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______________________________________________________________________________ 

Abstract:  When fitting a generalized liner model (GLM) to a development triangle is discussed in the existing 
actuarial literature, reference is usually made to statistical packages for accomplishing this task. This paper 
presents a practical discussion of how to use Visual Basic to fit a GLM to a triangle with special emphasis on 
how to deal with incomplete data. Interested readers can contact the author to request a copy of an MS Excel 
application that implements the algorithms discussed in this paper. The application of GLMs to incomplete 
development triangles is motivated by translating judgments of practicing actuaries (e.g.,  use last n diagonals) 
into a rigorous regression framework. The key original contribution of this paper is the discussion of how graph 
theory can be used to analyze the topology of an arbitrary selection of triangle cells, and how to use the 
information gained to set up a regression model that is suitable for projecting future development. Once 
properly specified, fitting a GLM using maximum likelihood estimation (MLE) is straight forward, and we 
describe how this can be accomplished from a practical point of view in Visual Basic. To round off our 
discussion of model fitting, we briefly describe the standardization of residuals, and how to plot them for 
graphically evaluating goodness of fit. Finally we briefly discuss how the described class of GLMs for 
development triangles compares to some other stochastic models proposed in the actuarial literature. 

 
Keywords. Generalized Linear Modeling, Reserving Methods, Regression, Data Diagnostics, Data Visualization, 
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______________________________________________________________________________ 

1. INTRODUCTION 

In the context of stochastic reserving, several authors (e.g.,  [4], [7], and [9]) have stressed the 

need of casting the task of projecting reserves in a rigorous way as a regression problem. These 

authors have also pointed out that performing an all years volume weighted link-ratio estimate leads 

to the same result as fitting a GLM with the logarithmic link function and the identity variance 

function. Many practitioners have exploited this equivalence to implement spreadsheet-based 

applications for deriving a distribution of possible reserve outcomes based on bootstrap simulations 

by repeated resampling and application of the link-ratio estimate. While suitable to illustrate the 

concept of bootstrapping, these applications are typically not flexible enough to deal with practical 

judgments reserving analysts have to make about which cells of the triangle are deemed to be 

representative of future development (e.g.,  use data from last n diagonals or exclude obvious 

abnormalities). At other times practicing actuaries are also faced with data that are simply incomplete 

to start with. The important question here is how incomplete can a triangle ultimately be, while still 

providing information that is useful for the purpose of projecting future development? The key 

result presented in this paper is that concepts from an area of mathematics know as graph theory 

can be used to answer this question. Once we have analyzed some key aspects of the graph topology 

of a set of triangle cells, we can easily set up a well-defined regression problem and gain further 
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insights into what information about the variability of the underlying stochastic process can be 

gained from the resulting model.   

1.1 Research Context 

Several papers (e.g.,  [4], [7], and [9]) in the actuarial literature do describe in abstract terms how 

to apply GLM theory to fitting a model to an actuarial development triangle. The actual algorithm 

for fitting a GLM follows the description in McCullagh and Nelder’s classic Generalized Linear Models 

(2nd Edition) [6]. When fitting a GLM to an incomplete development triangle, however, the 

question of what constitutes a valid regression model specification naturally arises. We discuss how 

to use graph theory to algorithmically deal with this issue. By fitting a GLM to incomplete 

development triangles we furthermore extend the scope of traditional triangle-based reserving 

techniques: often a reserve projection can be made even if we only have partial information about 

the past development history. While this paper deals with the fitting of a regression model, the graph 

topology of the selected set of triangle cells also determines what information about the variability of 

the underlying stochastic process can be gleaned from the data. As it turns out, even when a data set 

supports projections for all development periods, different regions of an incomplete triangle may 

split into areas that are effectively fit without any influence from other areas. So, we can have 

multiple weakly connected regression models, rather than one comprehensive model for all selected 

data points. We use some of this information in our description of how to standardize residuals and 

how to plot them for diagnostic purposes. This insight also has implications for the scope and 

applicability of bootstrapping methods. 

1.2 Objective 

The iterative weighted LSQ algorithm for fitting a GLM is described in [6] and [9], but these 

textbooks generally assume that the reader is already familiar with the algorithms for performing 

regression fits. This paper seeks to explain at a practical level how to fit a GLM to a triangle of 

incremental development amounts. In particular, we address the issue of what happens if we either 

do not have complete information about the development history or want to exercise actuarial 

judgment about what data to include in our model. In addition, while there may be many advantages 

to using a fully fledged statistical package, we hope that interested readers who contact the author to 

request a copy of the companion MS Excel application will be able to explore the issues discussed 

and thus deepen their understanding of the process of fitting a regression model to a development 

triangle. 
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1.3 Outline 

The remainder of the paper proceeds as follows. The second section starts with a visual 

description of the structure of a regression model for an incomplete development triangle. We then 

briefly discuss how we can link the discussed features of the model structure to aspects of the graph 

topology of an incomplete development triangle. Next we introduce an algorithm known as 

“breadth first search” which can be used to identify the situations previously described. We 

conclude by indicating how the information gathered can be used to specify the regression problem 

and deal with data points that require special attention. We believe that the application of graph 

theory to specifying a regression problem has not been previously discussed in the actuarial 

literature. The third section provides an overview of how to use Visual Basic to implement a 

maximum likelihood estimator based on iterative weighted least squares. The core algorithm here 

follows standard textbook treatment, but we make use of the graph topology of the incomplete 

development triangle to piece together the overall regression model from its subcomponents, if 

applicable. The fourth section deals with the standardization of residuals and plotting them for 

graphically evaluating goodness of fit. This section also walks through a number of the diagnostic 

exhibits using a concrete data set to demonstrate how an analyst may use them in practice. Finally 

we briefly discuss how the class of GLMs described in this paper compares to some other stochastic 

models for development triangles that are discussed in the actuarial literature. 
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2 SETTING UP THE MODEL SPECIFICATION 

In this section we go into the details of how to set up the model specification that 

formally describes the regression problem corresponding to a multiplicative model for an 

incremental development triangle with separate parameters for rows and columns.  

2.1 Notes on the structure of the regression model 

To visualize what our set-up algorithm is trying to accomplish, we use the example of a 

five-by-five triangle. We have dispensed with row or column labels to reduce clutter. We 

follow the convention that rows denote exposure periods and columns development 

periods. With this said, a multiplicative model for expected incremental amounts looks 

something like this:  
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(2.1)

This parameterization corresponds to a common method for dealing with extrinsic 

aliasing for factorial models: drop one level from each factor and replace them by one offset 

parameter common to all observations. For (2.1) we have dropped the first exposure and the 

first development period parameter and replaced them with an offset parameter. In this 

parameterization the offset parameter c denotes the value of a base (or reference) cell and the 

ai and bj parameters are relativities for exposure and development periods, respectively. Also 

note that the choice of reference cell generally does not affect the fitted values produced by 

the model. We could have equally chosen the following parameterization: 
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(2.2)

For a complete triangle either of the above parameterizations can straightforwardly be 

translated into a standard regression problem and the fitted incremental amounts will be 

identical. When we start excluding data points from the analysis, we may encounter a 

number of issues that force us to pay closer attention the structure and parameterization of 
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our regression model. The algorithm presented here deals with four specific issues relating to 

ensuring we are dealing with a well-defined regression problem, and to identifying triangle 

cells requiring special treatment in our subsequent goodness of fit analysis. 

