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Measuring Rate Change 

Neil M. Bodoff, FCAS, MAAA 
 
________________________________________________________________________ 
Abstract 

Motivation. Calculated rate changes can substantially affect loss ratio forecasts and thus are critical 
parameters for ratemaking. However, current methods are not well suited to a changing book of business. 
Method. The analysis first explores the conceptual underpinnings of rate change and then applies the 
conclusions of this analysis to several practical problems. 
Results. The proposed approach shows improved accuracy as compared to other methods, with particular 
significance for a nonstatic book of business. 
Conclusions. I conclude that “rate change” measures the change in premium relative to loss potential. One 
can then apply this conceptual formulation in order to solve several problems that one confronts in 
practice: how to adjust for shifts in limits and deductibles, how to blend together changes in exposures 
when the portfolio uses several different exposure bases, and how to properly weight together granular 
measures of rate change (e.g., for each policy, subline, etc.) into an overall rate change for the entire 
portfolio. 
Availability. Please contact the author at neil.bodoff@willis.com or neil_bodoff@yahoo.com 
 
Keywords. Rate change, rate change factors, on-level adjustments, adjusted premium, exposure bases. 

             

1. INTRODUCTION 

In theory, measuring rate change1 ought to be straightforward: using the company’s “manual,” 
one can simply find the rates in effect during one time period and compare them to rates in effect 
during another period. Or, similarly, one can track over time the rate changes the company achieves 
through its periodic rate filings. In practice, however, measuring rate change is not this simple, for a 
variety of reasons. Some of these reasons are: 

1. Some policies, such as “excess” policies (including “umbrella”), attach above an 
underlying policy. Rates for such policies often derive from the premium charged for the 
underlying policy, thus complicating the notion of a clearly defined rate for such business. 
Moreover, the factors used for excess policies often have a wide range of filed rates; the 
actual charged rate can vary quite significantly over time without any change to the rating 
plan. 

2. More generally, the rating plans for commercial lines also incorporate a significant 
amount of underwriting judgment in the final rate that can be charged.2 Therefore, 

                                                           
1 In this paper, the terms “rate change” and “rate change factors” relate to the actual rate changes achieved by the 
company; they relate to the historical period and are descriptive. They do not refer to “indicated rate changes” or 
“required rate changes,” which are both prospective and prescriptive. 
2 See Vaughn [5], pp. 498-502. 
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tracking the changes to the company’s filed rates will provide an inaccurate picture of rate 
movements. 

3. Even when dealing with rating plans that do not allow for judgmental rates, one can 
encounter other complications. For example, if one simply tracks over time the rate 
increases and decreases that a company files on any particular date, one may overlook the 
resulting shift in the company’s mix of business.3 

One approach to overcoming these problems is to discard the measuring of filed, manual rates 
and to focus instead on measuring changes in the premium the company actually charges. Under this 
approach, one matches each renewing policy to its corresponding expiring policy and measures the 
rate change for each policy.4,5 Such an approach is often referred to as measuring “renewal rate 
change.” 

Measuring renewal rate change can introduce more granularity and precision to the measuring of 
rate change. Still, many questions persist, such as: 

1. How do I account for changes to a policy’s limit and deductible when measuring the 
renewal policy’s rate change? 

2. When I measure rate change for excess casualty policies, which cover auto liability and 
also general liability claims, how do I combine rate changes for these two sublines, which 
have different exposure bases? More generally, how do I combine any two sublines that 
have different exposure bases? Is it possible to obtain one overall number for “exposure 
change” when the sublines have different exposure bases? 

3. When I measure rate changes for several different sublines or multiple individual policies, 
how do I weight them together to obtain one blended rate change factor for the overall 
portfolio? 

4. When my firm implements rate increases and rate decreases for various classes of 
business, volume tends to grow in those classes that received rate decreases and volume 

                                                           
3 See McCarthy [2], who notes this problem and provides an alternative solution. 
4 New policies, by definition, must be excluded and measured separately; measuring rate change for new policies is 
outside the scope of this paper. 
5 When premium rates are not unique for each individual policy but do vary by subline, then one need not measure the 
rate change of each policy but rather each subline. In such a situation, the only “new” business that would need to be 
excluded would be a new subline of business that did not exist in the prior rating plan. In contradistinction, new 
individual policies within existing sublines would not need to be excluded as “new” business but rather should be 
included as exposure growth within existing sublines. 
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tends to decline in those classes that received rate increases. Thus, rate changes tend to 
generate additional shifts in the mix of business in the firm’s portfolio; how do I properly 
reflect this shift when calculating rate change for the total book of business? 

