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Abstract: This paper evaluates the foundation of loss reserving methods currently used by actuaries in property
casualty insurance. The chain-ladder method, also known as the weighted loss development method in North
America, is the most commonly used actuarial technique for loss reserving and setting liabilities for
property/casualty insurers. Many actuaries believe that the basic assumption undetlying this model is the
future development of losses is dependent on losses to date for each accident year. We shall see that this is
not the case and the method may be rooted in the complete independence of future loss development. The
alternative assumptions are, in this author’s opinion, a more natural way of analyzing the loss triangle. We
shall also show that most of the methods used by actuaries are based on one common basic model, and the
differences lie in how and which of the parameters are being estimated. The exposition provides some new
insight to reserving methods. While it enriches our understanding of the loss resetving process and defines
the common thread among various methods, it challenges some commonly held views in the actuarial
profession. The exposition here points out a flaw in the Bornhuetter-Ferguson methodology as well as
questions the basic framework of the loss development methodology. We shall show that we can obtain the
same results as the loss development method under the assumption that the future losses are independent of
what we know currently.

We introduce a new method, termed the exposure development method, which has some advantages over
traditional loss development methods in some situations. The proposed methodology allows us to construct
several new estimators. One can estimate the ultimate losses by combining the information gleaned from
paid losses and the incurred loss triangles. Most importantly, this methodology provides better analytical
tools to examine the model, look for outliers, and provides an alternative method of estimating the variability
of reserves.

INTRODUCTION

The results presented in this paper are quite basic and there is no need to review the current state
of knowledge to proceed. For brevity, it will be appropriate to refer to them as needed in our
exposition. Let X ;denote the losses paid for the accident year 7 in the /" year of development, where
i, j =1, 2 ... n. We assume that we have observed X, ;for 7 + ; < n + 2 and are interested in
estimating X, ;for 7+ /7= #n+ 2,7+ 3 ... 2n. Once we have estimated these, we could add them and
compute the ultimate losses. In this paper, we restrict our attention to the development period n and
assume that the losses are fully developed by that time. Any development beyond period n is outside
the scope of the results presented here. Although we will mainly focus on the paid loss triangle, the
methodology presented here can equally be applied to incurred or reported loss triangles. We also
assume that we have some information available about the exposure for each accident year. For
example, the earned premium for each accident year may be known. Although any measure of
exposure will suffice for our purpose. If we have prior information about the ultimate losses, that
may be used as an exposure base as well and might possibly be the best exposure base. The ultimate

losses are exposure times a rate, and they are identical if the loss rate is constant. Sometimes we have
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used these interchangeably and the author assumes that does not cause any misunderstanding. As we
shall see, the assumed knowledge of exposures is for exposition of the ideas presented here and is
not necessary. Let us denote I, be the exposure amount for the accident year z We shall use the
Buhlman (1967) method to estimate the average loss by development period.

We compute
n—j+1
2 X
— _i=L
i on-j#
2E,

i-1 _
However, we do not need to compute 7, so the number of parameters we need and use is only 7

J=1,2..n (1.1)

- 1 If we use earned premium as a proxy for the exposure, the method is known as the partial loss
ratio method. One should note that this method does not assume any relationship between

development periods. We estimate

X,; =Exr, for i+j>n+l. (1.2)
This method, although somewhat popular in Europe, is seldom used in North America.
However, we shall see that this method can be used as the building block of the loss development

method.

Now let us assume that the exposures Es are not known and we want to estimate them from the
data itself. It will suffice for our purpose if we have the estimates of relative exposure levels for each
accident year, and that information is sufficient to compute 7, and hence the values of the unpaid
losses, which is our primary goal. We assume that the exposure level for the first accident year is
unity (E;, = 1) and try to estimate the future accident years’ exposure relative to the first accident

year’s exposure. We compute what we call exposure development factors (EDFs).

k+1n-k
X

q _lez - (1.3)
k — k n-k

It may be easy to relate these factors to weighted loss development factors. All we have done is

changed the process of loss development from operating in columns to operating in rows.
Let us define
D, =d, xd, x...xd,. (1.4)
D, is the estimated total earned exposure by accident year £ +1 relative to accident year 1.

These exposure development factors can then be used to estimate the relative individual accident

year exposures. The exposure for accident year £ +1 relative to the first accident year is D, — D, ;.
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We could use these estimated relative exposures to compute 7, and then using equation (1.2)

compute the unknown elements of the loss rectangle.

One should note that we have estimated 2(# - 1) parameters in the process, (7 - 1) parameters for

the exposure level and another (7 - 1) parameters for the development period rates.

It is interesting to note that one need not compute the payment year rates. One can directly

estimate the unobserved element by computing

R i1 i-1

Xij =0y x> X => X, i+j>n+l. (1.5)
= =1

One can easily verify that the results so obtained are the same that one would obtain by the more
elaborate procedure stated eatlier. Similar to the loss development method, this requires computing
only (7 - 1) parameters. We will call this method the exposure development method. The exposure
development method has its advantages over the loss development method and may be a better way
of analyzing loss triangles, as we shall see further on. We have defined our computational scheme
based on incremental loss data. For computational purpose, it may be better to use cumulative loss
triangles as we do in the loss development method. The computational procedure for the exposure
development method is similar to the weighted loss development method. The difference is that we
first transpose the incremental loss triangle and use this triangle to compute the cumulative loss

triangle and carry out the same computation as for the weighted loss development method.

