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Abstract: Generalized Linear Model [GLM] theory is a commonly accepted framework for building 
insurance pricing and scoring models.  A helpful feature of the GLM framework is the “offset” option.  
An offset is a model variable with a known or pre-specified coefficient.  This paper presents several 
sample applications of offsets in property-casualty modeling applications.  In addition, we will connect the 
offset option with more traditional actuarial techniques such as exposure and premium adjustments.  A 
recurring theme of the discussion is that actuarial modelers have at their disposal several conceptually 
related techniques that can be used to eliminate the impact of variables that (for whatever reason) are not 
intended for inclusion in a model, despite the fact that they might be correlated with both the target 
variable and other predictive variables.  Examples discussed in this paper include a class plan analysis as 
well as a tier scoring application.  Sample SAS code for fitting GLMs will be provided in the body of the 
paper.    
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Introduction  
In recent years, property-casualty insurance companies have widely embraced predictive modeling as 
a strategic tool for competing in the insurance marketplace.  Predictive modeling – and in particular 
the use of Generalized Linear Models – was originally introduced as a method for improving the 
precision of personal auto insurance pricing.  The use of predictive modeling was subsequently 
extended to homeowners and commercial lines as well.  Today, predictive modeling is a core 
strategic capability of many top insurers and is applied in such key operations as marketing, 
underwriting, pricing, and claims management. 
 
Property-casualty insurance is a complex and dynamic business.  As is often observed, it is unique in 
that the ultimate cost of its basic product is unknown at the time of sale.  A plethora of risk factors 
affects the cost of providing insurance.  Many of these are well understood and are reflected in the 
price of insurance.   For example, a typical automobile insurance rating plan contains more than 20 
variables, including a wide range of driver, vehicle, and territorial characteristics [1].  However, the 
cost of providing insurance is also greatly influenced by such dynamic and exogenous factors as the 
underwriting cycle, medical inflation, variations in the size of jury awards, and poorly understood 
exposures such as asbestos and mold.  
 
It is therefore practically impossible for actuarial models to be “comprehensive” in the sense of 
including all relevant variables that affect the number and size of claims.  The non-ideal nature of 
actuarial models is compounded by the real-world fact that insurance data is often incomplete, 
inconsistently coded, and generally “dirty”.    In addition, many relevant variables (such as vehicle 
symbol, rating territory, or Workers Comp industry classifications) are “massively categorical”, 
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leaving individual insurers with insufficiently credible data to estimate their own rating factors as 
part of a rating plan optimization exercise.  
 
For these and other reasons, actuarial modelers face a generic problem:  in many, if not most, 
modeling situations, they are forced to exclude variables that are relevant to predicting frequency 
and size of loss.  If these “omitted variables” are correlated with both the target variables and one or 
more of the other modeling variables, they will bias the estimates of the corresponding model 
parameters [2].  This phenomenon is commonly known as “omitted variable bias” [OVB].    
 
In short, it will never be possible to build a single actuarial “super model” that accounts for every 
single determinant of loss.  To avoid the peril of OVB, actuaries therefore must often “adjust for” 
or otherwise accommodate the effects of omitted variables as part of their model design and model 
construction process.   Commonly known factors which potentially bias property-casualty predictive 
modeling results include the underwriting cycle and external environmental changes (i.e., time), 
variation in loss maturity, distribution channel, variation in rate adequacy across states and through 
time, and a changing competitive landscape, to name a few.    
 
A traditional actuarial response to the problem of OVB is to adjust the model’s target variable (more 
precisely, the exposure or premium component of the target variable).  A conceptually similar 
technique that has long been in the arsenal of actuarial modelers is running a “preliminary” 
regression model on the variables to be omitted (such as policy year or state) and then using the 
residuals of this model as the target variable going forward.  More recently, actuaries have embraced 
the offset option from Generalized Linear Model theory [3-7].  Each of these techniques offers a 
way of avoiding OVB.  That is, each technique offers a way of accounting for the effect of omitted 
variables in a way that avoids biasing the model’s parameters. 
 
This paper will review the basics of GLM theory and the GLM offset option, provide various 
sample applications of the offset, and draw connections between the offset option and traditional 
actuarial techniques. 
 
 
Background:  GLM Theory and the Offset 
Recall that a Generalized Linear Model [GLM] relates the expected value of the target variable 
(µ≡E[Y]) to a linear combination of predictive variables (β·X) via a “link function” g(·): 
 

XXXXg pp ⋅≡++++= βββββμ ...)( 22110  
 
In addition to the linearity assumption implicit in the above equation, GLM theory assumes that the 
target variable is distributed by the 2-parameter family of distributions known as the exponential 
family.  The exponential family encompasses a wide range of distributional forms including Normal, 
Gamma, Binomial, Poisson, Negative Binomial, and many others.  The exponential family density 
function is expressed as: 
 

( ){ }),()(/)(exp),;( ϕϕθθϕθ ycabyyfY +−=  
 
The two parameters in this family, θ and φ, are known as the canonical parameter and dispersion 
parameter, respectively.  As we will see, these are related to the mean and variance, respectively, of Y.   
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Two mathematical facts are helpful in interpreting this seemingly complicated expression: 
 