2. THE THEORY AND PURPOSE OF RATE CHANGE FACTORS 

In order to answer these detailed questions, we need to first examine the fundamental principles 
underlying the theory of rate change. How should one calculate a company’s rate change factors? 
The answer to this question depends upon the answer to the following question: for what purpose 
will we use these rate change factors? 

In theory, rate change factors can be used for several different purposes. For example, one 
potential use of rate change factors is to enable management to better run the company. Under this 
approach, rate change factors indicate how the company is performing: they tell management where 
performance is improving and where it is slipping, thus allowing for better steering of the business 
and better implementation of strategy. If in fact this is the purpose of the rate change factors, then 
consider the dynamic situation in which policies currently issued by the company have higher 
deductibles than policies issued in the past. As the deductibles increase, the stable volume of losses 
in the deductible layer disappears and the company covers policies that have more variability, lower 
premium volume, and (because of fixed costs) higher expense ratios. Therefore, if the goal of the 
company is to understand the true nature of its performance, then traditional rate change factors, 
which ignore shifts in required risk load and shifts in expense ratios, will fall short of the desired 
goal. Rather, the company must implement an approach whereby each policy in the portfolio, 
accounting for risk load and fixed expenses, is priced to a target premium; then, the company can 
evaluate how the actual premium compares to the target premium and how this ratio of “actual to 
target” changes over time. 
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Table 1

1 2 3 4 5 6

7 = 
(3+4+5) 
/ (1-6) 8 = 3 / 7 9 10 = 3 / 9

11 = 9 / 
7

Limit Deductible
Expected 

Loss

Target 
Risk 
Load

Fixed 
Expenses

Variable 
Expenses

Target 
Premium

ELR to 
Target 

Premium
Actual 

Premium

ELR to 
Actual 

Premium
Actual / 
Target

Expiring 2,000,000  1,000         7,601       1,383  1,000      15% 11,746    65% 12,500    61% 1.064     
Renewing 2,000,000  100,000     3,045       1,133  1,000      15% 6,091      50% 5,900      52% 0.969     

"Rate Adequacy Change" (Change in Ratio of Actual Premium to Target Premium) -9.0%  
 

 

Table 1 shows an example in which the company’s expected loss ratio (ELR) improves. By 
measuring the change in the ratio of Actual to Target, however, one can determine that rate 
adequacy has actually deteriorated. In a dynamic environment with changing policy provisions, only 
such an approach can give complete information to management about the company’s “rate 
adequacy change.” 

Given that most rate change factors do not typically account for all the aspects of shifts in target 
risk load and shifts in expense ratios, the question persists: what good are rate change factors, for 
what purpose can we use them, and how does this affect how we ought to calculate them? 

Traditional rate change factors therefore appear to be much more relevant to a second purpose: 
formulating a loss ratio projection for a book of business. Such a projection is often helpful for 
operational needs, such as estimating initial loss reserves, or for transactional purposes, such as 
effecting reinsurance treaties. In order to forecast the projected loss ratio, the actuary often begins 
by looking at historical experience data; in order to make the data relevant to the projected period, 
the losses and premium are adjusted to current level. 

Therefore, in order to understand the role of rate change factors, we must investigate the nature 
of the traditional loss ratio projection and articulate its assumptions. 

3. PROJECTING LOSS RATIO USING ADJUSTED HISTORICAL DATA 

What is the nature of the loss ratio projection framework? Losses (in aggregate for any given 
historical year) are simply adjusted to current cost level; they are typically not adjusted in any way to 
incorporate changes in mix of business or changes in policy provisions such as deductibles and 
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limits.6 Premium is adjusted to what it “would be” had the historical policies been written today (or, 
more precisely, during the projected period).7 Just as with losses, there seem to be no adjustments 
for shifts in the mix of business or in policy features. Thus traditional methods appear to be relevant 
only for the limited situations of a static book of business or one that changes only glacially. 

