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________________________________________________________________________ 
Motivation: GLMs are widely used in insurance modeling applications.  Claim or frequency models are a key 
component of many GLM ratemaking models.  Enhancements to the traditional GLM that are described in this 
paper may by able to address practical issues that arise when fitting count models to insurance claims data.  
   For modeling claims within the GLM framework, the Poisson distribution is a popular distribution choice.  In the 
presence of overdispersion, the negative binomial is also sometimes used.  The statistical literature has suggested that 
taking excess zeros into account can improve the fit of count models when overdispersion is present.  In insurance 
excess zeros may arise when claims near the deductible are not reported to the insurer, thus inflating the number of 
zero policies when compared to the predictions of a Poisson or Negative Binomial distribution. 
   In predictive modeling practice, data mining techniques such as neural networks and decision trees are often used 
to handle data complexities such as nonlinearities and interactions.  Data mining techniques are sometimes combined 
with GLMs to improve the performance and/or efficiency of the predictive modeling analysis.  One augmentation of 
GLMs uses decision tree methods in the data preprocessing step.  An important preprocessing task reduces the 
number of levels on categorical variables so that sparse cells are eliminated and only significant groupings of the 
categories remain.  
Method: This paper addresses some common problems in fitting count models to data.  These are: 

• Excess zeros 
• Parsimonious reduction of category levels 
• Nonlinearity 

Results: The research described in this paper applied zero-inflated and hybrid models to claim frequency data.  The 
research suggests that mixtures of GLM models incorporating adjustments for excess zeros improves the fit of the 
model compared to single distribution count models on some count data.  The analysis also indicates that variable 
preprocessing using the CHAID tree technique can help reduce the complexity of models by retaining only category 
groupings that are significant with respect to their impact on the dependant variable. 
Conclusions:  By incorporating greater flexibility into GLM count models, practitioners may be able to improve the 
fit of models and increase the efficiency of the modeling effort.  Use of the ZIP or ZINB improves the model fit for 
an illustrative automobile insurance database.  The ZIP or ZINB distributions also provided a better overall 
approximation to the unconditional distribution of the data for the fit of a few additional insurance and non-
insurance database.  While the categorical variables in our illustrative data contained only a few categories compared 
to most realistic applications databases encountered in insurance, the fit of several predictive models.  We also 
illustrate how the procedure can be applied to efficiently preprocess categorical variables with large numbers of 
categories.  
Availability: Excel spreadsheets comparing the Poisson, negative binomial, zero-inflated Poisson and zero-inflated 
negative binomials well as R code for reproducing many models used in this paper will be available on the CAS Web 
Site. 
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1. INTRODUCTION 

Generalized linear models (GLMs) use a regression procedure to fit relationships between 
predictor and target variables.  Unlike classical ordinary least squares regression where the random 
component (i.e., the error term) is assumed to follow a normal distribution, the random component 
in a GLM is assumed to belong to the exponential family of distributions.  This family includes, 
along with the normal, the Poisson, the gamma and others commonly encountered in statistical 
analysis.  GLMs are widely used in insurance modeling applications.  In both the classical statistical 
literature (McCullagh and Nelder, 1989) and insurance-specific literature (de Jong and Heller, 2008) 
GLM techniques are applied to modeling insurance frequency and severity data.  GLMs are a linear 
modeling procedure, since the relationship between a suitable transform of the dependent variable 
and the independent variables is assumed to be linear. 

Commonly used data mining techniques employ automated procedures to efficiently address 
some limitations of linear modeling approaches, such as nonlinear relationships that are not 
adequately modeled by common transformations of variables.  The group of procedures that 
includes GLMs and data mining techniques are often referred to as predictive models by insurance 
actuaries.  In this paper we will show how data mining techniques and GLMs can be combined to 
take advantage of the strengths of each approach.  In addition, we will present a common problem 
that arises in the modeling of count data: excess zeros.  That is, sometimes, when actual instances of 
zero counts are compared to the theoretical values under the Poisson assumptions, there are 
significantly more zeros than the fitted distribution predicts.  In the insurance context, this is 
believed to be due to the underreporting of small claims (Yip and Yau, 2005). 

One of the symptoms of zero-inflated distributions is overdispersion.  That is, under the Poisson 
assumption; the variance of the distribution is equal to its mean.  Table 1.1 presents some 
automobile insurance count data from Yip and Yau that will be used throughout this paper to 
illustrate techniques and concepts.  For this data the variance exceeds the mean.   When the variance 
exceeds the mean, the situation is referred to as overdispersion, and a number of approaches are 
used to address it.  One approach is to use a negative binomial model rather than a Poisson, as the 
variance of the negative binomial distribution exceeds the mean. 
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Table 1.1 

Example of Overdispersion 
K Count P(X=x) 

0 1,706 0.607 
1 351 0.125 
2 408 0.145 
3 268 0.095 
4 74 0.026 
5 5 0.002 

Total 2,812  
Mean 0.815  
Variance 1.364  

 

Figure 1.1 displays a comparison of actual and theoretical probabilities at each value of K (or the 
five-year frequency) for the auto data.  Note the actual data contains more zeros and fewer ones 
than predicted by the Poisson. 

Figure 1.1 

Actual Frequencies vs. Poisson Theoretical Frequencies 

 

 

 

 

  

 

 

 

 

Table 1.2 displays the average claim frequency for the six car type categories in the data.  The 
table indicates that some of the types such as Pickup and Van have similar frequencies.  Might we be 
able to combine some of these categories and reduce the number of parameters in a regression 
model that uses categorical predictors?  What procedures will facilitate efficiently combining of 
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categories that are not statistically different with respect to their effect on the dependent variable?  

 

Table 1.2 
Type of Car Avg #Claims 

(Past 5 Years) 
Panel Truck 0.9133
Pickup 0.8262
Sedan 0.6674
Sports Car 0.9296
SUV 0.8092
Van 0.8449
Total 0.8006

 

1.1 Research Context 

As can be seen in some of the early literature on the subject (Bailey and Simon, 1959; Simon, 
1962), the Poisson distribution has long been used in actuarial science as a stochastic model for 
claim count data.  The negative binomial distribution is a key alternative when the variance of the 
count data exceeds the mean (Simon, 1962).  Both distributions are members of the exponential 
family of distributions and have become popular for modeling frequency data in predictive modeling 
applications.  Thus, the Poisson and negative binomial can be used within the GLM framework to 
fit regression models to insurance/claim frequency data.  

Anderson et al. (2005) mention the problem of overdispersion that frequently occurs when using 
the Poisson distribution.  Their suggested remedy follows that of the classic reference by McCulloch 
and Nelder (1989).  The classical approach to overdispersion involves estimating an additional scale 
parameter for the Poisson distribution.  This scale parameter has no effect on the estimated 
coefficients of the independent variables used in the regression model but does affect tests of 
significance for the variables.  Ismail and Jemain (2007) extend the classical treatment of 
overdispersion using generalized Poisson and negative binomial models.  

In Hilbe’s recent book (Hilbe, 2007) points out that excess variability in Poisson regression can 
be due to a number of additional factors not remedied by using an overdispersion parameter or the 
negative binomial distribution including:  

• Missing independent variables 

• Interactions not included in the model 
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• Excess zeros  

Yip and Yau (2005) illustrate how to apply zero-inflated Poisson (ZIP) and zero-inflated negative 
binomial (ZINB) models to claims data, when overdispersion exists and excess zeros are indicated.  
They also present another alternative, hurdle models, to approximate distributions with excess zeros.  
Jackman (2007) describes functions implemented in the statistical software R that can be used to 
implement ZIP, ZINB, and hurdle models.  In this paper we will extend the work of these authors 
by combining ZIP, ZINB, and hurdle models with data mining procedures that efficiently search for 
significant terms in the data and reduce the dimensionality of categorical variables by clustering 
together categories of categorical dependent variables.  

1.2 Objective 

The paper attempts to improve the application of GLM procedures to claim prediction in 
property casualty insurance.  

In this paper we will: 

• Illustrate the problem of excess zeros in claim count data and then show how to remedy 
it with zero-adjusted mixture  models 

• Show how GLM models for count data can be combined with traditional data mining 
approaches to produce more robust models 

• Apply the procedures to an insurance database as an illustration 

1.3 Outline 

The remainder of the paper proceeds as follows.  Section 2 will present the problems of excess 
zeros in count data and show how to address it with zero-inflated models.  In Section 3 we show 
how to augment GLM models with traditional data mining approaches to efficiently model 
nonlinear relationships and reduce the number of parameters contributed by categorical variables.  
In Section 4 we present overall conclusions.  We have provided code in SAS for implementing some 
of the models in Appendices but numerous statistical tools contain the technology for implementing 
the models in this paper.  Additional Code using R will be made available on the CAS’s Web Site.  

2. ZERO-INFLATED AND HURDLE MODELS 
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2.1 The Data 

We will illustrate many of our key concepts using the auto data from Yip and Yau (2001).  Yip 
and Yau supplied a frequency table of personal automobile claims that we use to illustrate Univariate 
distribution fitting methods. An additional database from Yip and Yau of personal automobile 
policy level information contains approximately 10,000 records and is used to illustrate multivariate 
regression models.  Table 2.1 displays the variables in the data.  The first variable on the list, claim 
frequency, is used as a dependent variable in the GLM, ZIP, and hybrid models.  All other variables 
when used are used as predictor variables.  

Table 2.1 

Variables in Automobile Database 

Variable Description 
CLM_FREQ No. of claims in 5 years 
AGE Policyholder age 
BLUEBOOK Blue book value of car 
CAR_TYPE Type of car: sedan, SUV, etc. 
CAR_USE Private or Commercial use 
CLM_DATE Accident Date 
DENSITY Population Density (rural, urban) 
GENDER Gender 
HOME_VALUE House value 
HOMEKIDS No. of children at home 
INCOME Policyholder income 
JOBCLASS Job category 
KIDSDRIVE No. of children that drive 
MARRIED Marital status 
MAX_EDUC Highest education 
MVR_PTS Motor Vehicle Points 
NPOLICY Number of policies 
PARENT1 Single Parent? 
PLCYDATE Policy Inception Data 
RETAINED Number of years policy renewed 
REVOKED Licensed revoked? 
SAMEHOME How many years in current house?
TRAVTIME Travel time to work 
YOJ Years on current job 

 

Before fitting a conditional model of claim frequency using the predictor variables in the auto 
data, we first investigate the distribution of marginal claims (displayed in Table 1.1).  Figure 1.1 
presented a comparison of actual and fitted Poisson claim frequencies for this data and indicated 
that the actual number of zero claims exceeds those that would be expected if the data were Poisson 
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distributed.  A negative binomial distribution was fit next.  A larger number of zeros (as well as 
larger frequencies) could be expected under a negative binomial model. 

Figure 2.1 

Comparison of Actual, Poisson, and Negative Binomial Frequencies 
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From Figure 2.1 it is apparent that the negative binomial distribution approximates the data 
better than the Poisson distribution.  However, the actual data compared to the negative binomial 
shows an excess probability of zero claims and a significantly lower probability at a count of one.  

 

2.2.1. Introduction to Zero-Inflated and Hurdle Probability Distributions 

An alternative probability distribution when “excess” zeros appear to be present is the zero-
inflated Poisson.  The zero-inflated Poisson assumes the observed claim volumes are the result of a 
two-part process 1) a process that generates “structural zeros” and 2) a process that generates 
random claim counts.  In insurance the “structural zeros” may be due to underreporting of small 
claims.  Especially when claims are near or less than the policy deductible, a policyholder may not 
report the claim because 1) there may be no expected payment under the policy and 2) the 
policyholder may wish to avoid premium increases under an experience rating or merit rating 
system.  The ZIP distribution is a mixture of exponential family distributions.  Under the zero-
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inflated Poisson, the structural zeros are assumed to follow a Bernoulli process with parameter φ, 
denoting the probability of a zero and the random counts are assumed to follow a Poisson with 
parameterλ , the mean of the distribution.  The distribution of the zero-inflated Poisson is: 

 

(2.1) 
 
 
 

The theoretical mean of the ZIP model is φ+ (1-φ)λ.  The variance is (1-φ)λ(1+φλ). 

The parameters of the Poisson and negative binomial distribution can be estimated from the 
sample mean (Poisson) and the sample mean and variance (negative binomial).  However, a 
numerical optimization procedure must be used to estimate the parameters of zero-inflated models.  
A description of the specific procedure we implemented in Excel is provided in Appendix G.   

The parameters fit with Excel solver are displayed in Appendix G, Table G-2.  The table 
indicates that on average, 54% of the records have structural zeros.  For the remaining 
policyholders, the mean claim frequency over a five-year period is approximately 1.9.  Figure 2.3 
compares the negative binomial to the zero-inflated Poisson.  The ZIP model appears to provide a 
better fit to the data.  
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Figure 2.3 
Actual, Negative Binomial, and Zero-Inflated Poisson Frequencies 
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The Chi-Squared test can be used to test whether the ZIP model is a significantly better fit to the 
data than the negative binomial or Poisson models.  The Chi-Squared statistic is: 

 

(2.3)                                  
2

2
1

( )
k

Observed Fitted
Fitted

χ −
−

=  

 
The Chi-Squared statistic compares the observed and fitted claim counts.  It has degrees of 

freedom equal to k-1, where k is the number of categories (here equal to six). 