2.1.1 Not enough data points to estimate some parameters 
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(2.3)

The cross symbol here denotes data points that are missing or excluded by the analyst 

(e.g.,  truncated triangles or want to use last n diagonals). Clearly we have no information on 

the b4 parameter and it therefore has to be dropped from the model. Note that despite the 

“gap” at development period 4, there is no issue with relating the top right corner 

(development period 5) with the rest of the triangle—we can compare this value to the first 

3 incremental values for exposure period 1. 

2.1.2 Choice of reference cell does matters after all 

Assume we are trying to use our cell (3,1) as our reference cell for the following data set: 
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(2.4)

Clearly we have no information on a3, and this situation could be remedied by dropping 

this parameter from the model. In this case, however, we cannot do this because a3 has 

already been replaced by the common offset parameter c. Actually, our algorithm 

circumvents this problem altogether by first analyzing which rows and columns are part of 

the connected component of triangle cells for which fit a model before attempting to assign 

parameters to rows and columns.  
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2.1.3 Data splits into unrelated regions 
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(2.5)

In this situation, there is no information on how to relate the upper right sub-triangle to 

the lower triangle. This is an issue that cannot be fixed in a meaningful way, as far as 

predicting future values for all exposure and development periods is concerned. We handle 

this issue by using graph theory, noting that two triangle cells can be regarded as connected 

if they are either in the same row or in the same column. We determine what is called the 

maximal connected components of the triangle viewed as a graph. Further information on 

graph theory will be provided in section 2.2, below. One could fit a separate regression 

model for each of the connected components, but this is not useful for projecting future 

development amounts. Generally we hope that there is only one connected component. If 

not, we continue with the connected component that has the maximum number of triangle 

cells. If the number of triangle cells does not uniquely determine which component to pick, 

we take the component with the left-most column. 

2.1.4 Exact fit cells 
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(2.6)

One of the general goals in stochastic model fitting is to assess goodness-of-fit and 

measure the variability inherent in the observed process. To this end residuals (actual value 

less fitted value) need to be analyzed. This analysis can be distorted by triangle cells where 

the fitted value will always be exactly the same as the actual value. For a complete triangle 

this will always be the case for the top right and the bottom left corner, but when there are 

missing data points the same may be true for other cells. In the above example parameters a5 

and b5 each appear in exactly one triangle cell, so they will always take values that ensure a 

perfect fit. What may be less obvious is that there will always be an exact fit for the cell in 

row 3, column 3. The reason for this is that removing this cell would split the incomplete 
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triangle into two unrelated regions (as discussed under 2.1.2 above). Our algorithm for 

analyzing the model structure identifies exact fit cells by looping over all cells in the selected 

connected component and checking for each cell whether the removing the cell from the 

model changes to model structure by either dropping a row or column, or by splitting the 

model into two unrelated regions. 

2.1.5 Further remarks on the model structure 

Until now our discussion on the model structure preserved the shape of the triangle 

because the distinction between exposure and development periods is meaningful to us as 

P&C actuaries. Algorithms for fitting a simple GLM model as described above, however, are 

indifferent to how we perceive the various triangle cells as data points that are somehow 

ordered by exposure and development periods. Consider the following sparse data set for a 

hypothetical ratemaking problem with a multiplicative model with two classification 

dimensions, namely group and territory: 

bgtbtbgtbgt

bgtbt
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
 

(2.7)

Group 3 in territory 1 corresponds to the base rate b, while the gi and ti parameters represent 
group and territory relativities. This may not look like a development triangle, but this data 
set is structurally identical to multiplicative model for a complete triangle of incremental 
development amounts (see our original example at the beginning of section 2). 

Hence, when using a model based on distinct parameters for each exposure and 

development period, a triangle is just an unordered list of data points, and the only 

relationships between data points are defined by certain parameters simultaneously affecting 

the fitted values of multiple triangle cells. For the purpose of implementing a concrete 

algorithm, however, we do need to find a way of listing all triangle cells. To keep things 

simple our default is to loop over rows, then columns, resulting in the following order of 

processing cells:  
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(2.8)

Note how excluded cells are skipped. There will be occasions when this order changes, so 
when interpreting the Visual Basic code, the reader should generally not rely on triangle cells 
being ordered in this way. 

Another point, that is worth understanding in translating between triangles and the 

common representation of regression problems (e.g., following McCullagh and Nelder), is 

that all explanatory variables are on the same footing after aliasing has been taking care of—

the regression algorithm does not distinguish between exposure or development period 

parameters (or the offset parameter). 

2.1.6 Moving to GLMs—taking the log transform 

The above discussion on the model parameterization is generic in the sense that it applies 

to any multiplicative regression model for an incremental development triangle that is 

restricted to distinct, unordered parameters for exposure and development periods. This 

paper is more specifically about fitting a GLM to a development triangle. To linearize the 

multiplicative model we need to choose the logarithm as a link function. This results in the 

following additive model structure for the logarithms of the expected incremental amounts: 








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





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(2.9)

 We are emphasizing this step here for two reasons. Firstly, the use of a logarithmic link 

function restricts the model to positive incremental values. Secondly, understanding the 

connection between this additive model and the more generic multiplicative model is crucial 

to interpreting the output from GLM packages.  

2.2 Graph topology of an incomplete development triangle 

We noted above the cells of an incomplete development triangle can be thought of as 

forming a mathematical structure know as a graph. Generally a graph is collection of nodes 
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(or vertices) that are connected to each other by edges. Two nodes are considered neighbors 

if there is an edge that directly joins them. We can also define an equivalence relationship 

among nodes called connectedness. Two nodes are connected if there is a path (or sequence) 

of neighboring nodes that leads from one node to the other. Two nodes are disconnected if 

there is no way of getting from one to the other by passing from neighbor to neighbor. This 

equivalence relationship of connectedness defines equivalence classes of nodes that are 

called maximal connected components. Note that in this paper we often refer to maximal 

connected components as connected components since repeating “maximal” becomes 

cumbersome. 

If we think of the triangle cells as nodes and define two triangle cells as being neighbors if 

they are in the same row or column of the triangle, the collection of cells from an incomplete 

development triangle can be seen to form a graph. We will now briefly outline how graph 

theory can be used to handle the issues regarding model parameterization and exact fit cells 

identified above. 