How can traditional loss ratio projection be appropriate, then, for the many books of business 
that sustain significant changes in policies, classes of business, exposures, limits, and deductibles? 

One response to this challenge is simply to concede: using historical data to project the future 
only makes sense when the portfolio is reasonably static, but not when it undergoes significant 
changes. This conclusion appears especially relevant to the “extended exposures” method for 
adjusting premium to current level. After all, the extended exposures approach takes historical 
policies and simply re-rates the policies at today’s rates;8 but if the types of policies in the portfolio 
have changed, the mix of business has shifted, and the limits and deductibles are different, what is 
the relevance of re-rating the policies of the historical portfolio? 

Nevertheless, I believe that one can defend the use of historical data and adjusting for rate 
change by advancing the following reasoning. The goal of analyzing adjusted historical data is not to 
measure the amount of losses and premium that would occur from the historical portfolio, adjusted 
to today’s dollars; rather, the goal is to measure premium and losses with respect to each other, i.e., 
the interrelationship of premiums to losses, and to measure what this relationship from the 
historical period would be in today’s environment. Thus, even when the insurer’s portfolio of 
policies undergoes significant change, when traditional adjustments to historical data do not 
accurately measure the projected amounts of losses and premium, the loss ratio projection can still 
be quite relevant; its relevance is rooted in its focus on measuring the relationship between premium 
and losses. This understanding of the purpose of using adjusted historical premium and losses, in 
turn, has ramifications for our understanding of what rate change factors should do and how we 
should calculate them, as we shall see in the following section. 

                                                           
6 Patrik [4] recommends that trending reflect all changes “that might affect the loss potential”; however, this step is 
difficult to implement and is often not done in practice. 
7 McClenahan [3], p. 88, describes the on-level premium as the premium “that would have resulted for the experience 
period had the current rates been in effect for the entire period.” Thus we see that on-level premium is defined as 
historical premium adjusted solely for changes in rate level; apparently, no adjustments are made for changes in the 
portfolio’s composition.  
8 See McClenahan [3], p. 94. 
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4. MEASURING RATE CHANGE FOR USE IN LOSS RATIO 
PROJECTION 

Before proceeding to the derivation of the relevant formulas, let us articulate several 
observations, caveats, and limitations of scope.  

1. Nothing in this paper intends to relate to the question of converting rate changes from a 
policy year, written premium basis to an accident year, earned premium basis; nor does 
this paper have any connection to rate level calculations based upon geometric techniques 
that rely on parallelograms and rectangles. These issues are addressed extensively 
elsewhere in the actuarial literature and are outside the scope of this paper.9 Therefore, 
one should interpret all references to premium as references to policy year, written 
premium. 

2. As noted in Section 2, how one ought to calculate rate change factors depends upon their 
intended purpose. Our discussion in this section presupposes that one will use the rate 
change factors in the context of projecting a loss ratio. However, if one were to use these 
factors for a different purpose, then the procedure of calculating the rate change factors 
may very well need to be different. 

3. This paper does not intend to address the issue of inflation-sensitive exposure bases. 
Therefore, the reader should interpret the exposure base information as having already 
been converted from a nominal basis to a real (i.e., inflation-adjusted) basis. 

4. When using historical data to project a loss ratio, actuaries often use multiple years of 
data; for simplicity, we will discuss the case of using data of one historical year (period t). 
In addition, we will simplify by discussing the procedure of adjusting this data one year 
forward (to period t+1). 

4.1 Algebraic Representation 

Let: 

• Premium(observation(t), portfolio(t), rates(t)) = premium for historical period t, reflecting 
the portfolio in force and rates in effect during period t 

• Loss(observation(t), portfolio(t), cost(t)) = losses for historical period t, reflecting the 

                                                           
9 See McClenahan [3]. 
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portfolio in force and claim cost inflation level in force during period t 

• LP(portfolio(t)) = loss potential for the portfolio for historical period t; reflects the 
portfolio’s propensity for loss given its limits, deductibles, and exposure base units, but 
does not reflect claim cost inflation10 

• LP(portfolio(t+1)) = loss potential for portfolio for projected period t+1; reflects the 
portfolio’s propensity for loss given its limits, deductibles, and exposure base units, but 
does not reflect claim cost inflation 

• LP(portfolio(t+1))/ LP(portfolio(t)) = “shift in loss potential” = multiplier that adjusts 
the loss potential for the portfolio at time t to the loss potential for the portfolio at time 
t+1  

• Trend(t, t+1) = claim cost inflation level during period t+1 / claim cost inflation level 
during period t = cost(t+1) / cost(t) 

Let’s assume that there are changes in the book of business relating to exposures, limits, and 
deductibles. 