Table 2.2 
Chi Squared Statistic for Poisson, Negative Binomial and ZIP Models 

 Chi-Squared 
Model Statistic 
Poisson               935.3 
Negative Binomial               351.9 
ZIP                 60.2 

 
Note that the critical value for the Chi-Squared statistic at the 5% level is about 11, so that all 

three fitted models would be deemed significantly different from the data by this statistic.1  

                                                           
1 It should be noted that a well-known limitation of the Chi-Square statistic is that it is very conservative when 
comparing actual to fitted distributions.  That is, it is common for the distribution to be significantly different from the 
actual empirical distribution according to this measure. 
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However, it can be seen that the ZIP model provides a much better fit to the data.   

Another mixed probability distribution related to the ZIP model is the zero-inflated negative 
binomial (ZINB) model.  The ZINB is a mixture of a Bernoulli variable (for the structural zeros) 
and a negative binomial for the random counts.  The distribution’s formula is:  

 

(2.4)                                        
(1 ) (0, , ), 0
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The mean of the negative binomial is r (1-p)/p. The variance is r (1-p)/p2.  As with the ZIP model, 

the ZINB model can be fit in Microsoft Excel.  Table G.3 in Appendix G shows the values of the 
estimated parameters. 

In the example, the estimated parameters for φ  is zero, indicating that the single negative 
binomial model is a better fit than the ZINB mixed model.  Note the chi-square statistic for this 
model (397) was higher than that of the negative binomial fitted using the first two moments of the 
data.   

A model related to the zero-inflated models is the hurdle model.  The hurdle models assume two 
processes: 1) a process that generates no claim or at least one claim and 2) a process that generates 
the number of claims given that at least one claim occurs.  A Bernoulli process is used to model the 
occurrence/nonoccurrence of a claim while a truncated Poisson or negative binomial is used to 
model positive claim counts.  The formula for the hurdle Poisson model is shown in (2.5) and the 
fitted parameters are shown in Table G.4 of Appendix G.  For this data the hurdle Poisson does not 
fit the data as well as the ZIP model, as it has a larger weighted squared deviation and its Chi-Square 
statistic of 97 is larger than that of the ZIP model.  

 

 

(2.5)2     

                                                           
2 The mean of the hurdle Poisson is λ/ (1-exp(-λ)).  The variance of the hurdle Poisson is λ/ (1-exp(-λ)) (1- λ exp(-λ))/ 
(1-exp(-λ)).  
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A negative binomial hurdle model was also fit to the data, but as with the ZINB model, the fitted 
model contained no Bernoulli parameter.  

2.2.1.a Zero-Adjusted Models for Other Data Sets 

Since the Yip and Yau data in our illustrations were used in their paper advocating the use of ZIP 
and ZINB models, one is not surprised when a zero-adjusted mixed model fits the data better than 
single count distribution models.  In order to explore the broader applicability of zero-adjusted 
models, several other sample datasets were tested to determine if the ZIP or ZINB provided a better 
fit than simpler models: 

• The Bailey and Simon credibility study (Bailey and Simon, 1959) used the experience 
from 1957 and 1958 for Canadian Private Passenger automobile exposure excluding 
Saskatchewan.  The data is shown in Table 1 of their paper.  This data is reorganized and 
displayed in Table F.1 of Appendix F.  The data displayed was aggregated to the class 
level.  For this data the negative binomial is a much better fit than the Poisson (illustrating 
the need to test for the negative binomial as an alternative to the Poisson), as well as the 
ZIP model.  The ZINB, however, fits the data better than the negative binomial but the 
difference is not of the same magnitude as that between the negative binomial and 
Poisson.  For this data, under the Poisson and ZIP assumptions observations are 
expected to be much closer to the distribution’s mean value, while many of the actual 
observations are far from the mean, causing a very high chi-square values under Poisson 
and ZIP assumptions. 

• Zero-inflated count data are also found in non-insurance applications.  Five different 
datasets from various non-insurance analyses are displayed in Appendix F. Most of the 
examples tested displayed a very large variation in the goodness of fit.  This wide 
variation indicates it may be prudent to test a number of possible alternatives before 
selecting a distribution to incorporate into a predictive model.  

o Hospital visit data from Deb and Trevedi (1997).   The data contain the number 
of visits and hospital stays for a sample of United States residents aged 66 and 
over.  For this data the ZINB was the best fit and the Poisson was a very poor fit. 
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o Doctor office visit data from Deb and Trevedi (1997).  For this data the negative 
binomial was the best fit and the Poisson and ZIP were very poor fits.   

o Patents data from Wang, Cockburn and Puterman (1998).  The data contain the 
number of patents for a sample of pharmaceutical and biomedical companies.  
For this data the ZINB was the best fit and the Poisson and ZIP were very poor 
fits. 

o Apple tree root cultivar3 count data from Ridout and Demetrio (1998). For each 
cultivar, the number of roots produced during different experimental protocols 
was tabulated.  For this data the ZINB was the best fit. 

2.2.2. Poisson, Negative Binomial, ZIP, ZINB, and Hurdle Models with SAS 

For simplicity of exposition, we have shown how to fit univariate zero-inflated and hurdle 
models in Microsoft Excel.  However, nonlinear curve-fitting applications are typically performed in 
statistical or mathematical programming languages such as SAS, MATLAB, and R.  For certain other 
distributions, specifically those that are members of the exponential family of distributions, a 
generalized linear model (GLM) can be use to fit the parameters of the distribution.  For example an 
intercept-only GLM model with a Poisson distribution and log link can be used to estimate Poisson 
parameters.  While this is a trivial example because the Poisson parameter equals its mean, it 
illustrates how common statistical software can be used to parameterize probability distributions.   
The model fit is: 

(2.5)                            Y = a +e, where e is a random error term. 

That is, a GLM procedure is used to fit a model that only has an intercept term, but no 
independent variables.  For the Poisson, the intercept will equal the Poisson parameter.  See 
Appendix B for an example of SAS code that can be used to fit the Poisson parameters. 

For more complicated probability distributions such as zero-adjusted distributions, the analyst 
will want to use an approach that solves for parameters, given a function of the parameters to 
optimize.  For instance in Appendix G the distance between an actual and fitted distribution is 
minimized when estimating the parameters of distributions using the Excel solver.  It is common in 
distribution fitting to maximize the log of the likelihood function.  For many common claim count 

                                                           
3 A cultivar (short for cultivated variety) is a cultivated plant with unique characteristics that separate from other similar 
cultivated plants.   
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distributions, the log-likelihood function is readily specified, either from first principles or from one 
of the many references on probability distributions (Hogg and Klugman, 1982).  In Appendix A we 
present the PDF and log-likelihood function for the Poisson.  Once a likelihood function has been 
specified, an optimization procedure is used to solve for the distribution’s parameters.  For common 
one and two parameter distributions, it is often unnecessary to specify a likelihood function, as these 
functions are prepackaged in statistical fitting software.  

For more complex models, many software packages offer the user a procedure that fits nonlinear 
mixed models using a nonlinear fitting procedure.  This is appropriate for the zero-adjusted models, 
which do not have a closed-form solution for the parameters, but such procedures can often be used 
to fit more familiar distributions (i.e., Poisson, logNormal) as well (ignoring any “mixed” model 
structure).  Appendix A presents an example using SAS code to generate fitted distributions and 
predicted probabilities. 

Figures 2.1 and 2.2 suggest that the actual claim data contain excess zeros compared to those 
expected under both the Poisson and negative binomial distribution approximations. Prior to fitting 
a zero-inflated distribution, we can formally test for zero inflation.  Van den Broek (1995) provides a 
score test for zero inflation relative to a Poisson distribution.  The statistic is based on a comparison 
of actual zeros to those predicted by the model:  

 

(2.6)                                
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In formula (2.6) S is the score, I(xi=0) is an indicator function that is 1 if a given observation 

equals zero, and 0 otherwise.  Denoting the probability, p0i does so under the assumed distribution 
(typically Poisson) of a zero observation for observation i.  Note that the probability is allowed to 
vary by observation.  The score is assumed to follow a chi-squared distribution with one degree of 
freedom.  Appendix C presents sample code that can be used to apply the score test.  As seen in 
Appendix C, the score for our automobile count data was an 869, which is significant at the 0.001 
level.  

As the score statistic supports the possibility of a zero-inflated distribution, we proceed with 
fitting zero-inflated distribution using statistical software.  Appendix D presents an example of 
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fitting a zero-inflated distribution using a nonlinear mixed models procedure.  

As discussed in section 2.1.1, in the presence of excess zeros, a hurdle model rather than a zero-
inflated model may be more appropriate.  Hurdle (Mullahy,1986) or two-part (Heilbron, 1994) 
models are so-called because the likelihood function is constructed to be separable, that is, the 
zero/positive component is typically handled with a logistic or Probit model, whereas the model for 
positive counts can include or exclude zeros.  The count portion of the hurdle model may be 
Poisson, negative binomial, or other count model.  Appendix D presents SAS procedures that can 
be used to fit these hurdle models.  

If zeros are excluded from the count portion of the model, then the positive portion can be 
modeled via a zero-truncated Poisson, for example.  (The formula was given earlier in equation 2.5).  
Additional applications of truncated count models include Grogger and Carson (1991), Shaw (1988), 
and Winkelmann and Zimmerman (1995).  Alternatives to the truncated Poisson include subtracting 
one from the dependent count variable.  This has been described as a shifted or positive Poisson 
distribution (Shaw, 1988).  Johnson and Kotz (1969) refer to this as a displaced Poisson distribution.  

 

2.3 Regression Models 

In this section, the zero-inflated and hurdle models are generalized to regression applications.  
We will use the 10,000 record Yip and Yau automobile insurance dataset to develop a model to 
predict claim frequency.  This section will show how to augment the Poisson and negative binomial 
models commonly used for count predictions with zero-inflated and hurdle capabilities.  

We first review the basic assumptions of generalized linear models.  See Anderson et al. (2005) 
for a more complete introduction to GLMs.   

A generalized linear model is denoted:           Y = η+e = x'β+e. 

It has the following components: 

• a random component, denoted e 

• a linear relationship between a dependent variable and its predictors.  The estimate or expected 
value of the prediction is denoted η. 

• 1 1 2 2 ... n na b x b x b xη += + +  

• a link function captures the form of the relationship between the dependent variable and the 



More Flexible GLMs: Zero-Inflated Models and Hybrid Models 
 

Casualty Actuarial Society E-Forum, Winter 2009 162 

regression expected value.  Two common link functions used when applying GLMs to ratemaking are: 

• the identity link μ=η 

• the log link μ=exp(η) or η=log(μ). 

Under the log link, each predictor variable’s impact on the estimate is multiplicative.  That is: 

1 1 2 2exp( )exp( )...exp( )n nY A b x b x b x= .  In ratemaking applications it is common for the 
classification variables to raise or lower a rate by a percentage.  Hence, the log link is intuitive for the 
ratemaking models being presented in this paper.  

Another common link function is the logit link: η=log(p/ (1-p)), where p denotes a probability 
between zero and one and p/(1-p) is the odds ratio or the odds of observing the target variable.  The 
logit link is commonly used with a Bernoulli (binary) dependent variable. 

In claim frequency modeling, it is common for the random component of the GLM to be the 
Poisson or negative binomial distribution.  The Poisson and under certain assumptions, the negative 
binomial (i.e., when the scale parameter is known) are members of the exponential family of 
distributions that also includes the normal and gamma.  The zero-inflated and hurdle models 
generalize the GLM to include mixture models.  For instance, the ZIP model is a mixture of two 
distributions from the exponential family: the Bernoulli and the Poisson.  The hurdle Poisson model 
is also a mixture of a Bernoulli and a Poisson random variable, but with the hurdle model, the 
Poisson is a truncated Poisson that models only positive claim counts and the zeros are modeled 
exclusively with the Bernoulli distribution. 

This paper’s first predictive modeling illustration will use four variables to predict claim 
frequency.  The four variables are car use, marital status, density, and gender.  Each of the predictor 
variables is categorical.  Thus the model is:  

 

(2.7)1. Y = f(car use, marital status, density, gender) + e. 

 

Where Y denotes the dependent variable, number of claims reported within a five-year period.  
In the Poisson and negative binomial regressions, the log link will be used.  

 In this section, classical GLM count regression models are compared to zero-inflated and hurdle 
alternatives.  As discussed in Section 1, overdispersion in count models is commonly handled by 
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0 0

0

if  (Y = 0 ) lo g ( (1 ) e x p ( ))
if  (Y > 0 ) lo g (1 ) * lo g ( ) lo g ( !)

l l p p
ll p Y x

λ
λ λ

= + − −

= − + − −

fitting an over-dispersed Poisson, which allows the variance to exceed the mean by a constant factor.  
We also present results for a geometric as well as a negative binomial model as the negative binomial 
becomes a geometric when the size parameter r is 1.  Poisson and negative binomial regressions will 
be compared to ZIP, ZINB, and hurdle Poisson and hurdle negative binomial models.  Under the 
zero-inflated and hurdle model there are two components denoted Y and Z:  

Y = f (car use, marital status, density, gender) + e, Z = f(car use, marital status, density, gender) + 
e. 

