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Direct Analysis of  Pre-Adjusted Loss Cost, Frequency or 
Severity in Tweedie Models  
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________________________________________________________________________ 
Abstract   

Response data (loss cost, claim frequency or claim severity) are often pre-adjusted with known factors 
and directly analyzed with generalized linear models (GLM).  This paper shows that the exposure weights 
should also be adjusted if the Tweedie distribution with log link is used in such direct analysis. An 
advantage of the direct analysis over GLM offsetting is that the structure of the original dataset may be 
simplified significantly after removing the known factors.  Direct analysis is a convenient tool for directly 
modeling loss ratio and for removing known territory factors from the dataset.  Implementation in 
EMBLEM and SAS is discussed, and a computationally efficient SAS macro is provided for Tweedie 
models. 
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1. INTRODUCTION 

In insurance ratemaking, response data are often pre-adjusted with known factors before 

predictive modeling.  However, the effect of adjustment on exposure weights is usually either 

ignored or not linked to the response distribution.  This is particularly the case when the response 

variable is loss cost, which is assumed to follow a Tweedie distribution of power p (1<p<2). 

Application of the GLM offset feature in property-casualty predictive modeling has been 

discussed recently by Yan et. al.[7].  They translated the analysis on loss ratio into an analysis on loss 

cost with premium offset.  In this paper, we will show how loss ratio, viewed as loss cost pre-

adjusted with premium rates, can be analyzed directly.  An advantage of the direct analysis is that the 

structure of original dataset may be simplified significantly for subsequent analysis.  We first show, 

in general, how the exposure weights should be modified in Tweedie models (including the special 

case of Poisson and Gamma) with pre-adjusted loss cost, claim frequency or claim severity as the 

response. 

2. CONNECTION BETWEEN OFFSETS AND PRE-ADJUSTMENT 

In this section, we give two propositions that connect GLM offsets with pre-adjustment.  

Proposition 1 builds a simple linkage between the offsets and pre-adjustment.  Proposition 2 

establishes a foundation for data simplification. 
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2.1 Assumptions and Notations 

Suppose that there are two rating factors U and V, where U has m categories and V has n 

categories.  Denote iu as the relativity of the thi category ( mi ,...,2,1 ) of U and jv as the relativity 

of the thj category ( nj ,...,2,1 ) of V.   Let ijY be a random variable for the ratio of interest in the 

rating cell with the thi level of U and the thj  level of V such that ijijij wXY / .  When the ratio of 

interest is loss cost, ijij LX   as loss amount and ijij ew   as earned exposure.  When the ratio of 

interest is claim frequency, ijij cX   as claim count and ijij ew  .  When the ratio of interest is claim 

severity, ijij LX   and ijij cw  .  Assume that the ijY ’s are mutually independent and ijY  follows a 

Tweedie distribution with power parameter p such that  

jiij vuYE )( ,        (2.1) 

ij
p

jiij wvuYVar /)()(        (2.2) 

where   is a constant dispersion parameter [3].  To include the dispersed Poisson and Gamma as 

special cases of the Tweedie distribution, we focus on the range of power parameter, 21  p . 

As in a typical analysis, we assume that the power parameter p and the constant dispersion 

parameter   are known or have been pre-determined.  We will use log link in all the models. 

2.2 Propositions 

2.2.1  Simple link between GLM offsets and pre-adjustment 

With the Tweedie model, an offset problem can be translated into a pre-adjustment problem and 

vice versa as shown in the proposition below.  This interchangeability also allows us to have a model 

with both pre-adjustment and offsets. 

Proposition 1 

Under the assumptions and notations above, if iu ’s are known, then fitting the following 

Tweedie model (in Eq. (2.3)) of power p with weights ijw  and )log( iu as an offset, 

),log()log()(log ijij uvYE     (2.3)  

where  mi ,...,2,1  and nj ,...,2,1 , is equivalent to fitting the Tweedie model of power p below 

(in Eq. (2.4)) with pre-adjusted response variable iijij uYZ / and weights p
iijuw 2 , 

),log()(log jij vZE       (2.4) 

where mi ,...,2,1  and nj ,...,2,1 . 

In other words, ijZ can be viewed to follow Tweedie distribution of the same power p and 
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dispersion parameter   as ijY , but with different weights. 