A quite surprising observation is that the estimates so obtained are those that one would obtain if
the weighted loss development method had been used. The proof is trivial and one can easily verify
that the formula for estimating X, for the exposure development method is equivalent to the

weighted loss development method, where the unobserved X;; are estimated by the formula
i1

X

R j-1 Lk -
_ 1=1 k=1
X, _“Xi’kx—“'l = _;Xi’k' (1.6)
- X, -
1=1 k=1

Where unobserved values of X, used in equation (1.6) are estimated first and then are treated as
the observed values in the equation. The pictorial view shown in Figure 1 helps illustrate the
approach better. The symbols A, B, C and D represent the sum of incremental losses of the area
they cover. The right top formula in the figure 1, represents the estimate when weighted loss
development method is used. The bottom left is the formula for exposure development, and the
bottom right is the formula when we first estimated the exposure levels and then use Buhlman’s
method. We do not show the calculation of exposures (F in the formula in Figure 1) as it cancels

out.
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Fayment Year
T2 .0+ . . n

AY

A B D=CHA+BYA -C

i+1 C D R =BIF
D =(F*(A+C}A-FI"R
D=E*A+C)A-B Where F is total Exposure by AY

Figurel

The important point to note is that by using the alternate derivation (i.e., if we compute the
relative exposures first and then use equation (1.2)) we have estimated 2(z - 1) parameters and arrive
at the same answer as the weighted loss development method or the exposure development method,
which appear to have (7 - 1) parameters. The contrast in the number of parameters is puzzling. The
only explanation I have come up with is based on our misunderstanding of what we are trying to
estimate. The general belief that our aim in loss reserving is to find a number for the value of
ultimate losses that will be paid when all the claims arising from that accident year are finally settled
does not follow statistical logic. In a statistical framework, the ultimate losses are a random variable.
A random variable cannot be estimated. The statistical methods are not meant to estimate a random
outcome or the results of a flip of a coin. All one can do is to estimate the parameters associated
with the random process that are generating the random variable based on the observed data. To
predict a random variable, first we compute (in most cases) the expected value of the random
variable we want to predict. Then we try to estimate that expected value based on the available
information or the estimated parameters of the random process. It should be clear that the estimator
itself is a function of observed data and hence a random variable and its expected value need not
match the expected value of the random variable we want to predict. If the two quantities are equal,
the estimate is an unbiased estimator. The unbiasedness may be desirable criteria and in many cases,
it may be preferred, but it is not always a best estimate and in many cases, it may not be possible to
find an unbiased estimator. If we accept this notion of estimating the parameters of the loss process,
the discrepancy we observe in the number of parameters can be explained. We are estimating both
the relative exposures and the payout pattern and the true number of parameters is 2(# - 1). The
individual year ultimate losses are themselves parameters of the random process and should be
counted as such when we use the weighted loss development method or the exposure development
method. I would like to add one other observation that is relevant to our discussion of number of

the parameters. Technically, if we are interested in total ultimate losses for all accident years
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combined, we need to compute just one parameter. The estimated ultimate loss for all accident year
by the weighted loss development method is same as the exposure development factor D, , times the
first accident year total paid losses by age n. The result can also be obtained by multiplying the sum
of paid losses for all accident years in the first year with the age 1 to n ultimate weighted loss
development factor. This will imply that we need only one parameter in estimating the all accident

years combined ultimate loss.

I would like to point out that Lehigh (2007) has expressed similar views. He states that we use
losses of prior development years as a proxy for exposure. However, the fact may be that we are

estimating the exposure levels as well and not realizing it.

The exposure-based method does not assume any relationship between future losses and the paid
losses to date. After the Mack (1993) paper, there is strong feeling among actuaries that the use of
loss development methods has an implicit assumption that future development is dependent on
current observation. It was one of the basic assumptions of Mack’s method that future losses
depend on losses paid to date by a constant factor. Chu, and Venter (1998) discusses methods to test

this assumption.

It is well known that under the assumption that X; are independently distributed Poisson or
multinomial variates, the same results as the weighted loss development method are obtained and
the proof can be found in Renshaw and Verrall (1998). Therefore, the claim that 2(» - 1) parameters
are being estimated, or the losses to be paid in future are independent of paid to date, is not new.
One important difference in the method presented here is that our assumptions are slightly less
restrictive. Renshaw and Verral require that both the column and row sum for the observed data be

positive whereas we require only row sum to be positive.

The exposure development introduced here can also use simple averages of the exposure
development factors, similar to what is done in the simple average loss development method.
However, the two results from loss development and exposure development will not coincide. As
we shall see, in the weighted loss development method, there is a balancing going on and that causes
the exposure development and loss development results to coincide. Actuaries generally prefer
weighted loss development factors over simple average loss development factors. Using simple
averages of the exposure development factors will be confusing if the incremental loss is negative
and is therefore not recommended. However, simple averages can be used for estimating rates. It
may provide an alternative estimate of the ultimate losses and can be used in making a selection of

the reserve requirements. We shall return to these issues later in the paper.

In the next section, we introduce yet another alternative computational procedure that reinforces

the same idea and further strengthens the view that we are estimating both exposure and payout of
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the ultimate losses. That computational scheme has its own merit and utility besides strengthening
the ideas presented here. The computational scheme is quite versatile, and helps us in assessing the
validity or the appropriateness of the model. It identifies any outliers in our data and opens up a new
area for further research, as well as provides a tool for estimating the variability of our reserve

estimates.

