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Conditional Probability and the Collective Risk Model 

Leigh J. Halliwell, FCAS, MAAA 

________________________________________________________________________ 
Abstract. One of the most powerful and profound tools of casualty actuarial science is the collective 

risk model NXXS ++= K1 .  It is widely used by casualty actuaries, especially by those in the field 

of reinsurance.  Nearly one hundred pages of one standard textbook (Klugman, [1998], Chapter 4) 
hardly suffice to survey the ingenuity with which actuaries and scholars have analyzed it.  Much of their 
analysis proceeds from the application of conditional probability to the so-called individual risk 

model nXXS ++= K1 .  This paper penetrates deeper into both conditional probability and the 

collective risk model, deriving new insights into higher moments and their generating functions.  
Particular attention is devoted to the fourth moment of the collective risk model, for which no formula 
seems previously to have been published.  An appendix extends conditional probability to a novel 
technique of loss development. 
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________________________________________________________________________ 

1. INTRODUCTION 

This paper applies conditional probability to the moments of the collective risk model.  

In the next section we will set forth definitions of conditional moments and co-moments, 

and in third section will derive formulas in which unconditional moments are expressed in 

terms of conditional ones.  Next, in the fourth section, after explaining why moments higher 

than the third are not additive, we will introduce an additivity-restoring adjustment known as 

a cumulant.  In the fifth section we will apply conditional cumulant formulas to the 

collective risk model to seize the prize of a manageable formula for its fourth cumulant.  

Finally, in the sixth section we will explain the cumulant generating function, and show its 

usefulness in relating cumulants to moments and in deriving cumulants of the collective risk 

model. 
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2. DEFINITIONS 

Let X be a random variable with finite mean [ ] µ=XE .  For positive integer n, define 

the nth moment of X as [ ] ( )[ ]n

n
XEXM µ−= .1  Here we have defined what probability 

theory calls the central moments of X.  Of course, the first central moment is zero.  The 

second moment is the variance, and the third is the skewness.  We shall call the fourth 

moment the kurtosis.2  Now let Θ denote an event which conditions the probability 

distribution of X.  We can then speak of the conditional nth moment 

[ ] ( )[ ]Θµ−=Θ Θ

n

n XEXM , where [ ]Θ=µΘ XE .3 

Furthermore, as a multivariate extension, we can define the nth co-moment 

as [ ] ( )







µ−= ∏

=

n

k

kkn XEXXCM
1

1 ,,K .  Since the order of the co-moment is the number 

of its arguments, it is superfluous to subscript the definition as CMn.
4  The first co-moment 

is zero; the second is the covariance.  We shall call the third and the fourth co-moments the 

co-skewness and the co-kurtosis.  A co-moment of random variables is zero, if any of them 

is constant, since in that case one of the factors in the Π operator will always be zero.  The 

same random variable may appear in the argument list more than once; as a special 

                                                
1 The reader should not confuse Mn[X] for the nth moment with MX(t), the moment generating function of X. 

2 Some define kurtosis as the fourth cumulant, ( )[ ] ( )[ ]224
3 µ−−µ− XEXE , also known as excess 

kurtosis because the kurtosis of the normal distribution is three times the square of its variance.  Sometimes 
(e.g., Daykin [1994], 24) skewness and kurtosis are defined as what we would call coefficients of skewness and 
kurtosis, i.e., the moments or cumulants stripped of dimension by dividing them by the third and fourth 
powers of the standard deviation. 

3 In general, [ ]( )[ ] [ ]( )[ ]ΘΘ−≠Θ−
nn

XEXEXEXE .  Conditioning at one level of expectation 

should by default cascade into the next or nested level, and so on.  The tendency to disregard this inequality 
may indicate a defect in the accepted notation.   It helps (at least it helps this author) to regard unconditional 

expectation as conditional upon the universal event V: [ ] [ ]VXEXE = . 

4 One must be wary of such mistakes as equating [ ]YXXCM ,,  and [ ]YXCM ,2
, which confuses a third 

co-moment with a second. 
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case, ( ) ( )[ ] [ ]XMXEXEXXCM n

n
n

k

n

=µ−=







µ−=















∏
=1

times

,,
48476

K .  The conditional co-

moment is [ ] [ ]( ) 







ΘΘ−=Θ ∏

=

n

k

kkn XEXEXXCM
1

1 ,,K . 

