
©PricewaterhouseCoopers LLP. Used by permission.
Casualty Actuarial Society E-Forum, Fall 2010 1

Fitting a GLM to Incomplete Development Triangles

Thomas Hartl, ACAS

__

Abstract: When fitting a generalized liner model (GLM) to a development triangle is discussed in the existing
actuarial literature, reference is usually made to statistical packages for accomplishing this task. This paper
presents a practical discussion of how to use Visual Basic to fit a GLM to a triangle with special emphasis on
how to deal with incomplete data. Interested readers can contact the author to request a copy of an MS Excel
application that implements the algorithms discussed in this paper. The application of GLMs to incomplete
development triangles is motivated by translating judgments of practicing actuaries (e.g., use last n diagonals)
into a rigorous regression framework. The key original contribution of this paper is the discussion of how graph
theory can be used to analyze the topology of an arbitrary selection of triangle cells, and how to use the
information gained to set up a regression model that is suitable for projecting future development. Once
properly specified, fitting a GLM using maximum likelihood estimation (MLE) is straight forward, and we
describe how this can be accomplished from a practical point of view in Visual Basic. To round off our
discussion of model fitting, we briefly describe the standardization of residuals, and how to plot them for
graphically evaluating goodness of fit. Finally we briefly discuss how the described class of GLMs for
development triangles compares to some other stochastic models proposed in the actuarial literature.

Keywords. Generalized Linear Modeling, Reserving Methods, Regression, Data Diagnostics, Data Visualization,
Bootstrapping, and Resampling Methods.

__

1. INTRODUCTION

In the context of stochastic reserving, several authors (e.g., [4], [7], and [9]) have stressed the

need of casting the task of projecting reserves in a rigorous way as a regression problem. These

authors have also pointed out that performing an all years volume weighted link-ratio estimate leads

to the same result as fitting a GLM with the logarithmic link function and the identity variance

function. Many practitioners have exploited this equivalence to implement spreadsheet-based

applications for deriving a distribution of possible reserve outcomes based on bootstrap simulations

by repeated resampling and application of the link-ratio estimate. While suitable to illustrate the

concept of bootstrapping, these applications are typically not flexible enough to deal with practical

judgments reserving analysts have to make about which cells of the triangle are deemed to be

representative of future development (e.g., use data from last n diagonals or exclude obvious

abnormalities). At other times practicing actuaries are also faced with data that are simply incomplete

to start with. The important question here is how incomplete can a triangle ultimately be, while still

providing information that is useful for the purpose of projecting future development? The key

result presented in this paper is that concepts from an area of mathematics know as graph theory

can be used to answer this question. Once we have analyzed some key aspects of the graph topology

of a set of triangle cells, we can easily set up a well-defined regression problem and gain further

Fitting a GLM to Incomplete Development Triangles

Casualty Actuarial Society E-Forum, Fall 2010 2

insights into what information about the variability of the underlying stochastic process can be

gained from the resulting model.

1.1 Research Context

Several papers (e.g., [4], [7], and [9]) in the actuarial literature do describe in abstract terms how

to apply GLM theory to fitting a model to an actuarial development triangle. The actual algorithm

for fitting a GLM follows the description in McCullagh and Nelder’s classic Generalized Linear Models

(2nd Edition) [6]. When fitting a GLM to an incomplete development triangle, however, the

question of what constitutes a valid regression model specification naturally arises. We discuss how

to use graph theory to algorithmically deal with this issue. By fitting a GLM to incomplete

development triangles we furthermore extend the scope of traditional triangle-based reserving

techniques: often a reserve projection can be made even if we only have partial information about

the past development history. While this paper deals with the fitting of a regression model, the graph

topology of the selected set of triangle cells also determines what information about the variability of

the underlying stochastic process can be gleaned from the data. As it turns out, even when a data set

supports projections for all development periods, different regions of an incomplete triangle may

split into areas that are effectively fit without any influence from other areas. So, we can have

multiple weakly connected regression models, rather than one comprehensive model for all selected

data points. We use some of this information in our description of how to standardize residuals and

how to plot them for diagnostic purposes. This insight also has implications for the scope and

applicability of bootstrapping methods.

1.2 Objective

The iterative weighted LSQ algorithm for fitting a GLM is described in [6] and [9], but these

textbooks generally assume that the reader is already familiar with the algorithms for performing

regression fits. This paper seeks to explain at a practical level how to fit a GLM to a triangle of

incremental development amounts. In particular, we address the issue of what happens if we either

do not have complete information about the development history or want to exercise actuarial

judgment about what data to include in our model. In addition, while there may be many advantages

to using a fully fledged statistical package, we hope that interested readers who contact the author to

request a copy of the companion MS Excel application will be able to explore the issues discussed

and thus deepen their understanding of the process of fitting a regression model to a development

triangle.

Fitting a GLM to Incomplete Development Triangles

Casualty Actuarial Society E-Forum, Fall 2010 3

1.3 Outline

The remainder of the paper proceeds as follows. The second section starts with a visual

description of the structure of a regression model for an incomplete development triangle. We then

briefly discuss how we can link the discussed features of the model structure to aspects of the graph

topology of an incomplete development triangle. Next we introduce an algorithm known as

“breadth first search” which can be used to identify the situations previously described. We

conclude by indicating how the information gathered can be used to specify the regression problem

and deal with data points that require special attention. We believe that the application of graph

theory to specifying a regression problem has not been previously discussed in the actuarial

literature. The third section provides an overview of how to use Visual Basic to implement a

maximum likelihood estimator based on iterative weighted least squares. The core algorithm here

follows standard textbook treatment, but we make use of the graph topology of the incomplete

development triangle to piece together the overall regression model from its subcomponents, if

applicable. The fourth section deals with the standardization of residuals and plotting them for

graphically evaluating goodness of fit. This section also walks through a number of the diagnostic

exhibits using a concrete data set to demonstrate how an analyst may use them in practice. Finally

we briefly discuss how the class of GLMs described in this paper compares to some other stochastic

models for development triangles that are discussed in the actuarial literature.

©PricewaterhouseCoopers LLP. Used by permission.
Casualty Actuarial Society E-Forum, Fall 2010 4

2 SETTING UP THE MODEL SPECIFICATION

In this section we go into the details of how to set up the model specification that

formally describes the regression problem corresponding to a multiplicative model for an

incremental development triangle with separate parameters for rows and columns.

2.1 Notes on the structure of the regression model

To visualize what our set-up algorithm is trying to accomplish, we use the example of a

five-by-five triangle. We have dispensed with row or column labels to reduce clutter. We

follow the convention that rows denote exposure periods and columns development

periods. With this said, a multiplicative model for expected incremental amounts looks

something like this:

ca

cbaca

cbacbaca

cbacbacbaca

cbcbcbcbc

5

244

32233

4232222

5432

(2.1)

This parameterization corresponds to a common method for dealing with extrinsic

aliasing for factorial models: drop one level from each factor and replace them by one offset

parameter common to all observations. For (2.1) we have dropped the first exposure and the

first development period parameter and replaced them with an offset parameter. In this

parameterization the offset parameter c denotes the value of a base (or reference) cell and the

ai and bj parameters are relativities for exposure and development periods, respectively. Also

note that the choice of reference cell generally does not affect the fitted values produced by

the model. We could have equally chosen the following parameterization:

cba

cbacba

ccbcb

cbacacbacba

cbacbacacbacba

15

2414

21

4222212

514112111

(2.2)

For a complete triangle either of the above parameterizations can straightforwardly be

translated into a standard regression problem and the fitted incremental amounts will be

identical. When we start excluding data points from the analysis, we may encounter a

number of issues that force us to pay closer attention the structure and parameterization of

Fitting a GLM to Incomplete Development Triangles

Casualty Actuarial Society E-Forum, Fall 2010 5

our regression model. The algorithm presented here deals with four specific issues relating to

ensuring we are dealing with a well-defined regression problem, and to identifying triangle

cells requiring special treatment in our subsequent goodness of fit analysis.