 

Thus, the predictor variables are used both to estimate the Bernoulli parameter p (the Z 
component) and are also used to estimate the Poisson expected claim count (the Y component).  It 
is likely that the different variables will have a different importance in each component of the model.  
A nonlinear mixed models procedure can be used to estimate the parameters of the ZIP model.  
When using nonlinear mixed models procedures (or any other nonlinear optimization software) it is 
typically necessary to specify the log-likelihood function.  For the ZIP regression the log-likelihood 
(denoted ll) is straightforward: 

 

(2.8)  

 

Appendix E presents code for fitting these models.  In the particular example in Appendix E, the 
Bernoulli parameter p enters the function as a constant; that is, it is the same for every record, 
regardless of the value of the predictor variables, while the Poisson parameter is estimated from the 
regression function.  It is straightforward to add a regression function for the Bernoulli parameter.  
To assess the goodness of fit of the models we compute the negative log-likelihoods (actually -2* the 
log-likelihood).  In Table 2.3 the log-likelihood statistics from the different model fits are presented.  
It can be seen that the ZIP fits the data best while the simple Poisson regression provides the worst 
fit.  Moreover, there is a significant improvement in fit when moving from the Poisson the ZIP.   

The results indicate that the model fit to our sample auto claim counts was improved by using a 
zero-adjusted model.  In the next section, we will compare and contrast a GLM and a zero-adjusted 
model with models augmented using hybrid techniques that employ a decision tree method to 
preprocess data.  To keep the kinds of models to a manageable number we will only use the simple 
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Poisson and ZIP (the best performing model in Table 2.3) models in the next section. 

Table 2.3 

Model -2*log-likelihood 
Poisson 7,141.9  
Overdispersed Poisson                  6,843.9  
Geometric                  6,764.1  
Negative Binomial                  6,764.1  
ZINB                  6,541.2  
ZIP                  6,404.0  

 3. CHAID HYBRID MODELS 

3.1 The CHAID method 

The term “data mining” is loosely refers to a number of very different methods that apply 
computationally intensive nonparametric procedures, typically to large databases with many potential 
predictor variables and many records. Among the common data mining techniques used for 
prediction are neural networks and tree models. Trees fit a model by recursively partitioning the data 
into two or more groups, where data for each partition are more homogenous than the pre-
partitioned data.  The different groups are statistically determined to have significantly different 
values for the dependent variable.  In the most common tree method, Classification and Regression 
Trees (C&RT), the data is split into two groups, one with a high average value for the dependent 
variable and the other group with a lower average value on the dependent variable.  Each partition 
of the data in a tree model is referred to as a node.  

The CHAID tree method is one of the oldest tree-based data mining methods and one of the 
earliest to appear in the casualty actuarial literature.  The method was applied to classification 
ratemaking by Fish et al. (1990) following the passage of Proposition 103 in California.4 Unlike 
C&RT, CHAID can partition data into more than two groups.  CHAID is an acronym for chi-
squared automatic interaction detection.  As the name implies, CHAID relies heavily on the chi-
squared statistic (Formula 2.3 in section 2) to partition data. In classical statistics the chi-squared 
statistic is typically used to assess whether discrete categorical variables are independent or whether a 
relationship exists between the variables (Faraway, 2006).   

                                                           
4 Proposition 103 constrained how variables could be used in automobile ratemaking. 
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One of the data preparation steps that is often applied prior to fitting of predictive models is 
cardinality reduction. Cardinality reduction refers to reduction of the number of categories in 
nominal and ordinal variables (Refaat, 2007).  The CHAID procedure is a procedure that can be 
used to preprocess categorical variables and to group like categories of the independent variables 
together. A problem with nominal and ordinal variables with many categories is that some of the 
categories are sparsely populated and some of the categories are very similar with respect to their 
effect on the dependent variable. Inclusion of all the levels of a categorical variable can lead to 
overfit/overparameterized models that fit parameters to noise rather than legitimate patterns in the 
data.  Using the chi-squared statistic, categories that are not significantly different with respect to 
their effect on a dependant variable can be combined and the total number of categories reduced. 

For instance, the categorical variable density from the automobile database has four levels or 
categories: highly urban, urban, rural, and highly rural.  Suppose the analyst is interested in knowing 
whether a relationship exists between population density and the likelihood of having at least one 
claim. Let the likelihood of having a claim be denoted by a binary categorical indicator variable that 
is 1 if the policyholder has had at least 1 claim and 0 otherwise.  Table 3.1 displays a crosstabulation 
of density and the indicator variable based on data from the automobile database.  The bottom 
section of the table shows that urban and highly urban policyholders have a significantly higher 
frequency of claims than do rural and highly rural policyholders. The chi-squared statistic can be 
used to test whether this apparent relationship is significant.  
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Table 3.1 

Crosstabulation of Population Density vs. Binary Claim Indicator 

Home/Work Area * Claim Indicator Crosstabulation 
   Claim Indicator   
   No Claim Claims Total 

Highly Rural 4,52 56 508 
Highly Urban 1,732 1,867 3,599 
Rural 1,369 196 1,565 

H
om

e/
W

or
k 

Urban 2,740 1,891 4,631 

  Total 6,293 4,010 10,303 

Percent of Policies With Claims 
   Claim Indicator   
   No Claim Claims Total 

Highly Rural 89% 11% 100% 
Highly Urban 48% 52% 100% 
Rural 87% 13% 100% 

H
om

e/
W

or
k 

Urban 59% 41% 100% 

  Total 61% 39%   

 

The chi-squared statistic requires both an observed and expected record count for each of the 
cells in the crosstabulation.  An expected count can be computed by applying the marginal 
proportions shown at the bottom of Table 3.1 (61% no claim, 29% at least one claim) to the total 
number of policyholders in each density category. This is shown in Table 3.2. For instance, the 
expected number of highly rural drivers with no claims is 310.3 (0.89*508). The expected count is 
then used in the computation of the chi-squared statistic, shown also in Table 3.2.  This statistic has 
degrees of freedom equal to the number (c-1)*(r- 1) (here 6) where c denotes the number of columns 
and r denotes the number of rows. Its value as shown at the bottom of Table 3.2, 886, is significant 
at (less than) the .1% level, suggesting a relationship between density and propensity for an 
automobile claim.  
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Table 3.2 Expected Count & Chi-Squared Statistic 

Expected Count 
   Claim Indicator Total 

    No Claim Claims   
Highly Rural 3,10.30 197.70 508 
Highly Urban 2,198.20 1,400.80 3,599 
Rural 955.90 609.10 1,565 

H
om

e/
W

or
k 

Urban 2,828.60 1,802.40 4,631 

          
       

Chi-Squared Statistic: (O-E)2/E 
   Claim Indicator   
    No Claim Claims   

Highly Rural 64.70 101.60   
Highly Urban 98.90 155.20   
Rural 178.50 280.20   

H
om

e/
W

or
k 

Urban 2.80 4.40   
     886.20   

 

Suppose the claims are sorted in ascending order by proportion of policies with a claim.  This is 
shown in Table 3.3.  The table suggests that some of the categories of the density variable may not 
be significantly different from each other and therefore could be combined.  For instance, the highly 
rural and rural categories at positive claim  proportions of 11% and 13%, respectively, could perhaps 
be combined into a “rural” category, if the difference (in likelihood of having a claim) is not 
significant. 

Table 3.3 

Percent of Policies With Claims 
   Claim Indicator 

   No Claim Claims 

Highly Rural 89% 11%
Rural 87% 13%
Urban 59% 41%

H
om

e/
W

or
k 

Highly Urban 48% 52%

  Total 61% 39%
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Table 3.4 displays the calculation of the chi-squared statistic, including the calculation of expected 
counts, for the highly rural and rural categories. The chi-squared statistic of 0.81 (see bottom row of 
Table 3.4) is not significant, indicating the two categories can be combined. 

Table 3.4 
Comparison of Rural and Highly Rural Categories Using Chi-Squared Statistic 

 Observed  

 
No 

Claim
Claim

Total

Highly Rural    452 
 

56 
 

508

Rural 
 

1,369 
 

196 
 

1,565  

Total 
 

1,821 
 

252 
 

2,073  
 Expected 

 
No 

Claim
Claims

Total

Highly Rural 
 

446.25 
 

61.75 
 

508  

Rural 
 

1,374.75 
 

190.25 
 

1,565  
Chi Squared 
No 

Claim
Claims

Highly Rural        0.07 
 

0.54 

Rural        0.02 
 

0.17 

Total 0.09
 

0.81 

The chi-squared statistic can be computed for all other pairs of combinations (actually it only 
makes sense to compare pairs of categories that are contiguous in a sorted table such as Table 3.3).  
Once the chi-squared statistic has been computed for the pair-wise comparisons, the two categories 
with the lowest chi-squared values can be combined, provided the chi-square statistic is not 
significant.5 In this example, the rural and highly rural categories have the lowest chi-squared 
statistics, so they are combined, resulting in three density groupings.6  Table 3.5 shows the new table 
that is created when the categories are combined.  Using the new crosstabulation, the chi-squared 

                                                           
5 It is common to use the 5% level as the threshold for significance, though other levels can be chosen. Thus categories 
where the significance levels below the threshold can be combined.  If the chi-squared statistic is significant, the two 
categories should not be combined, as the null hypothesis that there is no difference between the categories in their 
effect on the dependent variable is rejected. 
6 The chi-squared for all other comparisons was more than 99.0, which is significant at the 5% level. 
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Area * Claim Indicator Crosstabulation

No Claim Claims Total

Rural 1,821 252 2,073

Urban 2,740 1,891 4,631
Highly Urban 1,732 1,867 3,599

Total 6,293 4,010 10,303

Percent of Policies With A Claim

No Claim Claims Total

Rural 88% 12% 508

Urban 59% 41% 3,599

Highly Urban 48% 52% 1,565

Claim Indicator

Claim Indicator

statistic can be recomputed for the new table and the categories with the lowest chi-squared statistic 
can be combined.  The recursive process of combining categories continues until no more 
significant differences between the categories can be found. 

Table 3.5 

Crosstabulation after Combining Two Categories 

 

 

 

 

 

 

 

 

 

The results of the partitioning of the variables can be displayed graphically in a tree diagram.  The 
tree diagram for the car density example is shown in Figure 3.1.  The top box or “node” is a 
“parent” node. It displays the overall claim indicator statistics for all records before any partitioning 
occurs. Below the parent node are the “child” nodes resulting from the partitioning of the density 
variable using CHAID.7  The nodes in this layer are also “terminal” nodes, as there is no further 
partitioning of the data.  The terminal nodes contain the model’s final prediction, which is typically 
the overall proportion of target variable records in the node. 

 

 

                                                           
7 The CHAID models used in this paper were fit with SPSS Classification Trees.  We are not aware of either SAS 
Stat or R  functions for CHAID. 
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Figure 3.1 

Tree for Population Density (Independent Variable) and Claim Indicator (Dependent 

Variable) 

 
 

By adding a second variable to the model, say car use, it is possible to add another layer to the 
tree, however. To create a tree with two layers of nodes, it is necessary to partition the data on a 
second variable, after the partitions on the first variable, (density), have been completed.  An 
example of partitioning using two variables is shown in Figure 3.2.  As can be seen from Figure 3.2, 
not all nodes from the first layer can be further partitioned.  When two variables are included in the 
model, CHAID performs the following process: 

• Compute the beat partitioning of the data for the first variable and compute the chi-
squared statistic for the partitioned data after categories that are not significantly different 
have been combined 

• Compute the best partitioning of the data for the second variable and compute its chi-
squared statistic. (In this very simple example, the car use variable has only two 
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categories, so no further combining of categories can be done) 

• Select the variable that produces the highest chi-squared statistic to partition the data first 

• Repeat the process for each of the nodes from the first partitioning.  If none of the nodes 
can be further partitioned, stop. 

Since, the focus of the current discussion is on the use of CHAID for cardinality reduction of 
categorical variables before fitting a GLM or other predictive model, further discussion of the 
CHAID for multivariable models is outside the scope of this paper.   However, complete predictive 
models can be built using CHAID and other decision tree techniques. 
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Figure 3.2 

CHAID Tree with Two Variables 

 
It should be noted that the example of category reduction for the density variable is a relatively 

trivial one, as inspection of the statistical output from the fitted GLM, ZIP, and hurdle models could 
probably be used to reduce the number of categories.  However, fast and computationally efficient 
procedures are needed for variables containing a large number of levels.  Such variables occur 
frequently in insurance predictive models. 

As a more realistic example, consider the car-type variable, which has six levels (Table 3.6).  With 
six levels for a variable, there are hundreds of possible ways to combine categories.8 In a typical 
automobile ratemaking database, there would likely be many more than six levels on a car-type 
variable.  Figure 3.3 presents the CHAID tree that was fit using the car-type variable. 

                                                           

8 The number of all possible combinations is 
k

x
k
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ , but when the categories are ordered based on the proportion of 

policies with claims, the number goes down. 
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Car Type Frequency Percent
Panel Truck 853 8%

Pickup 1,772 17%

Sedan 2,694 26%

Sports Car 1,179 11%

SUV 2,883 28%

Van 922 9%

Total 10,303 100%

Table 3.6 

Car Type Frequency Tabulation 

 

 

 

 

 

 

Figure 3.3 

CHAID Model for Car-type Variable 

 
From Figure 3.3, the number of groupings is reduced from six to three when CHAID is used to 

preprocess the car-type variable. 

When the dependent variable in the model is numeric, rather than categorical, most CHAID 
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procedures use the F-statistic rather than the chi-squared statistic to partition data. 

 

(3.1)   

 
 

  

When only two categories are compared, the F-test reduces to a T test.9  Thus the categories can 
be compared using the F (or T) statistic and the categories that are not significantly different can be 
merged.  The first two categories merged are the categories with the lowest T statistic.   