3. UNCONDITIONAL MOMENTS IN TERMS OF CONDITIONAL 

Our purpose here is to derive formulas that express unconditional moments in terms of 

moments and co-moments conditional upon Θ.  This begins with the key sequence: 

[ ] ( )[ ] ( )[ ][ ] ( ) ( ){ }[ ][ ]Θµ−µ+µ−=Θµ−=µ−= ΘΘ
ΘΘ

nnn

n XEEXEEXEXM  

Next we expand this according to the binomial theorem: 

[ ] ( ) ( ){ }[ ][ ]

( ) ( )

( ) ( )[ ][ ]

( )[ ]( )[ ]

[ ]( )[ ]∑

∑

∑

∑

=
Θ−

Θ

Θ

−

Θ
Θ

=

Θ

−

Θ
Θ

=

=

Θ

−

Θ
Θ

ΘΘ
Θ

µ−µΘ







=

µ−µΘµ−







=

Θµ−µµ−







=
























Θµ−µµ−








=

Θµ−µ+µ−=

n

k

k

kn

kkn
n

k

kkn
n

k

n

k

kkn

n

n

XME
k

n

XEE
k

n

XEE
k

n

X
k

n
EE

XEEXM

0

0

0

0

 

The fourth line follows from the third because ( )k
µ−µΘ  behaves as a constant within the 

nested expectation, and so can be taken outside it.  Of these 1+n  terms, the (n–1)th is zero, 

since  ( )[ ] [ ] 011 =Θ=Θ−− XMXM nn .  Hence, in this binomial form, the nth moment has n 

non-vanishing terms, namely: 
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[ ] [ ]( )[ ]

[ ][ ] [ ]( )[ ] ( )[ ]n
n

k

k

knn

n

k

k

knn

EXME
k

n
XME

XME
k

n
XM

µ−µ+µ−µΘ







+Θ=

µ−µΘ







=

Θ
Θ

−

=
Θ−

ΘΘ

=
Θ−

Θ

∑

∑

2

1

0

 

However, at this point we have not expressed the unconditional moment in terms of 

conditional moments and co-moments; we must express the expectation within the Σ 

operator as a co-moment.  Letting [ ][ ]Θ=ζ −
Θ

− XME knkn
, and remembering that first central 

moments are zero, we derive: 

[ ] [ ][ ] [ ]( )[ ] ( )[ ]

[ ][ ] [ ]{ }( )[ ] ( )[ ]

[ ][ ] [ ]{ }( )[ ]

( )[ ] ( )[ ]

[ ][ ] [ ]

[ ] [ ]

[ ][ ] [ ] [ ] [ ]

[ ][ ] [ ][ ] [ ][ ].

,,,

,,,

2

2

2

1

times

2

1

2

1

times

2

1

2

1

2

1

2

1

Θ+ΘΘ







+














ΘΘΘ








+Θ=

+







+














Θ








+Θ=

−+−







+

−−Θ







+Θ=

−+−+−Θ







+Θ=

−+−Θ







+Θ=

Θ

−

= Θ
−

Θ

−

=
−

ΘΘ

Θ
Θ

−

=
Θ

Θ
−

−

=
ΘΘ−

ΘΘ

Θ
Θ

−

=
Θ

Θ
−

−

=
Θ−−

ΘΘ

Θ
Θ

−

=

Θ−−−
ΘΘ

Θ
Θ

−

=
Θ−

ΘΘ

∑

∑

∑

∑

∑

∑

∑

∑

XEMXEMXME
k

n

XEXEXMCM
k

n
XME

MM
k

n

XMCM
k

n
XME

EE
k

n

XME
k

n
XME

EXME
k

n
XME

EXME
k

n
XMEXM

n

n

k

kkn

n

k

k

knn

n

n

k

kkn

n

k

k

knn
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n

k

k

kn

n

k

k

knknn

n
n

k

k

knknknn

n
n

k

k

knnn

444 8444 76

K

48476

K

µµζ

µµ

µµµµζ

µµζ

µµµµζζ

µµµµ

 

Hence, for n ≥ 2, to express the nth unconditional moment in the desired conditional 

form requires ( )3,0max −+ nn  non-vanishing terms.  The first Σ operator does not come 
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into play until n ≥ 3, and the second until n ≥ 4.  At least the complexity does not increase 

after the fourth moment. 