We want to take observed premium and losses from historical period t and to adjust them to the 
basis of period t+1, so we must calculate: 

 

1)tTrend(t,
io(t))LP(portfol

1))io(tLP(portfol
cost(t))t),portfolio( vation(t),Loss(obser

  1))cost(t 1),tportfolio( vation(t),Loss(obser

 1)tLosses(t stedFully Adju

+∗
+

∗

=++

=+→

 
(4.1)

 

And 

 

                                                           
10 Loss potential is essentially the expected loss cost. However, “loss cost” is usually measured in dollar units and thus 
tends to emphasize a particular numerical dollar value. In contrast, “loss potential” emphasizes the underlying real 
exposure to loss (and, as a result, changes to dollars of loss cost arising from inflation will not here be classified as a 
change in loss potential). 
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1)) rates(t1),tportfolio( t),servation(Premium(ob

  1)tPremium(t stedFully Adju

++

=+→
 (4.2a)

 

Multiplying both the numerator and denominator by equal quantities, we derive: 

 

io(t))LP(portfol
1))io(tLP(portfolrates(t))t),portfolio( t),servation(Premium(ob

1))rates(t1),tportfolio( t),servation(Premium(ob

io(t))LP(portfol
1))io(tLP(portfolrates(t))t),portfolio( t),servation(Premium(ob

1)tPremium(t stedFully Adju

+
∗

++

∗
+

∗

=+→

 

(4.2b)

 

Then dividing losses by premium, we derive: 

 

1)tPremium(t stedFully Adju
1)tLosses(t stedFully Adju  1)tRatio(t Loss stedFully Adju
+→
+→

=+→  (4.3a)

 

As stated above, and as implied by Equation (4.1), in theory the losses should be adjusted to 
reflect all changes in loss potential, whether from changes in exposures, mix of business, limits, 
deductibles, etc. Nevertheless, if we focus on the interrelationship of losses and premium, we note 
that the shift in loss potential [i.e., LP(portfolio(t+1)) / LP(portfolio(t))] appears both in Equation 
(4.1) for Fully Adjusted Losses and in Equation (4.2b) for Fully Adjusted Premium. Dividing 
Equation (4.1) by Equation (4.2b) and canceling the factor for shift in loss potential, we derive: 
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1)tPremium(t Adjusted

1)tLosses(t Adjusted
  1)tRatio(t Loss  Adjusted

1)tPremium(t AdjustedFully
1)tLosses(t AdjustedFully

  1)tRatio(t Loss stedFully Adju

+→
+→

=+→=

+→
+→

=+→

 (4.3b)

 

Such that: 

 

1)tTrend(t,cost(t))t),portfolio( vation(t),Loss(obser  1)tLosses(t Adjusted +∗=+→  (4.4)

 

And: 

 

io(t))LP(portfol
1))io(tLP(portfolrates(t))t),portfolio( t),servation(Premium(ob

1))rates(t1),tportfolio( t),servation(Premium(ob

rates(t))t),portfolio( t),servation(Premium(ob

  1)tPremium(t Adjusted

+
∗

++

∗

=+→

 

(4.5)

 

Note that Equation (4.4) for adjusted losses is similar to Equation (4.1) for fully adjusted losses; 
however, it no longer has any factor for changes in loss potential from exposures, limits, and 
deductibles. Therefore, the practice of not adjusting losses for these shifts in loss potential is 
sustainable, but only if one simultaneously defines adjusted premium in a corresponding fashion, per 
Equation (4.5). 

Now, let us define the Rate Change Factor as the multiplier which converts historical premium to 
adjusted premium.  