2.1.1 Not enough data points to estimate some parameters

ca

cbaca

cbacbaca

cbacbaca

cbcbcbc

5

244

32233

32222

532




(2.3)

The cross symbol here denotes data points that are missing or excluded by the analyst

(e.g., truncated triangles or want to use last n diagonals). Clearly we have no information on

the b4 parameter and it therefore has to be dropped from the model. Note that despite the

“gap” at development period 4, there is no issue with relating the top right corner

(development period 5) with the rest of the triangle—we can compare this value to the first

3 incremental values for exposure period 1.

2.1.2 Choice of reference cell does matters after all

Assume we are trying to use our cell (3,1) as our reference cell for the following data set:

cba

cbacba

cbacacbacba

cbacbacacbacba

15

2414

4222212

514112111



(2.4)

Clearly we have no information on a3, and this situation could be remedied by dropping

this parameter from the model. In this case, however, we cannot do this because a3 has

already been replaced by the common offset parameter c. Actually, our algorithm

circumvents this problem altogether by first analyzing which rows and columns are part of

the connected component of triangle cells for which fit a model before attempting to assign

parameters to rows and columns.

Fitting a GLM to Incomplete Development Triangles

Casualty Actuarial Society E-Forum, Fall 2010 6

2.1.3 Data splits into unrelated regions

ca

cbaca

cba

cbacba

cbcbcb

5

244

32

4232

543





(2.5)

In this situation, there is no information on how to relate the upper right sub-triangle to

the lower triangle. This is an issue that cannot be fixed in a meaningful way, as far as

predicting future values for all exposure and development periods is concerned. We handle

this issue by using graph theory, noting that two triangle cells can be regarded as connected

if they are either in the same row or in the same column. We determine what is called the

maximal connected components of the triangle viewed as a graph. Further information on

graph theory will be provided in section 2.2, below. One could fit a separate regression

model for each of the connected components, but this is not useful for projecting future

development amounts. Generally we hope that there is only one connected component. If

not, we continue with the connected component that has the maximum number of triangle

cells. If the number of triangle cells does not uniquely determine which component to pick,

we take the component with the left-most column.

2.1.4 Exact fit cells

ca

cbaca

cbacbaca

cbacba

cbcbcb

5

244

33233

4232

543





(2.6)

One of the general goals in stochastic model fitting is to assess goodness-of-fit and

measure the variability inherent in the observed process. To this end residuals (actual value

less fitted value) need to be analyzed. This analysis can be distorted by triangle cells where

the fitted value will always be exactly the same as the actual value. For a complete triangle

this will always be the case for the top right and the bottom left corner, but when there are

missing data points the same may be true for other cells. In the above example parameters a5

and b5 each appear in exactly one triangle cell, so they will always take values that ensure a

perfect fit. What may be less obvious is that there will always be an exact fit for the cell in

row 3, column 3. The reason for this is that removing this cell would split the incomplete

Fitting a GLM to Incomplete Development Triangles

Casualty Actuarial Society E-Forum, Fall 2010 7

triangle into two unrelated regions (as discussed under 2.1.2 above). Our algorithm for

analyzing the model structure identifies exact fit cells by looping over all cells in the selected

connected component and checking for each cell whether the removing the cell from the

model changes to model structure by either dropping a row or column, or by splitting the

model into two unrelated regions.

2.1.5 Further remarks on the model structure

Until now our discussion on the model structure preserved the shape of the triangle

because the distinction between exposure and development periods is meaningful to us as

P&C actuaries. Algorithms for fitting a simple GLM model as described above, however, are

indifferent to how we perceive the various triangle cells as data points that are somehow

ordered by exposure and development periods. Consider the following sparse data set for a

hypothetical ratemaking problem with a multiplicative model with two classification

dimensions, namely group and territory:

bgtbtbgtbgt

bgtbt

bgtbtbgt

bt

bgtbgtbbgtbgt

5552515

544

53323

2

51412111







(2.7)

Group 3 in territory 1 corresponds to the base rate b, while the gi and ti parameters represent
group and territory relativities. This may not look like a development triangle, but this data
set is structurally identical to multiplicative model for a complete triangle of incremental
development amounts (see our original example at the beginning of section 2).

Hence, when using a model based on distinct parameters for each exposure and

development period, a triangle is just an unordered list of data points, and the only

relationships between data points are defined by certain parameters simultaneously affecting

the fitted values of multiple triangle cells. For the purpose of implementing a concrete

algorithm, however, we do need to find a way of listing all triangle cells. To keep things

simple our default is to loop over rows, then columns, resulting in the following order of

processing cells:

Fitting a GLM to Incomplete Development Triangles

Casualty Actuarial Society E-Forum, Fall 2010 8

13

1211

109

876

54321




(2.8)

Note how excluded cells are skipped. There will be occasions when this order changes, so
when interpreting the Visual Basic code, the reader should generally not rely on triangle cells
being ordered in this way.

Another point, that is worth understanding in translating between triangles and the

common representation of regression problems (e.g., following McCullagh and Nelder), is

that all explanatory variables are on the same footing after aliasing has been taking care of—

the regression algorithm does not distinguish between exposure or development period

parameters (or the offset parameter).

2.1.6 Moving to GLMs—taking the log transform

The above discussion on the model parameterization is generic in the sense that it applies

to any multiplicative regression model for an incremental development triangle that is

restricted to distinct, unordered parameters for exposure and development periods. This

paper is more specifically about fitting a GLM to a development triangle. To linearize the

multiplicative model we need to choose the logarithm as a link function. This results in the

following additive model structure for the logarithms of the expected incremental amounts:

















5

244

32233

4232222

5432

(2.9)

 We are emphasizing this step here for two reasons. Firstly, the use of a logarithmic link

function restricts the model to positive incremental values. Secondly, understanding the

connection between this additive model and the more generic multiplicative model is crucial

to interpreting the output from GLM packages.

2.2 Graph topology of an incomplete development triangle

We noted above the cells of an incomplete development triangle can be thought of as

forming a mathematical structure know as a graph. Generally a graph is collection of nodes

Fitting a GLM to Incomplete Development Triangles

Casualty Actuarial Society E-Forum, Fall 2010 9

(or vertices) that are connected to each other by edges. Two nodes are considered neighbors

if there is an edge that directly joins them. We can also define an equivalence relationship

among nodes called connectedness. Two nodes are connected if there is a path (or sequence)

of neighboring nodes that leads from one node to the other. Two nodes are disconnected if

there is no way of getting from one to the other by passing from neighbor to neighbor. This

equivalence relationship of connectedness defines equivalence classes of nodes that are

called maximal connected components. Note that in this paper we often refer to maximal

connected components as connected components since repeating “maximal” becomes

cumbersome.

If we think of the triangle cells as nodes and define two triangle cells as being neighbors if

they are in the same row or column of the triangle, the collection of cells from an incomplete

development triangle can be seen to form a graph. We will now briefly outline how graph

theory can be used to handle the issues regarding model parameterization and exact fit cells

identified above.