2.2.1 What parameters are needed for the model? 

We use an algorithm known as “breadth first search” (described in detail in section 2.4) to 

first identify the maximal connected components of the incomplete triangle. As explained 

above in section 2.1.3 we can only “complete the triangle” for projection purposes if the 

given triangle cells form a connected component. If there is more than one connected 

component our algorithm proceeds by picking the largest (most triangle cells) connected 

component. If there is more than one largest connected component the algorithm chooses 

the component that has the left most column. Once we have identified the connected 

component for which we will fit a regression model we analyze which rows and columns are 

covered by the connected component. We parameterize our regression model by choosing 

the cell corresponding to the top row and left most column as our reference cell, with 

separate parameters for each other row and column. This takes care of the issues identified 

in section 2.1.1 and 2.1.2. 

2.2.2 Which cells are exact fit cells? 

As indicated above there are two circumstances under which the fitted value for a 

particular triangle cell will always match the given data point. Both situations can be 

identified by eliminating a particular cell from the regression model and seeing how the 

elimination affects the structure of the model. Technically we do this by looping over all cells 
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in the selected connected component, remove each cell in turn and then run the “breath first 

search” algorithm also used in section 2.2.1 to analyze the structure of the remaining model. 

This allows us to identify three different types of cells: 

Single parameter cells: when this cell is eliminated from the model, we lose one row or 

column and the corresponding parameter. Since this is therefore the only data point for that 

parameter, the parameter will always take a value that produces an exact fit for this cell. 

Critical connector cells: eliminating this cell from the model, splits it into exactly two 

disconnected components (proof left as an easy exercise for the reader1). The issue of 

aliasing now affects both disconnected components separately, so we lose a parameter. The 

details of how this parameter disappears are more subtle than for single parameter cells, but 

the bottom line is that there is some “slack” in the parameterization and we always get an 

exact fit for a critical connector cell. 

Regression cells: when eliminating this cell, the model structure is not affected in a 

significant way (same number of rows and columns covered, same number of parameters 

needed to parameterize the model).  

Both types of exact-fit cells need to be excluded when analyzing standardized residuals 

and measuring the inherent uncertainty of the underlying stochastic process. The impact of 

the critical connector cells is more far reaching. Despite having a valid regression model for 

the entire connected component, the critical connector cells (if they exist) split the 

incomplete triangle into regions for which the regression fit is performed without any 

influence from the other regions. Our algorithm for fitting the GLM powerfully 

demonstrates this feature by literally applying the iterated weighted least square procedure to 

these separate regression components. To get the final parameterization for the overall 

model we then perform a single-weighted least square fit based on the fitted values 

separately obtained for regression regions and the actual data points for the identified exact 

fit cells. Note that it is not necessary to perform the fit separately for the regression regions, 

but when it comes to actual computations, it is usually more efficient to split a larger 

problem into separate smaller problems, especially when the computational cost scales non-

linearly. 

                                                           
1 Hint: if another cell, C, is connected to the critical connector cell, there has to be at least one cell that is 
connected to C, which either shares a row or column with the critical connector cell. 
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2.3 Formal set-up 

To formally establish the relationship between the data for which we want to find a 

model (i.e., the cells of the triangle) and the explanatory variables (i.e., the exposure and 

development periods) we set up a data structure known as the model matrix, X, the columns 

of which represent the explanatory variables, and a corresponding column vector, y, which 

represents the data. Interested readers are referred to the CAS Practitioners’ Guide to GLMs 

([1]) for a general introduction to setting up information matrices. Here we will simply show 

an example of how a complete 5 x 5 triangle can be represented: 

Parameters P γ β2 α 2 β3 α 3 β4 α 4 β5 α5   

  Data  Model matrix  Fitted Values 
Unit #  Y  X  Exp(Xp) 

1  inc(1,1)  1 0 0 0 0 0 0 0 0  Exp(γ) 
2  inc(1,2)  1 1 0 0 0 0 0 0 0  Exp(β2+γ) 
3  inc(2,1)  1 0 1 0 0 0 0 0 0  Exp(α2+γ) 
4  inc(2,2)  1 1 1 0 0 0 0 0 0  Exp(α2+β2+γ) 
5  inc(1,3)  1 0 0 1 0 0 0 0 0  Exp(β3+γ) 
6  inc(3,1)  1 0 0 0 1 0 0 0 0  Exp(α3+γ) 
7  inc(2,3)  1 0 1 1 0 0 0 0 0  Exp(α2+β3+γ) 
8  inc(3,2)  1 1 0 0 1 0 0 0 0  Exp(α3+β2+γ) 
9  inc(1,4)  1 0 0 0 0 1 0 0 0  Exp(β4+γ) 
10  inc(4,1)  1 0 0 0 0 0 1 0 0  Exp(α4+γ) 
11  inc(3,3)  1 0 0 1 1 0 0 0 0  Exp(α3+β3+γ) 
12  inc(2,4)  1 0 1 0 0 1 0 0 0  Exp(α2+β4+γ) 
13  inc(4,2)  1 1 0 0 0 0 1 0 0  Exp(α4+β2+γ) 
14  inc(1,5)  1 0 0 0 0 0 0 1 0  Exp(β5+γ) 
15  inc(5,1)  1 0 0 0 0 0 0 0 1  Exp(α5+γ) 

Note that the unit #s are simply for referencing values stored in arrays and that inc(i,j) 

denotes the incremental amount for accident period i and development period j. The model 

matrix, X, has one row for each triangle cell and one column for each parameter of the 

model. All entries of X are either 0 or 1. A value of 1 simply means that the parameter 

corresponding to the respective column contributes to the fitted value for the triangle cell 

corresponding to the respective row; a value of 0 implies the converse. In the above table we 

have introduced the parameter vector, p. If ŷ denotes the vector of fitted values, the 

systematic part of our GLM model can neatly be summarized by the following equation: 

log(ŷ) = Xp (2.10)

2.4 The algorithm for setting up the model specification 

Setting up the actual model matrix is straightforward. The real challenge here is to 
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algorithmically analyze the incomplete development triangle to come up with a valid 

parameterization and to identify the exact fit cells. Before we introduce the pseudo-code for 

the “breadth first search” algorithm that is at the core of this undertaking, we briefly 

describe some auxiliary data elements. Readers in a hurry can jump right to section 2.4.1 

where the pseudo-code is presented. 

In the following we use some name ranges and variable names specific to the MS Excel 

application available from the author at request. We hope that their mention here does 

provide the reader with an idea of what is involved from a practical implementation point of 

view. We start with a complete triangle in a range called data_incremental. To exclude 

triangle cells from the analysis, we use a second triangle of 0s and 1s in a range called 

data_excluded to mask the corresponding cells in the triangle of incremental amounts. 