The second, third, and fourth moments follow readily from the general formula: 

[ ] [ ]

[ ][ ] [ ][ ]

[ ][ ] [ ][ ]

[ ] [ ]

[ ][ ] [ ] [ ][ ] [ ][ ]

[ ][ ] [ ] [ ][ ] [ ][ ]

[ ] [ ]

[ ][ ] [ ] [ ][ ] [ ] [ ] [ ][ ]

[ ][ ] [ ][ ] [ ][ ]

[ ][ ] [ ] [ ][ ] [ ] [ ] [ ][ ]

[ ][ ] [ ][ ] [ ][ ]Θ+ΘΘ+

ΘΘΘ+ΘΘ+Θ=

Θ+ΘΘ+

ΘΘΘ+ΘΘ+Θ=

=

Θ+ΘΘ+Θ=

Θ+ΘΘ+Θ=

=

Θ+Θ=

Θ+Θ=

=

ΘΘΘ

ΘΘΘ

ΘΘΘ

ΘΘΘ

ΘΘΘ

ΘΘΘ

ΘΘ

ΘΘ

XEKurtXEVarXVarE

XEXEXVarCoskewXEXSkewCovXKurtE

XEMXEMXME

XEXEXMCMXEXMCMXME

XMXKurt

XESkewXEXVarCovXSkewE

XEMXEXMCMXME

XMXSkew

XEVarXVarE

XEMXME

XMXVar

6

,,6,4

6

,,6,4

,3

,3

393 [1998],Klugman  cf.

422

234

4

323

3

22

2
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4. MOMENTS VERSUS CUMULANTS 

That the conditional expression of the nth moment requires ( )3,0max −+ nn  terms 

indicates a “bend in the road” between 3=n  and 4=n .  It is hardly coincidental that 

moments beyond the third are not additive.  If X and Y are independent random variables 

with means µ and ν, the nth moment of their sum is: 

[ ] ( ) ( ){ }[ ] ( ) ( ){ }[ ]

( ) ( )[ ]

( )[ ] ( )[ ]

[ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]∑

∑

∑

∑

∑

−

=
−

−

=
−

=

−

=

−

=

−









++=









++=









=

−−







=

−−







=

−+−=+−+=+

2

2

1

1

0

0

0

n

k

kknnn

n

k

kknnn

n

k

kkn

n

k

kkn

n

k

kkn

nn

n

YMXM
k

n
YMXM

YMXM
k

n
YMXM

YMXM
k

n

YEXE
k

n

YXE
k

n

YXEYXEYXM

νµ

νµ

νµνµ

 

The Σ operator disrupts the additivity when its range is non-empty, i.e., when 22 ≥−n , or 

4≥n .  So, with independence, the first three moments are additive; in the fourth moment 

the term [ ] [ ] [ ] [ ] [ ] [ ]YVarXVarYMXMYMXM 66
2

4
22224 ==








−  disrupts the additivity, a 

term analogous to [ ][ ] [ ][ ]ΘΘ
ΘΘ

XEVarXVarE6  in the kurtosis formula. 

Nevertheless, adjustments to moments higher than the third can obviate the disruption 

and restore additivity.  Such adjusted moments are known as cumulants.  The fourth-order 

adjustment is: 
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[ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]( )

[ ] [ ] [ ] [ ] .33.

36

363

2

24

2

24

2

222244

2

22244

2

24

YMYMXMXM

YMXMYMXMYMXM

YXMYMXMYMXMYXMYXM

−+−=

+−++=

+−++=+−+

 

Thus, the fourth cumulant, [ ] [ ] [ ] [ ] [ ]2

4

2

244 33 XVarXKurtXMXMX −=−=κ  is 

additive.5 

Since the collective risk model involves sums of independent random variables, the 

fourth cumulant, which we shall call the excess kurtosis, will prove more useful than the 

fourth moment.  Its conditional expression is: 

[ ] [ ] [ ]

[ ][ ] [ ] [ ][ ] [ ] [ ] [ ][ ]