2.2.1 What parameters are needed for the model?

We use an algorithm known as “breadth first search” (described in detail in section 2.4) to

first identify the maximal connected components of the incomplete triangle. As explained

above in section 2.1.3 we can only “complete the triangle” for projection purposes if the

given triangle cells form a connected component. If there is more than one connected

component our algorithm proceeds by picking the largest (most triangle cells) connected

component. If there is more than one largest connected component the algorithm chooses

the component that has the left most column. Once we have identified the connected

component for which we will fit a regression model we analyze which rows and columns are

covered by the connected component. We parameterize our regression model by choosing

the cell corresponding to the top row and left most column as our reference cell, with

separate parameters for each other row and column. This takes care of the issues identified

in section 2.1.1 and 2.1.2.

2.2.2 Which cells are exact fit cells?

As indicated above there are two circumstances under which the fitted value for a

particular triangle cell will always match the given data point. Both situations can be

identified by eliminating a particular cell from the regression model and seeing how the

elimination affects the structure of the model. Technically we do this by looping over all cells

Fitting a GLM to Incomplete Development Triangles

Casualty Actuarial Society E-Forum, Fall 2010 10

in the selected connected component, remove each cell in turn and then run the “breath first

search” algorithm also used in section 2.2.1 to analyze the structure of the remaining model.

This allows us to identify three different types of cells:

Single parameter cells: when this cell is eliminated from the model, we lose one row or

column and the corresponding parameter. Since this is therefore the only data point for that

parameter, the parameter will always take a value that produces an exact fit for this cell.

Critical connector cells: eliminating this cell from the model, splits it into exactly two

disconnected components (proof left as an easy exercise for the reader1). The issue of

aliasing now affects both disconnected components separately, so we lose a parameter. The

details of how this parameter disappears are more subtle than for single parameter cells, but

the bottom line is that there is some “slack” in the parameterization and we always get an

exact fit for a critical connector cell.

Regression cells: when eliminating this cell, the model structure is not affected in a

significant way (same number of rows and columns covered, same number of parameters

needed to parameterize the model).

Both types of exact-fit cells need to be excluded when analyzing standardized residuals

and measuring the inherent uncertainty of the underlying stochastic process. The impact of

the critical connector cells is more far reaching. Despite having a valid regression model for

the entire connected component, the critical connector cells (if they exist) split the

incomplete triangle into regions for which the regression fit is performed without any

influence from the other regions. Our algorithm for fitting the GLM powerfully

demonstrates this feature by literally applying the iterated weighted least square procedure to

these separate regression components. To get the final parameterization for the overall

model we then perform a single-weighted least square fit based on the fitted values

separately obtained for regression regions and the actual data points for the identified exact

fit cells. Note that it is not necessary to perform the fit separately for the regression regions,

but when it comes to actual computations, it is usually more efficient to split a larger

problem into separate smaller problems, especially when the computational cost scales non-

linearly.

1 Hint: if another cell, C, is connected to the critical connector cell, there has to be at least one cell that is
connected to C, which either shares a row or column with the critical connector cell.

Fitting a GLM to Incomplete Development Triangles

Casualty Actuarial Society E-Forum, Fall 2010 11

2.3 Formal set-up

To formally establish the relationship between the data for which we want to find a

model (i.e., the cells of the triangle) and the explanatory variables (i.e., the exposure and

development periods) we set up a data structure known as the model matrix, X, the columns

of which represent the explanatory variables, and a corresponding column vector, y, which

represents the data. Interested readers are referred to the CAS Practitioners’ Guide to GLMs

([1]) for a general introduction to setting up information matrices. Here we will simply show

an example of how a complete 5 x 5 triangle can be represented:

Parameters P γ β2 α 2 β3 α 3 β4 α 4 β5 α5

 Data Model matrix Fitted Values
Unit # Y X Exp(Xp)

1 inc(1,1) 1 0 0 0 0 0 0 0 0 Exp(γ)
2 inc(1,2) 1 1 0 0 0 0 0 0 0 Exp(β2+γ)
3 inc(2,1) 1 0 1 0 0 0 0 0 0 Exp(α2+γ)
4 inc(2,2) 1 1 1 0 0 0 0 0 0 Exp(α2+β2+γ)
5 inc(1,3) 1 0 0 1 0 0 0 0 0 Exp(β3+γ)
6 inc(3,1) 1 0 0 0 1 0 0 0 0 Exp(α3+γ)
7 inc(2,3) 1 0 1 1 0 0 0 0 0 Exp(α2+β3+γ)
8 inc(3,2) 1 1 0 0 1 0 0 0 0 Exp(α3+β2+γ)
9 inc(1,4) 1 0 0 0 0 1 0 0 0 Exp(β4+γ)
10 inc(4,1) 1 0 0 0 0 0 1 0 0 Exp(α4+γ)
11 inc(3,3) 1 0 0 1 1 0 0 0 0 Exp(α3+β3+γ)
12 inc(2,4) 1 0 1 0 0 1 0 0 0 Exp(α2+β4+γ)
13 inc(4,2) 1 1 0 0 0 0 1 0 0 Exp(α4+β2+γ)
14 inc(1,5) 1 0 0 0 0 0 0 1 0 Exp(β5+γ)
15 inc(5,1) 1 0 0 0 0 0 0 0 1 Exp(α5+γ)

Note that the unit #s are simply for referencing values stored in arrays and that inc(i,j)

denotes the incremental amount for accident period i and development period j. The model

matrix, X, has one row for each triangle cell and one column for each parameter of the

model. All entries of X are either 0 or 1. A value of 1 simply means that the parameter

corresponding to the respective column contributes to the fitted value for the triangle cell

corresponding to the respective row; a value of 0 implies the converse. In the above table we

have introduced the parameter vector, p. If ŷ denotes the vector of fitted values, the

systematic part of our GLM model can neatly be summarized by the following equation:

log(ŷ) = Xp (2.10)

2.4 The algorithm for setting up the model specification

Setting up the actual model matrix is straightforward. The real challenge here is to

Fitting a GLM to Incomplete Development Triangles

Casualty Actuarial Society E-Forum, Fall 2010 12

algorithmically analyze the incomplete development triangle to come up with a valid

parameterization and to identify the exact fit cells. Before we introduce the pseudo-code for

the “breadth first search” algorithm that is at the core of this undertaking, we briefly

describe some auxiliary data elements. Readers in a hurry can jump right to section 2.4.1

where the pseudo-code is presented.

In the following we use some name ranges and variable names specific to the MS Excel

application available from the author at request. We hope that their mention here does

provide the reader with an idea of what is involved from a practical implementation point of

view. We start with a complete triangle in a range called data_incremental. To exclude

triangle cells from the analysis, we use a second triangle of 0s and 1s in a range called

data_excluded to mask the corresponding cells in the triangle of incremental amounts.

For determining the maximal connected components of the selected triangle cells viewed

as a graph, we use a “breadth first search”-type algorithm (see [5]) adapted to the fact that

our graph edges (the links between cells) come in two “flavors:” shared row or shared

column. To this end we need to maintain four lists of cells: (connected component) assigned,

rows tested, columns tested and untested. To facilitate moving cells from and to these lists

we use an array called UnitIndex that has a row for each selected triangle cell and columns

for storing the cells predecessor and successor in its current list. In addition, for each list we

maintain a special pointer to the first element in the list. This data structure allows us to

store all four lists in parallel in the same array. The array UnitIndex also has additional

columns for identifying a cell’s row and column in the triangle. At times, we use a separate

triangle of unit numbers to efficiently locate triangle cells in the UnitIndex array based on

their position in the triangle.

