) no single model should be expected to apply for all insurers.
It appears that, for whatever reason, the BCL did a better job of picking up that environmental

change.

Figure 30
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Figure 31
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6. Concluding Remarks
The primary purpose of this paper was to introduce a new database that can be used to test
predictive distributions from different stochastic loss reserve models. We emphasized the
retrospective tests based on realized payments in the projecting periods. We then performed
some tests on an established model, bootstrap chain ladder (BCL) model, and a proposed new
model, Bayesian Autoregressive Tweedie (BAT) model. At this point in time, we are not ready
to declare a winner. These models, and perhaps other models, should be tested on other lines

of insurance. And the database is there that will permit further testing.

This particular study suggests that there might be environmental changes that no single
model can identify. If this continues to hold, the actuarial profession cannot rely solely on
stochastic loss reserve models to manage its reserve risk. We need to develop other risk

management strategies that do deal with unforeseen environmental changes.
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Appendix

This appendix describes the data set of loss triangles that we prepared for claims reserving
studies. The data cover major personal and commercial lines of business from U.S. property
casualty insurers. We extract the claims data from Schedule P — Analysis of Losses and Loss

Expenses in the National Association of Insurance Commissioners (NAIC) database.
A.1Schedule P

NAIC Schedule P contains information on claims for major personal and commercial lines for
all property-casualty insurers that write business in U.S. Some parts have sections that separate
occurrence from claims made coverages. We focus on the following six lines: (1) private
passenger auto liability/medical; (2) commercial auto/truck liability/medical; (3) worker’s
compensation; (4) medical malpractice — claims made; (5) other liability — occurrence; (6)

product liability — occurrence.

For each of the above six lines, the variables to be included in the dataset are pulled from

three different parts in Schedule P, including:

Part 1 - Earned premium and some summary loss data
Part 2 - Incurred net loss triangles
Part 3 - Paid net loss triangles

Part 4 - Bulk and IBNR Reserves

A.2 Data Preparation

The triangles consist of losses net of reinsurance, and quite often insurer groups have
mutual reinsurance arrangements between the companies within the group. Consequently, we
focus on records for single entities in the data preparation, be they insurer groups or true single

insurers. The process of data preparation takes three steps:

Step I: Pull triangle data from Schedule P of year 1997. Each triangle includes claims of 10
accident years (1988-1997) and 10 development lags. This data was the training data used for

model development.
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Step Il: Square the triangles from Schedule P of year 1997 with outcomes from Schedule P of
subsequent years. Specifically, the data for accident year 1989 was pulled from Schedule P of
year 1998, the data for accident year 1990 was pulled from Schedule P of year 1999, ...... , the
data for accident year 1997 was pulled from Schedule P of year 2006. The data in the lower

triangles could be used for model validation purposes.

Step lll: We performed a preliminary analysis to ensure the quality of the dataset. An insurer
is retained in the final dataset if all following criteria are satisfied: (1) the insurer is available in
both Schedule P of year 1997 and subsequent years; (2) the observations (10 accident years
and 10 development lags) are complete for the insurer; (3) the claims from Schedule P of year

1997 match those from subsequent years.

Casualty Actuarial Society E-Forum, Summer 2011 36



The Retrospective Testing of Stochastic Loss Reserve Models

A.3 Final Dataset

As a final product, we provide a dataset that contains run-off triangles of six lines of business
for all U.S. property casualty insurers. The triangle data correspond to claims of accident year
1988 — 1997 with 10 years development lag. Both upper and lower triangles are included so
that one could use the data to develop a model and then test its performance retrospectively. A

list of variables in the data is as follows:

Table A.1. Description of Variables

Variable Description

GRCODE NAIC company code (including insurer groups and single insurers)
GRNAME NAIC company name (including insurer groups and single insurers)
AccidentYear Accident year (calendar year)

DevelopmentYear | Development year (calendar year)
DevelopmentlLag | Development year - Incurral year + 1

IncurlLoss_ Incurred losses and allocated expenses reported at year end
CumPaidLoss_ Cumulative and paid losses and allocated expenses at year end
EarnedPremD_ Premiums earned at incurral year - direct and assumed
EarnedPremC_ Premiums earned at incurral year - ceded

EarnedPremN_ Premiums earned at incurral year - net

Single 1 indicates a single entity, 0 indicates a group insurer

Refers to lines of business

B Private passenger auto liability/medical
C Commercial auto/truck liability/medical
D Workers' compensation

F2 Medical malpractice - Claims made

H1 Other liability - Occurrence

R1 Products liability - Occurrence
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