)(][ θμ bYE ′==  
and: 
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It is common to denote b”(θ) as V(µ) and call it the “variance function”.  (N.B.:  the “variance 
function”, V(µ), is not the same thing as the variance of Y.)  Furthermore, the function a(φ) is often 
specified to be φ/ω, where ω is a prior weight (such as exposure or premium).  Therefore, we have 
the following expression that relates the variance of Y to the mean of Y: 
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ω
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In the special case of un-weighted, ordinary least squares [OLS] regression, we have:  g(µ)=1 
(identity link), ω≡1 (each observation is given equal weight), a(φ)=σ2 (merely a different naming 
convention), b(θ)=θ2/2, and c(y,φ) = -½{y2/σ2 + log(2πσ)}.  The reader can verify that these 
substitutions result in the familiar expressions for the Normal distribution N(µ,σ2) and 
homoskedasticity (constant variance): 
: 
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In OLS regression, the modeler selects the target variable, the appropriate set of predictive variables, 
as well as the prior weights ω, and must verify that the assumptions of normality (in particular 
homoskedasticity) and the linearity on the additive scale (i.e., identity link) are satisfied.  In the 
broader GLM framework, the normality and linearity assumptions are each relaxed.  The normality 
assumption is replaced with the much weaker assumption that the distribution of Y is from the 
exponential family; and linearity is replaced with linearity on the scale determined by the link 
function.  Commonly used distribution/link function combinations are displayed below: 
  

Distribution  V(µ)  Link  Sample Application   
Normal  1  identity             General applications 
Poisson  µ  log  Frequency modeling  
Binomial  µ(1- µ)  logit  Retention, cross-sell 
Gamma  µ2  log  Severity modeling 
Tweedie  µp, pє(1,2) log  Pure Premium modeling 

 
Note that what is often called “choosing a distribution” for a GLM is tantamount to choosing the 
variance function V(µ) that relates the variance of Y to the mean. 
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With the basic GLM framework in hand, we can turn to the offset feature.  An offset is simply an 
additional model variable, ξ, whose coefficient is constrained to be 1: 
 

ξβμ +⋅= Xg )(  
 
In the case of OLS regression, this amounts to subtracting ξ from the target variable prior to 
running the regression.  Therefore, offsets are not typically discussed in the context of OLS 
regression.  Suppose that ξ is the predicted value of Y from a “preliminary” regression model.  Then, 
specifying ξ as an offset is equivalent to using the residual from the preliminary regression as the 
target variable of the regression of interest.  As mentioned above, this is a well known method of 
removing the effects of a group of nuisance variables from the target variable prior to running the 
model in order to avoid omitted variable bias.   
 
In the remainder of this paper, we will discuss offsets in the context of multiplicative models, i.e., 
models constructed using the log link function. 
 
As an aside, it is interesting to note that the offset was originally an afterthought in the development 
of Generalized Linear Models theory by Nelder and Wedderburn in 1972 [3].  Quoting from the 
book by Hilbe [8, page 130]: 
 

“Offsets were first conceived by John Nelder as an afterthought to the [Iteratively Reweighed 
Least Squares] algorithm he and Wedderburn designed in 1972.  The idea began as a 
method to put a constant term directly into the linear predictor without that term being 
estimated.  It affects the algorithm only directly before and after regression estimation.  
Nelder only later discovered that the notion of an offset could be useful for modeling rate 
data.”  

 
 
Offsets as a Measure of Exposure 
As the above quote suggests, the offset is most commonly discussed as a measure of exposure in the 
context of Poisson regression.  For example, it shows up in essentially the same way in both actuarial 
and epidemiological work.  In both cases, offsets are often interpreted as a measure of exposure.  In 
the latter setting, the exposure might be the number of people exposed to a pathogen; and the 
response would be the number of people who contract the disease.  In the former setting, the 
exposure might be the number of car-years insured; and the response would be the number of 
claims incurred.  In both settings, the value of the response is assumed to be roughly proportional to 
the value of the exposure.   
 
As the final equation in the previous suggestion indicates, the offset must be on the same scale as 
the linear predictor β·X.  Therefore, in the auto example above, log(exposure) would be used as an 
offset.  That is:  ξ=log(u) where u (“units”) denotes exposure: 
 

)log(])[log( uXCE +⋅= β  
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In the Poisson case, this is mathematically equivalent to replacing claim count with claim frequency 
(claims divided by exposures:  F=C/u) as the target variable; using exposure as the weight; and 
dispensing with the offset:   
 

XFE ⋅= β])[log(  
 
These two models’ specifications are summarized in the table below: 
 

   Option 1  Option 2 
GLM family:  Poisson  Poisson 
Target:   C   F 
Weight:            (none)   u 
Offset:   log(u)   (none) 

 
Option 2 is the more commonly adopted model specification.  The equivalence of these two 
specifications is demonstrated in Appendix A. 
 