There are also a number of arrays to facilitate moving from the model matrix to the actual

triangle and vice versa:

UnitIndex() has fields for mapping a row of the model matrix to the corresponding

triangle cell

Data_Selected() or Data_Regression() are used to either mark some specific triangle cells

for further processing or to store pointers from the triangle cells to the corresponding row in

UnitIndex()

GLM_Par_To_Triangle() maps each column of the model matrix (or the parameter row

vector) to the corresponding row or columns of the triangle

Fitting a GLM to Incomplete Development Triangles

Casualty Actuarial Society E-Forum, Fall 2010 13

ExporsurePeriod_To_GLM_Paramter() maps rows of the triangle to columns of the

model matrix

DevelopmentPeriod_To_GLM_Paramter() maps columns of the triangle to columns of

the model matrix

2.4.1 Determining connected components of the incomplete development triangles

Below we outline pseudo-code for the “breadth first search”-type algorithm for an

incomplete development triangle. Here is how the general “breadth first search” algorithm

works. It is called “breadth first” because while we are trying to find all nodes connected a

particular untested node we first mark all its immediate neighbors before trying to find

neighbors of neighbors. Once all the immediate neighbors of a node have been identified we

are done with that node. What is left to do is to loop over all the immediate neighbors

previously identified and check whether they have any neighbors we have not looked at, yet.

For each node we are done once we have marked all of its immediate neighbors. This

process continues until we cannot find any further new neighbors. We have now identified

the maximal connected component of the original untested node. If there are untested nodes

left, we know that our graph has a further connected component and we start the process all

over to find all the nodes belonging to the next connected component.

 For a development triangle the algorithm generally proceeds exactly the same way except

that we are now done with a particular cell when we have identified all its row and all its

column neighbors. In order to efficiently do this, we introduce two lists of cells with an

intermediate testing status: all row neighbors identified (i.e., still need to check column

neighbors) and all column neighbors identified (i.e., still need to check row neighbors).

Hence there are two possible processing paths for a particular triangle cell: untested to

column tested to component assigned, or untested to row tested to component assigned.

Here is the pseudo-code:

Input: DataSelected two-dimensional array indicating which triangle cells are
included in model

 UnitIndex......................... array for storing information about data points and
maintaining list structures utilized by algorithm

 ConnectedComponent... array for keeping track of maximal connected components
and some key properties

Goal: Assign component sequence number to each selected triangle cell and gather
summary information about connected components

Fitting a GLM to Incomplete Development Triangles

Casualty Actuarial Society E-Forum, Fall 2010 14

BreadthFirst 1) Initialize UnitIndex and associated data structures needed for determining
maximal connected components of selected triangle cells. In particular the
list of untested cells contains all cells included by user, while the list of
assigned, row tested, or column tested cells are empty.

BreadthFirst 2) Beginning of outer loop - keep going while the list of untested cells is
empty.

BreadthFirst 3) Increment component counter; get column of last untested cell; loop over
untested rows in this column; assign component counter to untested cells
found and move them from the untested list to the column tested list.

BreadthFirst 4) Beginning of inner loop - keep going while there are newly identified
neighbors for the current connected component.

BreadthFirst 5) Loop over cells in column tested list; get row of current column tested cell;
move current cell from column tested list to assigned list; loop over
untested columns in current row; assign component counter to untested
cells found and move them from the untested list to the row tested list.

BreadthFirst 6) Loop over cells in row tested list; get column of current row tested cell;
move current cell from row tested list to assigned list; loop over untested
rows in current column; assign component counter to untested cells found
and move them from the untested list to the column tested list.

BreadthFirst 7) End of inner loop - if list of column tested cells is not empty, execution
will continue with BreadthFirst 5).

BreadthFirst 8) End of outer loop - if list of untested cells in non-empty, execution will
continue with BreadthFirst 3).

2.4.2 Selecting connected component for the subsequent model fit

While it would be possible to fit a regression model for each separate connected

component, there is no way of using these disconnected models for projecting future

development for all periods. Hence our algorithm proceeds by selecting the component with

the most triangle cells for further processing. If there is more than one largest connected

component the algorithm simply picks the component with the left most column. Note that

in the companion spreadsheet, which is available from the author at request, there is an

exhibit that shows all connected components. If the user does not like the default choice

imposed by the algorithm, they can change the selected data points to only include the

connected component that they are interested in.

2.4.3 Determining the cell types for the selected connected component

As described in section 2.2.2, above, there are three types of cells within each connected

Fitting a GLM to Incomplete Development Triangles

Casualty Actuarial Society E-Forum, Fall 2010 15

component: single parameter cells, critical connector cells, and regression cells. For reference

let NoUnits stand for the number of cells in the selected connected component. We test for

the cell types by looping over all the cells in the selected connected component and remove

each cell in turn from the selected component. After removing the cell we analyze the

structure of the remaining cells. In order to do so it is sufficient to start with any of the

remaining cells and then run the inner loop of the “breadth first search” algorithm described

above. If the maximal connected component associated with that cell has less than

NoUnits - 1 cells, we know that the removed cell must be a critical connector cell. Otherwise

we need to check whether we lost a row or column by removing the cell. If we did lose a

row or column, then the removed cell is a single parameter cell. If the latter is not the case,

we know by elimination that the removed cell is a regression cell. The above-mentioned

exhibit for the connected components also visualized the cell types for cells in the selected

components by formatting; single parameter cells have a border, critical connector cells are

crossed out, and regression cells have a grey fill.

2.4.4 Determining the regression components within the selected connected
component

We now run the full “breadth first search” algorithm again, but only on the regression

cells within the selected connected component. This allows us to identify decoupled areas of

connected regression cells if they exist. Gathering this information allows us to split the

fitting of the overall model into smaller pieces, each of which purely consists of regression

cells.

2.4.5 Setting up the model matrix and associated data vector

Having done all the preparatory work of analyzing the graph topology of the incomplete

triangle the task of setting up the model matrix and data vector is trivial. We set up separate

model matrices and data vectors for each of the regression regions identified above. We also

set up one overall model matrix and data vector. Note however, that we will run the full-

fitting algorithm only on the model matrices for the regression regions. The model matrix

for the overall model will be used to for a single iteration weighted least square fit based on

the fitted values obtained for the regression regions and the actual data points for the exact

fit cells. This last step is needed to obtain a convenient parameterization for the overall

model that can be used for projection purposes. Note, however, that the model matrix for

the overall model is perfectly valid and that feeding it into a GLM fitting algorithm should

Fitting a GLM to Incomplete Development Triangles

Casualty Actuarial Society E-Forum, Fall 2010 16

produce the same parameter values (give or take some rounding) as the approach we are

taking. Keeping track of the exact fit cells and regression regions, however, is

computationally advantageous and provides useful information for the subsequent residual

analysis.

©PricewaterhouseCoopers LLP. Used by permission.
Casualty Actuarial Society E-Forum, Fall 2010 17

3 MAXIMUM LIKELIHOOD ESTIMATION USING ITERATED
WEIGHTED LEAST SQUARES

In section 2 we went into considerable detail of how our algorithm for setting up the

model matrix works, because we are not aware of such a step-by-step description in the

actuarial literature. Algorithms for fitting a generalized linear model (GLM) by using a

maximum likelihood estimator, however, are described in many text books (e.g., chapter 2.5

in [6] or chapter 6.4.2 in [9]). We will therefore concentrate on how to implement such an

approach relying on standard linear algebra routines available in open source form—we have

used code from the ALGLIB project available for download at www.alglib.net. Other than

demonstrating that Visual Basic for MS Excel is well capable of fitting a GLM to triangles of

considerable size, we also want to show that in the process of performing the calculations we

can extract useful information2 other than the fitted parameter values.