In section 3, we define the basic model of loss reserving and discuss the common thread among
most of the classical actuarial methods of loss reserving. The model presented is not new and one
form or another has been presented by many authors, however the perspective here is different. The
reader is encouraged to read Mack and Venter to get a better understanding of the issues and

controversies.

Section 4 is quite brief and focused on the basic assumptions of loss development methods and
some of the actuarial adjustments that are made in practice. We also discuss the validity of the

method for policy year and report year losses.

Section 5 is devoted to an example where we carry out an analysis of a selected paid loss triangle

and test its appropriateness.

In section 6, we discuss variability in the estimation of ultimate losses. We provide a simple
simulation approach to attack the problem but most of the details are left to the reader to extend

and modify the approach as needed for analyzing the data in hand.

In section 7, we focus on the exposure development method and see how it can be used to deal
with another important issue, which is using both paid and incurred loss data. As we shall see the
new methodology provides us a variety of different ways to achieve it. We define several new
estimators and see how information available, from incurred loss data, can be used along with paid

loss data to refine our results.

SECTION 2: INDEPENDENCE OF ACCIDENT YEAR

Most actuaries are familiar with categorical contingency tables and Chi Square test of
independence. If we classify a population in two or more different categories and each of these
classifications have two or more groups and we count the number of observations by category, we
have a contingency table. For example, we may be interested in whether education level depends on
gender. We may take a sample and count the number of people that have high school degree, a two-
year college degree, a four-year college degree or a postgraduate degree separately for males and
females and carry out a test to see whether education level differs for males and females. We shall

not get into the computational details here, as that is not the purpose of the presentation. However,
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one can see the similarity and the differences with a loss triangle. The categories are accident years
and development years and instead of counts we have paid loss amounts. The most important
difference is that the loss dollars are not scalars and the lower half triangle of the loss rectangle is not
known and our aim is to estimate them. However, it should not deter us from computing the

expected value of each cell as we do in analyzing a contingency table.

Let us assume that we have all the observations in our loss rectangle. Let us define

R =YX, @2.1)
j=1
C, =;Xi,j- (22)
T= X, ;-
== (2.3)
Define
- Cj
X, =R, <= 2.4)

However, we do not know some of the X, and aim to estimate them from the observed data to
date. We shall use an iterative procedure to achieve this. We assign the value 0 to all unknown X
and use equation (2.4) to compute them. This is our first iteration and will give us an estimate of
unobserved X;. We substitute these estimated values in place of the previously assigned values of
zero for unobserved X;. We update the values of R, C, and T and use equation 2.4 again to revise
our estimate for unknown X . We repeat the process until it converges. The process will converge as
long as each of the original Rs are positive (i.e., each accident year has positive exposure). The proof
is messy and left to the reader. We only state that the estimates obtained by the weighted loss
development method are a solution satisfying the stated criterion. The important point to note is
that the process converges to the same values as the exposure development method and the

weighted loss development method. Cleatly we have estimated 2(7 - 1) parameters.

This computing method is estimating the losses to be paid for accident years 2, 3 ... # assuming
that the loss payments are independent of accident year and that losses paid so far have nothing to

do with future loss payments. A typical question one may ask is whether it is possible to test the
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assumption of independence. The answer is unfortunately no. One can compute statistics similar to
Chi-Square as we do for contingency tables, but loss amounts are not scalar (i.e., if we restated the
loss amounts in cents rather than dollars the value of the statistics so computed will be 100 times
larger). We need a suitable scaling factor to test the assumption of independence. There is no
satisfactory solution to the problem and we leave it as a challenge to the actuarial profession. One
solution the author suggests is, if the claim count data is also available, the scaling factor can be
approximated by the ratio of estimated total loss dollars for all accident years divided by the
estimated total claim count for all accident years. One will divide the computed Chi-Square type
statistics by this number and consider it distributed as Chi Square with N? —2n degrees of freedom.
This technique has two problems. First, the estimated scaling factor is a random variable and second
the scaling factors may be different for each cell due to inflation and varying average claim size by

payment lag.

We cannot test the appropriateness of the assumption of independence of accident year and
payment year lag. However, it does not prevent us from testing the suitability of the model. We have
estimated both exposure and payment patterns and can obtain the estimates for each of the
observed values and compute the residuals. These residuals can be tested for randomness, any
pattern in accident year and payment year lag, as well as any outliers in the data. We can also
compute the explained variation of the model and other statistics for goodness of fit of the model.

We have analyzed a paid loss triangle data and shall discuss these results later in the paper.

One additional advantage of this iterative procedure is that we can use it when some data points
are missing or when we believe the residuals are too large for some data elements and want to
remove them from the analysis. These data points can be treated in the same manner as unobserved
data points in the iterative estimation process. The only data elements one cannot remove are X,
and X , for the obvious reasons. The removal of individual data elements and the ability to fit the
original model allows us to compute model skill as introduced by Jing, Lebens, and Lowe (2009) in

the actuarial field. There are additional advantages to removing a data element, as we shall see later.

SECTION 3: BASIC MODEL OF LOSS RESERVING METHODS

We shall define a model that is basic to almost all of the classical actuarial methods.

Xij=a xb;+e;. (3.1)
Where
a;1s the accident year 7 total loss,

b;is proportion of losses to be paid in payment lag j and is constant for all
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accident years, and
¢; are error terms with mean zero and vatiance that may not be constant.
This model has 27 - 2 parameters, as there are 2 constraints

Zn:bj =1 and
-1

a, is presumed known and equals R, defined earlier.