Suppose, instead of using a binary categorical dependent variable, we treat claim frequency 
(number of claims in the past five years) as a numeric variable and use the T test to merge categories. 
Table 3.7 displays the mean claim frequency, along with standard deviations and confidence intervals 
for the density variable.  It is clear that the rural and highly rural categories can be merged, as their 
claim frequencies are the same. 

 

Table 3.7 

Mean Five-Year Claim Frequency by Density 

 
95% Confidence Interval for Mean 

N Mean Std. Deviation Std. Error Lower Bound Upper Bound 

Highly Rural 508 .24 .758 .034 .18 .31

Highly Urban 3,599 1.07 1.223 .020 1.03 1.11

Rural 1,565 .24 .707 .018 .21 .28

Urban 4,631 .84 1.171 .017 .81 .88

Total 10,303 .80 1.154 .011 .78 .82

 

Figure 3.4 shows that if claim frequency is treated as a numeric variable, and is used to group the 

                                                           
9 T= 1 2 x( ) / ,  is mean of group and s  is sd of differencexx x s x−  between means 
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categories of the car-type variable, the same grouping is created as for the binary claim indicator 
variable in Figure 3.3, which used the chi-squared statistic to partition data. 

Figure 3.4 

CHAID Tree for Car Type with Numeric Dependent Variable 

 
A new categorical variable can be created using the results of the CHAID analysis. The new car-

type variable has three rather than six categories. Two predictive models were than fitted, using the 
new variables 1) a Poisson regression and 2) a ZIP regression.  As a measure of goodness of fit, we 
use the Akaike Information Criterion (AIC) statistic.  This statistic penalizes the log of the likelihood 
function when degrees of freedom, i.e., additional parameters, are incorporated into the model.  
Each variable in the model adds to its degrees of freedom.  A model with a categorical variable 
having six levels adds five degrees of freedom10 to the model, while a variable having three levels 
adds only two degrees of freedom.  The formula for the AIC is: 

                                                           
10 One degree of freedom for each binary dummy variable created which is k-1, where k is the number of categories 
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(3.2)                  2* 2* log  AIC df likeihood= −  
 From Table 3.8, the AIC statistic indicated a better fit for both the Poisson regression and the 

ZIP regression when the car-type variable has been preprocessed to reduce the number of 
categories. 

Table 3.8 

Akaike Information Criterion, Car Type and Grouped Car Type 
 
 

 
Original 

Variables
Reduced 
Variables 

Poisson Regression 12,066 12,026 
ZIP 12,006 12,020 

 
 
 

The CHAID procedure can also be used to preprocess numeric variables. The relationship 
between continuous independent variables and a dependent variable is frequently nonlinear.  One 
way to model the nonlinearities is to bin the numeric variables.  When a variable is binned, ranges of 
the variable are grouped together and treated as a level of a categorical variable.  Thus, claimant ages 
can be binned into 0 – 10, 11 – 20, etc.  Tree procedures such as CHAID can be used to optimally 
bin numeric variables (Refaat, 2007).  To illustrate how this can be done, the CHAID procedure will 
be used to bin the motor vehicle record (i.e., the number of points on the policyholder’s record) 
variable from the automobile data. Table 3.9 displays a frequency distribution for the motor vehicle 
record variable.  It can be seen that the number of points ranges from 0 to 13. 

The distribution is a skewed distribution.  That is, most of the values exceed the distribution’s 
median.  About 45% of policyholders have no points and 60% have one or fewer points.  Figure 3.5, 
which displays the average frequency by motor vehicle record, indicates that the relationship 
between motor vehicle record and frequency is nonlinear.  Claim frequency increases between zero 
and about five points and then (ignoring the inherent variability at high point values due to the 
sparseness of the data) appears to level off. 
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Motor Vehicle Record Points

    Liscense 
Points Frequency Percent

Cumulative 
Percent

0 4,659 45.2 45.2
1 1,467 14.2 59.5
2 1,199 11.6 71.1
3 966 9.4 80.5
4 727 7.1 87.5
5 528 5.1 92.7
6 341 3.3 96
7 213 2.1 98
8 114 1.1 99.1
9 53 0.5 99.7

10 20 0.2 99.8
11 13 0.1 100
12 1 0 100
13 2 0 100

Total 10,303 100

 

Table 3.9 

Frequency Distribution for Motor Vehicle Record 
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Figure 3.5 

Average Claim Frequency by Motor Vehicle Record 

 
How can the analyst best bin the motor vehicle record variable to approximate the relationship 

between motor vehicle points and claim frequency?   One approach is to use the CHAID procedure 
to group together values of motor vehicle record with similar values for average claim frequency.  
Figure 3.6 displays the output of the CHAID procedure for motor vehicle record.  Figure 3.6 
indicates that each value from one through four is significantly different from other values and that 
it should stand alone as a bin.  In predictive modeling, once the motor vehicle records have been 
binned, the new variable containing the binned categories can be used as a nominal variable in a 
regression.  Alternatively, Figure 3.5 suggests that the relationship between motor vehicle record and 
claim frequency may be linear until about a value of 5 and then level off. 
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Figure 3.6 

Tree Displaying Bin for Motor Vehicle Record 

 
 

To test which treatment of the motor vehicle variable might work best, both a Poisson and ZIP 
regression were fit using the original variable, the variable capped at a value of 5 and the binned 
variable.  For both the Poisson and the ZIP model, the binned variable performed better than the 
capped or original variable when AIC is used a goodness-of-fit measure.  The lowest AIC was for 
the ZIP model with MVR binned. 

 

Table 3.10 

AIC for Original Variable, Capped Variable and Binned Variable 

Treatment of 
Variable Poisson ZIP 

MV Points 12,593 11,022 
Capped MV Points 12,502 11,066 
Binned MV Points 12,496 10,946 
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3.2 Results for Multi-Variable Model 

To test the different methods a model that contained six variables (car use, gender, marital status, 
density, car type, and motor vehicle points) was fit. The number of categories for the density and 
car-type variables was reduced using CHAID. The motor vehicle record variable had two scenarios: 
MVR capped and MVR binned.  The results for the Poisson regression and the ZIP regression are 
displayed in Table 3.11.  Table 3.11 indicates that preprocessing improves the fit of the Poisson 
regression.  The improvement was approximately the same whether motor vehicle record was 
capped or binned.  On the other hand, the fit of the ZIP model declined when motor vehicle record 
was capped, but improved when it was binned.  The AIC statistics in Table 3.11 also indicate that 
the ZIP model provides a significantly better fit than the Poisson model. 

 

Table 3.11 

AIC for Full Regression, Original Data and Preprocessed Data 

 

Treatment of 
Variable Poisson ZIP 
Original Variables                   12,066                     10,622  
CHAID, MV Capped                   12,009                     10,676  
CHAID, MV Binned                   12,003                     10,546  

 

3.2.1 Out of Sample Goodness-of-Fit Measures 

In predictive modeling, it is customary to test models on a sample of data that was set aside 
specifically for that purpose. The data used in this paper was split into two samples: a “training” 
sample used to fit the model’s parameters and a “testing” sample used to test the fit of the model, 
once parameters have been estimated using the “training” sample. 

In typical insurance databases, traditional measures of goodness of fit often perform poorly.  For 
instance, the R2 for the zip model applied to the test sample is 0.22, a number which, although low, 
is higher than what can be obtained in most data bases, likely because the frequencies in the data are 
based on five years of experience.  In an automobile insurance data base where frequencies are based 
on annual experience, perhaps 90% of policyholders will not have experienced a claim, even though 
all policyholders have some positive expectation of a claim.  Thus the actual value for most records 
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will be “0” while the predicted value will be greater than “0” resulting in an R2 statistic that tends to 
be low.  To provide a useful test, comparisons must be based on aggregates of the data that are 
sufficiently large that the mean frequency in a group will be greater than zero. One way to aggregate 
the data is to create groups based on the value of the model’s predicted value.  The predicted value 
is sometimes referred to as the model’s “score.”  All records can be sorted based on their score.  The 
test data can then be grouped into quantiles based on the model score.  For instance, the data can be 
split into ten groups based on the model score assigned to each record.  For each decile, the actual 
frequency from the data can be computed.  A graph comparing the actual to the predicted values 
within each decile can be created and used to visually evaluate the fit.  

Figure 3.7 

Predicted and Actual Frequencies, Poisson, and ZIP Models 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 displays a comparison of actual and predicted frequencies for test data grouped by 
decile of the models score. A model with good predictive ability should be upward sloping; for each 
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increase in decile based on model score, the actual frequency should increase. Also, a high 
correlation between actual and predicted frequency indicates a good fit.  In Figure 3.7 the best fitting 
line based on ordinary least squares regression is shown. A high correlation between actual and 
predicted values is indicated by a small scatter of points around the line. In table 3.12, the correlation 
coefficient of the six models on the test data is shown. 

 

Table 3.12 
Treatment of 
Variable Poisson ZIP 

Original Variables 
     
0.9720  

         
0.9900  

CHAID, MV Capped 
     
0.9860  

         
0.9900  

CHAID, MV Binned 
     
0.9810  

         
0.9940  

 
The correlations in Table 3.12 indicate that the ZIP models fit the out of sample data better than 

the Poisson models.  It also indicates that preprocessing of variables with CHAID improves the fit 
of the Poisson regression models, but appears to have minimal effect on the ZIP models. 

Meyers (2006) presented another curve that can be used to visualize the fit of models on out of 
sample data.  The curve is based on the Lorenz curve.  The Lorenz curve arose out of studies of 
income inequality by 19th and 20th century economists (Arnold, 1983). For example, Figure 3.8 
displays a distribution of incomes from the 2000 census for the state of Pennsylvania.  From this 
graph, it can be seen that earners in the highest percentiles earned a disproportionate share of 
incomes.  The top 1% of individuals earned 13% of the state of Pennsylvania’s income. 
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Figure 3.8: Income Distribution from 2000 Census 

 

 

 

 

 

 

 

 

 

 

 

By cumulating the data from Figure 3.8, i.e., computing the cumulative percent of all income 
earned by a given percent of the population, a Lorenz curve can be created.  This is shown in Figure 
3.9. 

Figure 3.9 

Lorenz Curve for Income from 2000 Census 
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If income distribution were perfectly equal, incomes would be distributed according to the 
diagonal line.  The area between this line and the curve for the income distribution is a measure of 
income known as the Gini Index.  The greater the income inequality, the larger the Gini Index 
should be.  A simple formula for this area based on the trapezoidal rule for numerical integration 
(Press et al., 1989) is: 

 

 

(3.5)                                

 

The statistic in (3.5) is also known as the Gini Index.  It was introduced by Meyers (2006) as a 
general procedure for assessing the fit of models. A Lorenz curve can also be constructed from 
predictive models and the insurance data they are applied to. Figure 3.9 displays an approximation to 
the Lorenz curve based on the Poisson model.  This approximation is based on only 10 groups or 
deciles of the data,11 although often more intervals are used. 

                                                           
11 The test was limited to deciles, as a model with categorical predictors that have only a few levels may have a limited 
number of possible values. 
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Lorenz Curve for Poisson Predictive Model 
 
 

 

 

 

 

 

 
 
 
 
 
 
 

The data was also used to compute an approximation to the Gini Index. Table 3.13 presents the 
approximation Gini Index for the six models. 

 
Table 3.13 

Gini Index for Models 
Treatment of 
Variable Poisson ZIP 

Original Variables 
     
0.1770  

         
0.1830  

CHAID, MV Capped 
     
0.1780  

         
0.1800  

CHAID, MV Binned 
     
0.1760  

         
0.1800  
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The out of sample tests in Table 3.13 indicate that the ZIP model fits better than the Poisson.  
For the Poisson model, it also indicates that preprocessing the variables using CHAID to construct a 
capped MVR variable improves the fit of the Poisson model but not of the ZIP model. 

4. CONCLUSIONS 

In this paper, alternatives to the Poisson and negative binomial distributions for count 
regressions were presented.  One alternative makes use of mixed zero-adjusted (zero-inflated and 
hurdle) distributions. These are mixture models composed of two distinct probability distributions, 
thus the resulting distribution is not a member of the exponential family of distributions. The 
alternative provided a significantly better fit to a database of automobile insurance claims than did 
the Poisson and negative binomial models.  Moreover, many other authors (Yip and Yau, 2005; 
Heilbron, 1994) use zero-inflated and hurdle models to better approximate data than simple Poisson 
and negative binomial models.  In our day-to-day property/casualty insurance modeling, we have 
found that zero-inflated and hurdle models frequently fit the data better than Poisson and negative 
binomial models.  We have found this to be the case across a number of different lines, including 
homeowners, personal automobile, and workers compensation.  The phenomenon of excess zeros is 
also commonly encountered in non-insurance applications such as quality control (Lambert, 1992) 
and biostatistics (Ridout et al., 1998).  We tested a small selection of non-insurance databases and 
zero-adjusted distributions provided a better fit to some of the data. Thus it seems appropriate to 
test for excess zeros using a test such as Van den Broek’s score test.  See Appendix C for more 
information on this test. If excess zeros are indicated, either a zero-inflated or hurdle model is likely 
to provide a better model than a classical Poisson or negative binomial regression.  The testing 
displayed wide variation between the goodness of fit of the different distributions assessed, 
suggesting that it is prudent to test several alternative distributions before fitting a model. 