 
Exposure Adjustments and the Offset 
To avoid omitted variable bias, actuaries commonly perform as a preliminary step various exposure 
or premium adjustments to remove the effects of variables not included in the model.  Such 
adjustments are commonly used in pricing plan analyses for reasons including pricing structure 
complexity, data availability, data credibility, business or regulatory considerations, competitive 
considerations, and the desire to mitigate policyholder impacts. 
 
For example, suppose we wish to model claim frequency in terms of the following variables: 
 

• Multi-car indicator  
• Driver age  
• Vehicle use  
• Symbol  
• Territory  

 
Because of the large number of Territory and Symbol categories, the analyst might wish to estimate 
Symbol and Territory factors in a separate analysis.  Merely dropping these variables from the model 
with no further action would raise the problem of OVB.   
 
Suppose, for example, that a certain territory has a disproportionately large number of young drivers.  
If Territory were simply excluded from the model with no further adjustment, the Driver Age 
variable would act partly as a proxy for territory.  The final rating plan, including both Territory and 
Driver Age, would overcharge young drivers in this hypothetical territory. 
 
This problem is sometimes dealt with by adjusting the exposure field.  Assuming a completely 
multiplicative rating plan, adjusting the exposures means simply multiplying exposures either by the 
existing territory and symbol relativities, or by a set of relativities that have been estimated in a 
separate modeling exercise.  As above, let u denote the exposure measure and let τiσj denote the 
product of the Territory and Symbol relativities for Territory i and Symbol j.  We compute fadj = 
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c/(u*τiσj).  We use this adjusted frequency (claims divided by adjusted exposure) quantity rather than 
unadjusted frequency (f=c/u) as the target variable.   
 
Given the above discussion and the result of Appendix A, it should be clear that one could 
equivalently use the un-adjusted frequency field f as the target variable and also include log(τiσj) as an 
offset term in the model:   
 

( ) )log(][log τσβββ +++= vehicleUsedriverAgemultiFE  
 
In other words, the traditional actuarial response to the OVB problem is equivalent to using a 
strategically selected offset term, that is, adjusting exposures is equivalent to including the pre-
specified rating factors as an offset in the model and allowing the remaining factors to conform to 
this offset. 
 
 
Loss Ratio Modeling and the Offset 
The discussion in the previous section is analogous to the distinction between Loss Ratio and Pure 
Premium models.  Suppose we wish to construct a credit scoring model, for eventual use in target 
marketing, company placement, and pricing refinement.  Suppose also that the current rating plan is 
up-to-date, with no base rate or rating relativity changes needed.  Examples of the variables used to 
construct the credit scoring model might be number of late payments in the past x days, balance-to-
limit ratio, and number of derogatory public records in the past y years.   
 
Using Pure Premium as the target variable in such a model would obviously introduce the possibility 
of omitted variable bias. It is possible that some of the parameters in the resulting credit scoring 
model would “double count” a penalty or credit given in one of the existing rating factors [9]. The 
traditional actuarial response to this problem is to use Loss Ratio rather than Pure Premium as the 
target variable [10].  This is analogous to the above discussion of adjusted exposures in Pure 
Premium modeling:  we replace loss/u (Pure Premium) with loss/(u*τσ··· υ)=loss/prem (Loss Ratio) as 
the target variable. 
 
This is conceptually equivalent to using dollars of loss as the target variable, and including log(prem) 
as the offset term in the model: 
 

( ) )log(...][log premlossE derogbalToLimlatePay ++++= βββ  
 
In this way, Loss Ratio modeling as an alternative to Pure Premium modeling can be viewed as yet 
another instance of strategically using the offset feature to avoid the problem of omitted variable 
bias.   
 
Please note that our point is not to recommend that actuaries abandon the use of Loss Ratio as a 
target variable in favor of using Pure Premium or dollars of loss with an offset.  We only wish to 
make the point that modeling Loss Ratio rather than Pure Premium is conceptually yet another 
instance of using an offset to integrate prior constraint into one’s model.  In loss ratio modeling, the 
goal is to build a scoring model to be layered on top of the existing rating plan.  The prior constraint 
is therefore the current rating plan in its entirety, properly adjusted and on-leveled.   
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Using the Offset to Constrain Selected Rating Factors 
Another useful application of the offset is constraining certain rating factors to take on pre-specified 
values.  Constraints such as these are often motivated by regulatory and marketing considerations 
[7,11].  For example:   
 

• The insurance marketplace might demand that that the discount for multi-car or home-auto 
package policies be no greater than 15%, regardless of the indication of a statistical analysis.   

• California’s Proposition 103 requires that a good driver discount be at least 20% below the 
rate the insured would otherwise be charged.   

 
In both cases, we must constrain the values of certain rating factors in advance, and allow the 
remaining rating factors to optimally conform to these constraints.  The offset allows one to easily 
integrate constraints such as these into one’s model.  This is only a short step from the exposure 
adjustment example discussed above.  We will give an example with the added complexity that we 
wish to constrain some, but not all, of the levels of a certain rating variable.   
 