This model can be re-parameterized as

Xi;=uxaixb;+e;, (3.2

n
where p = Zai , &is @, /u and u represents total expected loss amount for all accident years
i-1
combined.

Now we shall explore the various actuarial methods and see how these are related to this basic

model.

3.1 Weighted Loss Development Method: In this method the parameters of the model are

estimated such that

n+1-j n+1-j
Xij=Daxb,j=12..1 (3.3)

i=1 i=1

n+1-i n+l-i

Y Xij=>axb ,i=1,2...x (3.4)
-1 -1
The weighted loss development method or the exposure development method introduced here
can be used to solve the above system of equations. The iterative procedure may be a systematic
approach to find the same solution. We call it a systematic method merely to convey the idea that a
mathematician given the problem and not exposed to actuarial methods will probably proceed that
way.
3.2 Buhlman Method: We have already seen this method. In this method, as are known and we

estimate & parameters.

3.3 Bornhuetter-Ferguson Method: In this method we assume to have prior knowledge of
ultimate losses. However, we do not use this information to compute the payment pattern. The
payment pattern is derived as in the weighted loss development method, which presumes no

knowledge of exposure or loss amounts. We then use this computed payment pattern and the prior
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known ultimate losses to estimate unknown loss values. The method is sometimes referred to as the
combining of observed data and prior knowledge. However, this prior knowledge is not fully utilized
to estimate the parameters to be used in the forecast. The method will be the same as the Buhlman

method if the prior knowledge of ultimate loss is used in estimating the payment pattern.

3.4 Cape-Cod Method: This method is similar to Bornhuetter-Ferguson (B-F) method. We
assume that we know the premium amount for each accident year but not the loss ratio. The loss
ratio is derived from equating the actual paid to date losses for all accident years to the estimated
percentage of earned premium. This method has the same basic flaw that the B-F method has. The

knowledge of premium is not used in estimating the earned percentage or the payment pattern.

3.5 Least Squares Method: This method is also not that common in North America. We try to

estimate ¢; and bs such that the residual sum of squares (RSS) is minimum, i.e.,

n n+l-i

RSS =" > (X;; —a;xh;)? (3.5)

i=l j=1

To solve for as and bs, we differentiate equation 3.5 with respect to s and /s and equate them to
zero. The derived set of equations requires an iterative procedure for solution. We shall not pursue it
here. A variation of this method is to weigh the individual error term by some predefined weighting

factors.

3.6 Log Regression Model: This is a new trend in the last few decades but it is still not widely
used in practice. The basic model is the same as equation (3.2) with one basic difference. The error
terms are assumed to be multiplicative and have mean 1 rather than additive with mean 0. One takes
the logarithm of the paid incremental losses, and the model becomes linear in parameter. These new
parameters can be estimated much more easily. Interested readers are referred to Verral (1994). The
modeling process breaks down if some of the paid values are negative and a variety of ad hoc
adjustments are made to the data are made to fit the model and estimate the model parameters and
the unpaid losses. The main drawback of this method is that it requires transforming the data by
taking logarithms. Once we have estimated the parameters we have to convert the estimates to
original units. There are many advantages as we can test the significance of the various parameters
and can define the parameters in some functional form and reduce the number of the parameters to
be estimated. The transformed equation (3.2) can be modified to include the calendar year
parameters. There is vast literature on this methodology and we will not pursue it here. Alternative

transformations other than logarithmic are also investigated by a few authors.

It may be worthwhile to add that the iterative procedure introduced in section 2 provides many
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of the advantages of this methodology. In section 5 we have a numerical example and discuss it in

detail.

SECTION 4: INFLATION EFFECT

We have seen that for most of the actuarial methods, the basic underlying model is the same. In
this section, we discuss the effect of inflation on the basic model as well as some of the simple

approaches used by actuaries to deal with it.

The basic model presumes that each accident year has an exposure level (ultimate losses); losses
are paid by a fixed pattern and that pattern remains constant over time. These are the implications of
the assumption that the claims reporting and handling process is same for all accident years. Any
changes we may observe are due to randomness and not due to systematic changes in the loss
process or claims handling. We know that inflationary changes affect the loss payments. Under the
assumption that inflation affects the loss payment by accident year only, the basic model is not
affected. Inflation affects the losses paid uniformly for each delay and the payment pattern will
remain the same for all accident years. The inflation impact will be in parameters ;s only and will be
captured by the estimation process. However, the losses paid may be impacted by both the accident
year as well as the year losses are paid. Bustic (1988) discusses these issues in detail. Under this
scenario, the payment pattern is affected and the model (3.1) is distorted. The best way to handle
such a situation is to restate the loss triangle by removing the inflationary effect, estimate the
parameters, and adjust the estimated losses for the inflation. However, this may add more estimation
error in our analysis. First, we have to estimate the inflation by accident year and how the loss
payment is affected by payment delay and the accident year. There is no simple solution to these
estimations, thus adjusting the loss triangle for inflation may add more distortion in the results rather
than improving it. One common technique used by most actuaries is to compute the loss
development factors based on more recent data (latest three years’ average development factors). If
we assume that either inflation changes for each year but changes are moderate or the effect of the
payment lag is small or both, this adjustment works well. One of the advantages of the approach
that we estimate both exposure level and the payment pattern is that the use of the latest years in
estimating parameters can be modified. We could use it for exposures only or rates or both and as
such providing us with alternative estimators. The concept is made clearer when we analyze a loss

triangle later in the paper.