Proof 

Note that the Tweedie distribution belongs to the exponential dispersion family, which is closed 

under a scale transformation (cf. [3] Formula 6 on p. 72).  Thus, ijZ  follows a Tweedie distribution 

with power parameter p.  Based on Eq. (2.1) and Eq. (2.2) above, 

   jijiiijij vuvuuYEZE  //)()(     (2.5) 

and 

 )./()/()(/)()( 222 p
iij

p
jiij

p
jiiijij uwvuwvuuYVarZVar      (2.6) 

To show that two models are equivalent, let ijl be the log-likelihood function for ijij yY  .  Then, 

according to the property of the exponential dispersion family, we have  
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where the mean jiijij vuYE  )(  and the variance function p
ijijV  )( .  To obtain the 

maximum likelihood estimate jv̂ of jv , we set for nj ,...,2,1 , 
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which leads to the estimate for the model specified in Eq. (2.3), 










i

p
iij

i
iij

p
iij

j
uw

uyuw
v

2

2 /
ˆ .     (2.9) 

Now, let *
ijl  be the log-likelihood function for ijij zZ  .  Then, 
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where the mean )( ijj ZEv  and the variance function p
jj vvV )( .  To obtain the maximum 

likelihood estimate *ˆ jv  of jv , we set for nj ,...,2,1 , 
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which leads to the estimate for the model specified in Eq. (2.4), 
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It is easy to verify that 0
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 for the maxima.  Q.E.D. 

Note that the right side of Eq. (2.4) is not related to the index i.  Thus, it may be simplified by 

collapsing over the rating factor U as discussed in Section 2.2.2. 

Example 1 

Loss ratio can be viewed as loss cost ijij eL /  pre-adjusted with the premium rates iu  in a rating 

plan: 

Loss Ratio  = Losses/Earned Premiums  

= Losses/(Exposures*Rates) = (Losses/Exposures)/Rates  

= (Loss Cost)/Rates. 

Assume that the loss cost ijij eL /  follows Tweedie of power p.  Then, the loss ratio )/( iijij ueL  

can be analyzed with the Tweedie model of power p, but the model weights need to be adjusted to 

Exposures*Rates^(2-p) = p
iijue 2 . 

2.2.2 Pre-adjustment for data simplification 

Aggregating data reduces the number of records in a dataset and simplifies the data structure.  

This can be especially beneficial when aggregating across high-dimensional variables, such as 

territory.  From a modeling perspective, this is achieved by collapsing on the GLM offset variable, 

but subsequent analyses will then need to be done with pre-adjusted data as shown in the 

proposition below. 

Proposition 2 

Under the assumptions and notations above, if iu ’s are known, then fitting the following 

Tweedie model (in Eq. (2.13)) of power p with weights ijw  and )log( iu as an offset 

),log()log()(log ijij uvYE     (2.13)  
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where  mi ,...,2,1  and nj ,...,2,1 , is equivalent to fitting the simplified Tweedie model of power 

p below (in Eq. (2.14)) with weights  
i

p
iij uw 2 , 

,,...,2,1);log()(log njvZE jj     (2.14) 

where    .,...,2,1;
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In other words, jZ can be viewed to follow the Tweedie distribution of the same power p and 

dispersion parameter   as ijY , but with different weights (cf. [4]). 

Proof 

Note that the Tweedie distribution belongs to the exponential dispersion family, which is closed 

under a scale transformation and follows the convolution formula (cf. [3] Formula 10 on p. 74).  

Write iijij uYZ / .  We know from Proposition 1 that ijZ follows the Tweedie distribution of the 

power p with mean jv , dispersion parameter   and prior weights p
iijuw 2 .  Therefore, 

for nj ,...,2,1 , 
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is still Tweedie distributed with the power parameter p and 
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To show the two models are equivalent for estimating jv , we note from the proof of Proposition 

1 that the maximum likelihood estimate for the model specified by Eq. (2.13) is given in Eq. (2.9).  

From Eq. (2.17), it is rather trivial that the maximum likelihood estimate for the model specified by 

Eq. (2.14) is the same as that in Eq. (2.9), because only a single jZ is involved for estimating jv .  

Q.E.D. 