In passing, we should note that offsets should not be applied blindly or in a mechanical fashion.  
Werner and Guven [12] provide a helpful example of a case in which one would not want the other 
factors in a rating plan to help “make up for” a prior constraint to a rating factor.  In general, one 
should be mindful of the caveat that no modeling decisions (modeling technique, target variable 
design, choice of predictive variables and offsets, modeling dataset design, and so on) should be 
made without due regard for the business context of one’s work. 
 
Suppose we wish to optimize two factors of a multiplicative rating plan:  driver age group (with 
values {1,2,3,4}) and multi-car indicator.  We have already multiplied the exposures by all other 
rating variables as described in the exposure adjustment section above.  Our target variable is 
adjusted frequency:  claim count divided by adjusted exposure.  Details of the dataset used in this 
and the following examples can be found in Appendix B. 
 
Let us further assume that (either for competitive or regulatory reasons) the relativities for 
DRIVER_AGE_GROUP 3 and 4 must be constrained to take on the values 1.05 and 1.25, 
respectively.  The following SAS code shows how to build a model that incorporates this constraint. 
 
            Model 1 

data freq_data; set input; 
     FREQ_ADJ = CLAIM_COUNT / EXPOSURE_ADJ; 
     offset_factor = 1; 
      if DRIVER_AGE =3  then offset_factor=1.05; 
      if DRIVER_AGE =4  then offset_factor=1.25; 
     logoffset=log(offset_factor); 
 
     if DRIVER_AGE_NEW in (1,2)  

then DRIVER_AGE_NEW =  DRIVER_AGE; 
else DRIVER_AGE_NEW = 99;          

run; 
 
proc genmod data=freq_data; 
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 class DRIVER_AGE_NEW; 
 weight EXPOSURE_ADJ; 
     model FREQ_ADJ = DRIVER_AGE_NEW MULTICAR 
           / dist=poisson 
        link=log 
             offset= logoffset; 
run; 

 
Table 1 – Model 1 Output 
Variable variable value beta ebeta

DRIVER_AGE_NEW 1 0.75 2.11
DRIVER_AGE_NEW 2 0.65 1.91
DRIVER_AGE_NEW 99 0.00 1.00
MULTICAR 1 -0.27 0.77
MULTICAR 0 0.00 1.00

 
 
In this example, we constrain DRIVER_AGE by letting the offset take on the constrained values 
for age groups 3 and 4; and the 1.0 for the other age groups.  At the same time, we re-code the age 
group values 3 and 4 to the value 99 to ensure that the model parameters for these levels will be 0.  
(This is a SAS trick:  SAS treats the highest value of a categorical value as the base category.)  
Therefore, the model estimates “beta” parameters for age groups 1 and 2, as well as the multi-car 
indicator, subject to the constraint that age groups 3 and 4 must have relativities of 1.05 and 1.25, 
respectively.  The final relativity for each level of DRVER_AGE and MULTICAR will by exp(beta 
+ log_offset) = ebeta*offset.  The final rating relativities are displayed below. 
 
Table 2 – Combining Model 1 Parameters with Offset Values 
Variable variable value model beta ebeta offset final relativity 
DRIVER_AGE 1 0.75 2.11 1 2.11 
DRIVER_AGE 2 0.65 1.91 1 1.91 
DRIVER_AGE 3 0.00 1.00 1.05 1.05 
DRIVER_AGE 4 0.00 1.00 1.25 1.25 
MULTICAR 1 -0.27 0.77 1 0.77 
MULTICAR 0 0.00 1.00 1 1.00 

        
 
 
Construction of a Cross-coverage Tier Score 
In many insurance rating plans, a “tier” structure is a rating component that is layered on top of a 
class plan.  In most cases, tier pricing is applied on a policy level across coverages.  The purpose of 
rating tiers is to include in the pricing process further variables – such as personal credit score or 
not-at-fault accidents – which are not part of standard class plans.  Rating tiers can also be used to 
capture interaction effects between the class plan variables, such as the interaction between driving 
record and driver age, which are not fully reflected due to the limitation of pricing structures.  In the 
next example we illustrate how an offset technique can be used to create a cross-coverage tier 
structure.   
 
Suppose we wish to add a tier structure to an existing standard personal auto class plan with two 
coverages:  property damage liability (PD) and comprehensive (Comp).  The tiers are to be 
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comprised of two factors:  number of policy-level not-at-fault accidents in the past 3 years (NAF) 
and credit score (CREDIT).  The tier structure and the tier score are required to be the same across 
the two coverages.   
 
Suppose we start with two separate data files, one for PD liability and one for Comp.  Table 3 shows 
some sample records of the two data files on the exposure/vehicle level.  Note that the PD and 
Comp adjusted exposures were calculated using the logic described in the section of “Exposure 
Adjustments and Offset”.  Specifically, the PD liability adjusted exposure is the unadjusted exposure 
multiplied by the corresponding territory factors; and the Comp adjusted exposure is the unadjusted 
exposure multiplied by the corresponding factors for territory, vehicle symbol and deductible. 
 