A limitation of many GLMs that incorporate categorical variables is over-parameterization.  This 
occurs when more categories are included than are needed.  When categories that are statistically 
equivalent are combined, the over-parameterization is eliminated. In this paper a relative quick and 
efficient procedure for reducing the cardinality of nominal variables was presented.  The procedure 
in this paper used the CHAID decision tree procedure to statistically determine the appropriate way 
to combine categories.  This paper provided an example where application of the CHAID procedure 
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to group categories of categorical variables improved the fit of the model. Typical predictive 
modeling applications databases contain a number of categorical variables with many levels. For 
instance, there may be 100 or more different types of vehicles in a vehicle-type variable, and many 
are sparsely populated.  Since the categorical variables in our data had only a relatively small number 
of categories, the benefit of preprocessing categorical data was illustrated but could not be fully 
exploited.   

Another limitation of GLMs with numeric predictor variables is that the relationship between the 
predictor and dependent variable may be nonlinear. The CHAID technique can be used to 
preprocess numeric variables to approximate the nonlinear relationship.  
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Supplementary Material 
Excel spreadsheets, R and SAS Code will be available on the CAS Web Site. 

 
Appendix A 

The Poisson Distribution and the Use of Nonlinear Mixed Modeling Procedures to Fit 
Parameters 

We begin this illustration by using SAS Proc NLMIXED to estimate the parameters of the 
Poisson.  We will derive the log-likelihood of the Poisson from its PDF, to illustrate its use in Proc 
NLMIXED. 

The Poisson PDF is 

where y = 0, 1, 2, 3, ...( | )  
!

yeY y
y

λλμ
−

= =  

with: 

( | )

2
var ( | )

mean E Y X xi

Var Y X x

λ

σ λ

= = =

= = = =
 

 
It is clear from the above formulas that the mean of the Poisson equals its parameter, lambda. 

Differentiating the PDF with respect to our mean parameter, lambda; the log-likelihood: 

ll=-λ+y*log(λ)-lgamma(y+1) . 
 

Below we illustrate the use of this function in a SAS procedure that is used to estimate the 
parameter of the Poisson.  We also illustrate how to directly fit the Poisson, without specifying a 
likelihood function.  Proc NLMIXED is designed to estimate the parameters of nonlinear mixed 
models.  A mixed model arises when some of the independent variables in a model are themselves 
random realizations from a distribution rather than fixed quantities (see Venables and Ripley, 2002; 
Faraway, 2006).  A discussion of mixed models is beyond the scope of this paper; however, 
knowledge of how to specify random effects is unnecessary when using Proc NLMIXED to fit 
common probability distributions such as the Poisson.  Below is the SAS code used for the fit: 

 
proc sql; 
 select max(clm_freq) into :y_max from claims2; 
quit; 
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%put *** y_max=&y_max.; 
 
%macro estimate; 
 %do i = 0 %to &y_max.; 
  estimate "p(&i.)" pdf('poisson',&i., lambda);   
 %end; 
%mend; 
proc nlmixed data=claims2; 
 parms eta=-0.2; 
 lambda = exp(eta); 
 y = clm_freq; 
 model y ~ poisson(lambda); 
/* or / 
 loglike = -lambda + y*log(lambda) - lgamma(y + 1); 
  model y ~ general(loglike); 
/* or / 
 pdf = (exp(-lambda)*lambda**y)/fact(y); 

loglike=log(pdf); 
  model y ~ general(loglike); 
 estimate 'lambda' lambda; 
 %estimate;  
 predict lambda out=predpoi(keep=clm_freq pred); 
 title 'Poisson model via Proc NLMIXED'; 
run; 
title; 
 
 

 Poisson model via Proc NLMIXED  

The NLMIXED Procedure 

Specifications 

Data Set WORK.CLAIMS2 

Dependent Variable y 

Distribution for Dependent Variable Poisson 

Optimization Technique Dual Quasi-Newton 

Integration Method None 
 
 

Dimensions 

Observations Used 2812

Observations Not Used 0

Total Observations 2812

Parameters 1
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Parameters 

eta NegLogLike

-0.2 3782.77991
 
 

Iteration History 

Iter  Calls NegLogLike Diff MaxGrad Slope 

1  4 3782.75728 0.022624 1.211746 -51.3544 

2  5 3782.75696 0.00032 0.002708 -0.00064 

3  6 3782.75696 1.728E-9 7.161E-7 -3.2E-9 
 
 

NOTE: GCONV convergence criterion satisfied. 
 
 

Fit Statistics 

-2 Log Likelihood 7565.5

AIC (smaller is better) 7567.5

AICC (smaller is better) 7567.5

BIC (smaller is better) 7573.5
 
 

Parameter Estimates 

Parameter Estimate 
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper Gradient

eta -0.2045 0.02089 2812 -9.79 <.0001 0.05 -0.2454 -0.1635 7.161E-7
 
 

Additional Estimates 

Label Estimate 
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper 

lambda 0.8151 0.01703 2812 47.87 <.0001 0.05 0.7817 0.8485 

 
 
SAS Proc NLMIXED also makes it very simple to fit a negative binomial distribution to the sample 
data.  Again, there several ways to specify the distribution.  The ability to code with programming 
statements within Proc NLMIXED is very flexible.  One can use the internal specification for 
negative binomial, specify the negative binomial PDF, take the log and use the model general 
option, or directly specify the log-likelihood one wishes to solve for it directly.   Beside the model fit, 
we can also ask for some additional statistics such as contrast testing for whether our Negbin 



More Flexible GLMs: Zero-Inflated Models and Hybrid Models 
 

Casualty Actuarial Society E-Forum, Winter 2009 191 

dispersion is significantly different from zero (Poisson), as well as the estimated variance and 
predicted probabilities for each count. 
 
%macro estimate; 
 %do i = 0 %to &y_max.; 
 estimate "p(&i.)"  (gamma(&i. + k)/(gamma(&i. + 1)*gamma(k)))*     
               (((1/k)*mu)**&i.)/(1 + (1/k)*mu)**(&i. + (k)); 
 %end; 
%mend; 
 
proc nlmixed data=claims2; 
 parms  b_0=-.2 k=1.4; 
 eta = b_0; 
   mu = exp(eta); 
 y = clm_freq; 
/* specify the full log-likelihood */ 
/* loglike = (lgamma(y + (1/k)) - lgamma(y + 1) - lgamma(1/k) + */ 
/*             y*log(k*mu) - (y + (1/k))*log(1 + k*mu)); */ 
/*  model y ~ general(loglike);*/ 
/* or, use the internal negbin(n,p) representation */ 
 p = exp(-eta)/(1 + exp(-eta)); 
  model y ~ negbin(1/k,p);  
 predict mu out=out2(keep=clm_freq pred); 
   contrast 'k = 0' k - 0; 
 estimate 'exp(b_0)' exp(b_0); 
 estimate 'mean' mu; 
 estimate 'k' k; 
 estimate 'variance' mu + k*mu**2; 
 %estimate; 
 title 'Negative Binomial model via Proc NLMIXED'; 
run; 

Specifications 

Data Set WORK.CLAIMS2 

Dependent Variable y 

Distribution for Dependent Variable Poisson 

Optimization Technique Dual Quasi-Newton 

Integration Method None 
 
 

Dimensions 

Observations Used 2812

Observations Not Used 0

Total Observations 2812

Parameters 1
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Parameters 

eta NegLogLike

-0.2 3782.77991
 
 

Iteration History 

Iter  Calls NegLogLike Diff MaxGrad Slope 

1  4 3782.75728 0.022624 1.211746 -51.3544 

2  5 3782.75696 0.00032 0.002708 -0.00064 

3  6 3782.75696 1.728E-9 7.161E-7 -3.2E-9 
 
 

NOTE: GCONV convergence criterion satisfied. 
 
 

Fit Statistics 

-2 Log Likelihood 7565.5

AIC (smaller is better) 7567.5

AICC (smaller is better) 7567.5

BIC (smaller is better) 7573.5
 
 

Parameter Estimates 

Parameter Estimate 
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper Gradient

eta -0.2045 0.02089 2812 -9.79 <.0001 0.05 -0.2454 -0.1635 7.161E-7
 
 

Additional Estimates 

Label Estimate 
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper 

lambda 0.8151 0.01703 2812 47.87 <.0001 0.05 0.7817 0.8485 
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Negative Binomial model via Proc NLMIXED 

 

Specifications 

Data Set WORK.CLAIMS2 

Dependent Variable y 

Distribution for Dependent Variable Negative Binomial 

Optimization Technique Dual Quasi-Newton 

Integration Method None 
 
 

Dimensions 

Observations Used 2812

Observations Not Used 0

Total Observations 2812

Parameters 2
 
 

Parameters 

b_0 k NegLogLike

-0.2 1.4 3560.13868
 
 

Iteration History 

Iter  Calls NegLogLike Diff MaxGrad Slope 

1  3 3502.65393 57.48475 37.59117 -2543.71 

2  4 3501.12368 1.53025 11.94101 -2.31042 

3  5 3500.97924 0.144435 1.374487 -0.31788 

4  6 3500.97779 0.001458 0.050886 -0.003 

5  7 3500.97778 1.233E-6 0.00302 -2.59E-6 
 
 

NOTE: GCONV convergence criterion satisfied. 
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Fit Statistics 

-2 Log Likelihood 7002.0

AIC (smaller is better) 7006.0

AICC (smaller is better) 7006.0

BIC (smaller is better) 7017.8
 
 

Parameter Estimates 

Parameter Estimate 
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper Gradient

b_0 0.1388 0.07768 2812 1.79 0.0741 0.05 -0.01354 0.2911 0.002728

k 1.4095 0.1006 2812 14.01 <.0001 0.05 1.2122 1.6068 -0.00302
 
 

Contrasts 

Label
Num 

DF
Den 
DF F Value Pr > F

k = 0 1 2812 196.23 <.0001

k = 1 1 2812 16.56 <.0001
 
 

Additional Estimates 

Label Estimate 
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper 

exp(b_0) 1.1489 0.08924 2812 12.87 <.0001 0.05 0.9739 1.3238 

mean 1.1489 0.08924 2812 12.87 <.0001 0.05 0.9739 1.3238 

k 1.4095 0.1006 2812 14.01 <.0001 0.05 1.2122 1.6068 

variance 3.0092 0.5030 2812 5.98 <.0001 0.05 2.0229 3.9956 

 
 
Appendix B 
Count Distribution Parameter Estimation Using SAS Proc GENMOD 

Below a Poisson distribution is fit to the data with Proc GENMOD, SAS Generalized Linear 
Model procedure.  The estimate statement applies the inverse of the log link, eponentiating the 
intercept displaying the estimated mean as 0.82 along with a 95% confidence interval of 
(0.7824,0.8491).  Note that the log likelihood reported in Proc GENMOD is not directly 
comparable to those reported in Proc NLMIXED or some other software as Proc GENMOD 
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drops the y-factorial component of the likelihood as this does not contribute to estimating the mean 
parameter and can cause numeric instabilities with high counts. 
proc genmod data=claims2; 
 model clm_freq = / link=log dist=Poisson noscale; 
 estimate 'mean' intercept 1 / exp; 
 title 'Poisson Distribution'; 
run; 
 

   

SAS Proc GENMOD also makes it very simple to fit a negative binomial distribution to our sample 
data.  Here we simply change the dist= option to our model statement. 
 
proc genmod data=claims2; 
 model clm_freq = / link=log dist=NegBin;  
 estimate 'mean' intercept 1 / exp; 
 title 'NegBin model'; 
run; 

NegBin Model 

The GENMOD Procedure 

 

Model Information 

Data Set WORK.CLAIMS2  

Distribution Negative Binomial  

Link Function Log  

Dependent Variable CLM_FREQ #Claims(Past 5 Years) 
 
 

Number of Observations Read 2812

Number of Observations Used 2812
 
 

Parameter 
Information 

Parameter Effect 

Prm1 Intercept
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Criteria For Assessing Goodness Of Fit 

Criterion DF Value Value/DF

Deviance 2811 2549.6471 0.9070

Scaled Deviance 2811 2549.6471 0.9070

Pearson Chi-Square 2811 2190.0408 0.7791

Scaled Pearson X2 2811 2190.0408 0.7791

Log Likelihood -2478.8688
 
 

Analysis Of Parameter Estimates 

Parameter DF Estimate 
Standard 

Error

Wald 95% 
Confidence 

Limits Chi-Square Pr > ChiSq 

Intercept 1 -0.2045 0.0306 -0.2645 -0.1445 44.59 <.0001 

Dispersion 1 1.4095 0.1006 1.2123 1.6067  
 
 
Note: The negative binomial dispersion parameter was estimated by maximum likelihood. 
 