3.1 Notation

Before continuing we need to introduce some standard notation for describing a GLM
model. Often a GLM model is specified by assuming a specific distribution from the
exponential family for the observations. In practice the algorithm for fitting a GLM works
just as well under the weaker assumption that the second moment of the distribution is a
function of the expected mean (see chapter 9 on pseudo-likelihood functions in [6]). Hence
we regard a GLM type problem to be fully specified by the following elements:

 Model matrix, X

 Data vector, y

 Fitted values vector, ŷ

 Link function, g—note that here we only will use the logarithm

 Variance function, V

Additionally, the following notation is useful in describing the algorithm and the
computations:

 Parameter vector, p

 Linear estimator, η

 Vector of quadratic weights for weighted LSQ regression, w

 Vector of linearized data, z

 Vector of expected variance for data points, v

2 Specifically we are referring to the diagonal elements of the hat matrix, which can be used to standardize
residuals. This will be discussed in more detail in section 4.

Fitting a GLM to Incomplete Development Triangles

Casualty Actuarial Society E-Forum, Fall 2010 18

The algorithm described here follows the approach outlined in chapter 2.5 of [6]—we

perform iterated weighted least square regressions. This procedure can be understood as an

adaption of the multi-dimensional Newton-Raphson method to the problem of solving the

maximum likelihood equations for a GLM. In effect we are repeatedly solving a linearized

regression problem until the successive solutions have converged to a sufficient degree. In

general such numerical procedures can be sensitive to the starting point chosen. Here we can

use the actually observed values for the data points (triangle cells), which makes the practical

implementation easy.

3.2 Pseudo-code for MLE algorithm

Deferring our discussion of how to perform the weighted least squares (LSQ) regression,

here is how the MLE algorithm implemented here works:

Step 10) Based on the actual data points, initialize the fitted data points, the linear estimator,
and the expected variances: ŷ0 = y, η0 = g(y) = log(y), and v0 = V(y).

Step 11) Based on a current estimator, ηi, determine the vector of linearized data using the
following formula:

  









y

η
y-yz ii ˆd

d
ˆiη .

(3.1)

Step 12) Based on a current estimator, ηi, the expected variances, vi, calculate the vector of
weights for weighted LSQ regression:

12

ˆd

d























 ii v

y

η
w .

(3.2)

Step 13) Perform weighted LSQ regression of zi on X subject to wi to obtain new set of
parameters, pi+1, leading to a new liner estimator, ηi+1, and fitted values, ŷi+1.

Step 14) Compare pi with pi+1 to determine whether convergence is satisfactory.
If not, repeat from Step 1).

Step 15) Extract diagonal elements of hat matrix, H, calculate deleveraged residuals, estimate
dispersion parameter, and calculate standardized residuals.

Step 16) Loop over exact-fit cells and recursively determine exact-fit parameters based on
parameters obtained with MLE algorithm.

Note that with the logarithm as our link function we get η = g(ŷ) = log(ŷ), and

dη/dŷ = 1/ŷ. Readers who are interested in why this procedure (specifically steps 0 to 4)

works are referred to chapter 2.5.1 in [6]. Step 5) will be discussed in detail in section 3. Step

6) utilizes the information gathered by the algorithm for setting up the model matrix, X, as

Fitting a GLM to Incomplete Development Triangles

Casualty Actuarial Society E-Forum, Fall 2010 19

described in section 2. While this also reduces the computational cost, the main purpose is to

keep track for which data points we can calculate standardized residuals.

3.3 Notes on implementation issues

Implementing this general algorithm in Visual Basic is pretty straight forward. To make

the implementation flexible regarding specific choices of variance and link functions we are

using a number of generic functions that such as Calc_dL (for dη/dŷ), Calc_Variance (for v),

and Calc_Weights (for w), that are simply passing through a symbolic parameter indicating

the current choice of link and variance function to lower level functions that compute those

values for specific data points (Link_Scalar, LinkInv_Scalar, Var_Scalar, dL_Scalar). Note

that despite this flexibility in design, the template does only implement the logarithmic link

function.

For those readers who want to go over the Visual Basic code in detail, please note that we

are making extensive use of passing data by reference to provide functions with input and to

return the results. The formal function results are mainly used for debugging and error

handling. Passing by reference means that subroutines are given direct access to data

structures (variables and/or arrays) defined at a higher level rather than having their own

copy of the data passed in. So the main point of a statement like

If Not Calc_dL(dL, Y_, LinkFunc) Then Stop

is not to stop execution if the function Calc_dL returns FALSE. Rather we want to calculate
the vector of derivatives for the link function, which is accomplished as a side effect to the
function call by updating the values of the vector (1-d array) dL that is passed to the function
by reference. The “If … Then Stop” statement is simply a way of pointing the developer to
the right position in the code in case something were to go wrong.

Performing the weighted LSQ regression is mainly an exercise in linear algebra. Built-in

Excel functions only provide limited support for matrix operations and the matrices the built

in functions can deal with is limited. We are therefore providing some auxiliary routines for

simple matrix operations. A list with short descriptions follows:

 MClearUpper.. clears the upper right triangle of a square matrix A; needed
because the Cholesky transform routine from ALGLIB
assumes that symmetric matrix is represented in triangular
format

 MTrans populates matrix transpose AT of matrix A

 MMult.............. populates matrix R with the product of matrices A and B

Fitting a GLM to Incomplete Development Triangles

Casualty Actuarial Society E-Forum, Fall 2010 20

 MDiagRMult... left multiplies matrix A with a diagonal matrix that is
represented as a vector diag

 MDiagLMult... right multiplies matrix A with a diagonal matrix that is
represented as a vector diag

 MSet................. populates matrix R by copying entries of matrix A

 MSwapCol....... swap column c1 and c2 of matrix A

 MSwapRow..... swap row r1 and r2 of matrix A

 MQuickMult ... populates vector r with the product of matrix A and vector b

 VectorSqrt....... populate vector sqrt_w with square root of elements of
vector w

As indicated above, we are also using code from the open source ALGLIB project

(www.alglib.net). The following functions are Visual Basic implementations of LAPACK

routines (www.netlib.org/lapack/):

 SPDMatrixCholesky .perform Cholesky decomposition of matrix A which is
assumed to be a symmetric matrix stored in triangular
format.

 RMatrixTRInverse....perform matrix inversion of triangular matrix A.

We will not explain the algorithms in detail, but we do want to briefly outline why these

routines are useful for our purposes. The key computational step in performing the weighted

LSQ regression is the inversion of the matrix XT.W.X, where W is the diagonal matrix of

weights represented by the vector w. If the regression problem is well defined, this matrix is

symmetric and positive-definite. Now, if you have a symmetric, positive-definite matrix A,

then there is a lower triangular matrix L such that A=L.LT. This representation of A is called

its Cholesky decomposition. It follows from basic matrix algebra that

A-1=(L-1) T.(L-1). Hence we can see how the inversion of XT.W.X. can be accomplished by

first finding its Cholesky decomposition and then inverting the resulting lower triangular

matrix.

In symbolic form the weighted LSQ regression estimate for the parameters based on the

linearized data is given by:

p = (XT.W.X)-1.XT.W.z. (3.3)

Fitting a GLM to Incomplete Development Triangles

Casualty Actuarial Society E-Forum, Fall 2010 21

3.4 Pseudo-code for weighted LSQ regression

We now present an outline of the code for performing the weighted LSQ regression.