[ ][ ] [ ][ ] [ ][ ] [ ][ ] [ ][ ]( )
[ ][ ] [ ] [ ][ ] [ ] [ ] [ ][ ]

[ ][ ] [ ][ ] [ ][ ]

[ ][ ] [ ][ ] [ ] [ ][ ]

[ ] [ ] [ ][ ] [ ][ ] [ ][ ]

[ ][ ] [ ][ ]

[ ][ ] [ ] [ ][ ]

[ ] [ ] [ ][ ] [ ][ ] [ ][ ]Θ+Θ+ΘΘΘ+

ΘΘ+Θ=

Θ−Θ+

Θ−Θ+ΘΘΘ+

ΘΘ+Θ−Θ=

Θ−Θ−Θ+

ΘΘΘ+ΘΘ+Θ=

Θ+Θ−Θ+ΘΘ+

ΘΘΘ+ΘΘ+Θ=

−=

ΘΘΘ

ΘΘ

ΘΘ

ΘΘΘ

ΘΘΘ

ΘΘΘ

ΘΘΘ

ΘΘΘΘΘ

ΘΘΘ

XVarVarXEXsKurtXEXEXVarCoskew

XEXSkewCovXXsKurtE

XVarEXVarE

XEVarXEKurtXEXEXVarCoskew

XEXSkewCovXVarEXKurtE

XEVarXVarEXEKurt

XEXEXVarCoskewXEXSkewCovXKurtE

XEVarXVarEXEKurtXEVarXVarE

XEXEXVarCoskewXEXSkewCovXKurtE

XVarXKurtXXsKurt

3,,6

,4

33

3,,6

,43

33

,,6,4

36

,,6,4

3

22

2

2

22

2

2

                                                
5 The formulas for higher-order cumulants become increasingly more complicated.  The reader can verify the 
additivity of the next two cumulants according to the definitions (cf. Section 6): 

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ] .151015

10

32

466

55

XVarXSkewXXVarXMX

XSkewXVarXMX

−−−=

−=

κκ

κ
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5. MOMENTS OF THE COLLECTIVE RISK MODEL 

The collective risk model, which casualty actuaries must study for their examinations, is 

stock-in-trade, especially in the field of reinsurance.  It considers aggregate loss S as the sum 

of a random number N of independent, identically distributed claims: NXXS ++= K1 .  

Here we will apply our conditional formulas6 to derive the first four cumulants of S in terms 

of those of X and N.  Because the Xi are independent and identically distributed, as well as 

due to the additivity of cumulants, [ ] [ ]XENNSE = , [ ] [ ]XVarNNSVar = , 

[ ] [ ]XSkewNNSSkew = , and [ ] [ ]XXsKurtNNSXsKurt = .  Because [ ]XE , 

[ ]XVar , [ ]XSkew , and [ ]XXsKurt  are constants, we may remove them from moments 

conditional upon N, being careful to raise them to the power of the conditional moments.  

The first cumulant, the mean, is trivial: [ ] [ ][ ] [ ][ ] [ ] [ ]XENEXENENSEESE
NN

=== .  

For the second, the variance: 

[ ] [ ][ ] [ ][ ]

[ ][ ] [ ][ ]

[ ] [ ] [ ] [ ] .
2

XENVarXVarNE

XENVarXVarNE

NSEVarNSVarESVar

NN

NN

+=

+=

+=

 

Every actuary at some time learned this formula; to many it remains familiar. 

However, the third moment is not studied, and hence, not commonly known: 

[ ] [ ][ ] [ ] [ ][ ] [ ][ ]

[ ][ ] [ ] [ ][ ] [ ][ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ]3

3

3

,3

,3

,3

XENSkewXEXVarNVarXSkewNE

XENSkewXEXVarNNCovXSkewNE

XENSkewXENXVarNCovXSkewNE

NSESkewNSENSVarCovNSSkewESSkew

NNN

NNN

++=

++=

++=

++=

 

                                                
6 We will change the nomenclature of these formulas so as to agree with that of the collective risk model, i.e., S 

will appear instead of X, and N instead of Θ.  In this section X will represent the severity of a claim. 
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Nonetheless, this formula appears in Patrik [1996, 377] and Klugman [1998, 298]. 