Table 3 
Sample Records from PD Dataset      

Policy 
Number 

Vehicle 
Number 

Credit 
Score 
Group 

Policy 
Level NAF 

Count 

Current 
Plan 

Rating 
Factor 

Adjusted 
Exposure 

Incurred 
Loss 

Adjusted 
Pure 

Premium 
00003 1 2 1 0.41 0.73 0 0
00004 1 0 0 1.63 1.46 1664 1143
00005 1 0 0 0.58 1.25 0 0
00006 1 2 0 0.61 0.52 0 0
00007 1 1 0 1.12 1.25 1344 1077

 
Sample Records from Comp Dataset     

Policy 
Number 

Vehicle 
Number 

Credit 
Score 
Group 

Policy 
Level NAF 

Count 

Current 
Plan 

Rating 
Factor 

Adjusted 
Exposure 

Incurred 
Loss 

Adjusted 
Pure 

Premium 
00003 1 2 1 1.38 1.07 0 0
00004 1 0 0 0.79 1.60 495 309
00005 1 0 0 1.05 1.51 566 375

 
Our first step is to simply “stack” these two datasets together, adding a coverage indicator to identify 
whether the record is PD vs. Comp. 
 
Table 4 
PD and Comp Combined Dataset       

Policy 
Number 

Vehicle 
Number PD_IND 

Credit 
Score 
Group 

Policy 
Level 
NAF 

Count 

Current 
Plan 

Rating 
Factor 

Adjusted 
Exposure 

Incurred 
Loss 

Adjusted 
Pure 

Premium 
00003 1 1 2 1 0.41 0.73 0 0
00004 1 1 0 0 1.63 1.46 1664 1143
00005 1 1 0 0 0.58 1.25 0 0
00006 1 1 2 0 0.61 0.52 0 0
00007 1 1 1 0 1.12 1.25 1344 1077
00003 1 0 2 1 1.38 1.07 0 0
00004 1 0 0 0 0.79 1.60 495 309
00005 1 0 0 0 1.05 1.51 566 375
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The following GLM can be used to estimate the parameters for NAF and Credit:   
 
Model 2 
Input Dataset:   Stacked dataset 
Target Variable:  Pure Premium (loss / exposure_adj); 
Predictive Variables:  Credit, NAF 
Distribution:   Tweedie   
Link:    Log 
Offset:    PD_Relativity*β1β2··· βp   (product of existing rating plan factors) 
Weight:              exposure_adj; 
 
In the above model specification, we are using the offset to reflect the existing rating plan factors.  
We must also account for the variation in Pure Premium between the two coverages:  clearly we 
expect a higher Pure Premium for PD records than Comp records.  Not including a PD indicator in 
the model design would lead to a particularly egregious example of omitted variable bias.   
 
In the above model design, we choose to include the PD relativity as an offset factor along with the 
rating plan factors other than credit score and not-at-fault accident count.  Note that other model 
designs are possible.  For example, it would also be possible to include the PD relativity as part of 
the exposure adjustment step.  Either way, we must perform a preliminary analysis to estimate the 
Pure Premium relativity for PD vs. Comp, and include this relativity either as part of the offset or 
the exposure adjustment step. 
 
Because our target variable in this example is Pure Premium, the Tweedie is an appropriate choice of 
distributions.  This has been discussed extensively in the actuarial literature [4,6], so we will review 
this topic only briefly.  For claim count (or frequency) modeling, it is customary to assume that the 
variance of the target variable is proportional to the mean:  V(µ)=φµ.  This is the “Poisson” model 
design used in the previous examples.  For severity modeling, it is customary to assume that the 
variance is proportional to the square of the mean:  V(µ)=φµ2.  This is known as a “Gamma” model 
design.  Pure Premium is the sum of a (Poission distributed) random number of (Gamma 
distributed) sizes of loss.  It is a convenient mathematical fact that the variance of this target variable 
is proportional to the mean raised to a power between 1 and 2, pє(1,2):  V(µ)=φµp.  This model 
design is also exponential family, and is known as the “Tweedie”.    
 
Unfortunately, the commonly used SAS statistical package does not automatically support the 
Tweedie model in the GENMOD GLM modeling procedure.  One alternative to GENMOD is to 
fit Tweedie models using the NLMIXED procedure.  Details of this are given in Appendix C. 
 
Table 5 shows the parameter estimates from the above Tweedie model.  The PD relativity used in 
the offset is 3.44.   
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Table 5 – GLM Output and Pure Premium Relativities 
 

Parameter Estimate Pure Premium Relativity 
credit_grp_0 1.09 2.96
credit_grp_1 1.23 3.44
credit_grp_2 0.74 2.10
credit_grp_3 -0.14 1.15
credit_grp_4 0.00 1.00
naf_pol_0 -0.15 0.86
naf_pol_1 -0.03 0.97
naf_pol_2 0.00 1.00

 
 
Thus the tier score for a policy with NAF=1 and Credit=2, for example, is exp(0.74 - 0.03)=2.03.  
Please note that the PD indicator is not used to calculate the tier factor. 
 
 
Sequential Modeling 
The previous two examples, building a credit score and a tiering structure “on top of” an existing 
rating plan, may be thought of as exercises in “sequential modeling”.  By “sequential modeling” we 
mean building a model to account for variation not already explained by a pre-specified model.  The 
pre-specified model (the existing rating plan in the above examples) in other words serves an as 
“offset” when building the second model.  
 