 

Contrast Estimate Results 

Label Estimate 
Standard 

Error Alpha
Confidence 

Limits Chi-Square Pr > ChiSq 

mean -0.2045 0.0306 0.05 -0.2645 -0.1445 44.59 <.0001 

Exp(mean) 0.8151 0.0250 0.05 0.7676 0.8655   

 
 
 
Appendix C 

SAS Code for SCORE Test 

/***************************************************************/ 
/* Van den Broek (1995) score test                             */ 
/* Van den Broek, Jan,  
 A score test for zero inflation in a Poisson distribution,  
 Biometrics, 1995, v51, n2, p738-743                           */ 
/***************************************************************/ 
proc sql; 
 select sum(((clm_freq=0) - exp(-pred))/exp(-pred))**2 as num, 
   sum((1 - exp(-pred))/exp(-pred)) - 
count(clm_freq)*mean(clm_freq) as denom, 
    count(clm_freq) as n, mean(clm_freq) as ybar,  
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  (sum(((clm_freq=0) - exp(-pred))/exp(-pred))**2) / 
   (sum((1 - exp(-pred))/exp(-pred)) - 
count(clm_freq)*mean(clm_freq)) as score, 
    1 - probchi(calculated score, 1) as p format 8.6 
   into :num, :denom, :n, :ybar, :score, :p 
     from out2; 
quit; 
%put *********************************************************************; 
%put *** Van den Broek - Score statistic for extra zeros; 
%put *** num=&num, denom=&denom., n=&n., ybar=&ybar., score=&score., p=&p.; 
%put *********************************************************************; 
 

Van den Brock – Score Statistic for extra zeros 

numerator denom n ybar score p
 1,086,713.00   1,249.30 2812 0.8151 869.9 0.000001

 



More Flexible GLMs: Zero-Inflated Models and Hybrid Models 
 

Casualty Actuarial Society E-Forum, Winter 2009 198 

Appendix D 

SAS Code for Zero-Inflated Models 

This appendix shows how to fit a zero-inflated distribution in SAS Proc NLMIXED. (Also, an 
experimental procedure under the SAS/ETS product, Proc COUNTREG directly fits ZIP and 
ZINB models. See http://support.sas.com/kb/26/addl/fusion26161_3_countreg.pdf.  Here, we 
add some options.  The parameters statement allows us to specify starting values for our parameters 
to be estimated.  The bounds statement allows us to constrain our zero-inflation factor to the logical 
range.  Again, we utilized the flexibility of programming and the estimate statements to calculate 
several useful estimates such as the expected number of conditional ZIP mean and variance.   
%macro estimate; 
 %do i = 0 %to &y_max.; 
  %if &i.=0 %then %do; 
 estimate "p(&i.)" p_0 + (1 - p_0)*pdf('poisson',&i., lambda);  
 %end; 
  %else %do; 
  estimate "p(&i.)" (1 - p_0)*pdf('poisson',&i., lambda);  
 %end; 
 %end; 
%mend; 
proc nlmixed data=claims3;  
  parameters  p_0=0.57 bll_0=0.5;  
  bounds 0<p_0<1; 
  eta = bll_0;  
  lambda = exp(eta); 
  y = clm_freq; 
  if y=0 then loglike = log(p_0 + (1 - p_0)*exp(-lambda)); 
     else loglike = log(1 - p_0) + y*log(lambda) - lambda - lgamma(y + 1); 
  model y ~ general(loglike); 
  contrast 'p_0 - 0' p_0 - 0; 
  estimate "p_0" p_0; 
  estimate "Expected zeros=exp(-lambda)" exp(-lambda); 
  estimate 'Conditional Poisson Mean (lambda)' lambda; 
  estimate 'ZIP Mean (1-p_0)*lambda' (1 - p_0)*lambda; 
  estimate 'ZIP Var(1-p_0)*lambda*(1+lambda+(1-p_0)*lambda)' 
      (1 - p_0)*lambda*(1 + lambda + (1 - p_0)*lambda); 
/*  estimate "Proportion of 'extra' zeros (theta)" theta; */ 
  estimate 'theta=p_0/(1-p_0)' p_0/(1 - p_0); 
  %estimate; 
  predict p_0 out=pred_zi(keep=pred); 
  predict lambda out=pred(keep=clm_freq pred); 
  predict (1 - p_0)*lambda out=out2(keep=clm_freq pred); 
 
  title 'Zero-Inflated Poisson (ZIP) distribution'; 
run; 
title; 
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Zero-Inflated Poisson (ZIP) Distribution 

 

Specifications 

Data Set WORK.CLAIMS3 

Dependent Variable y 

Distribution for Dependent Variable General 

Optimization Technique Dual Quasi-Newton 

Integration Method None 
 
 

Dimensions 

Observations Used 2812

Observations Not Used 0

Total Observations 2812

Parameters 2
 
 

Parameters 

p_0 bll_0 NegLogLike

0.57 0.5 3360.90317
 
 
 

Fit Statistics 

-2 Log Likelihood 6695.2

AIC (smaller is better) 6699.2

AICC (smaller is better) 6699.2

BIC (smaller is better) 6711.1
 
 

Parameter Estimates 

Parameter Estimate 
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper Gradient

p_0 0.5177 0.01231 2812 42.04 <.0001 0.05 0.4935 0.5418 4.247E-7

bll_0 0.5247 0.02658 2812 19.74 <.0001 0.05 0.4726 0.5768 6.041E-6
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Contrasts 

Label 
Num 

DF
Den 
DF F Value Pr > F

p_0 - 0 1 2812 1767.27 <.0001
 
 

Additional Estimates 

Label Estimate
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper

p_0 0.5177 0.01231 2812 42.04 <.0001 0.05 0.4935 0.5418

Expected zeros=exp(-lambda) 0.1845 0.008289 2812 22.26 <.0001 0.05 0.1683 0.2008

Conditional Poisson Mean (lambda) 1.6899 0.04492 2812 37.62 <.0001 0.05 1.6018 1.7780

ZIP Mean (1-p_0)*lambda 0.8151 0.02331 2812 34.96 <.0001 0.05 0.7694 0.8608

ZIP  
Var(1p_0)*lambda*(1+lambda+ 
(1-p_0)*lambda) 

2.8568 0.1254 2812 22.79 <.0001 0.05 2.6110 3.1026

theta=p_0/(1-p_0) 1.0733 0.05293 2812 20.28 <.0001 0.05 0.9695 1.1771

 

 

Given the additional flexibility introduced with the zero-inflation parameter, The zero-inflated 
negative binomial (ZINB) distribution fit estimates a very small dispersion parameter, k. 
 
proc nlmixed data=claims3; 
 parms bp_0=.07 bll_0=0.52 k=0.000033; 
 bounds k>0; 
      eta_zip = bp_0; 
   p0_zip = exp(eta_zip)/(1 + exp(eta_zip)); 
      eta_nb = bll_0; 
      mean   = exp(eta_nb); 
 y = clm_freq; 
     p0 = p0_zip + (1 - p0_zip)*exp(-(y + (1/k))*log(1 + k*mean)); 

p_else = (1 - p0_zip)*exp(lgamma(y + (1/k)) - lgamma(y + 1) –  
  lgamma(1/k) + y*log(k*mean) - (y + (1/k))*log(1 + k*mean)); 
if y=0 then loglike = log(p0); 

     else    loglike = log(p_else); 
    model y ~ general(loglike); 
    estimate "Estimated proportion of 'extra' zeros (theta)" p0_zip; 
    estimate 'Estimated Conditional Poisson Mean (Lambda)' mean; 
    estimate 'Estimated Unconditional ZIP Mean' (1-p0_zip)*mean; 
    estimate 'Estimated Unconditional ZIP Variance'  

(1-p0_zip)*mean*(1+p0_zip*mean); 
    predict mean out = mean_hat; 
    title 'Zero-inflated Negative Binomial ZINB Distribution'; 
run; 
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Zero-Inflated Negative Binomial ZINB Distribution 

 

Specifications 

Data Set WORK.CLAIMS3 

Dependent Variable y 

Distribution for Dependent Variable General 

Optimization Technique Dual Quasi-Newton 

Integration Method None 
 
 

Dimensions 

Observations Used 2812

Observations Not Used 0

Total Observations 2812

Parameters 3
 
 

Parameters 

bp_0 bll_0 k NegLogLike

0.07 0.52 0.000033 3347.62028
 
 

Fit Statistics 

-2 Log Likelihood 6695.2

AIC (smaller is better) 6701.2

AICC (smaller is better) 6701.2

BIC (smaller is better) 6719.0
 
 

Parameter Estimates 

Parameter Estimate 
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper Gradient

bp_0 0.07089 0.04949 2812 1.43 0.1521 0.05 -0.02614 0.1679 0.083701

bll_0 0.5246 0.02698 2812 19.44 <.0001 0.05 0.4717 0.5775 -0.11562

k 1.187E-6 0.001040 2812 0.00 0.9991 0.05 -0.00204 0.002041 229.649
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Additional Estimates 

Label Estimate
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper

Estimated proportion of 'extra' zeros 
(theta) 

0.5177 0.01236 2812 41.90 <.0001 0.05 0.4935 0.5419

Estimated Conditional ZINB Mean 
(Lambda) 

1.6898 0.04559 2812 37.06 <.0001 0.05 1.6004 1.7793

Estimated Unconditional ZINB Mean 0.8150 0.02340 2812 34.83 <.0001 0.05 0.7691 0.8609

Estimated Unconditional ZINB Variance 1.5280 0.05533 2812 27.61 <.0001 0.05 1.4195 1.6365

 
Appendix D 

SAS Code for Hurdle Model 

/****************************************/ 
/* fit Hurdle - Binomial for 0/1        */ 
/****************************************/ 
data claims4; 
 set claims2; 
 clm=(clm_freq>0); 
run; 
proc nlmixed data=claims4; 
   parms b_o=-0.52; 
 y = clm;        
   eta = b_o; 
   p1 = exp(eta)/(1 + exp(eta));  
 model y ~ binary(p1); 
 estimate 'phi' 1-1/(1 + exp(-b_o)); 
run; 
/****************************************/ 
/* fit Hurdle - Truncated Poisson       */ 
/****************************************/ 
proc nlmixed data=claims3(where=(clm_freq>0)); 
  * parms b_0=0.52; 
   eta_lam = b_0; 
    lambda = exp(eta_lam); 
 y = clm_freq; 
 prob = ((exp(-lambda)*(lambda**y))/fact(y))/(1 - exp(-lambda)); 
 loglike = log(prob); 
 model y ~ general(loglike); 
 estimate 'lambda' lambda; 
 estimate 'conditional mean' lambda/(1 - exp(-lambda)); 
 estimate 'conditional var' (lambda/(1 - exp(-lambda)))* 
                      (1 - (lambda*exp(-lambda))/(1 - exp(-lambda))); 
 predict (lambda/(1 - exp(-lambda))) out=tpois_pred; 
 title 'Count model for non-Zero Outcomes (Poisson)'; 
run; 
title; 
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Appendix E 

Code for Fitting Models 

Poisson, negative binomial, ZIP, ZINB, and hurdle GLM regression models are fit with SAS.   
Below a Poisson regression model is fit to the data with Proc GENMOD.  Main effects regressors 
are added to same setup as above: car use, marital status, area, and sex.  
 
/*******************************************************/ 
/* fit Poisson regression model (including covariates) */ 
/*******************************************************/ 
proc genmod data=claims2; 
 class car_use mstatus area sex; 
 model clm_freq = car_use mstatus area lincome sex  

         / link=log dist=Poisson; 
run; 
 

                        The GENMOD Procedure 

 

Model Information 

Data Set WORK.CLAIMS2  

Distribution Poisson  

Link Function Log  

Dependent Variable CLM_FREQ #Claims(Past 5 Years) 
 
 

Number of Observations Read 2812

Number of Observations Used 2812
 
 

Criteria For Assessing Goodness Of Fit 

Criterion DF Value Value/DF

Deviance 2811 4736.2388 1.6849

Scaled Deviance 2811 4736.2388 1.6849

Pearson Chi-Square 2811 4706.1012 1.6742

Scaled Pearson X2 2811 4706.1012 1.6742

Log Likelihood -2760.6479
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Analysis Of Parameter Estimates 

Parameter DF Estimate 
Standard 

Error

Wald 95% 
Confidence 

Limits Chi-Square Pr > ChiSq 

Intercept 1 -0.2045 0.0209 -0.2454 -0.1635 95.82 <.0001 

Scale 0 1.0000 0.0000 1.0000 1.0000  
 
 
Note: The scale parameter was held fixed. 

Model Information 

Data Set WORK.CLAIMS2  

Distribution Poisson  

Link Function Log  

Dependent Variable CLM_FREQ #Claims(Past 5 Years) 
 
 

Number of Observations Read 2812

Number of Observations Used 2812
 
 

Class Level Information 

Class Levels Values 

CAR_USE 2 Commercial Private 

mstatus 2 1. Yes 2. No 

area 2 1. Highly Urban/ urban area 2. Highly Rural/ rural area 

sex 2 1. M 2. F 
 
 

Criteria For Assessing Goodness Of Fit 

Criterion DF Value Value/DF

Deviance 2806 4312.6656 1.5369

Scaled Deviance 2806 4312.6656 1.5369

Pearson Chi-Square 2806 4636.5810 1.6524

Scaled Pearson X2 2806 4636.5810 1.6524

Log Likelihood -2548.8614
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Analysis Of Parameter Estimates 

Parameter  DF Estimate
Standard 

Error

Wald 95% 
Confidence 

Limits Chi-Square Pr > ChiSq

Intercept  1 -1.1801 0.1013 -1.3787 -0.9815 135.66 <.0001

CAR_USE Commercial 1 0.2831 0.0449 0.1951 0.3711 39.73 <.0001

CAR_USE Private 0 0.0000 0.0000 0.0000 0.0000 . .

mstatus 1. Yes 1 -0.0961 0.0425 -0.1794 -0.0127 5.10 0.0239

mstatus 2. No 0 0.0000 0.0000 0.0000 0.0000 . .

area 1. Highly Urban/ urban area 1 1.3631 0.0835 1.1994 1.5268 266.28 <.0001

area 2. Highly Rural/ rural area 0 0.0000 0.0000 0.0000 0.0000 . .

lincome  1 -0.0206 0.0061 -0.0327 -0.0086 11.32 0.0008

sex 1. M 1 -0.1206 0.0441 -0.2070 -0.0343 7.49 0.0062

sex 2. F 0 0.0000 0.0000 0.0000 0.0000 . .