For determining the maximal connected components of the selected triangle cells viewed 

as a graph, we use a “breadth first search”-type algorithm (see [5]) adapted to the fact that 

our graph edges (the links between cells) come in two “flavors:” shared row or shared 

column. To this end we need to maintain four lists of cells: (connected component) assigned, 

rows tested, columns tested and untested. To facilitate moving cells from and to these lists 

we use an array called UnitIndex that has a row for each selected triangle cell and columns 

for storing the cells predecessor and successor in its current list. In addition, for each list we 

maintain a special pointer to the first element in the list. This data structure allows us to 

store all four lists in parallel in the same array. The array UnitIndex also has additional 

columns for identifying a cell’s row and column in the triangle. At times, we use a separate 

triangle of unit numbers to efficiently locate triangle cells in the UnitIndex array based on 

their position in the triangle.  

There are also a number of arrays to facilitate moving from the model matrix to the actual 

triangle and vice versa: 

UnitIndex() has fields for mapping a row of the model matrix to the corresponding 

triangle cell 

Data_Selected() or Data_Regression() are used to either mark some specific triangle cells 

for further processing or to store pointers from the triangle cells to the corresponding row in 

UnitIndex() 

GLM_Par_To_Triangle() maps each column of the model matrix (or the parameter row 

vector) to the corresponding row or columns of the triangle 
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ExporsurePeriod_To_GLM_Paramter() maps rows of the triangle to columns of the 

model matrix 

DevelopmentPeriod_To_GLM_Paramter() maps columns of the triangle to columns of 

the model matrix 

2.4.1 Determining connected components of the incomplete development triangles 

Below we outline pseudo-code for the “breadth first search”-type algorithm for an 

incomplete development triangle. Here is how the general “breadth first search” algorithm 

works. It is called “breadth first” because while we are trying to find all nodes connected a 

particular untested node we first mark all its immediate neighbors before trying to find 

neighbors of neighbors. Once all the immediate neighbors of a node have been identified we 

are done with that node. What is left to do is to loop over all the immediate neighbors 

previously identified and check whether they have any neighbors we have not looked at, yet. 

For each node we are done once we have marked all of its immediate neighbors. This 

process continues until we cannot find any further new neighbors. We have now identified 

the maximal connected component of the original untested node. If there are untested nodes 

left, we know that our graph has a further connected component and we start the process all 

over to find all the nodes belonging to the next connected component. 

 For a development triangle the algorithm generally proceeds exactly the same way except 

that we are now done with a particular cell when we have identified all its row and all its 

column neighbors. In order to efficiently do this, we introduce two lists of cells with an 

intermediate testing status: all row neighbors identified (i.e., still need to check column 

neighbors) and all column neighbors identified (i.e., still need to check row neighbors). 

Hence there are two possible processing paths for a particular triangle cell: untested to 

column tested to component assigned, or untested to row tested to component assigned. 

Here is the pseudo-code:  

Input: DataSelected .................... two-dimensional array indicating which triangle cells are 
included in model 

 UnitIndex......................... array for storing information about data points and 
maintaining list structures utilized by algorithm 

 ConnectedComponent... array for keeping track of maximal connected components 
and some key properties 

Goal: Assign component sequence number to each selected triangle cell and gather 
summary information about connected components 
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BreadthFirst 1) Initialize UnitIndex and associated data structures needed for determining 
maximal connected components of selected triangle cells. In particular the 
list of untested cells contains all cells included by user, while the list of 
assigned, row tested, or column tested cells are empty. 

BreadthFirst 2) Beginning of outer loop - keep going while the list of untested cells is 
empty. 

BreadthFirst 3) Increment component counter; get column of last untested cell; loop over 
untested rows in this column; assign component counter to untested cells 
found and move them from the untested list to the column tested list. 

BreadthFirst 4) Beginning of inner loop - keep going while there are newly identified 
neighbors for the current connected component. 

BreadthFirst 5) Loop over cells in column tested list; get row of current column tested cell; 
move current cell from column tested list to assigned list; loop over 
untested columns in current row; assign component counter to untested 
cells found and move them from the untested list to the row tested list. 

BreadthFirst 6) Loop over cells in row tested list; get column of current row tested cell; 
move current cell from row tested list to assigned list; loop over untested 
rows in current column; assign component counter to untested cells found 
and move them from the untested list to the column tested list. 

BreadthFirst 7) End of inner loop - if list of column tested cells is not empty, execution 
will continue with BreadthFirst 5). 

BreadthFirst 8)  End of outer loop - if list of untested cells in non-empty, execution will 
continue with BreadthFirst 3). 

2.4.2 Selecting connected component for the subsequent model fit 

While it would be possible to fit a regression model for each separate connected 

component, there is no way of using these disconnected models for projecting future 

development for all periods. Hence our algorithm proceeds by selecting the component with 

the most triangle cells for further processing. If there is more than one largest connected 

component the algorithm simply picks the component with the left most column. Note that 

in the companion spreadsheet, which is available from the author at request, there is an 

exhibit that shows all connected components. If the user does not like the default choice 

imposed by the algorithm, they can change the selected data points to only include the 

connected component that they are interested in.  

2.4.3 Determining the cell types for the selected connected component 

As described in section 2.2.2, above, there are three types of cells within each connected 
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component: single parameter cells, critical connector cells, and regression cells. For reference 

let NoUnits stand for the number of cells in the selected connected component. We test for 

the cell types by looping over all the cells in the selected connected component and remove 

each cell in turn from the selected component. After removing the cell we analyze the 

structure of the remaining cells. In order to do so it is sufficient to start with any of the 

remaining cells and then run the inner loop of the “breadth first search” algorithm described 

above. If the maximal connected component associated with that cell has less than 

NoUnits - 1 cells, we know that the removed cell must be a critical connector cell. Otherwise 

we need to check whether we lost a row or column by removing the cell. If we did lose a 

row or column, then the removed cell is a single parameter cell. If the latter is not the case, 

we know by elimination that the removed cell is a regression cell. The above-mentioned 

exhibit for the connected components also visualized the cell types for cells in the selected 

components by formatting; single parameter cells have a border, critical connector cells are 

crossed out, and regression cells have a grey fill. 

2.4.4 Determining the regression components within the selected connected 
component 

We now run the full “breadth first search” algorithm again, but only on the regression 

cells within the selected connected component. This allows us to identify decoupled areas of 

connected regression cells if they exist. Gathering this information allows us to split the 

fitting of the overall model into smaller pieces, each of which purely consists of regression 

cells. 