Sequential modeling techniques have a wide range of applications.  As noted above, the first two 
examples – estimating rating plan factors after Territory and Symbol factors have been determined 
in a separate analysis; and building a credit scoring model on top of an existing rating plan – are 
examples of sequential modeling.  Sequential modeling can also be useful for regulatory compliance.   
For example, California’s Proposition 103 requires that safety/driving record and mileage be the 
greatest determinants of auto premiums.  Insurers typically use sequential methods when developing 
their rates in California. 
 
We will give one final example of sequential modeling before closing the paper.  In this example, we 
will estimate first the main effects of a rating plan and then an interaction term in sequential fashion.  
There can be many motivations for sequential modeling strategies such as the one exemplified here.  
For example, perhaps the interaction factors will be used only in certain states; but the main effect 
factors are desired to be common across all states.  Sequential modeling using an offset would be a 
practical way to approach such a situation.  Another motivation might be that one wishes to keep 
the main effects model simple, without the complication of estimating an interaction term in the 
same step.   
 
In this final example, we suppose we are modeling PD pure premium using the three rating 
variables:  driver age group, multicar indicator, and pleasure use indicator.  We will build an initial 
GLM model for these three main effects.  We will next build a second model – using the first model 
score as an offset – to estimate the factors for a driver age/pleasure use interaction term.  As 
discussed above, the “main effects” rating plan might be used nationally; the additional interaction 
factors might be implemented in selected states. 
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Model 3 
Target Variable:  PD Pure Premium (pd loss / pd exposure_adj); 
Predictive Variables:  DRIVER_AGE, MULTICAR, PLEASURE_USAGE  
Distribution:   Tweedie   
Link:    Log 
Offset:    (none) 
Weight:              exposure_adj; 
 
The rating factors resulting from this model are displayed in the table below. 
 
Table 6 – Model 3 Parameter Estimates and Pure Premium Relativities 
Variable Value Beta ebeta 
MULTICAR 1 -0.26 0.77 
MULTICAR 0 0.00 1.00 
DRIVER_AGE 1 0.37 1.45 
DRIVER_AGE 2 0.04 1.04 
DRIVER_AGE 3 -0.83 0.44 
DRIVER_AGE 4 0.00 1.00 
PLEASURE 1 -0.36 0.70 
PLEASURE 0 0.00 1.00 

 
Let η denote the linear component of the scoring formula corresponding to the table above:  
 η  = βDRIVER_AGE + βMULTICAR + βPLEASURE.  We will use η as the offset in the model for Step II of the 
sequence.   
 
Model 4 
Target Variable:  PD Pure Premium (pd loss / pd exposure_adj); 
Predictive Variables:  DRIVER_AGE *  PLEASURE  
Distribution:   Tweedie   
Link:    Log 
Offset:    η 
Weight:              exposure_adj; 
 
 
Model 4 differs from Model 3 only in the choice of predictive variables; and the fact that we’re using 
the linear component of the Model 3 scoring formula (ETA) as the offset.  Note although exp(η) is 
Model 3’s estimate of PD Pure Premium, we are using η, not exp(η), as the offset in Model 4 
(below).  This is because we are building a multiplicative model (using the log link function).  
Therefore the offset must be on the log scale. 
 
Table 7 displays the rating factors resulting from Model 4. 
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Table 7 – Model 4 Parameter Estimates and Pure Premium Relativities 
DRIVER_AGE PLEASURE Model 3 Estimates Pure Premium Relativity 
1 1 0.54 1.72 
1 0 0.63 1.88 
2 1 0.45 1.57 
2 0 0.78 2.18 
3 1 0.65 1.92 
3 0 0.75 2.12 
4 1 -0.05 0.95 
4 0 0.00 1.00 

 
In states for which Model 4’s interaction factors are not used, the factors in Table 6 constitute the 
rating plan.  In states for which the interaction is intended to be used, we must integrate the results 
of tables 6 and 7.  This is done in tables 8 and 9: 
 
Table 8 – Pure Premium Relativities for Type 
Variable Value Relativity 
MULTICAR 1 0.77 
MULTICAR 0 1.00 

 
Table 9 – Pure Premium Relativities for DRIVER_AGE and PLEASURE 
                                 PLEASURE 
DRIVER AGE PLEASURE=1 PLEASURE=0 

1 1.74 2.71 
2 1.63 2.26 
3 0.71 0.97 
4 0.90 1.00 

 
 
Conclusion 
 
The GLM offset feature is a practical and versatile tool for dealing with a variety of issues such as:  
data constraints, credibility issues (as in Symbol factor development), regulatory considerations (e.g. 
California’s Proposition 103), the desire to layer a further rating, scoring, or tier model on top of an 
existing rating plan (credit scoring, tier factor development), and the need to add state-specific 
variations to a basic countrywide rating plan (sequential modeling).   
 