The assumption that we are estimating both the exposure level and the payment patterns raises
another issue of great importance. Actuarial literature encourages the use of the loss development

method for policy year loss triangles as well as report year loss triangles. Under the assumption that
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the exposure level is also being estimated, the loss development methodology is inappropriate for
analyzing report year loss triangles. Each element of a report year loss triangle will have losses
generated from a different number of accident years and the exposure level keeps changing for such
a loss triangle. For policy year loss triangles, the inflationary changes will distort the data much more
severely as they are affected by two years of inflationary impact. Unless inflation is fairly constant,
the use of exposure development method on a policy year loss triangle may be questionable.
However, it will lead to the same result as the weighted loss development method and indirectly
raises questions about the suitability of using the loss development method for the policy year loss
triangle. The inflationary distortion will be much more significant in a policy year loss triangle if the
inflationary changes are large. Although, this author has no serious objection to the use of loss
development method to the policy year loss triangle, however the additional analysis carried out in
the next section, especially the testing the model validity and defining outliers, may not be
appropriate for such data. We have also provided a method for computing variability in the loss

reserve. Such an analysis for policy year loss triangles may be distorted.

SECTION 5: NUMERICAL EXAMPLE

We now focus on analyzing a real data set. This will help create a clearer understanding of the

ideas presented in this paper.

We have selected a data set for use in this example; the main reason for selecting this data was
that both the paid and incurred loss triangles are available. We can see how the information from

both triangles is combined to estimate ultimate losses. In this section we focus on paid losses only.

We shall use model (3.2) for our discussion. We use a paid loss triangle from Quarg and Mack
(2008) that has seven years of data. The incremental paid loss triangle, the development factors, and

some additional computations are given below in table 1.
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Table 1
FPayment Lag
AY 1 2 3 4 5 5] 7 R, Ultimate a;
1 BTE 1228 BB a4 a0 23 29 213 2131 0.0677
2 BEE 1082 214 70 52 B4 2348 2380 00757
3 1412 2345 494 164 78 4494 4552 01479
4 2286 J006 432 146 5850 6,182  0.1965
5 1868 1310 370 4645 5056 01607
G 1442 2568 4010 45934 01568
7 2044 2044 6128 019458
Total 104594 12140 2176 414 180 82 249 25,525 31,463
DF 2437 1131 1029 102 1021 1.014
CcOF 2893 123 1088 1057 1035 1.014 1
b; 0334 0479 0106 0027 002 002 0014
px by 10494 15077 3356 849 618 642 428 31 .4R3

For simplicity, we have computed ultimate losses using the loss development method. They

could have easily been computed using an iterative procedure. The column & is accident year

ultimate losses divided by the sum of estimated ultimate losses for all accident years, and represents

the proportion of total losses for the accident year. We shall use the term exposure level to represent

this quantity. The bottom two rows are the payment pattern and the total losses for the payment lag

respectively. If we used the iteration procedure, the solution would converge at these values. In table
p Y p > g

2 below, we give the residuals for each accident year and payment year. These are computed by

subtracting the estimated values from observed data. The estimated values are the bottom row times

the a;s for the corresponding row and columns.

Table 2
Residuals Fayment YVear
AY 1 2 3 4 5 5] 7 Surmn
1 (134767 206.86 (51300 (3.49) 8.14 (15.46) - 0.00
2 72.06 (8B4 (39.900 578 524 15.46 0.00
3 (139.65) 11676 (2.21) 33.49 (13.38) 0.00
4 224 23 43.89 (227.35) 4077 0.00
) 18179 (B1255) 33078 0.00
5 (203687 20363 0.00
7 0.00 0.00
Surm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Looking at these residuals, the second payment for accident year 5 seems to be an outlier. One

can remove this observation and revise the estimate. We will be constructing this estimate later in

the paper for estimating the variability of our reserve estimates. The residuals can be further
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analyzed as to whether there is a systematic variation from the model and some adjustments to the
model can be made as needed. For the current data set the model seems quite good. The model

statistics are given in the table below in table 3.

Table 3
=um of Sguares DF M5
Tatal 23 568 917 27 572 923
Errar 704,033 12 53 G665
Explained 22 064 554 15 1,425 055
F 24.36
R 0.97

The R?is unusually high for this data set and tells us that the estimated parameters fit the model
very well. We have computed some basic model testing statistics. One may compute a host of other
statistics for testing the appropriateness of the model. We shall not pursue these in detail, as that is
not the theme of the paper. We shall focus on skill of the model statistics recently introduced by Yi
Jing, Joseph R. Lebens, and Stephen P. Lowe (2009) to the actuarial field. However, they used it
quite differently by computing it through the observed future with predicted future. The modeling
procedure presented here allows us to compute it for a current data set and test how good the model
will be for predicting the future. It may be a bit confusing that we need to look for additional
statistics even if the explained ratio is quite high or other statistics indicate that the model is a good
fit. One can think of the skill of the model as testing for model specification error. The assumption
that we estimated both the exposure level as well as the payment pattern allows us to estimate the
model skill. We have mentioned before that the iterative procedure can be used by removing

individual observations. The skill of a model is defined as

Skill =1 >A (5.1)
SSE

where SSE is the average squared error of estimation by fitting all observed data points,

and SSA is the average squared error of estimation error of individual observations estimated by
removing that observation and estimating it from the remaining observations. This following
example will help clarify. We remove the first observed value from our data set and estimate the
parameters. These parameters provide a new estimate for Xj,. The original estimate of X, was
obtained by using all data points including observed X,;. We do this for each of the other
observations. The square of the error of the second estimate from the observed value is averaged
over all data points to compute SSA. In our case we can compute it for all but two observations.