2.4.5 Setting up the model matrix and associated data vector 

Having done all the preparatory work of analyzing the graph topology of the incomplete 

triangle the task of setting up the model matrix and data vector is trivial. We set up separate 

model matrices and data vectors for each of the regression regions identified above. We also 

set up one overall model matrix and data vector. Note however, that we will run the full-

fitting algorithm only on the model matrices for the regression regions. The model matrix 

for the overall model will be used to for a single iteration weighted least square fit based on 

the fitted values obtained for the regression regions and the actual data points for the exact 

fit cells. This last step is needed to obtain a convenient parameterization for the overall 

model that can be used for projection purposes. Note, however, that the model matrix for 

the overall model is perfectly valid and that feeding it into a GLM fitting algorithm should 
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produce the same parameter values (give or take some rounding) as the approach we are 

taking. Keeping track of the exact fit cells and regression regions, however, is 

computationally advantageous and provides useful information for the subsequent residual 

analysis. 
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3 MAXIMUM LIKELIHOOD ESTIMATION USING ITERATED 
WEIGHTED LEAST SQUARES 

In section 2 we went into considerable detail of how our algorithm for setting up the 

model matrix works, because we are not aware of such a step-by-step description in the 

actuarial literature. Algorithms for fitting a generalized linear model (GLM) by using a 

maximum likelihood estimator, however, are described in many text books (e.g.,  chapter 2.5 

in [6] or chapter 6.4.2 in [9]). We will therefore concentrate on how to implement such an 

approach relying on standard linear algebra routines available in open source form—we have 

used code from the ALGLIB project available for download at www.alglib.net. Other than 

demonstrating that Visual Basic for MS Excel is well capable of fitting a GLM to triangles of 

considerable size, we also want to show that in the process of performing the calculations we 

can extract useful information2 other than the fitted parameter values. 

3.1 Notation 

Before continuing we need to introduce some standard notation for describing a GLM 
model. Often a GLM model is specified by assuming a specific distribution from the 
exponential family for the observations. In practice the algorithm for fitting a GLM works 
just as well under the weaker assumption that the second moment of the distribution is a 
function of the expected mean (see chapter 9 on pseudo-likelihood functions in [6]). Hence 
we regard a GLM type problem to be fully specified by the following elements: 

 Model matrix, X  

 Data vector, y 

 Fitted values vector, ŷ 

 Link function, g—note that here we only will use the logarithm 

 Variance function, V 

Additionally, the following notation is useful in describing the algorithm and the 
computations: 

 Parameter vector, p 

 Linear estimator, η 

 Vector of quadratic weights for weighted LSQ regression, w 

 Vector of linearized data, z 

 Vector of expected variance for data points, v 

                                                           
2 Specifically we are referring to the diagonal elements of the hat matrix, which can be used to standardize 
residuals. This will be discussed in more detail in section 4. 
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The algorithm described here follows the approach outlined in chapter 2.5 of [6]—we 

perform iterated weighted least square regressions. This procedure can be understood as an 

adaption of the multi-dimensional Newton-Raphson method to the problem of solving the 

maximum likelihood equations for a GLM. In effect we are repeatedly solving a linearized 

regression problem until the successive solutions have converged to a sufficient degree. In 

general such numerical procedures can be sensitive to the starting point chosen. Here we can 

use the actually observed values for the data points (triangle cells), which makes the practical 

implementation easy.  

3.2 Pseudo-code for MLE algorithm 

Deferring our discussion of how to perform the weighted least squares (LSQ) regression, 

here is how the MLE algorithm implemented here works: 

Step 10)  Based on the actual data points, initialize the fitted data points, the linear estimator, 
and the expected variances: ŷ0 = y, η0 = g(y) = log(y), and v0 = V(y). 

Step 11)  Based on a current estimator, ηi, determine the vector of linearized data using the 
following formula: 
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Step 12)  Based on a current estimator, ηi, the expected variances, vi, calculate the vector of 
weights for weighted LSQ regression: 
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(3.2)

Step 13)  Perform weighted LSQ regression of zi on X subject to wi to obtain new set of 
parameters, pi+1, leading to a new liner estimator, ηi+1, and fitted values, ŷi+1. 

Step 14)  Compare pi with pi+1 to determine whether convergence is satisfactory. 
If not, repeat from Step 1). 

Step 15)  Extract diagonal elements of hat matrix, H, calculate deleveraged residuals, estimate 
dispersion parameter, and calculate standardized residuals. 

Step 16)  Loop over exact-fit cells and recursively determine exact-fit parameters based on 
parameters obtained with MLE algorithm. 

Note that with the logarithm as our link function we get η = g(ŷ) = log(ŷ), and 

dη/dŷ = 1/ŷ. Readers who are interested in why this procedure (specifically steps 0 to 4) 

works are referred to chapter 2.5.1 in [6]. Step 5) will be discussed in detail in section 3. Step 

6) utilizes the information gathered by the algorithm for setting up the model matrix, X, as 
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described in section 2. While this also reduces the computational cost, the main purpose is to 

keep track for which data points we can calculate standardized residuals. 

3.3 Notes on implementation issues 

Implementing this general algorithm in Visual Basic is pretty straight forward. To make 

the implementation flexible regarding specific choices of variance and link functions we are 

using a number of generic functions that such as Calc_dL (for dη/dŷ), Calc_Variance (for v), 

and Calc_Weights (for w), that are simply passing through a symbolic parameter indicating 

the current choice of link and variance function to lower level functions that compute those 

values for specific data points (Link_Scalar, LinkInv_Scalar, Var_Scalar, dL_Scalar). Note 

that despite this flexibility in design, the template does only implement the logarithmic link 

function. 

For those readers who want to go over the Visual Basic code in detail, please note that we 

are making extensive use of passing data by reference to provide functions with input and to 

return the results. The formal function results are mainly used for debugging and error 

handling. Passing by reference means that subroutines are given direct access to data 

structures (variables and/or arrays) defined at a higher level rather than having their own 

copy of the data passed in. So the main point of a statement like 

If Not Calc_dL(dL, Y_, LinkFunc) Then Stop 

is not to stop execution if the function Calc_dL returns FALSE. Rather we want to calculate 
the vector of derivatives for the link function, which is accomplished as a side effect to the 
function call by updating the values of the vector (1-d array) dL that is passed to the function 
by reference. The “If … Then Stop” statement is simply a way of pointing the developer to 
the right position in the code in case something were to go wrong. 