Generally speaking, the offset option is helpful when omitted variable bias [OVB] threatens to 
distort one or more model parameters.  The classic use of an offset is to incorporate a measure of 
exposure when modeling rates.  For example if some records in a personal auto dataset correspond 
to 6-month policies while other records correspond to 12-month policies, then it is appropriate to 
use (log of) months of exposure as an offset.  Failure to do so would raise the specter of OVB:  
model variables correlated with months of exposure might possibly pick up some of the variation 
that should be explained by months of exposure.  This would result in biased parameter estimates. 
 
Beyond this classical use, the offset option is helpful in a number of actuarial applications.  For 
example, we have described how the offset option can be used to build GLM models subject to 
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certain rating factor constraints; to optimize the rating factors of some, but not all, of the variables 
in a rating plan; and to build predictive or rating models in sequential fashion.  We discussed credit 
scoring, tier variable creation, and state-exception sub-models as examples of actuarial pricing 
models built in sequential fashion. 
 
The offset option provides actuaries with a unifying framework – encompassing such traditional 
techniques as exposure adjustments and loss ratio modeling as an alternative to pure premium 
modeling – for avoiding omitted variable bias.  It is therefore appropriate to consider using an offset 
when performing a multivariate analysis subject to variable exclusions or other a priori constraints. 
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Appendix A:  Two Equivalent Ways of Modeling Frequency with Poisson Regression 
 
Suppose we wish to model claim frequency F as a generalized linear function of several covariates 
{X1, X2, …, XN}.  Let C denote the number of claims for a given policy, and u (for “units”) denote 
number of exposures.  Then:  F=C/u. 
 
We will demonstrate that the following two ways of modeling F are equivalent: 
 
   Option 1  Option 2 
GLM family:  Poisson  Poisson 
Target:   C   F 
Weight:            (none)   u 
Offset:   log(u)   (none) 
 
Let us start with Option 1 and demonstrate that it is equivalent to Option 2.  Let i denote the 
observation number.  The Poisson regression assumption is that: 
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Then we have the relationship:  λi=u*μi. 
  
The log-likelihood function for the Option 1 Poisson regression model is: 
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(For simplicity we are assuming that over-dispersion does not exist in the data.  That is, φ=1.)  We 
can recast the above expression in terms of F and μ: 
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In the above expressions, {κ, κ’, κ’’} denote constants that do not depend on the model parameters.  
This last expression is the log-likelihood function for the Poisson regression, cast in the terms 
Option 2. 



Applications of the Offset in Property-Casualty Predictive Modeling 

Casualty Actuarial Society E-Forum, Winter 2009 382  

Appendix B:   Details of the Dataset Used in Examples  
 
The data used in this paper was simulated by Deloitte Consulting using a typical private passenger 
auto (PPA) rating structure.  The data consists of 50,000 vehicle-level records corresponding to 
24,993 single-car policies and 11,038 multi-car policies. Two coverages, Property Damage liability 
(PD) and Comprehensive (Comp), were simulated for each vehicle.  By construction, 50% of the 
vehicles have exposures in both coverages, while the other 50% of the vehicles have PD exposure.  
 
The following rating variables were simulated for each vehicle record:  
 Multicar indicator   {0,1}                              “0” – single car  
                                                                                                               “1” – multi Car 
 Policy age    {0,1,2,…,15} 

Driver age group   {1,2,3,4} 
Pleasure use indicator   {0,1}                              “1” – Pleasure Use 
                                                                                                   “0” – Not Pleasure Use 
Credit score group    {0,1,2,3,4}  
Territory     {T1, T2, T3, T4} 
Vehicle symbol    {1,2,3,4,5}  
Policy-level at fault accidents  {0,1,2+} 
Policy-level not at fault accidents {0,1,2+} 

 
 
All of these variables are treated as categorical variables in the examples described in the body of this 
paper. 
 
The following target fields were also simulated for each vehicle record:  PD incurred loss, PD claim 
count (7,414 claims, or 14%), PD exposure, Comp incurred loss, Comp claim count (6,143 claims, 
or 12.2%) and Comp exposure.  
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Appendix C:   The Tweedie Compound Poisson Model and Corresponding SAS Code 
Matthew Flynn, Ph.D. 
 
Following Smyth & Jorgenson [14], section 4.1, page 11, the Tweedie Compound Poisson joint 
likelihood function as: 
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The SAS codes using “Proc NLMIXED” to fit the above likelihood function for the cross coverage 
tiering score example in the paper is given as follows:  

 
 
proc nlmixed data=the_appended_dataset; 
 parms p=1.5;   
 bounds 1<p<2;     

eta_mu = b0 + 
c1*(credit_grp=1)+c2*(credit_grp=2)+c3*(credit_grp=3)+c4*(credit_grp=4)  
+ naf1*(naf_pol=1)+naf2*(naf_pol=2) 
+ coverage_COMP*(coverage=’COMP’); 

 mu = exp(eta_mu + current_factor);     
 eta_phi = phi0 + 

 phi_c1*(credit_grp=1)+ phi_c2*(credit_grp=2)+ 
phi_c3*(credit_grp=3)+ phi_c4*(credit_grp=4)+ phi_naf1*(naf_pol=1)+ 
phi_naf2*(naf_pol=2) 
+ phi_coverage_COMP*(coverage=’COMP’); 
phi = exp(eta_phi);     
n = claims;      

 w = insured;     
 y = pp;      
    t = ((y*mu**(1 - p))/(1 - p)) - ((mu**(2 - p))/(2 - p)); 
    a = (2 - p)/(p - 1); 
    if (n = 0) then  

loglike = (w/phi)*t;  
    else  

loglike = n*((a + 1)*log(w/phi) + a*log(y) - a*log(p - 1) - log(2 - p)) 
                     - lgamma(n + 1) - lgamma(n*a) - log(y) + (w/phi)*t; 
 model y ~ general(loglike); 

replicate adjexp; 
 estimate 'p' p; 
run; 
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The above codes can be broken down into the following major sections:   
 