Note that in essence we are building up three matrices: XT.W, (XT.W.X)-1, and

(XT.W.X)-1.XT.W. The corresponding variables are called XtW, XtWXinv, and

XtWXinvXtW:

wLSQ 11) MTrans_C(XtW, X)—i.e., XtW = XT

wLSQ 12) MDiagRMult_C(XtW, w)—now XtW = XT.W

wLSQ 13) MMult_C(XtWXinv, XtW, X)—i.e., XtWXinv = XT.W.X

wLSQ 14) MSet_C(M1, XtWXinv)—i.e., M1 = XT.W.X

wLSQ 15) MClearUpper_C(M1)—prepare M1 for Cholesky routine

wLSQ 16) MCholesky_C(M1)—calculate the L for XT.W.X

wLSQ 17) MTriInv_C(M1, t)—i.e., M1 = L-1

wLSQ 18) MTrans_C(M2, tmpM1)—i.e., M2 = (L-1) T

wLSQ 19) MMult_C(XtWXinv, M2, M1)—i.e., XtWXinv = (L-1) T.(L-1)

wLSQ 10) MMult_C(XtWXInvXtW, XtWXinv, XtW)—used for calculating h

The rest of the tasks associated with Step 3) of the iterated weighted LSQ algorithm is

accomplished with the following statements:

wLSQ 11) MQuickMult(p, XtWXInvXtW, z)—i.e., p1 = (XT.W.X)-1.XT.W.z0

wLSQ 12) MQuickMult(z_, X, p)—i.e., η1 = X. p1

wLSQ 13) LinkInv(y_, z_, LinkFunc)—i.e., ŷ1 = g-1(η1)

3.5 Concluding remarks

We encourage interested readers to contact the author and request a copy of the

accompanying MS Excel application, so they can study the commented source code for

further implementation details.

One note on performance: the computational cost of many sub-tasks except for the

matrix operations varies linearly with the number of triangle cells included in the analysis.

For fitting a single model the performance of the Visual Basic code seems satisfactory, even

for larger triangles (the author tested up to 40 by 40). For repeated applications (such as

bootstrapping) execution time can become an issue. Without changing the logic, significant

gains in performance can be gained from porting the weighted LSQ routines to C++ and

compiling them into a dll, which is then loaded by the Visual Basic code. In this paper we do

Fitting a GLM to Incomplete Development Triangles

Casualty Actuarial Society E-Forum, Fall 2010 22

not discuss the issues of interfacing Visual Basic with a dll and/or how to write code in C++

that can be compiled into a dll. For readers interested in those issues we recommend Steve

Dalton’s Financial Applications using Excel Add-in Development in C/C++ (different versions

exist for MS Excel 2003 and MS Excel 2007).

©PricewaterhouseCoopers LLP. Used by permission.
Casualty Actuarial Society E-Forum, Fall 2010 23

4 STANDARDIZED RESIDUALS AND THEIR APPLICATION

In this section, we introduce standardized residuals and how to compute them. After

briefly describing how to create diagnostic plots based on these standardized residuals we

present a practical example (based on a data set also used in a number of other papers on

triangle-based stochastic reserving) of how these plots can be used to assess goodness-of-fit

and make decisions about the model structure.

4.1 Standardized Residuals

Residuals are simply the difference between the actual data points and their fitted values

based on a concrete model specification. Suitably standardized, so comparisons for residuals

corresponding to different data points can be made, residuals can be a powerful tool for

visually analyzing the goodness of fit of a model. Standardizing residuals is also a crucial step

in bootstrapping a GLM. The approach here follows chapter 12.5 and 12.7 in [6], but similar

descriptions of the standardization procedure can also be found in [7] and in chapter 7.2 of

[3].

For a GLM, there are two adjustments to residuals that need to be made in order get

residuals that are approximately identically distributed. Firstly we need to adjust for the

differences in expected variances based on the relationship imposed by the variance

function. This motivates the following definition of Pearson residuals:

)ˆ(

ˆ

y

y-y
r

V
 .

(4.1)

In addition we also need to adjust for the leverage that individual data points exert on

their corresponding fitted value. At the extreme there are the exact-fit cells where the fitted

value will always identically match the observed data point. For other points the observed

value will still exert a pull on the fitted value that biases the residuals as a measure of

variability inherent in the data. For a detailed discussion of the concept of leverage, we refer

the reader to chapter 12.7 in [6]. A useful measure of leverage can be obtained by the

diagonal values of the hat matrix, H, which for a GLM is defined as (equation 12.3 in [6]):

H = W½.X.(XT.W.X)-1.XT.W½. (4.2)

Note that since we are only interested in the vector h of diagonal elements we can also

use the following formula:

h = diag(X.(XT.W.X)-1.XT.W). (4.3)

Fitting a GLM to Incomplete Development Triangles

Casualty Actuarial Society E-Forum, Fall 2010 24

With this we can now introduce the following definition of deleveraged Pearson residuals:

 hy

y-y
r




1)ˆ(

ˆ~
V

.
(4.4)

Note that the deleveraged Pearson residuals are not defined for exact fit cells. Also note

that this definition is still missing the estimated dispersion factor as a normalizing constant.

The reason for this is that we are proposing the following estimator for the dispersion factor:

)rVar(~ˆ  (4.5)

Compare this to the conventional estimator (unnumbered formula on page 328 in [6]),

based on an after-the-fact degree of freedom adjustment:

pn

n

-
ˆ )rVar(

(4.6)

where n is the number of data points and p is the number of estimated parameters. Both
estimators for the dispersion parameter are ad hoc and are trying to adjust for the leverage
effect. Equation 4.5 relies on the bias correction applied to each individual residual.
Equation 4.6 does not distinguish between the difference in leverage for individual data
points. Further research is required for assessing the relative performance (e.g., in terms of
bias or standard error) of these two estimators. For the purposes of assessing goodness of fit
and for bootstrapping applications, deleveraged residuals are the better choice since the
assumption that they are approximately identically distributed is more likely to be true. For
this reason, we continue with using equation 4.5, but the accompanying excel application
displays both versions of the estimate of the dispersion factor.

With this we derive at our final definition of standardized Pearson residuals:

 hy

y-y
r




1)ˆ(ˆ

ˆ

V
.

(4.7)

This concludes our discussion of the subtasks summarized as step 5 in MLE algorithm

outlined in section 2. For convenience, we are repeating the step:

Step 15) Extract diagonal elements of hat matrix, H, calculate deleveraged residuals, estimate
dispersion parameter, and calculate standardized residuals.

4.2 Graphical Representation

Now that we have defined standardized residuals and know how to calculate them, the

task of plotting them in MS Excel is straightforward. The main trick for getting pretty plots

is to keep track of how many residuals we are actually trying to plot. We address this issue by

Fitting a GLM to Incomplete Development Triangles

Casualty Actuarial Society E-Forum, Fall 2010 25

having the MLE algorithm automatically update named ranges, which are used to specify the

data source for the plots. We are graphing standardized residuals against exposure period,

development period, calendar period, and size of fitted value. As an aid in the visual

inspection we are adding a trend line to each of the plots. For the period-based plots this

trend line simply is the average of all residuals for that period. For the plot against size of

fitted value, we perform a linear regression of the residuals on the fitted values to plot the

trend line.

Plots of standardized residuals against various axis of interest are a standard tool for

assessing goodness of fit in stochastic modeling. Barnett and Zenwirth’s paper on “Best

Estimates for Reserves” ([2]) has popularized the concept in the context of analyzing

actuarial development triangles and they are now a staple of stochastic reserving packages.