Performing the weighted LSQ regression is mainly an exercise in linear algebra. Built-in 

Excel functions only provide limited support for matrix operations and the matrices the built 

in functions can deal with is limited. We are therefore providing some auxiliary routines for 

simple matrix operations. A list with short descriptions follows:  

 MClearUpper.. clears the upper right triangle of a square matrix A; needed 
because the Cholesky transform routine from ALGLIB 
assumes that symmetric matrix is represented in triangular 
format 

 MTrans ............ populates matrix transpose AT of matrix A 

 MMult.............. populates matrix R with the product of matrices A and B 
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 MDiagRMult... left multiplies matrix A with a diagonal matrix that is 
represented as a vector diag 

 MDiagLMult... right multiplies matrix A with a diagonal matrix that is 
represented as a vector diag 

 MSet................. populates matrix R by copying entries of matrix A 

 MSwapCol....... swap column c1 and c2 of matrix A 

 MSwapRow..... swap row r1 and r2 of matrix A 

 MQuickMult ... populates vector r with the product of matrix A and vector b 

 VectorSqrt....... populate vector sqrt_w with square root of elements of 
vector w 

As indicated above, we are also using code from the open source ALGLIB project 

(www.alglib.net). The following functions are Visual Basic implementations of LAPACK 

routines (www.netlib.org/lapack/): 

 SPDMatrixCholesky .perform Cholesky decomposition of matrix A which is 
assumed to be a symmetric matrix stored in triangular 
format. 

 RMatrixTRInverse....perform matrix inversion of triangular matrix A. 

We will not explain the algorithms in detail, but we do want to briefly outline why these 

routines are useful for our purposes. The key computational step in performing the weighted 

LSQ regression is the inversion of the matrix XT.W.X, where W is the diagonal matrix of 

weights represented by the vector w. If the regression problem is well defined, this matrix is 

symmetric and positive-definite. Now, if you have a symmetric, positive-definite matrix A, 

then there is a lower triangular matrix L such that A=L.LT. This representation of A is called 

its Cholesky decomposition. It follows from basic matrix algebra that  

A-1=(L-1) T.(L-1). Hence we can see how the inversion of XT.W.X. can be accomplished by 

first finding its Cholesky decomposition and then inverting the resulting lower triangular 

matrix. 

In symbolic form the weighted LSQ regression estimate for the parameters based on the 

linearized data is given by: 

p = (XT.W.X)-1.XT.W.z. (3.3)
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3.4 Pseudo-code for weighted LSQ regression 

We now present an outline of the code for performing the weighted LSQ regression. 

Note that in essence we are building up three matrices: XT.W, (XT.W.X)-1, and 

(XT.W.X)-1.XT.W. The corresponding variables are called XtW, XtWXinv, and 

XtWXinvXtW: 

wLSQ 11) MTrans_C(XtW, X)—i.e., XtW = XT 

wLSQ 12) MDiagRMult_C(XtW, w)—now XtW = XT.W 

wLSQ 13) MMult_C(XtWXinv, XtW, X)—i.e., XtWXinv = XT.W.X 

wLSQ 14) MSet_C(M1, XtWXinv)—i.e., M1 = XT.W.X 

wLSQ 15) MClearUpper_C(M1)—prepare M1 for Cholesky routine 

wLSQ 16) MCholesky_C(M1)—calculate the L for XT.W.X 

wLSQ 17) MTriInv_C(M1, t)—i.e., M1 = L-1 

wLSQ 18) MTrans_C(M2, tmpM1)—i.e., M2 = (L-1) T 

wLSQ 19) MMult_C(XtWXinv, M2, M1)—i.e., XtWXinv = (L-1) T.(L-1) 

wLSQ 10) MMult_C(XtWXInvXtW, XtWXinv, XtW)—used for calculating h 

The rest of the tasks associated with Step 3) of the iterated weighted LSQ algorithm is 

accomplished with the following statements: 

wLSQ 11) MQuickMult(p, XtWXInvXtW, z)—i.e., p1 = (XT.W.X)-1.XT.W.z0 

wLSQ 12) MQuickMult(z_, X, p)—i.e., η1 = X. p1 

wLSQ 13) LinkInv(y_, z_, LinkFunc)—i.e., ŷ1 = g-1(η1) 

3.5 Concluding remarks 

We encourage interested readers to contact the author and request a copy of the 

accompanying MS Excel application, so they can study the commented source code for 

further implementation details. 

One note on performance: the computational cost of many sub-tasks except for the 

matrix operations varies linearly with the number of triangle cells included in the analysis. 

For fitting a single model the performance of the Visual Basic code seems satisfactory, even 

for larger triangles (the author tested up to 40 by 40). For repeated applications (such as 

bootstrapping) execution time can become an issue. Without changing the logic, significant 

gains in performance can be gained from porting the weighted LSQ routines to C++ and 

compiling them into a dll, which is then loaded by the Visual Basic code. In this paper we do 
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not discuss the issues of interfacing Visual Basic with a dll and/or how to write code in C++ 

that can be compiled into a dll. For readers interested in those issues we recommend Steve 

Dalton’s Financial Applications using Excel Add-in Development in C/C++ (different versions 

exist for MS Excel 2003 and MS Excel 2007). 
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4 STANDARDIZED RESIDUALS AND THEIR APPLICATION 

In this section, we introduce standardized residuals and how to compute them. After 

briefly describing how to create diagnostic plots based on these standardized residuals we 

present a practical example (based on a data set also used in a number of other papers on 

triangle-based stochastic reserving) of how these plots can be used to assess goodness-of-fit 

and make decisions about the model structure. 

4.1 Standardized Residuals 

Residuals are simply the difference between the actual data points and their fitted values 

based on a concrete model specification. Suitably standardized, so comparisons for residuals 

corresponding to different data points can be made, residuals can be a powerful tool for 

visually analyzing the goodness of fit of a model. Standardizing residuals is also a crucial step 

in bootstrapping a GLM. The approach here follows chapter 12.5 and 12.7 in [6], but similar 

descriptions of the standardization procedure can also be found in [7] and in chapter 7.2 of 

[3]. 

For a GLM, there are two adjustments to residuals that need to be made in order get 

residuals that are approximately identically distributed. Firstly we need to adjust for the 

differences in expected variances based on the relationship imposed by the variance 

function. This motivates the following definition of Pearson residuals: 
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In addition we also need to adjust for the leverage that individual data points exert on 

their corresponding fitted value. At the extreme there are the exact-fit cells where the fitted 

value will always identically match the observed data point. For other points the observed 

value will still exert a pull on the fitted value that biases the residuals as a measure of 

variability inherent in the data. For a detailed discussion of the concept of leverage, we refer 

the reader to chapter 12.7 in [6]. A useful measure of leverage can be obtained by the 

diagonal values of the hat matrix, H, which for a GLM is defined as (equation 12.3 in [6]): 

H = W½.X.(XT.W.X)-1.XT.W½. (4.2)

Note that since we are only interested in the vector h of diagonal elements we can also 

use the following formula: 

h = diag(X.(XT.W.X)-1.XT.W). (4.3)
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With this we can now introduce the following definition of deleveraged Pearson residuals: 
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Note that the deleveraged Pearson residuals are not defined for exact fit cells. Also note 

that this definition is still missing the estimated dispersion factor as a normalizing constant. 