Example 2 

In a loss ratio analysis, a dataset with numerous premium rate levels may be simplified by 

collapsing over the premium variable.  Note that a unique premium rate level is defined by a unique 

combination of all rating variables in a rating plan.  The data size can be reduced drastically in many 

cases by collapsing over the premium variable.  Before collapsing, loss ratios )/( iijij ueL are recorded 

for each exposure, where iu ’s are premium rates.  We are interested in fitting a Tweedie model of 

power p with other covariates that are combined into jv .  After collapsing, we can equivalently 

model “weighted loss ratios” )/()( 21 p
iiji

p
iiji

ueuL    with adjusted exposure weights
p

iiji
ue  2

.  

Note that the weighted loss ratios are not of the form )/()( iijiiji
ueL  . 

Example 3 

In a loss cost analysis, a dataset with numerous territories may be simplified by collapsing over 

the territory variable.  Both loss cost and exposure weights need to be adjusted by known territory 

relativities for Tweedie models. 
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3. IMPLEMENTATION 

Suppose that the EMBLEM (cf. [1] and [2]) data source is in a summarized table such that each 

record has an observed level (indexed by i) of a rating factor (for example, territory) to be collapsed, 

an observed level (indexed by j) of a populated combination of other rating factors, along with the 

number of claims ( ijc ), the loss amount ( ijL ) and the exposure ( ije ) at the level (i, j).  Assume that 

the original predictive models are as in Table 1 and log link is used for all models.  With the log link, 

iu  is specified as an offset in accordance with the EMBLEM logic.  The dispersion parameter is 

either specified or estimated wherever appropriate. 

With pre-adjustment, the response variable and the weight variable before collapsing are given in 

Table 2 in accordance with Proposition 1.  After collapsing, the response variable and the weight 

variable in Table 3 are ready for simplified analysis in accordance with Proposition 2. 

Table 1.  Description of original predictive models 

Model Distribution Response Variable Weight Variable Offset

Frequency Poisson Claim frequency, ijij ec / Number of exposures, ije  iu  

Severity Gamma Claim severity, ijij cL /  Number of claims, ijc  iu  

Loss cost Tweedie(p) Loss cost, ijij eL /  Number of exposures, ije  iu  

 

Table 2.  Description of pre-adjustment models before collapsing 

Model Distribution Response Variable Weight Variable 

Frequency Poisson Adjusted claim frequency, 
)/( iijij uec  

Number of adjusted 
exposures, iijue  

Severity Gamma Adjusted claim severity, 
)/( iijij ucL  

Number of claims, ijc  

Loss cost Tweedie(p) Adjusted loss cost, 
)/( iijij ueL  

Number of adjusted 

exposures, p
iijue 2  
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Table 3.  Description of pre-adjustment models after collapsing 

Model Distribution Response Variable Weight Variable 

Frequency Poisson Weighted sum of adjusted 
claim frequency, 

)/()( 
i i

iijij uec  

Total number of 
adjusted exposures, 


i

iijue  

Severity Gamma Weighted sum of adjusted 
claim severity, 

)/()/( 
i

ij
i

iij cuL  

Total number of 
claims,

i
ijc  

Loss cost Tweedie(p) Weighted sum of adjusted 
loss amount 

)/()( 21  

i

p
iij

i

p
iij ueuL

Total number of 
adjusted exposures, 

 

i

p
iijue 2  

 

Implementation in SAS can be done similarly.  With known Tweedie power and dispersion 

parameters, the GENMOD procedure can be adopted with user defined distribution.[5]   

4. REMARKS 

Throughout this paper, we assumed that both the Tweedie power and dispersion parameters are 

known.  In practice, the power parameter p is often taken from prior modeling experience, while the 

dispersion parameter is estimated using the Pearson, Deviance or the likelihood approach [3].  

Compared to the likelihood approach, an estimated dispersion parameter using either the Pearson or 

Deviance can be significantly different for p in the mid-range of the interval (1, 2).  In the SAS 

environment, PROC NLMIXED may be used for simultaneous estimation of all Tweedie 

parameters using the code written by Flynn [7], but convergence may become a problem with a large 

dataset and numerous class variables.  As an alternative, the code in Appendix A may be applied. 

We assumed that the dispersion parameter   is a constant.  However, it is often more 

appropriate to allow   to vary with different rating cells such that ij  , especially in a loss cost 

model [6].  In such a case, if we insist on fitting a model with fixed  , then a different set of weights 

may be necessary for an accurate solution.  On the other hand, if   is allowed to vary, we may put 

any adjustment on weights into  , leaving the original weights untouched. 