Scale  0 1.0000 0.0000 1.0000 1.0000  
 
 
Note: The scale parameter was held fixed. 
 

It is also fairly simple to add regressors to the linear predictor, eta, in Proc NLMIXED.  One 
small complication is that Proc NLMIXED does not offer a class statement, therefore one has to 
either create desired indicator or dummy variables ahead of time, or as in the example below, use 
programming statements to create them “on-the-fly,”  The phrase inside each set of parentheses 
resolves to either true or false, zero, or one. 
 
data claims3; 
 set claims2; 
 car_usen=0; if car_use='Commercial' then car_usen=1; 
 mstatusn=0; if mstatus='1. Yes' then mstatusn=1; 
 arean=0;    if area ='1. Highly Urban/ urban area' then arean=1; 
 sexn=0;     if sex='1. M' then sexn=1; 
run; 
 
proc nlmixed data=claims3; 
 eta = b_0 + b_car_use*car_usen + b_mstatus*mstatusn +  
                      b_area*arean + b_lincome*lincome + b_sex*sexn; 
   lambda = exp(eta); 
 loglike = - lambda + clm_freq*log(lambda) - log(fact(clm_freq)) ;  
   model clm_freq ~ general(loglike);       
 * same results if ll is hardcoded; 
/* model clm_freq ~ poisson(lambda); */ 
run; 
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or; 
  
proc nlmixed data=claims2; 
 eta = b_0   + b_car_use*(car_use='Commercial')  

+ b_mstatus*(mstatus='1. Yes')  
+ b_area*(area ='1. Highly Urban/ urban area') 
+ b_lincome*lincome  
+ b_sex*(sex='1. M'); 

 lambda = exp(eta); 
 model clm_freq ~ poisson(lambda); 
run; 
 
 
 
 

                                      The NLMIXED Procedure 
 
 

Specifications 

Data Set WORK.CLAIMS3 

Dependent Variable CLM_FREQ 

Distribution for Dependent Variable General 

Optimization Technique Dual Quasi-Newton 

Integration Method None 
 
 

Dimensions 

Observations Used 2812

Observations Not Used 0

Total Observations 2812

Parameters 12
 
 

Fit Statistics 

-2 Log Likelihood 6404.0

AIC (smaller is better) 6428.0

AICC (smaller is better) 6428.1

BIC (smaller is better) 6499.3
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Parameter Estimates 

Parameter Estimate 
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper Gradient

bll_0 0.4709 0.1302 2812 3.62 0.0003 0.05 0.2156 0.7262 0.267506

bll_1 0.03851 0.05742 2812 0.67 0.5025 0.05 -0.07408 0.1511 0.084439

bll_2 -0.02516 0.05479 2812 -0.46 0.6461 0.05 -0.1326 0.08227 0.034717

bll_3 0.08448 0.1098 2812 0.77 0.4418 0.05 -0.1309 0.2998 0.089421

bll_4 -0.00321 0.008304 2812 -0.39 0.6994 0.05 -0.01949 0.01308 -0.41592

bll_5 0.01517 0.05627 2812 0.27 0.7874 0.05 -0.09517 0.1255 -0.14471

bp_0 1.2705 0.2256 2812 5.63 <.0001 0.05 0.8282 1.7128 -0.20101

bp_1 -0.5539 0.1235 2812 -4.49 <.0001 0.05 -0.7961 -0.3118 0.240928

bp_2 0.1607 0.1125 2812 1.43 0.1532 0.05 -0.05987 0.3813 0.000136

bp_3 -2.0319 0.1554 2812 -13.07 <.0001 0.05 -2.3367 -1.7272 -0.00329

bp_4 0.04199 0.01865 2812 2.25 0.0245 0.05 0.005415 0.07857 -0.41593

bp_5 0.3006 0.1144 2812 2.63 0.0086 0.05 0.07639 0.5248 -0.07819
 
 

Contrasts 

Label 
Num 

DF
Den 
DF F Value Pr > F

TEST p_0=0.4468 1 2812 0.02 0.8836
 
 

Additional Estimates 

Label Estimate
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper

Estimated proportion of 'extra' zeros 
(theta) 

0.4435 0.02280 2812 19.45 <.0001 0.05 0.3988 0.4882

Estimated Conditional Poisson Mean 
(lambda) 

1.6515 0.07387 2812 22.36 <.0001 0.05 1.5067 1.7963

Estimated Unconditional ZIP Mean ((1-
p_0)*lambda) 

0.9191 0.04280 2812 21.47 <.0001 0.05 0.8352 1.0031

Estimated Unconditional ZIP Variance 
((1-p_0)*lambda*(1+p_0*lambda)) 

1.5923 0.09299 2812 17.12 <.0001 0.05 1.4099 1.7746

 
 

Zero-inflated Poisson regression models can also be easily fitted using Proc NLMIXED.  The 
Zero-inflation parameter can be left as a constant, or a second regression equation can be fitted with 
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Parameter Error DF t
bll_0 (0.495)       0.119 2,812 (4.170)  
bll_1 0.142        0.052 2,812 2.750   
bll_2 (0.010)       0.049 2,812 (2.040)  
bll_3 1.211        0.097 2,812 12.460 
bll_4 0.015        0.007 2,812 (2.100)  
bll_5 0.053        0.051 2,812 (1.040)  
bp_0 (0.198)       0.058 2,812 (3.390)  

the same or different regressors as for the mean parameter, allowing that ZI parameter to vary by 
group, or even by observation.  The mean parameter has a log link, ensuring positivity of the mean, 
while the ZI parameter has a logit link, ensuring that it remains between zero and one. 
                                               
 
                                      Parameter Estimates 
 

                        
 
 
 
 
 
 
 
 
 
 
 

             
 
Adding regressors as for the ZI parameter. 

 
proc nlmixed data=claims3;  
  parameters  bll_0=0 bll_1=0 bll_2=0 bll_3=0 bll_4=0 bll_5=0 
    bp_0=0  bp_1=0 bp_2=0 bp_3=0 bp_4=0 bp_5=0; 
 
  eta_prob = bp_0 + bp_1*car_usen + bp_2*mstatusn + bp_3*arean  

+ bp_4*lincome + bp_5*sexn; 
  p_0 = exp(eta_prob)/(1 + exp(eta_prob)); 
 eta_lambda = bll_0 + bll_1*car_usen + bll_2*mstatusn + bll_3*arean  

+ bll_4*lincome + bll_5*sexn; 
  lambda = exp(eta_lambda); 
 if clm_freq=0 then loglike = log(p_0 + (1-p_0)*exp(-lambda)); 
            else loglike = log(1-p_0) + clm_freq*log(lambda)  

      -lambda - lgamma(clm_freq+1); 
  model clm_freq ~ general(loglike); 
  estimate "Estimated proportion of 'extra' zeros (theta)" p_0; 
  estimate 'Estimated Conditional Poisson Mean (lambda)' lambda; 
  estimate 'Estimated Unconditional ZIP Mean ((1-p_0)*lambda)'  

(1-p_0)*lambda; 
  estimate 'Estimated Unconditional ZIP Variance  

((1-p_0)*lambda*(1+p_0*lambda))' (1-p_0)*lambda*(1+p_0*lambda); 
 
  predict (1-p_0)*lambda out = lambda_hat ; 
  title 'ZIP regression model'; 
run; 

                                            ZIP regression model                                          
 

                                      The NLMIXED Procedure 
                                         Specifications 
                Dependent Variable                          CLM_FREQ 
                Distribution for Dependent Variable         General 
                Optimization Technique                      Dual Quasi-Newton 
                                                 Dimensions 
                                               Fit Statistics 
                            -2 Log Likelihood                 6404.0 
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                            AIC (smaller is better)           6428.0 
                            AICC (smaller is better)          6428.1 
                            BIC (smaller is better)           6499.3 
 
                                      Parameter Estimates 

Parameter Estimate Error DF t Pr Lower Upper Gradient 
bll_0 0.469 0.130 2812 3.6 0.0003 0.2136 0.7241 0.0525 
bll_1 0.037 0.057 2812 0.65 0.5172 -0.0754 0.1498 -0.0033 
bll_2 -0.024 0.055 2812 -0.43 0.6661 -0.1311 0.0838 0.1584 
bll_3 0.085 0.110 2812 0.78 0.4371 -0.1300 0.3007 0.0884 
bll_4 -0.003 0.008 2812 -0.38 0.7062 -0.0194 0.0132 0.5054 
bll_5 0.015 0.056 2812 0.27 0.7863 -0.0951 0.1256 -0.0293 

    
bp_0 1.277 0.226 2812 5.66 <.0001 0.8351 1.7197 0.0822 
bp_1 -0.559 0.124 2812 -4.52 <.0001 -0.8018 -0.3169 -0.0772 
bp_2 0.165 0.113 2812 1.46 0.1434 -0.0560 0.3855 0.4239 
bp_3 -2.035 0.156 2812 -13.08 <.0001 -2.3400 -1.7299 0.0725 
bp_4 0.042 0.019 2812 2.24 0.0254 0.0051 0.0782 0.1624 
bp_5 0.298 0.114 2812 2.61 0.0092 0.0740 0.5225 -0.3611 

Prop Extra 0's 0.445 0.023 19.52 0.0001   
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ID Class # Class Merit Exposure Earned Claims Frequency/
1 1 NoYoungMale A   2,757,520  159,108,000   217,151            0.079 
2 5 MarriedYoungMale A        64,130      5,349,000       6,560            0.102 
3 1 NoYoungMale X      130,706      7,910,000     13,792            0.106 
4 2 NonPrincipYoungMale A      130,535    11,840,000     14,506            0.111 
5 1 NoYoungMale Y      163,544      9,862,000     19,346            0.118 
6 5 MarriedYoungMale x          4,039          345,000          487            0.121 
7 5 MarriedYoungMale Y          4,869          413,000          613            0.126 
8 3 Business A      247,424    25,846,000     31,964            0.129 
9 1 NoYoungMale B      273,944    17,226,000     37,730            0.138 

10 2 NonPrincipYoungMale X          7,233          712,000       1,001            0.138 
11 4 YoungMale A      156,871    18,450,000     22,884            0.146 
12 2 NonPrincipYoungMale Y          9,726          944,000       1,430            0.147 
13 5 MarriedYoungMale B          8,601          761,000       1,291            0.150 
14 2 NonPrincipYoungMale B        21,504      1,992,000       3,421            0.159 
15 3 Business X        15,868      1,783,000       2,695            0.170 
16 4 YoungMale y        21,089      2,523,000       3,618            0.172 
17 4 YoungMale X        17,707      2,130,000       3,054            0.172 
18 3 Business Y        20,369      2,281,000       3,546            0.174 
19 4 YoungMale B        56,730      6,608,000     11,345            0.200 
20 3 Business B       37,666     4,129,000      7,565            0.201 

Appendix F 

Other Count Datasets 

Table F.1 Bailey and Simon Data 

  

 
 

 

 

 

 

 

Table F.1.a Chi-Square Test Based on Bailey and Simon Data 

Poisson/ZIP 7.8E+16 

Negative Binomial 
     
6,672,651  

ZINB 
     
6,107,153  
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     Table F.2 Wang, Cockburn and Puterman (1998) Patents data 

Obs Company Patents RDS lgRD 
1 ABBOTT LABORATORIES 42 0.0549 4.0869

2 AFFILIATED HOSPITAL PRDS 1 0.0032 -2.0794

3 ALBERTO-CULVER CO 3 0.0078 0.1187

4 ALCON LABORATORIES 2 0.0803 1.8796

5 ALLERGAN PHARMACEUTICALS INC 3 0.0686 1.1033

6 ALZA CORP-CL A 40 3.3319 2.0794

7 AMERICAN HOME PRODUCTS CORP 60 0.0243 4.0953

8 AMERICAN HOSPITAL SUPPLY 30 0.0128 2.8333

9 AMERICAN STERILIZER CO 7 0.0252 1.3915

10 AVON PRODUCTS 3 0.0094 2.6048

11 BARD(C.R.) INC 5 0.0146 0.7957

12 BAXTER TRAVENOL LABORATORIES 59 0.0496 3.5207

13 BECTON, DICKINSON & CO 26 0.0395 3.0001

14 BENTLEY LABORATORIES 3 0.0780 0.5371

15 BOCK DRUG-CL A 0 0.0171 0.7761

16 BRISTOL-MYERS CO 66 0.0347 4.2338

17 CARTER-WALLACE INC 0 0.0569 2.2178

18 CAVITRON CORP 8 0.1095 0.8510

19 CHATTEM INC 2 0.0190 -0.1567

20 CHESEBROUGH-POND'S INC 4 0.0084 1.8358

21 CLINICAL SCIENCES INC 0 0.1003 -1.6045

22 CODE LABORATORIES INC 0 0.0623 0.7071

23 CONCEPT INC 3 0.0707 -0.9916

24 COOPER LABORATORIES 6 0.0359 1.2296

25 DATASCOPE CORP 3 0.0596 -0.5310

26 DEL LABORATORIES INC 0 0.0076 -1.2310

27 DENTSPLY INTERNATIONAL INC 6 0.0185 0.9270

28 DESERET PHARMACEUTICAL 2 0.0080 -1.1332

29 DYNATECH CORP 3 0.0640 -0.0419

30 ELECTRO CATHETER CORP 0 0.0780 -1.8326

31 EVEREST & JENNINGS INTL 1 0.0025 -1.8264
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Obs Company Patents RDS lgRD 
32 FABERGE INC 1 0.0040 -0.1985