The reason for this is that we are proposing the following estimator for the dispersion factor: 

)rVar(~ˆ   (4.5)

Compare this to the conventional estimator (unnumbered formula on page 328 in [6]), 

based on an after-the-fact degree of freedom adjustment: 
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where n is the number of data points and p is the number of estimated parameters. Both 
estimators for the dispersion parameter are ad hoc and are trying to adjust for the leverage 
effect. Equation 4.5 relies on the bias correction applied to each individual residual. 
Equation 4.6 does not distinguish between the difference in leverage for individual data 
points. Further research is required for assessing the relative performance (e.g.,  in terms of 
bias or standard error) of these two estimators. For the purposes of assessing goodness of fit 
and for bootstrapping applications, deleveraged residuals are the better choice since the 
assumption that they are approximately identically distributed is more likely to be true. For 
this reason, we continue with using equation 4.5, but the accompanying excel application 
displays both versions of the estimate of the dispersion factor. 

With this we derive at our final definition of standardized Pearson residuals: 
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This concludes our discussion of the subtasks summarized as step 5 in MLE algorithm 

outlined in section 2. For convenience, we are repeating the step: 

Step 15)  Extract diagonal elements of hat matrix, H, calculate deleveraged residuals, estimate 
dispersion parameter, and calculate standardized residuals. 

4.2 Graphical Representation 

Now that we have defined standardized residuals and know how to calculate them, the 

task of plotting them in MS Excel is straightforward. The main trick for getting pretty plots 

is to keep track of how many residuals we are actually trying to plot. We address this issue by 
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having the MLE algorithm automatically update named ranges, which are used to specify the 

data source for the plots. We are graphing standardized residuals against exposure period, 

development period, calendar period, and size of fitted value. As an aid in the visual 

inspection we are adding a trend line to each of the plots. For the period-based plots this 

trend line simply is the average of all residuals for that period. For the plot against size of 

fitted value, we perform a linear regression of the residuals on the fitted values to plot the 

trend line. 

Plots of standardized residuals against various axis of interest are a standard tool for 

assessing goodness of fit in stochastic modeling. Barnett and Zenwirth’s paper on “Best 

Estimates for Reserves” ([2]) has popularized the concept in the context of analyzing 

actuarial development triangles and they are now a staple of stochastic reserving packages. 

The idea is that standardized residuals should be randomly and identically distributed. If 

there are any obvious systematic trends visible in the plots, then the residuals are not random 

after all. In addition one can also detect extreme outliers and an experienced analyst may also 

infer other information that can be used to find an optimal model. 
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4.2 Example 

We are using a data set that the authors of [7] attribute to Taylor and Ashe (1983). Here is 

the data in incremental form: 

357,848  766,940  610,542  482,940  527,326 574,398 146,342 139,950  227,229 67,948  

352,118  884,021  933,894  1,183,289 445,745 320,996 527,804 266,172  425,046  

290,507  1,001,799  926,219  1,016,654 750,816 146,923 495,992 280,405    

310,608  1,108,250  776,189  1,562,400 272,482 352,053 206,286    

443,160  693,190  991,983  769,488  504,851 470,639     

396,132  937,085  847,498  805,037  705,960      

440,832  847,631  1,131,398  1,063,269       

359,480  1,061,648  1,443,370         

376,686  986,608          

344,014          

There are no non-positive or missing data points, so we can go ahead and fit a model 

based on the full triangle. To start with we chose the identity variance function, which 

produces a model that preserves the row and column sums of the triangle and is equivalent 

to the model obtained by developing the triangle using the all-year, volume-weighted link 

ratios. This results in the following residual plots: 
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From the jagged trend line for calendar period plot we can see that there are calendar year 

effects that our model does not capture. From the exposure period and development period 

plots, we can see that there are two relatively large residuals for cells (4,4) and (1,6)—looking 

at the data set above we can see that the corresponding values are 1,562,400 and 574,398, 

respectively. Inspection of the corresponding columns in the triangle does confirm that these 

values appear unusually high. For demonstration purposes, we assume that theses values 

represent abnormal circumstances that should not be included in our model to predict future 

development. Hence we exclude these data points. Technically we have now parameterized a 

new model and the new residual plots look as follows: 
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Before looking at the remaining plots on the next page, please note that these plots 

should mainly be used for assessing the internal consistency of the current model. We 

emphasize that by excluding data points we end up with different models that cannot be 
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directly compared. With that said, we note that while there are still ups and downs in the 

exposure and development period plots, the biggest and smallest residuals now do not look 

way out. 

0 2 4 6 8 10 12

Payment Period

 

Fitted Value

 
The calendar period plot looks no better than before. Since our model only has exposure 

and development period parameters, we have limited options for responding to these 

calendar period effects. For demonstration purposes we will try a model that only includes 

the latest five diagonals except for the diagonal for calendar period 8, which looks out of 

line, and cells (4,4) and (1,6), which we previously excluded. 

At this point, let us have a look at the output produced by our model. One feature of this 

type of model is that we cannot only project expected values for future triangle cells, but we 

can also extrapolate the expected values for all past triangle cells that were excluded from the 

analysis. In the table on the following page we show all fitted values that correspond to 
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included data points in bold letters. All values in italics correspond to 

projections/extrapolations based on the fitted parameters for the model. Since we have 

chosen the identity variance function the reader can also verify that fitted values in bold 

preserve the row and column sums of the original data points for the included triangles cells 

along the last five diagonals. 

142,392 330,441 425,664 331,922 244,123 196,001 146,600 110,970 226,971 67,948 

266,817 619,189 797,621 621,963 457,443 367,273 274,703 207,939 425,304 127,323 

434,523 1,008,377 1,298,962 1,012,895 744,967 598,120 447,366 338,638 692,627 207,351 

247,343 573,998 739,407 576,569 424,057 340,467 254,654 192,763 394,263 118,030 

316,708 734,969 946,766 738,262 542,980 435,948 326,069 246,821 504,831 151,130 

386,120 896,049 1,154,264 900,064 661,982 531,493 397,532 300,915 615,472 184,253 

416,980 967,665 1,246,518 972,001 714,890 573,972 429,304 324,966 664,663 198,979 

471,751 1,094,769 1,410,249 1,099,674 808,792 649,363 485,694 367,650 751,967 225,115 

410,550 952,744 1,227,297 957,013 703,867 565,121 422,684 319,955 654,414 195,911 

344,014 798,336 1,028,394 801,913 589,794 473,534 354,182 268,101 548,356 164,160 

There is one last feature of the MLE algorithm implemented here that we want to 

demonstrate: the user can choose from a number of pre-defined variance functions (identity, 

unity, square root, power 2, and power family with a specifiable positive exponent). To see 

the effect this may have on the model, consider the residuals versus fitted size plot for our 

latest model with the identity variance function:  

Fitted Value

 
For comparison we will also be fitting a model with the same data points but using the 

unity variance function. With the unity variance function all data points are assumed to have 

the same expected variance. Hence we would expect that, relative to the identity variance 

function, smaller fitted values are given more weight and therefore should have smaller 
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residuals (relative to the residuals for larger fitted values). The reader can inspect the residual 

plot on the following page to see whether this expectation holds up. 