The following table displays the results of this computation along with some additional data that we
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will need for analysis in the next section.

Table 4

Exposure Proportion
AY Lag ESS  FError AY 1 AY 2 AY 3 AY 4 AY 5 AY B AYT
1 BY7 832 2266 00749 00785 01474 01957 018 015589 01807
2 8183833 -438 00544 00767 01503 01999 01637 01602 0.1943
3 B9B8O045 VT 007 00754 01473 01957 016 01563 01943
4 703,593 4 00678 00786 01473 01964 01607 01563 0.1943
& 704770 11 00OefS 00757 0148 01865 01607 01868 0.1943
B Y0DZB858 30 00882 00751 01479 018965 01607 01565 0.1943
1 715180 121 00678 00718 01481 01959 0161 01573 0197
2 718085 129 00674 0079e 01472 01955 015893 01555 0.1943
3 704850 A1 00676 00771 D475 0195 01602 01565 0.1943
4 703358 -7 00678 00785 01479 01986 01607 01563 0.1943
/& 703700 -7 00OBYS 00755 0143 01965 01607 01563 0.1943
B 703051 33 00632 00751 01479 01965 01607 01563 0.1943
1 Va2 2By 00e7s 00754 01586 01956 01899 01557 0.1899
2 740856 -286 00685 00765 01339 01887 01626 0153 0.1943
3
4
]
1
2
3
4
1
2
3
1
2

f03g8E 3 0077 00756 01473 01964 01607 015653  0.1948
02123 57 0088 00755 01466 01972 001607 015653 0.1948
04873 23 00875 00754 01483 01965 01607 015653 0.1948
894 8243 453 00eB2 00762 01483 01825 0062 01586 02036
725506 118 0081 0076 01486 01934 01615 01577 01948
201 375 00sES 00742 01451 02051 01575 01568 01948
oz2a4s 71 00674 00753 001471 0879 01607 01565 01948
BE7 123 -352 00682 00761 014858 01877 01494 01552 02015
2404395 1436 00639 00714 01395 01854 01984 01466 0.1948
B74 810 -485 00825 00777 01518 02017 01477 015653 01948
71 Ees 433 0057 00748 01462 01942 091882 04172 0187
938021 588 00s98 00779 015823 02024 01855 01374 01948

[ T O O Y S At VY -V W Y A T K T G T A T N A T W Y SN T M i e

The first two columns represent the accident year and the payment year of the observation that
was removed from the estimation process. The third column is the total error sum of squares for all
observed values and column four is the estimation error of the observed value that was removed
from the fitting. One can see that the error sum of squares are comparable to the error sum of
squares of 704.03, which was computed based on fitting the model to all data points except for the
error sum of squares for the second payment for accident year 5. Most of this variation is coming
from the estimation error of this observation itself, as the corresponding residual is quite high (1,436
in the table). This observation is over-estimated a little more when it is removed from the fitting.
This gives further credence to the previous statement that this observed value is probably an outlier
in the data set. The data set overall appears to be well-behaved and the model appears to perform

quite well as the total error sum of squares remains fairly constant when other individual data points
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are removed from the estimation process. We also captured the estimated accident year contribution
to the all accident year estimated ultimate loss in each scenario, which we shall be using in estimating

variance. These values are in columns 5 to 11.

The skill of the model is one minus the average of sum of squares of column 4 divided by the
average error sum of squares with all data points included in the analysis. Its value is 0.79 for this

data.

We will not pursue here the removal of the outliers and revising the estimates. We only broach
this issue to point out that the modeling process presented allows us to identify such data elements
and adjustments can be made as warranted. However, removal of the second payment for accident

year 5 will result in accident year 5 ultimate losses of 6,617 instead of 5,056.

In table 5, we provide our analysis for the corresponding incurred loss triangle.

Table 5
Fayment Lag
AY 1 2 3 4 ] B 7 Sum Uit a;

1 978 M2 30 10 30 g - 2174 2174

2 1844 708 -36 14 23 A4 2454 2445 00738
3 2904 1450 344 95 44 4644 4582 01385
4 Jo02 24560 12 72 B142 6126 01352
] 2812 2070 -30 4352 45839 01463
) 2642 1764 4408 4476 01353
7 a0z a0z2 5429 02548

sum 18704 9574 370 -2 102 -4E -8 29,694  33,0M
OF 1B 1.02 1 1.01 099 1
cOF  1B3  1.02 1 1 0.99 1 1

by 0A% 038Y 0018 0000 0011 0010 -0.004
e b 19,704 12,849 607 4 36F 329 122 3307

The estimated ultimate losses from the incurred loss triangle are higher than the paid loss triangle.
Accident year 7 is contributing for most of this difference. There is a significant increase in first year
incurred loss for accident year 7 compared to earlier accident years. The paid loss triangle does not
show such an increase. One will probably give less credence to the ultimate losses derived from
incurred loss triangle for accident year 7 unless there is significant increase in the volume of business

and is known from some alternative sources.
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SECTION 6: VARIABILITY IN LOSS RESERVES

The estimation of variability in loss reserves is becoming an important issue. Although there are
some methods available to achieve this, there is no consensus in the actuarial profession. Ad hoc
methods are commonly used to derive a range of estimates. One uses a variety of methods or a
different data set, paid and incurred loss triangles for example, to derive a range for ultimate losses.
A range for ultimate losses is achieved but the assigning of a confidence level is not possible when
these types of methods are used. We shall develop a simulation methodology to estimate the

variability of the reserve estimates.