• First we call the Proc NlMIXED, addressing the desired input dataset: 
 

proc nlmixed data=the_appended_dataset; 
 

The PARMS statement provides a starting value for the algorithm’s parameter search.  
Multiple starting values are allowed, as well as input from datasets (from prior model runs, 
for example).  With some domain knowledge we anticipate this parameter to be in the 
neighborhood of 1.5. 

 
 parms p=1.5;   
 

Parameters can also be easily restricted to ranges, such as to be positive, and here we require 
the estimated Tweedie power parameter to fall between one and two.  

 
 bounds 1<p<2; 
 

• Next we specify the linear model/predictor for the mean response.  Proc NLMIXED does 
not have the convenient CLASS statement of some of the other regression routines, like 
Proc GENMOD or Proc LOGISTIC.  However, the design matrix can be created “on-the-
fly”, so to speak, by effectively including programming statements in the Proc NLMIXED 
code.  Here, we create dummy variables by coding the linear model with logical statements.  
For example, the phrase, (credit_grp=1) resolves to either true (1) or false (0) at runtime, 
creating our desired indicator variables to test discrete levels of right-hand side variables.  As 
a reminder, for a GLM, the linear predictor is required to be linear in the estimated parameters, so 
non-linear effects such as high powers of covariates or splines can be accommodated. 

   
eta_mu = b0 + 
c1*(credit_grp=1)+c2*(credit_grp=2)+c3*(credit_grp=3)+c4*(credit_grp=4)  
+ naf1*(naf_pol=1)+naf2*(naf_pol=2) 
+ coverage_COMP*(coverage=’COMP’); 

 
• Next we create a log link that maps the linear predictor to the mean response.  That log link 

on the left hand side, becomes an exponential as the inverse link (on the right-hand side).  
 
 mu = exp(eta_mu + current_factor);     
 

• A great feature of using Proc NLMIXED is its flexibility.  Here we are specifying what 
Smyth & Jorgenson [13] refer to as a double GLM.  Instead of a single constant dispersion 
constant, we can fit an entire second linear model with log link for the dispersion factor. 

 
 eta_phi = phi0 + 

phi_c1*(credit_grp=1)+ phi_c2*(credit_grp=2)+ phi_c3*(credit_grp=3)+ 
phi_c4*(credit_grp=4)+ phi_naf1*(naf_pol=1)+ phi_naf2*(naf_pol=2) 
+ phi_coverage_COMP*(coverage=’COMP’); 

 
phi = exp(eta_phi);     
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• Proc NLMIXED allows a number of datastep style programming statements.  Here we are 
assigning input dataset variables claims, insured, and pp as new variables (n, w and y) to be 
used subsequently in building out our likelihood equation.  That way, one can easily adapt 
pre-existing code to a particular input dataset, without requiring modifications to the “guts” 
of the log-likelihood equation (it is complicated enough already).   

 
n = claims;      

 w = insured;     
 y = pp;      
 

• Now one can begin to specify the loglikelihood.  Here, for clarity, we build it out in several 
steps.  Simply refer to the Tweedie Compound Poisson likelihood described above from 
Smyth & Jorgensen [13], and lay it out. 

 
     t = ((y*mu**(1 - p))/(1 - p)) - ((mu**(2 - p))/(2 - p)); 
 
     a = (2 - p)/(p - 1); 
 
     if (n = 0) then  

loglike = (w/phi)*t;  
     else  

loglike = n*((a + 1)*log(w/phi) + a*log(y) - a*log(p - 1) - log(2 
- p)) - lgamma(n + 1) - lgamma(n*a) - log(y) + (w/phi)*t; 

 
Proc NLMIXED includes several pre-specified likelihoods, for example, Poisson and 
Gamma, the GENERAL specification allows the great flexibility to specify one’s desired 
model specification. 

 
 model y ~ general(loglike); 
 

Weights can either be included directly in the loglikelihood above, or with the handy 
REPLICATE statement.  Each input record in the dataset represents an amount represented 
by the input variable “adjexp”. 

   
replicate adjexp; 
 
The ESTIMATE statement can easily calculate and report a variety of desired statistics from 
one’s model estimation.  Here, we are interested in the Tweedie Power parameter. 

 
 estimate 'p' p; 
 

Without using any of the additional “Mixed” modeling power, Proc NLMIXED performs as 
a great Maximum Likelihood Estimator using a variety of numeric integration techniques. 