The idea is that standardized residuals should be randomly and identically distributed. If

there are any obvious systematic trends visible in the plots, then the residuals are not random

after all. In addition one can also detect extreme outliers and an experienced analyst may also

infer other information that can be used to find an optimal model.

Fitting a GLM to Incomplete Development Triangles

Casualty Actuarial Society E-Forum, Fall 2010 26

4.2 Example

We are using a data set that the authors of [7] attribute to Taylor and Ashe (1983). Here is

the data in incremental form:

357,848 766,940 610,542 482,940 527,326 574,398 146,342 139,950 227,229 67,948

352,118 884,021 933,894 1,183,289 445,745 320,996 527,804 266,172 425,046

290,507 1,001,799 926,219 1,016,654 750,816 146,923 495,992 280,405

310,608 1,108,250 776,189 1,562,400 272,482 352,053 206,286

443,160 693,190 991,983 769,488 504,851 470,639

396,132 937,085 847,498 805,037 705,960

440,832 847,631 1,131,398 1,063,269

359,480 1,061,648 1,443,370

376,686 986,608

344,014

There are no non-positive or missing data points, so we can go ahead and fit a model

based on the full triangle. To start with we chose the identity variance function, which

produces a model that preserves the row and column sums of the triangle and is equivalent

to the model obtained by developing the triangle using the all-year, volume-weighted link

ratios. This results in the following residual plots:

0 2 4 6 8 10 12

Accident Period

Fitting a GLM to Incomplete Development Triangles

Casualty Actuarial Society E-Forum, Fall 2010 27

0 2 4 6 8 10 12

Development Period

0 2 4 6 8 10 12

Payment Period

Fitted Value

Fitting a GLM to Incomplete Development Triangles

Casualty Actuarial Society E-Forum, Fall 2010 28

From the jagged trend line for calendar period plot we can see that there are calendar year

effects that our model does not capture. From the exposure period and development period

plots, we can see that there are two relatively large residuals for cells (4,4) and (1,6)—looking

at the data set above we can see that the corresponding values are 1,562,400 and 574,398,

respectively. Inspection of the corresponding columns in the triangle does confirm that these

values appear unusually high. For demonstration purposes, we assume that theses values

represent abnormal circumstances that should not be included in our model to predict future

development. Hence we exclude these data points. Technically we have now parameterized a

new model and the new residual plots look as follows:

0 2 4 6 8 10 12

Accident Period

0 2 4 6 8 10 12

Development Period

Before looking at the remaining plots on the next page, please note that these plots

should mainly be used for assessing the internal consistency of the current model. We

emphasize that by excluding data points we end up with different models that cannot be

Fitting a GLM to Incomplete Development Triangles

Casualty Actuarial Society E-Forum, Fall 2010 29

directly compared. With that said, we note that while there are still ups and downs in the

exposure and development period plots, the biggest and smallest residuals now do not look

way out.

0 2 4 6 8 10 12

Payment Period

Fitted Value

The calendar period plot looks no better than before. Since our model only has exposure

and development period parameters, we have limited options for responding to these

calendar period effects. For demonstration purposes we will try a model that only includes

the latest five diagonals except for the diagonal for calendar period 8, which looks out of

line, and cells (4,4) and (1,6), which we previously excluded.

At this point, let us have a look at the output produced by our model. One feature of this

type of model is that we cannot only project expected values for future triangle cells, but we

can also extrapolate the expected values for all past triangle cells that were excluded from the

analysis. In the table on the following page we show all fitted values that correspond to

Fitting a GLM to Incomplete Development Triangles

Casualty Actuarial Society E-Forum, Fall 2010 30

included data points in bold letters. All values in italics correspond to

projections/extrapolations based on the fitted parameters for the model. Since we have

chosen the identity variance function the reader can also verify that fitted values in bold

preserve the row and column sums of the original data points for the included triangles cells

along the last five diagonals.

142,392 330,441 425,664 331,922 244,123 196,001 146,600 110,970 226,971 67,948

266,817 619,189 797,621 621,963 457,443 367,273 274,703 207,939 425,304 127,323

434,523 1,008,377 1,298,962 1,012,895 744,967 598,120 447,366 338,638 692,627 207,351

247,343 573,998 739,407 576,569 424,057 340,467 254,654 192,763 394,263 118,030

316,708 734,969 946,766 738,262 542,980 435,948 326,069 246,821 504,831 151,130

386,120 896,049 1,154,264 900,064 661,982 531,493 397,532 300,915 615,472 184,253

416,980 967,665 1,246,518 972,001 714,890 573,972 429,304 324,966 664,663 198,979

471,751 1,094,769 1,410,249 1,099,674 808,792 649,363 485,694 367,650 751,967 225,115

410,550 952,744 1,227,297 957,013 703,867 565,121 422,684 319,955 654,414 195,911

344,014 798,336 1,028,394 801,913 589,794 473,534 354,182 268,101 548,356 164,160

There is one last feature of the MLE algorithm implemented here that we want to

demonstrate: the user can choose from a number of pre-defined variance functions (identity,

unity, square root, power 2, and power family with a specifiable positive exponent). To see

the effect this may have on the model, consider the residuals versus fitted size plot for our

latest model with the identity variance function:

Fitted Value

For comparison we will also be fitting a model with the same data points but using the

unity variance function. With the unity variance function all data points are assumed to have

the same expected variance. Hence we would expect that, relative to the identity variance

function, smaller fitted values are given more weight and therefore should have smaller

Fitting a GLM to Incomplete Development Triangles

Casualty Actuarial Society E-Forum, Fall 2010 31

residuals (relative to the residuals for larger fitted values). The reader can inspect the residual

plot on the following page to see whether this expectation holds up.

Fitted Value

This concludes our walk through on how to use the MLE template. We encourage

readers to contact the author to request a copy of the companion MS Excel template and put

it through its paces with data sets of your choice.

©PricewaterhouseCoopers LLP. Used by permission.
Casualty Actuarial Society E-Forum, Fall 2010 32

5. RESULTS AND DISCUSSION

In section 2.1, we visually presented the issues that need to be addressed when setting up

a model matrix for a development triangle-assuming a multiplicative model which has

distinct unordered parameters for exposure and development periods.

The following section 2.2 more formally introduces some concepts from graph theory

that allow us to analyze the graph topology of an incomplete development triangle. This

enables us to generate a valid model specification and to gather information that is important

for interpreting the output of the fitting procedure. In particular we can identify exact fit

cells and sub-regions of the incomplete development triangle for which the regression fit is

performed without any influence from other regions.

Section 2.4 provided details for an original algorithm based on graph theory that

generates a valid model specification for a regression model that can be used to project

future development for an incomplete development triangle. If necessary the algorithm will

restrict the model to a maximal connected component of the selected incomplete triangle.

Note that with minor modifications the algorithm would also work for a rectangle of data

points (still assuming a two-dimensional factorial model).

An outline of how to use iterated weighted least squares to implement a maximum

likelihood estimator for a GLM was given in section 3.2. The algorithm (and its

implementation in Visual Basic, which can be found in the accompanying MS Excel

application) is generic and should work for any valid model matrix. An interested reader

could easily extend the functionality by adding their own code for other link functions, the

derivative of the link function, and/or code for other variance functions.

After providing further guidance on implementation issues in section 3.3, we explained

the concrete steps required for performing a weighted least squares regression in section 3.4.

This code utilized some simple routines for basic matrix operations tailored to our specific

application and standard LAPACK routines implemented in Visual Basic from the open

source ALGLIB project. We note in section 3.5 that performance of the MLE algorithm can

be significantly improved by porting the matrix routines to C++ and compiling them into a

dll that then can be accessed from Visual Basic.