Last, we derive the excess kurtosis, whose formula we have not seen in print before: 

[ ] [ ][ ] [ ] [ ][ ]

[ ] [ ] [ ][ ] [ ][ ] [ ][ ]

[ ][ ] [ ] [ ][ ]

[ ] [ ] [ ][ ] [ ][ ] [ ][ ]

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ] .36

4

3,,6

,4

3,,6

,4

3,,6

,4

242

242

XVarNVarXENXsKurtXEXVarNSkew

XEXSkewNVarXXsKurtNE

XVarNVarXENXsKurtXEXVarNNNCoskew

XEXSkewNNCovXXsKurtNE

XVarNVarXENXsKurtXENXENXVarNCoskew

XENXSkewNCovXXsKurtNE

NSVarVarNSEXsKurtNSENSENSVarCoskew

NSENSSkewCovNSXsKurtESXsKurt

NNN

NN

NNN

NN

+++

+=

+++

+=

+++

+=

+++

+=

 

6. THE CUMULANT GENERATING FUNCTION 

The moment generating function of a sum of independent random variables equals the 

product of their moment generating functions.  Since logarithms convert multiplication into 

addition, it is natural to consider the logarithm of the moment generating function, which 

has come to be known as the cumulant generating function ψ  (c.g.f.), i.e., ( ) [ ]tX

X eEt ln=ψ .  

Its derivatives at zero are called cumulants:7 [ ] [ ]( )0i

Xi X ψ=κ .  If the Xi are independent of 

one another: 

( ) [ ] [ ] ( ).lnlnlnln ∑∑∏∏ ψ===







=







 ∑
=

∑
ψ

i

X

i

tX

i

tX

i

tX
Xt

X
teEeEeEeEt

i

iiii

i

i

i

 

                                                
7 In Section 4 we introduced cumulants as “moments adjusted to restore additivity.”  This hardly suffices for a 
definition, and we have not proven the existence and the uniqueness of the adjustment.  The derivatives of the 
c.g.f. at zero constitute a proper definition of cumulant, and the Taylor-series argument of this section can be 
made into a rigorous proof of the uniqueness of the adjustment. 
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Since differentiation is a linear operator, the cumulant of a sum of independent random 

variables equals the sum of the cumulants of the random variables.  The first three 

cumulants equal the mean, the variance, and the skewness.  But equality ceases with the 

fourth cumulant: [ ] [ ] [ ] ( )[ ] [ ]242

244 33 XVarXEXMXMX −µ−=−=κ  (Daykin [1994, 23] 

and Halliwell [2003, 65]).  Here we will show the relevance of the c.g.f., to (1) the expression 

of cumulants in terms of moments and (2) the moments of the collective risk model. 

First, the Taylor-series expansion of the c.g.f. embeds the cumulants: 

( ) ( ) [ ]( ) [ ] .!0!00
11

∑∑
∞

=

∞

=

κ+=ψ+ψ=ψ
j

j

j

j

jj

XXX jtXjtt  

The central moments of X, [ ] ( )[ ]n

n XEXM µ−= , are similar coefficients in the Taylor-

series expansion of the moment generating function of µ−X : 

( )[ ] [ ] [ ] .!01!1
21

∑∑
∞

=

∞

=

− ++=+=
j

j

j

j

j

j

Xt jtXMjtXMeE µ  

We can combine these two equations to relate the cumulants and the moments: 

[ ] ( ) [ ] ( )[ ] ( )[ ]

[ ] .!1ln

lnlnln!

2

1











++µ=

+µ===ψ=κ

∑

∑

∞

=

µ−µ+µ−
∞

=

j

j

j

XttXttX

X

j

j

j

jtXMt

eEteEeEtjtX

 

But the logarithm has its own Taylor-series expansion for 11 ≤<− x , viz.: 

 ( ) ( ) .14321ln
1

1432 ∑
∞

=

−
−=+−+−=+

k

kk
kxxxxxx K  

So the relationship can be expressed as two polynomials in t: 
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[ ] [ ]
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1
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−
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∞

=

∞

=

−

∞
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∞
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k

k

j

j

j

k

j

j

j

k

k

j

j

j

k

j

j

j

j

j

j

kjtXMjtXMt

kjtXMt

jtXMtjtX

µ

µ

µκ

 

Matching coefficients of identical polynomials must be equal.  It is the last expression on the 

right side of the final equation that complicates the matching; however, it is quartic and 

higher in t.  Hence, the first three cumulants must be the mean, the variance, and the 

skewness.  And the formula for higher cumulants begins as [ ] [ ] K+=κ XMX jj . 