We shall again assume that the exposure levels are known and compute its variability. We shall

use model (3.2) and further assume that

2
V(e;)=a xoj. (6.1)
Under these assumptions
n—j+1
M X bJ = :‘:T 5 (62)
2.
i1
n-j+1 )
n—j+1 ¥ 2. zxi,j 1
5% = i =l %
I T O S (63)

Since we have only one observation for payment year 7, the variance cannot be estimated for that
period. For our computational example, we have estimated the variance for 4, by the maximum of

the variance estimates of 4, , and the average of the variance estimates of 4,, and 4,,.

It must be noted that the variance assumption in equation (6.1) may not be valid. Exposure
changes are caused by two factors: changes in volume cause the variance to increase linearly, which
is consistent with equation (6.1), and changes in inflation cause variance to increase exponentially.
Our formulation of the model is consistent with the way parameters are being estimated. Large

changes in inflation may cause this variance to be underestimated slightly.

Under the assumption of independence of future payments,
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X :aix[szj, 6.4)

. n—j+1
V(Xi’j):aix6j2>< 1+a, x Zai . (6.5)

i=1

However, as are not known and are estimated from the same data. Hence our estimate of the
variance is understated. We will attack this problem by using bootstrap and simulation methods and
use the following well-known equation. It is worth mentioning that equation (6.5) defines the
variance for individual incremental payments. The all accident year variance estimates will be larger
than the sum of individual accident years due to correlation introduced in accident year estimates by

the estimation process.

X X
V(X)=E V[Kj +V E[Kj . (6.6)

In the previous section we computed values g, by reducing our observation set by one
observation at a time. We can use the results for the exposure levels captured there for estimating

the variance of the estimation through simulation. Steps of our simulation approach are as follows.

Step 1. Find minimum and maximum values for each accident year for columns 5 to 11 from
table 4.

Step 2. Generate a uniform random variable in the range between minimum and maximum values

for each accident year. These are preliminary relative exposures for each of the accident years.

Step 3. These exposure levels will not add to 1. Normalize them by dividing each preliminary

exposure by the sum of the preliminary exposure levels.

Step 4. Use the normalized exposure levels in equation (6.2) to (6.5) to estimate the X, and its

variance.

Step5. Repeat the process 1,000 times and use these to estimate the terms in equation (6.6); treat

the result of each iteration as an observation of the corresponding variable.

One can increase the number of iterations if the data has larger variation. One thousand

iterations for the current data set were sufficient.

The results for the paid loss triangle are summarized below for each accident year as well as totals

for all accident years. One should note that the variance for all accident years is larger than the sum
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of individual accident years.

Table 6

Simulation Results
im-d Ave Expected “ariance Estimated
AN Ultirnate  Ultirmate  “ariance Expected “ariance ST Dey

1 2131 2131 1l 1l - -
2 2380 2382 B2a i B39 25
3 4 b5 4 Bes 3BT 125 3,802 B2
4 B 182 B, 188 E.310 373 B ke g2
) 5056 5097 B.704 1672 8,376 92
B 4934 4928 45 352 4091 49 423 222
7 B,12a B,131 295912 20055 315567 AE2

Total 3463 3,513 450987 26,873 477,860 691

The all year tatal variation is larger than sum of individual accident years
because of correlation.

SECTION 7: EXPOSURE DEVELOPMENT METHOD

The concept of the exposure development factor (EDF) method introduced in this paper is very
useful. One important area where a lot of attention is being paid is combining the information from
paid and incurred loss triangles to refine our estimates. In the 2009 CLRS meeting, there was a full
session devoted to this topic. The EDF method provides an elegant way to achieve this. The
important characteristic of the EDF method is that, unlike loss development factors, the EDFs for
paid and incurred loss triangles are measuring the same quantity and provide two estimates of the
relative exposure levels. This property can be exploited with significant improvement in our analysis
of loss triangles. One extreme will be to use exposure levels derived from the paid loss triangle to
the incurred loss triangle and vice versa. A better way would be to average the exposure levels
determined by the paid and incurred loss triangles. The exposure levels from two triangles will be
correlated, as the paid losses are included in the incurred losses. The average of the two factors will
still be a better estimate. The averaging can be done in a variety of ways. One can average the year-
to-year exposure development factors or the normalized exposure levels. One could use differential

weights as well.

Once the selection of exposure level for each accident year is made, we use it to determine the
payout pattern. In the examples presented earlier, we have used combined payout for all years.

However, one can determine each accident year’s payout rate separately and then make a selection.
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In the loss development method, actuaries use a variety of averaging procedures and professional
judgment to select a development factor. Similar analysis can be carried out in determining rates for
the selected exposure level. One can take an average after removing high and low values for rates,

for example.

In the following table we provide an example. The main purpose of this is to show how the data
from the different triangles can be combined and used in a systematic way. In the table below we

have adopted an arbitrary weighting scheme to select accident year exposure levels.