The choice of weights in Eq. (2.4) and Eq. (2.14) affects both the accuracy of the model estimates 
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and the validity of hypothesis tests even if an estimate of jv is unbiased.     

Both propositions 1 and 2 can be generalized to the case with more than two rating factors.  

Note that multiple adjustments can be combined and sequenced with index i and other covariates 

may be combined and sequenced with index j.  
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Appendix A 

The SAS macro provided in this appendix may be used experimentally for Tweedie models.  The 
macro is based on the orthogonal property between the mean parameter  and the 
power/dispersion parameter ),( p [3], which allows their separate optimizations.  It iterates until 
convergence between the  -step with PROC GENMOD and the ),( p -step with PROC 
NLMIXED.  The GENMOD procedure is easy to converge and has a handy CLASS statement, 
which is suitable for Tweedie models with known ),( p  and high dimension of .  This approach 
reduces the burden on PROC NLMIXED so that it is used only to estimate ),( p  with   assumed 
known.  

 
 
****************************************************************                          
*                MACRO FOR TWEEDIE MODEL                      *                           
*                                                              *                          
*       Author: Sheng G. Shi                                   *                          
*       Paramters:                                             *                          
*         dn -- dataset name                                   *                          
*         vformat -- list of formats                           *                          
*         vclass -- class variables                            *                          
*         wght -- weight variable                              *                          
*         resp -- response variable (must be non-negative)     *                          
*         pred -- predictors                                   *  
*         clmcnt -- claim counts                               *                          
*         offset -- offset variable                            *                          
*      Warning:                                                *                          
*        Check output for convergence of GENMOD and NLMIXED;   *                          
*        Check log for results;                                *  
*        Title3 will be over-written.                          *                          
****************************************************************; 
%macro tweedie(dn=,vformat=,vclass=,wght=,resp=,pred=,clmcnt=,offset=); 
/* Initialization */ 
title3; 
data Est_save_; 
  format p_ phi_ sigma_ p_lower p_upper phi_lower phi_upper  
         sigma_lower sigma_upper 15.4 p_change sigma_change 15.4; 
  p_ = 1.5; 
  p_lower = .; 



Direct Analysis of Pre-Adjusted Loss Cost, Frequency or Severity in Tweedie Models 
 