In section 4.1 we presented an intuitive account of the concept of leverage and its role in

the computation of standardized residuals that can be used for visual analysis of goodness of

fit and for bootstrapping applications. We also proposed an alternative estimator for the

Fitting a GLM to Incomplete Development Triangles

Casualty Actuarial Society E-Forum, Fall 2010 33

dispersion parameter which is based on deleveraged residuals that have been individually

adjusted for the bias introduced by leverage. The conventional estimator uses a degree of

freedom adjustment that in effect is uniformly applied to all Pearson residuals.

After providing a brief outline on how to create plots of standardized residuals we

presented a “walk through” of how these plots can be used in assessing goodness of fit and

making informed choices about which data points should be included for a concrete triangle

that has also been used in other papers on stochastic reserving. Note that the intention of

the walk through is not to provide an optimal model for the specific data set, but to

showcase the kind of judgments an analyst can make in the context of the type of GLM

model presented here.

The material in this paper is based on standard GLM theory and standard numerical

methods. We hope, that by presenting a complete open-source implementation, we can

contribute to making more actuaries aware of how these powerful methods can be used in

the context of stochastic reserving, and that interacting with the accompanying MS Excel

template will prove a useful aid to gaining a deeper understanding of what regression models

can accomplish in the context of development triangles.

Interested readers are encouraged to contact the author and request a copy of the

companion MS Excel application to further explore the concepts and algorithms presented

in this paper.

We want to conclude this section by comparing the model presented in this paper to

some other stochastic models for incremental development triangles discussed in the

actuarial literature. The type of model described in this paper (multiplicative effects with

discrete parameters for exposure and development periods) is the same as the model

described in [7], except that we provide the full apparatus that allows an analyst to exclude

arbitrary triangle cells from the analysis. By allowing for excluded data points and different

choices of variance functions we somewhat extend the simple bootstrapping models

discussed in [4] and [7]. As noted also in these papers a GLM with the identity variance

function produces the same estimated reserve as the all-year, volume-weighted link ratio

method, when applied to a complete development triangle. But, as observed in [9], such a

GLM is more like the traditional BF or Cape Cod method than the link ratio method, in the

sense that generally we derive a development pattern and an estimate of exposure by

exposure period and then calculate future development by multiplying the two.

Fitting a GLM to Incomplete Development Triangles

Casualty Actuarial Society E-Forum, Fall 2010 34

Models such as those proposed in [2] and [8] differ from the model presented here in at

least two important ways. The first difference is that the models in [2] and [8] effectively

group development (or even exposure) periods together and parameterize them using either

parametric curves or forms non-parametric smoothing (also discussed in [4]). The second

difference is that these models add the calendar period as an additional dimension to the

analysis. The model proposed in [8] and some models discussed in [4] furthermore use a

Bayesian framework utilizing Monte Carlo Markov Chain simulation techniques.

One straight-forward extension for the model presented here is to allow for arbitrary

prior weights for the various triangle cells. Some grouping of development periods (or

accident periods) based on parametric curves should not be too difficult to implement either.

A persistent nuisance of most stochastic reserving models for development triangles is

that they do not work for negative incremental values. As we have noted in the case of our

model in section 2, this seems to be due to the seemingly inevitable choice of a logarithmic

link function or a similar transformation involving taking a logarithm. Given how often we

encounter triangles with negative incremental values as practicing U.S. P&C reserving

actuaries, one would hope that a solution to this problem is found soon.

We conclude our discussion by reiterating that the model and material presented here is

intended to introduce a wider audience of P&C actuaries to regression analysis for

development triangles. The paper should aid practitioners in deepening their understanding

of regression analysis, in general, and GLM analysis, in particular. We also hope that

practitioners will start appreciating that development triangles represent a rather condensed

form of data and that even the most sophisticated stochastic models cannot recover the

information that was destroyed in the process of aggregating individual claims data.

©PricewaterhouseCoopers LLP. Used by permission.
Casualty Actuarial Society E-Forum, Fall 2010 35

6. CONCLUSIONS

We have demonstrated that an incomplete development history is no obstacle to

projecting future development. Our analysis of the graph topology of an incomplete

development triangle precisely describes to what extent such projections are possible based

on the data points given. Understanding the nature and implications of exact fit cells and

critical connector cells is crucial for assessing the goodness of fit of the model and for

bootstrapping applications. To our knowledge the application of graph theory in this context

has not previously been discussed in the actuarial literature. The companion MS Excel

application, which is available from the author at request, demonstrates that performing a

GLM-based regression fit to a development triangle is a tool within easy reach of any

practitioner with access to a personal computer.

Acknowledgment
The companion MS Excel application to this paper is derived from a stochastic reserving model internally

developed by PricewaterhouseCoopers’ Actuarial and Insurance Management Solutions (AIMS) practice. The
author thanks all PwC staff members who helped him with this development project. PwC AIMS also
supported the author of this paper by providing him with writing time. Any errors, inaccuracies or views
expressed in the paper are the author’s responsibility alone. PwC’s support for this project in no way represents
an endorsement by PwC or PwC AIMS of any of the views expressed by the author or the methods presented
in the paper.

©PricewaterhouseCoopers LLP. Used by permission.
Casualty Actuarial Society E-Forum, Fall 2010 36

7. REFERENCES

Anderson, D. et al., “A Practitioner’s Guide to Generalized Linear Models—A CAS Study Note” (3rd ed.),
2007, URL http://www.casact.org/library/studynotes/anderson9.pdf.

Barnett, G., and B. Zehnwirth, “Best Estimates for Reserves,” Proceedings of the Casualty Actuarial Society, 2000,
Vol. 87, 245-303.

Davison, A.C., and D.V. Hinkley, Bootstrap Methods and Their Application, Cambridge University Press, 1997.
England, P.D., and R.J. Verrall, “Predictive Distributions of Outstanding Liabilities in General Insurance,”

Annals of Actuarial Science, 2006, Vol. 1, No 2, 221-270.
Hopcroft, J., and R. Tarjan, “Efficient algorithms for graph manipulation,” Communications of the ACM, 1973,

Vol. 16, Iss. 6, 372-378.
McCullagh, P., and J.A. Nelder, Generalized Linear Models (2nd ed.), London: Chapman & Hall/CRC, 1989.
Pinheiro, Paulo J.R., et al., “Bootstrap Methodology in Claim Reserving,” Journal of Risk and Insurance, 2003, Vol.

70, No. 4, 701-714.
Schmid, Frank A., “Robust Loss Development Using MCMC,” 2009, URL

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1501706.
Wüthrich, Mario V., and Michael Merz, Stochastic Claims Reserving Methods in Insurance, Chichester: Wiley, 2008.

Abbreviations and notations

GLM, generalized linear model
LSQ, least squares
MLE, maximum likelihood estimator (or estimation)

Biography of the Author

Thomas Hartl is a Manager within PricewaterhouseCoopers’ Actuarial Insurance Management Solutions
(AIMS) practice. He provides consulting services to insurance companies, reinsurers, and regulators. His
responsibilities include the design, validation and implementation of simulation models supporting statistical
analysis for ERM, litigation support, predictive modeling and stochastic reserving. Thomas Hartl is an
Associate of the Casualty Actuarial Society, a Member of the American Academy of Actuaries, and holds a
PhD in Mathematics from the University of Glasgow, Scotland.

Contact: thomas.hartl@us.pwc.com; 617-530-7524