Table 7
Faid Incurred Weighted Selected
Exposure Exposure Exposure Exposure
AY Level Level Weight Leve| Level

00877 0.0857 0.4 0067 0.0534
0ovsey 00739 0.5 00748  0.076E
01478 0.1385 0.5 01432 01467
01965  0.1852 0.4 01908 015855
01607 01463 0.24 01499 D.1536
01568 01353 0.25 01407 01442

7 01948  0.2549 0.75 0.2055 0.215
Total 1.0000  1.0000 0.9760  1.0000

oM ok R —

We have changed weights for accident year 5, 6, and 7. We saw before that the second payment
for accident year 5 might be an outlier. It will affect EDFs 4 and 5 and exposure levels so less weight
is assigned to the exposure level derived from the paid triangle for these years. The incurred loses
for accident year 7 is quite high compared to accident year 6. We do not see that magnitude of
increase in paid losses. More weight is therefore given to the exposure level derived from the paid

loss triangle.

Now we use these selected exposure levels and the total observed payout by delay for each
accident year and select a payout judgmentally. We are a bit conservative in our selection. This is

obvious from the fact that the total estimated payout is less than the selected payout.
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Table 8
Exposure

AY Delayl DelayZ Delay3d Delayd Delays  Delays  Delay?  Lewvel
1 576 1,228 166 54 a0 2a 29 0.0654
2 866 1,082 214 70 52 G4 0.0766
3 1412 234k 494 164 7a 01467
4 2286 3006 432 126 0.1955
) 1868 1910 870 0.1536
5 1442 2 EER 0.1442
7 2044 0.2150
Sum 10494 12140 2176 414 180 a2 29 1.0000

Accident Year Payout
Payout Delayl Delay? Delayd Delayd Delayd  Delays  Delay?
1 8424 175950 2405 790 731 410 424
11301 14119 2793 913 B7d 835
9624 15990 3FI3EF 1,118 A3Y
1MBE90 15372 2209 B44
12162 12435 5564
o002 17 812
7 8509
Average 10337 15FB15 3292 866 B47 B2 424 31,854
Weighted 10494 15464 3395 350 B17 B34 424 31,879
Selected 10,450 15600 3,350 860 640 630 424 31,954

oM o L k2

Estimated Payout all Accident Years
AY Delayl DelayZ Delay3d Delayd DelayS Delayg  Delay?  Ultimate

1 576 1,228 166 54 a0 20 29 2,131
=aa] 1,052 214 70 52 B4 32 2,380
1412 234k 494 164 i 922 b2 4 544
2286 3006 432 126 125 123 g3 B, 181
1868 13910 870 1352 93 a7 Ba 5,040
1442 2568 483 124 a2 21 b1 4 861

2044 3353 720 185 138 135 1 b BBk
Sum Proj 10454 15453 3378 855 B33 531 424 31,909

The incurred loss triangle can be analyzed similarly using the selected exposure levels. We shall

not do it here.

Actuaries often use recent accident year data for loss development factor calculations and
projections of ultimate losses. Such results are responsive to changes that are too complex to model.
The exposure development method is much more flexible and therefore can achieve this. Some care
is needed, as the loss payment amount in later lags may be quite thin. It is advisable to use all
payment lag data of an accident year for computing the exposure development factors. In the
example below, we use the available latest three accident years to compute our exposure

development factors. One can directly use these development factors to compute ultimate losses.
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However, we have computed payout rates as there is flexibility here. One can use all years’ data or
the latest three years to determine rates. If we use the latest three years’ data, the results will match

with the latest three-year weighted loss development method.

One alternative approach that this author prefers is to use all accident year data for exposure
development factors and use the latest years’ observations for selecting payout rates. Of course, one
would use exposure levels derived from incurred loss triangles if available, and compute payout rates

based on the latest years or by excluding Hi-Low rates as is done in selecting development factors.

One other possible variation is indicated by examining the incurred loss triangle. The incremental
incurred losses for some accident years are negative possibly due to some recoveries or subrogation.
These just add additional variation in EDFs. One could compute the EDFs without these values.

These data points could be included in computing rates.

SECTION 8: CONCLUSION AND FUTURE RESEARCH

In this paper we have a methodology that in some sense diverges from the common way
actuaries look at loss triangles. Results are, however, consistent with loss development method and
extend it in several ways. In practice, actuaries use a lot of professional judgment. Allowing
judgment to be applied to both the exposure level and payment pattern, we have a two-dimensional
selection processes rather than one. Knowledge of both the paid and incurred loss triangles extends
that even further. The fact that the EDF method measures the same thing for paid and incurred
losses has one other nice implication for excess and reinsurance writers. The paid loss experience is
thin and not credible in the first few years. However, the exposure levels derived from incurred loss
triangles for early years can be used on paid loss data. We had avoided the issue of tail losses.

Perhaps one can use both the paid and incurred rates to derive a suitable decay function.

The author believes that the ideas presented will stimulate other researchers to modify and extend
it further. There is ample opportunity to do so. We defined a range of exposure levels by removing
one observation at a time and re-computing exposure levels. There may be different ways to achieve
this result. One may define a range based on paid and incurred loss triangles or use information
from both data sets or premium data. The simulation results in our example assumed uniform
distribution in the range. One could use alternative distributions somehow derived from the data.
Uniform distributions increase the variance estimates and, in that sense, are conservative estimates

of the variance. Estimation of tail factors is another area where further research will be helpful.

The methodology presented in this paper is simple and is for practical use. How it fares in

practice can only be determined by practicing actuaries.
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