As an example of higher-order matching, we will derive the kurtosis formula.  A fourth 

power of t arises in the last expression only from 2=k powers of two, or as 2+2: 

[ ] [ ] ( ) [ ]( ) [ ]( ){ }

[ ] [ ]

[ ] [ ] [ ] .3

8!4

2!2!21!4!4

2

244

42

2

4

4

2

2

2

2

124

4

4

4

XMXMX

tXMtXM

tXMtXMtXMtX

−=

−=

−+=
−

κ

κ

 

The fifth cumulant is a little more complicated, still involving 2=k , but obtained twice as 

2+3 and 3+2.  The sixth cumulant involves 2=k  as 2+4, 3+3, and 4+2, as well as 3=k  as 

2+2+2.  This c.g.f. technique is arguably the easiest way to derive the formulas of footnote 5. 

Second, we will derive the c.g.f. of the collective risk model NXXS K+= 1 , being 

mindful of the change in nomenclature (cf. footnote 6): 

( ) ( ) ( )[ ] ( )[ ] ( )( ) ( )( ).lnlnln tteEeEet XNXN

Nt

N

t

N

t

S
XNSS ψψ=ψψ====ψ ψψψ

o  

So the c.g.f. of the aggregate loss is the composition of the cumulant generating functions of 

frequency and severity (Daykin [1994, 59]).  This is the most elegant way to derive the 
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aggregate cumulants, and it is more efficient than the conditional-moment technique of 

Section 5.  To show this, we will derive the first two moments. 

( ) ( )( ) ( )
[ ] ( ) ( )( ) ( ) ( ) ( ) [ ] [ ]

( ) ( )( ) ( ) ( )( ) ( )

[ ] ( ) ( ) ( ) ( ) ( ) [ ] [ ] [ ] [ ] .00000

00000

22

2

XENVarXVarNESVar
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Curious and ambitious readers, performing the third and fourth derivatives, can verify the 

formulas in Section 5 for the aggregate skewness and excess kurtosis. 

7. CONCLUSION 

We have shown how unconditional moments can be expressed in terms of conditional 

moments and co-moments.  Adjusting moments into cumulants allowed us to form fairly 

simple formulas for the skewness and the excess kurtosis of the collective risk model.  These 

formulas can also be derived directly from the cumulant-generating function.  Actuaries who 

have been reluctant to apply the method of moments to just the first two moments of the 

collective risk model can now with these formulas fit more versatile distributions to more 

than two moments.  One ought to be more comfortable with extrapolations into the right 

tail of an aggregate loss distribution after having considered its skewness and kurtosis. 

Aside from the collective risk model, a conditioning partition Θ can change the 

moments of a sum of independent random variables without changing their unconditional 

moments.  The appendix shows how this can be done in loss reserving.  Moreover, if some 

amount of capital or risk margin were allocated to a moment, conditioning would allow a 

sub-allocation to the partitions. 
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APPENDIX A 

Conditional Probability and Claim Development 

A recent assignment spurred our interest in the subject of this paper.  We had a list of 

the case reserves of about 200 claims, and were satisfied that the total IBNER8 for them was 

zero, i.e., [ ] 0IBNER =E .  But in addition, we wanted some measure of the variance.  The 

claims stemmed from an unusual exposure, and we deemed no other data sources 

appropriate.  Since we assumed the average development to be zero, the claim list itself 

could serve as an empirical distribution Xf  with moments σ±µ .  Regarding the n claims as 

independent, we might decide the moments of the total unpaid loss (i.e., case plus IBNER) 

to be σ±µ nn , or total IBNER to be σ± n0 .  But this ignores the likelihood of rank 

correlation, i.e., that after development large claims tend to stay large, and small claims tend 

to stay small.  Hence, σn  is a maximal value. 