Fitted Value

 
 

This concludes our walk through on how to use the MLE template. We encourage 

readers to contact the author to request a copy of the companion MS Excel template and put 

it through its paces with data sets of your choice. 
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5. RESULTS AND DISCUSSION 

In section 2.1, we visually presented the issues that need to be addressed when setting up 

a model matrix for a development triangle-assuming a multiplicative model which has 

distinct unordered parameters for exposure and development periods. 

The following section 2.2 more formally introduces some concepts from graph theory 

that allow us to analyze the graph topology of an incomplete development triangle. This 

enables us to generate a valid model specification and to gather information that is important 

for interpreting the output of the fitting procedure. In particular we can identify exact fit 

cells and sub-regions of the incomplete development triangle for which the regression fit is 

performed without any influence from other regions. 

Section 2.4 provided details for an original algorithm based on graph theory that 

generates a valid model specification for a regression model that can be used to project 

future development for an incomplete development triangle. If necessary the algorithm will 

restrict the model to a maximal connected component of the selected incomplete triangle. 

Note that with minor modifications the algorithm would also work for a rectangle of data 

points (still assuming a two-dimensional factorial model). 

An outline of how to use iterated weighted least squares to implement a maximum 

likelihood estimator for a GLM was given in section 3.2. The algorithm (and its 

implementation in Visual Basic, which can be found in the accompanying MS Excel 

application) is generic and should work for any valid model matrix. An interested reader 

could easily extend the functionality by adding their own code for other link functions, the 

derivative of the link function, and/or code for other variance functions. 

After providing further guidance on implementation issues in section 3.3, we explained 

the concrete steps required for performing a weighted least squares regression in section 3.4. 

This code utilized some simple routines for basic matrix operations tailored to our specific 

application and standard LAPACK routines implemented in Visual Basic from the open 

source ALGLIB project. We note in section 3.5 that performance of the MLE algorithm can 

be significantly improved by porting the matrix routines to C++ and compiling them into a 

dll that then can be accessed from Visual Basic. 

In section 4.1 we presented an intuitive account of the concept of leverage and its role in 

the computation of standardized residuals that can be used for visual analysis of goodness of 

fit and for bootstrapping applications. We also proposed an alternative estimator for the 
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dispersion parameter which is based on deleveraged residuals that have been individually 

adjusted for the bias introduced by leverage. The conventional estimator uses a degree of 

freedom adjustment that in effect is uniformly applied to all Pearson residuals. 

After providing a brief outline on how to create plots of standardized residuals we 

presented a “walk through” of how these plots can be used in assessing goodness of fit and 

making informed choices about which data points should be included for a concrete triangle 

that has also been used in other papers on stochastic reserving. Note that the intention of 

the walk through is not to provide an optimal model for the specific data set, but to 

showcase the kind of judgments an analyst can make in the context of the type of GLM 

model presented here. 

The material in this paper is based on standard GLM theory and standard numerical 

methods. We hope, that by presenting a complete open-source implementation, we can 

contribute to making more actuaries aware of how these powerful methods can be used in 

the context of stochastic reserving, and that interacting with the accompanying MS Excel 

template will prove a useful aid to gaining a deeper understanding of what regression models 

can accomplish in the context of development triangles. 

Interested readers are encouraged to contact the author and request a copy of the 

companion MS Excel application to further explore the concepts and algorithms presented 

in this paper.  

We want to conclude this section by comparing the model presented in this paper to 

some other stochastic models for incremental development triangles discussed in the 

actuarial literature. The type of model described in this paper (multiplicative effects with 

discrete parameters for exposure and development periods) is the same as the model 

described in [7], except that we provide the full apparatus that allows an analyst to exclude 

arbitrary triangle cells from the analysis. By allowing for excluded data points and different 

choices of variance functions we somewhat extend the simple bootstrapping models 

discussed in [4] and [7]. As noted also in these papers a GLM with the identity variance 

function produces the same estimated reserve as the all-year, volume-weighted link ratio 

method, when applied to a complete development triangle. But, as observed in [9], such a 

GLM is more like the traditional BF or Cape Cod method than the link ratio method, in the 

sense that generally we derive a development pattern and an estimate of exposure by 

exposure period and then calculate future development by multiplying the two. 
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Models such as those proposed in [2] and [8] differ from the model presented here in at 

least two important ways. The first difference is that the models in [2] and [8] effectively 

group development (or even exposure) periods together and parameterize them using either 

parametric curves or forms non-parametric smoothing (also discussed in [4]). The second 

difference is that these models add the calendar period as an additional dimension to the 

analysis. The model proposed in [8] and some models discussed in [4] furthermore use a 

Bayesian framework utilizing Monte Carlo Markov Chain simulation techniques. 

One straight-forward extension for the model presented here is to allow for arbitrary 

prior weights for the various triangle cells. Some grouping of development periods (or 

accident periods) based on parametric curves should not be too difficult to implement either. 

A persistent nuisance of most stochastic reserving models for development triangles is 

that they do not work for negative incremental values. As we have noted in the case of our 

model in section 2, this seems to be due to the seemingly inevitable choice of a logarithmic 

link function or a similar transformation involving taking a logarithm. Given how often we 

encounter triangles with negative incremental values as practicing U.S. P&C reserving 

actuaries, one would hope that a solution to this problem is found soon. 

We conclude our discussion by reiterating that the model and material presented here is 

intended to introduce a wider audience of P&C actuaries to regression analysis for 

development triangles. The paper should aid practitioners in deepening their understanding 

of regression analysis, in general, and GLM analysis, in particular. We also hope that 

practitioners will start appreciating that development triangles represent a rather condensed 

form of data and that even the most sophisticated stochastic models cannot recover the 

information that was destroyed in the process of aggregating individual claims data. 
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6. CONCLUSIONS 

We have demonstrated that an incomplete development history is no obstacle to 

projecting future development. Our analysis of the graph topology of an incomplete 

development triangle precisely describes to what extent such projections are possible based 

on the data points given. Understanding the nature and implications of exact fit cells and 

critical connector cells is crucial for assessing the goodness of fit of the model and for 

bootstrapping applications. To our knowledge the application of graph theory in this context 

has not previously been discussed in the actuarial literature. The companion MS Excel 

application, which is available from the author at request, demonstrates that performing a 

GLM-based regression fit to a development triangle is a tool within easy reach of any 

practitioner with access to a personal computer. 
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