33 FOREST LABORATORIES INC 0 0.0329 -1.7838

34 GILLETTE CO 25 0.0234 3.5525

35 GUARDIAN CHEMICAL CORP 2 0.0387 -2.5639

36 HELENE CURTIS INDUSTRIES 4 0.0133 0.4523

37 ICN PHARMACEUTICALS INC 1 0.0324 1.0529

38 INSTRUMENTATION LABS INC 1 0.0882 1.4873

39 INTL FLAVORS & FRAGRANCES 51 0.0587 2.7793

40 JOHNSON & JOHNSON 105 0.0446 4.7233

41 JOHNSON PRODUCTS 1 0.0131 -0.6444

42 KEY PHARAMACEUTICALS INC 0 0.0160 -2.9565

43 LA MAUR INC 0 0.0143 -0.9545

44 LILLY (ELI) & CO 166 0.0843 4.7278

45 MALLINCKRODT INC 8 0.0320 2.1831

46 MARION LABORATORIES 6 0.0599 1.5773

47 MERCK & CO 173 0.0821 4.9152

48 ???? 25 0.0535 3.1807

49 MINE SAFETY APPLIANCES CO 14 0.0226 1.4036

50 NARCO SCIENTIFIC INC 3 0.0397 1.0043

51 NESTLE-LEMUR CO 0 0.0103 -2.3330

52 NEWPORT PHARMACEUTICALS INTL 0 0.7159 -0.1815

53 NOXELL CORP 2 0.0107 0.2670

54 PFIZER INC 93 0.0467 4.4785

55 PURITAN-BENNETT CORP 3 0.0369 0.7105

56 REDKEN LABORATORIES 2 0.0316 0.2979

57 RESEARCH INDUSTRIES CORP 0 0.0355 -2.8647

58 REVLON INC 5 0.0166 2.7622

59 RICHARDSON-MERRELL INC 23 0.0417 3.4383

60 ROBINS (A.H.) CO 11 0.0447 2.5439

61 RORER GROUP 13 0.0401 2.4436

62 SCHERER (R.P.) 0 0.0050 -0.4125

63 SCHERING-PLOUGH 90 0.0618 3.9865
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Obs Company Patents RDS lgRD 
64 SEARLE (G.D.) & CO 63 0.0690 3.9620

65 SMITHKLINE CORP 112 0.0813 4.0029

66 SQUIBB CORP 115 0.0409 3.9051

67 STERLING DRUG INC 48 0.0331 3.5909

68 SYBRON CORP 15 0.0323 2.9242

69 SYNTEX CORP 69 0.0859 3.1707

70 TECHNICARE CORP 4 0.0591 1.8089

 



More Flexible GLMs: Zero-Inflated Models and Hybrid Models 
 

Casualty Actuarial Society E-Forum, Winter 2009 214 

Table F.2.a Chi-Square Test Based on Patent Data 

Distribution Chi Square 
Poisson 7.10E+84
Negative Binomial         584,069 
ZIP  6.70E+71
ZINB               249  

 

Table F.3 Deb and Trivedi Hospital Stay Counts 

dsn=dt, yvar=hosp, dist=poisson 
poisson distribution with mean(xbar)=sample mean= 0.29596 

      
Test Cumulative Cumulative y Frequency Percent 

Percent Frequency Percent 
0 3541 80.370 74.380 3541 80.37 
1 599 13.600 22.010 4140 93.96 
2 176 3.990 3.260 4316 97.96 
3 48 1.090 0.320 4364 99.05 
4 20 0.450 0.020 4384 99.5 
5 12 0.270 0.000 4396 99.77 
6 5 0.110 0.000 4401 99.89 
7 1 0.020 0.000 4402 99.91 
8 4 0.090 0.000 4406 100 

 
 



More Flexible GLMs: Zero-Inflated Models and Hybrid Models 
 

Casualty Actuarial Society E-Forum, Winter 2009 215 

Table F.3.a Chi-Square Test Based on Hospital Visit Data 

Distribution Chi Square 
Poisson 3.40E+06
Negative Binomial            19,302
ZIP 2.,925
ZINB                   25 

 
 
 

Table F.4 Deb and Trivedi Office Visit Data 

Test Cumulative Cumulative y Frequency Percent 

Percent Frequency Percent 

0 683 15.5 0.31 683 15.5 
1 481 10.92 1.79 1164 26.42 
2 428 9.71 5.18 1592 36.13 
3 420 9.53 9.97 2012 45.67 
4 383 8.69 14.39 2395 54.36 
5 338 7.67 16.62 2733 62.03 
6 268 6.08 15.99 3001 68.11 
7 217 4.93 13.19 3218 73.04 
8 188 4.27 9.52 3406 77.3 
9 171 3.88 6.11 3577 81.18 

10 128 2.91 3.53 3705 84.09 
11 115 2.61 1.85 3820 86.7 
12 86 1.95 0.89 3906 88.65 
13 73 1.66 0.4 3979 90.31 
14 76 1.72 0.16 4055 92.03 
15 53 1.2 0.06 4108 93.24 
16 47 1.07 0.02 4155 94.3 
17 48 1.09 0.01 4203 95.39 
18 30 0.68 0 4233 96.07 
19 24 0.54 0 4257 96.62 
20 16 0.36 0 4273 96.98 
21 18 0.41 0 4291 97.39 
22 16 0.36 0 4307 97.75 
23 10 0.23 0 4317 97.98 
24 12 0.27 0 4329 98.25 
25 3 0.07 0 4332 98.32 
26 9 0.2 0 4341 98.52 
27 7 0.16 0 4348 98.68 
28 4 0.09 0 4352 98.77 
29 3 0.07 0 4355 98.84 
30 4 0.09 0 4359 98.93 

>30 47 1.04 0 4406 100 
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2 4 9 18 2 4 9 18

3 0 0 0 0 2 3 2 10
2 3 1 0 2 1 2 2 13
3 0 2 2 2 1 1 4 15
6 1 4 2 1 2 2 3 21
3 0 4 5 2 1 2 1 18
2 3 4 5 1 2 3 4 24
2 7 4 4 0 0 1 3 21
3 3 7 8 1 1 0 0 23
1 5 5 3 3 0 2 2 21
2 3 4 4 1 3 0 0 17
1 4 1 4 1 0 1 0 12
0 0 2 0 1 1 1 0 5
1 1 . . . . . . 2
. . 2 1 . . . . 3
1 . . . . . . . 1
30 30 40 40 30 30 30 40 270

Frequency distributions of the number of roots
by 270 shoots of the apple cultivar Trajan

BAP (muM) Photoperiod All
8 16

No. of roots 0 0 0 2 15 16 12 19 64
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
17
All

 

Table F.4.a Chi-Square Test Based on Office Visit Data 

 
Distribution Chi Square 
Poisson 2.02E+67
Negative Binomal            2,856  
ZIP 2.33E+01
ZINB            4,224  

 

Table F.5 Ridout and Demetrio Apple Shoot Counts 
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Table F.5.a Chi-Square Test Based on Ridout and Demetrio Apple Shoot Data 

   

Distribution Chi Square 
Poisson            2,694  
NB               131  
ZIP                 76  
ZINB                 19  

                                                      

Table F.6 Long Biochemists Data 
The FREQ Procedure 

y Frequency Percent
Test

Percent
Cumulative
Frequency

Cumulative 
Percent 

0 275 30.05 19.28 275 30.05 
1 246 26.89 31.74 521 56.94 
2 178 19.45 26.12 699 76.39 
3 84 9.18 14.33 783 85.57 
4 67 7.32 5.90 850 92.90 
5 27 2.95 1.94 877 95.85 
6 17 1.86 0.53 894 97.70 
7 21 2.30 0.13 915 100.00 

 

Table F.6.a Chi-Square Test Based on Biochemists Data 

Chi-Square Test 
for Specified Proportions 

Chi-Square 476.5913 
DF 7 
Pr > ChiSq <.0001 

WARNING: 25% of the cells have expected counts less 
than 5. Chi-Square may not be a valid test. 

Sample Size = 915 

 

Appendix G 

A Simple Procedure for Fitting the ZIP Model  
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2min ( )[ ( ) ( )]
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A procedure to solve for the ZIP parameters can be set up in Microsoft Excel.  The illustration 
used in this paper optimizes the minimum distance procedure as set forth in Hogg and Klugman 
(1984), but other statistics can be optimized. 

 

(G.1) 

 

Hogg and Klugman suggest using a weight of: 

Table 2.2 displays the spreadsheet setup for the parameter estimation.  The parameters phi and 
lambda have been initialized to those of the Poisson distribution, i.e., no structural zeros, so phi is 
zero.  The sum of column (7) is to be minimized. 

Table G.1 

Calculation of Zero-Inflated Poisson Parameters: Initialization 
Phi 0      
Lambda 0.82     Wt 

     Squared Squared
No Actual P(X=x) Theoretical Weight Deviation Deviation

Claims Count (2)/SUM(2) P(X=x) (1)/((2)(1-(2)) ((3)-(4))^2 (5)*(6) 
(1) (2) (3) (4) (5) (6) (7) 

0 1,706       0.607 0.44043 7,149 0.02764 197.6
1 351       0.125 0.36115 3,213 0.05585 179.5
2 408       0.145 0.14807 3,289 0.00001 0.0
3 268       0.095 0.04047 3,108 0.00301 9.3
4 74       0.026 0.00830 2,888 0.00032 0.9
5 5       0.002 0.00136 2,817 0.00000 0.0

Sum      2,812    0.08683 387.4
 

Excel provides the solver function to solve12 nonlinear optimization problems such as this one.   
Solver uses a numerical algorithm, such as gradient descent, to solve nonlinear problems.  Figure 2.2 
displays the pop-up menu that is used with Solver.  The menu requires the user to identify a target 
cell to optimize (here the sum of the weighted squared deviations), the input cells containing the 
parameters to be estimated and whether the optimization is a minimization or maximization.   

                                                           
12 Please note you must load the solver add-in to use solver.  This can be done from the tools menu, but requires the 
Microsoft Office disk. 



More Flexible GLMs: Zero-Inflated Models and Hybrid Models 
 

Casualty Actuarial Society E-Forum, Winter 2009 219 

Optionally, the user can specify constraints on the parameters (i.e., for instance phi must be greater 
than or equal to zero and less than or equal to 1.  
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Figure G.1 
Pop-up Menu for Solver 

 
 

The Poisson parameters fit with Excel solver are displayed in Table 2.3.  The table indicates that 
on average, 54% of the records have structural zeros.  For the remaining policyholders, the mean 
claim frequency over a five-year period is approximately 1.9.  Figure 2.3 compares the negative 
binomial to the zero-inflated Poisson.  The ZIP model appears to provide a better fit to the data.  
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Table G.2 
Fitted Zero-Inflated Poisson 

Phi 0.5359      
Lambda 1.9194     Wt 

No Actual  Theoretical  Squared Squared
Claims Count P(X=x) P(X=x) Weight Deviation Deviation

  (2)/SUM(2)  (1)/((3)(1-(3)) ((3)-(4))^2 (5)*(6) 
(1) (2) (3) (4) (5) (6) (7) 

0 1706      0.607 0.60402 7149 0.00001 0.1
1 351      0.125 0.13066 3213 0.00003 0.1
2 408      0.145 0.12540 3289 0.00039 1.3
3 268      0.095 0.08023 3108 0.00023 0.7
4 74      0.026 0.03850 2888 0.00015 0.4
5 5      0.002 0.01478 2817 0.00017 0.5

Sum    2,812     0.00097 3.0
 

 
Table G.3 

Fitted Zero-Inflated Negative Binomial Model 
phi 0      
r 1      
p 0.4561     Wt 

No Actual  Theoretical  Squared Squared
Claims Count P(X=x) P(X=x) Weight Deviation Deviation

  (2)/SUM(2)  (1)/((3)(1-(3)) ((3)-(4))^2 (5)*(6) 
(1) (2) (3) (4) (5) (3290) (3291) 
0 1706 0.607 0.4561 7149 0.00048 1.5 
1 351 0.125 0.2481 3213 0.00018 0.5 
2 408 0.145 0.1349 3289 0.00040 1.1 
3 268 0.095 0.0734 3108 0.00000 0.0 
4 74 0.026 0.0399 2888 0.00000 0.0 
5 5 0.002 0.0217 2817 0.00000 0.0 

Sum     0.00106 3.1 
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Table G.4 
Fitted Hurdle Poisson Model 

phi 0.599      
lambda 1.9286     Wt 

No Actual  Theoretical  Squared Squared
Claims Count P(X=x) P(X=x) Weight Deviation Deviation

  (2)/SUM(2)  (1)/((3)(1-(3)) ((3)-(4))^2 (5)*(6) 
(1) (2) (3) (4) (5) (6) (7) 

0 1706    0.607  0.5990 7149 0.00006 0.4
1 351    0.125  0.1124 3213 0.00015 0.5
2 408    0.145  0.1084 3289 0.00135 4.4
3 268    0.095  0.0697 3108 0.00066 2.0
4 74    0.026  0.0336 2888 0.00005 0.2
5 5    0.002  0.0130 2817 0.00013 0.4

Sum    2,812     0.00239 7.9
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