Therefore, we decided to order the claims by their case reserves and to stratify them 

into 10 groups of approximately 20 claims.  Belonging to a stratum is the event Θ that 

conditions a claim’s probability density as 
ΘX

f .  Since stratification provides no new 

information, ( ) ( )[ ]xfExf
XX Θ

Θ
= .  Then we assumed that each claim would develop as 

follows: with probability p its distribution would remain that of its stratum and with 

probability pq −= 1  it would migrate randomly. 

Consequently, the distribution of a developed claim is a mixture of distributions; with 

probability p the developed claim is distributed as 
ΘX

f  and with probability q as Xf .  Let Y 

be the developed amount of claim X.  Mixing is easy with moment generating functions.  

                                                
8 IBNER means “Incurred But Not Enough Reported (or Reserved).”  Cf. Patrik [1996], 350. 
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The moment generating function of Y conditional upon the stratum of X is 

( ) ( ) ( )tqMtpMtM XXY
+=

ΘΘ
.  The overall, or unconditional, moment generating function 

of a developed claim is: 

( ) ( )[ ]

( ) ( )[ ]

( )[ ] ( )
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Since equality of moment generating functions implies identical distributions, Y is distributed 

as X.  Since we have provided no new information, this “conservation of distribution” is 

fitting. 

But the reader may now be wondering how the variance of total IBNER can change 

despite the conservation of the overall distribution.  The paradox is resolved with a 

distinction: variance pertains to the sum of claims, whereas conservation pertains to their 

mixture, more accurately, to the mixture of their distributions.  The overall or unconditional 

variance [ ]XVar  is conserved, but its apportionment between [ ][ ]Θ
Θ

XVarE  and 

[ ][ ]Θ
Θ

XEVar  depends on Θ.  At the one extreme, a blunt or non-discriminating 

stratification Θ tells nothing about X: [ ] [ ]XVarXVar =Θ .  In this case: 

[ ][ ] [ ] [ ][ ]
[ ] [ ][ ]

[ ] [ ]
.0=

−=

−=

Θ−=Θ

Θ

ΘΘ

XVarXVar

XVarEXVar

XVarEXVarXEVar
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Conversely, if the variance of the conditional mean is zero, [ ]ΘXE  must be constant, or 

[ ] [ ]XEXE =Θ .  So the conditional distributions of a blunt stratification tend to be 

indistinguishable as to their first two moments.  In this case the variance of the sum tends 

toward the maximal σn .  At the opposite extreme, Θ is so fine or discriminating that 

[ ] 0=ΘXVar .  Then: 

[ ][ ] [ ] [ ][ ]

[ ] [ ]

[ ].

0

XVar

EXVar

XVarEXVarXEVar

=

−=

Θ−=Θ

Θ

ΘΘ

 

This means that the all the variance is between the strata, no variance is within a stratum.  In 

this case the variance of the sum tends toward the minimal value of zero.  To borrow and 

mix notions from optics and credibility, the blunt stratification passes the white light of zero 

credibility; the fine stratification like a prism refracts light into the spectrum of full 

credibility. 

Since we will be conditioning on migration Μ, we will drop Θ and speak of the ith 

stratum.  Let there be s strata, and let 0>πi  be the probability for a claim to be in the ith 

stratum, as determined by the actual portion of claims in that stratum.  Though the strata 

need not to be balanced, or of equal population, 1
1

=π∑
=

s

i

i .  We may model developed claim 

Yi of the ith stratum as follows.  Randomly draw one undeveloped claim from each stratum’s 

distribution; these X1, …, Xs are independent.  Then form an “unstratified” or average claim 

X as the choice of Xj with probability πj.  Finally, flip a “Bernoulli coin” with probability p of 

heads.  If the coin lands heads, let Yi equal Xi; otherwise, let it equal X. 
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The mean of the developed claim is [ ] [ ][ ] [ ] [ ]XqEXpEYEEYE iii +=Μ=
Μ

.  According 

to the formula of Section 3, the variance is: 

[ ] [ ][ ] [ ][ ]
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Since considerations of rank correlation drew us to this model, we should also 

determine the covariance of Yi with Xi.  Taking the next formula without proof,9 we have: 

[ ] [ ][ ] [ ] [ ][ ].,,, ΜΜ+Μ=
ΜΜ

iiiiii XEYECovXYCovEXYCov  

The second term on the right side of the equation is zero.  For the migration Μ does not 

affect the expectation of Xi, and the covariance of something with a constant is zero. Hence, 