Casualty Actuarial Society E-Forum, Winter 2010 10 

  p_upper = .; 
  phi_ = 1; 
  phi_lower = .; 
  phi_upper = .; 
  sigma_ = 1; 
  sigma_lower = .; 
  sigma_upper = .; 
  p_change = .; 
  sigma_change = .; 
  call symput('p',trim(left(put(p_,15.4)))); 
  call symput('phi',trim(left(put(phi_,15.4)))); 
  call symput('sigma',trim(left(put(sigma_,15.4)))); 
  call symput('p_lower',trim(left(put(p_,15.4)))); 
  call symput('p_upper',trim(left(put(p_,15.4)))); 
  call symput('phi_lower',trim(left(put(phi_,15.4)))); 
  call symput('phi_upper',trim(left(put(phi_,15.4)))); 
  call symput('sigma_lower',trim(left(put(sigma_,15.4)))); 
  call symput('sigma_upper',trim(left(put(sigma_,15.4)))); 
run; 
/* Maximum likelihood estimation */ 
%let converge = 0; 
%let i=1; 
%do %until ((&converge eq 1) or (&i gt 10)); 
  title3 "Optimization Step &i"; 
  %optimize(&dn,&vformat,&vclass,&wght,&resp,&pred,&clmcnt,&offset,0); 
  %let i = %eval(&i+1); 
    data Est_save_(drop=p_old sigma_old); 
     set Est_save_ end=last; 
   p_old = p_; 
   sigma_old = sigma_; 
   retain p_old sigma_old; 
   output; 
   if last then do; 
     p_ = &p; 
     p_lower = &p_lower; 
     p_upper = &p_upper; 
     phi_ = &phi; 
     phi_lower = &phi_lower; 
     phi_upper = &phi_upper; 
     sigma_ = &sigma; 
     sigma_lower = &sigma_lower; 
     sigma_upper = &sigma_upper; 
     p_change = abs(p_-p_old); 
     sigma_change = abs(sigma_-sigma_old); 
     p_old = p_; 
     sigma_old = sigma_; 
     if (p_change le 1e-5) and (p_change ne .)  
       and (sigma_change le 1e-5) and (sigma_change ne .) then 
    call symput('converge','1'); 
     output; 
   end; 
    run; 
%end; 
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/* Results */ 
%if (&converge eq 1) %then %do; 
  title3 'Tweedie Model with Converged Parameter Estimates'; 
  %optimize(&dn,&vformat,&vclass,&wght,&resp,&pred,&clmcnt,&offset,1); 
  %put Converged; 
  %put Power parameter = &p with 95% C.I. (&p_lower, &p_upper); 
  %put Dispersion parameter = &phi with 95% C.I. (&phi_lower, &phi_upper); 
  %put SAS scale parameter = &sigma with 95% C.I. (&sigma_lower, 
&sigma_upper); 
%end; %else %do; 
  %put Not converged after 10 iterations: ; 
  %put Power parameter = &p; 
  %put Dispersion parameter = &phi; 
  %put SAS scale parameter = &sigma; 
  %put at the end of 10th iteration.; 
%end; 
title3; 
%mend tweedie; 
%macro optimize(dn,vformat,vclass,wght,resp,pred,clmcnt,offset,flag); 
proc genmod data=&dn;    
  format &vformat; 
  class  &vclass 
  /param=glm;  
  p_ = &p;           
  mu_ = _MEAN_;  
  y_ = _RESP_;  
  v_ = mu_**p_;   
  if y_ gt 0 then 
    d_ = 2*(y_*(y_**(1-p_)-mu_**(1-p_))/(1-p_)-(y_**(2-p_)-mu_**(2-p_))/(2-
p_));  
  else   
    d_ = 2*(mu_**(2-p_))/(2-p_); 
  variance var = v_;  
  deviance dev = d_;  
  weight &wght;  
  model &resp = &pred 
      /link=log noscale scale=&sigma  
            %if %length(&offset) eq 0 %then ; 
            %else offset=&offset;; 
  output out=Out_mu_ pred=yhat_; 
run;  
%if &flag ne 1 %then %do; 
ods trace on; 
ods output ParameterEstimates=Est_; 
proc nlmixed data=Out_mu_; 
  format p_ 15.4 phi_ 15.4; 
  parms  p_=&p phi_=&phi;  
  bounds 1<p_<2, phi_>0; 
  n_ = &clmcnt; 
  w_ = &wght; 
  y_ = &resp; 
  mu_ = yhat_; 
  t_ = y_*mu_**(1-p_)/(1-p_)-mu_**(2-p_)/(2-p_); 
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  a_ = (2-p_)/(p_-1); 
  if (n_ eq 0) then 
    rll_ = (w_/phi_)*t_; 
  else 
    rll_ = n_*((a_+1)*log(w_/phi_)+a_*log(y_)-a_*log(p_-1)-log(2-p_)) 
        -lgamma(n_+1)-lgamma(n_*a_)-log(y_)+(w_/phi_)*t_; 
  /* log likelihood of (p_,phi_) with mu_ known */ 
  model y_ ~ general(rll_); 
run; 
ods trace off; 
data _null_; 
  set Est_; 
  if Parameter eq 'p_' then do; 
    call symput('p',trim(left(put(Estimate,15.4)))); 
    call symput('p_lower',trim(left(put(Lower,15.4)))); 
    call symput('p_upper',trim(left(put(Upper,15.4)))); 
  end; else if Parameter eq 'phi_' then do; 
    call symput('phi',trim(left(put(Estimate,15.4)))); 
    call symput('phi_lower',trim(left(put(Lower,15.4)))); 
    call symput('phi_upper',trim(left(put(Upper,15.4)))); 
    call symput('sigma',trim(left(put(sqrt(Estimate),15.4)))); 
    call symput('sigma_lower',trim(left(put(sqrt(Lower),15.4)))); 
    call symput('sigma_upper',trim(left(put(sqrt(Upper),15.4)))); 
  end; 
run; 
%end; 
%mend optimize; 
**************************************************************; 

Here is an example that calls the %tweedie macro: 

%tweedie(dn=CarData, 
         vformat=ModelYr 4. 
                 SYM $symfmt., 
         vclass=ModelYr SYM, 
         wght=EExp, 
         resp=LossCost, 
         pred=ModelYr SYM, 
         clmcnt=ClaimCnt, 
         offset=LogEP 

); 
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