[ ] [ ][ ]Μ=
Μ

iiii XYCovEXYCov ,, .  In the following reduction, we must consider that the 

random migration can return (Ρ) with probability πi to the ith stratum.  Again, a covariance 

term becomes zero due to the immunity of Xi to Ρ: 

                                                

9  The proof hinges on [ ] ( ) ( ){ } ( ) ( ){ }[ ][ ]Θν−ν−ν−µ−µ−µ−=Θ ΘΘΘΘ
Θ

YXEEYXCov , . 
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The covariance of the developed claim amount with the undeveloped is positive, but the 

correlation coefficient is more informative: 

[ ] [ ]
[ ] [ ]

( ) [ ]
[ ] [ ]

( )
[ ]
[ ]
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,

,
i

i

i

ii

ii

ii

ii

ii
YVar

XVar
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XVarqp

XVarYVar

XYCov
XYCorr π

π
+=

+
==  

The correlation increases with respect to p, the probability that the distribution of a 

developed claim remains that of its stratum, from a minimum of  
[ ]
[ ]XVar

XVar i

iπ  for 0=p  to 

a maximum of 1 for 1=p .  It seems that [ ] pXYCorr ii ≈, .  However, this is Pearson 

correlation, whereas we are concerned with rank, or Spearman, correlation. 

Because an analytic answer eluded us, we resorted to simulation.  Keeping with the 

assignment that spurred our interest, we simulated 1,000 iterations of the “development” of 

the integers from 1 to 200 in 10=s  groups of 20 consecutive integers over a range of non-

migration probabilities p from 0% to 100% in steps of 5%.  We randomly permuted the 

integers within each group – this alone would suffice if 1=p  and inter-group migrations 

were impossible.  But then we flipped the Bernoulli coin for each integer, marked which 

places were the migrating “tails,” and randomly permuted among those places their integers.  
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Then we calculated the rank correlation for that iteration, and averaged it over all the 

iterations.  The table below contains the result: 

#Iter #Goups #InGrp p RankCorr

1,000 10 20 0% 0.000

1,000 10 20 5% 0.046

1,000 10 20 10% 0.100

1,000 10 20 15% 0.146

1,000 10 20 20% 0.201

1,000 10 20 25% 0.250

1,000 10 20 30% 0.302

1,000 10 20 35% 0.349

1,000 10 20 40% 0.396

1,000 10 20 45% 0.446

1,000 10 20 50% 0.497

1,000 10 20 55% 0.550

1,000 10 20 60% 0.601

1,000 10 20 65% 0.648

1,000 10 20 70% 0.696

1,000 10 20 75% 0.747

1,000 10 20 80% 0.797

1,000 10 20 85% 0.844

1,000 10 20 90% 0.895

1,000 10 20 95% 0.944

1,000 10 20 100% 0.990  

Indeed, it seems that the rank correlation approximates p.  Nonetheless, it cannot exactly 

equal p.  For at a near 100% probability of not migrating, permutation within each group still 

disrupts a perfect correlation.  Therefore, we suspect RankCorr(p) to start out at zero with a 

slope of unity, but to be slightly concave (i.e., to have a negative second derivative) so that it 

loses ground to  p as p increases to one. 

In sum, as p, the probability of not migrating (i.e., the probability for the distribution of 

a claim to remain that of its stratum) approaches zero, stratification becomes irrelevant.  

Regardless of how the claims are stratified, they will all develop according to the overall 

distribution.  This will produce an aggregate standard deviation approaching the maximal 

σn .  And if there were only one stratum, migration would be from overall to overall, and 
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the aggregate standard deviation again would be σn .  But as p increases, and as the strata 

become narrower, the aggregate standard deviation decreases.  In the extreme, with one 

claim per stratum (better, with zero variance within each stratum) and 1=p , the aggregate 

standard deviation is zero. 

Pondering these relations with two moments led us to the idea of adding higher 

moments to the conditional distributions, and thence to treating the higher moments of the 

collective risk model.  Although we do not intend for this to be a paper on a new 

development method, the reader can see how this claim-by-claim method can be employed 

to apportion moments of loss that mesh with any desired aggregate moments, as well as to 

obtain useful subtotals, e.g., by accident year. 
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