Therefore: 
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1)tFactor(t Change Raterates(t))t),portfolio( t),servation(Premium(ob

  1)tPremium(t Adjusted

+→∗

=+→
 (4.6a)

 

And: 

 

rates(t))t),portfolio( t),servation(Premium(ob
1)tPremium(t Adjusted  1)tFactor(t Change Rate +→

=+→  (4.6b)

 

Then combining Equations (4.5) and (4.6a), we derive: 

 

io(t))LP(portfol
1))io(tLP(portfolrates(t))t),portfolio( t),servation(Premium(ob

1))rates(t1),tportfolio(t),servation(Premium(ob

  1)tFactor(t Change Rate

+
∗

++

=+→
 

(4.7a)

 

The premium observed during any period reflects the portfolio and rates in effect at the time; 
however, in contradistinction to losses, premium is not a stochastic process and is not subject to 
random observation.11 Therefore, we can drop the reference to “observation(t)” from Equation 4.7a 
and write: 

 

io(t))LP(portfol
1))io(tLP(portfol

rates(t)),rtfolio(t)Premium(po

1))rates(t1),rtfolio(tPremium(po
   1)tFactor(t Change Rate

+
∗

++
=+→  

(4.7b)

 

Or, equivalently, 
                                                           
11 One exception to this general rule occurs if a policy’s premium is “loss sensitive”: then the observed premium is a 
function of the observed losses. Policies with loss sensitive premium are outside the scope of this analysis. 
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Potential Loss Shift in Premium(t)
1)Premium(t

 1)tFactor(t Change Rate
∗

+
=+→  (4.8)

 

Equation (4.8) demonstrates that one must calculate the rate change factor using the ratio of 2 
quantities: 

1) Actual premium in period (t+1) 

2) Actual premium in period (t) “restated” for all shifts in loss potential, reflecting changes 
in exposures, limits, deductibles, etc. 

To summarize, we have demonstrated three points: 

1) To obtain an Adjusted Loss Ratio, the losses in the numerator do not need to be adjusted 
for changes in loss potential, thus somewhat exonerating current practice. 

2) The Rate Change Factor is defined by Equation (4.8), which shows that when measuring 
rate change, one must first restate premium from the prior period for changes in loss 
potential. 

3) Per Equation (4.6a), Adjusted Premium for use in loss ratio projection equals actual 
historical premium multiplied by the Rate Change Factor. 

An important consequence of these results relates to when one can accurately measure the true 
rate change from period t (“the expiring period”) to period t+1 (“the renewing period”). Formula 
(4.8) makes clear that one must take the premium from the expiring period and restate it based upon 
the shift in loss potential in the renewing period; however, the shift in loss potential cannot be 
known until the end of the renewing period. Therefore, when one implements rate changes to 
various segments of the portfolio at the beginning of a period, one can only estimate the rate 
change; the true rate change cannot be precisely calculated until the end of the period. 

5. APPLICATIONS 

We will now apply the conclusions of the discussion above to solve the problems raised at the 
beginning of this paper. 
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5.1 Weighting Together Multiple Rate Changes 

This section will discuss how to measure the rate change for an entire portfolio in light of the rate 
changes of the portfolio’s individual components.  

 

Exhibit 1A: Change in Exposures 
 

Expiring Period

Premium Exposures
Premium per 

Exposure
Red Trucks 12,000,000                     600                     20,000                
Green Trucks 4,000,000                       400                     10,000                
Total 16,000,000                     1,000                  16,000                

Renewing Period

Premium Exposures
Premium per 

Exposure
Red Trucks 8,640,000                       360                     24,000                
Green Trucks 4,480,000                       560                     8,000                  
Total 13,120,000                     920                     14,261                 
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Exhibit 1B: Traditional Rate Change Calculations 
 
 

Method 1: Average Rate per Exposure Unit

[1] [2] [3] [4] = [3] / [2] -1
Expiring 

Premium Per 
Exposure

Renewing 
Premium Per 

Exposure Change
Red Trucks 20,000                24,000                 20.00%
Green Trucks 10,000                8,000                  -20.00%
Total 16,000                14,261                 -10.87%

Methods 2 and 3: Weighted Average of Rate Changes

[1] [2] [3] [4]

Change
Expiring 

Premium Weight
Renewing 

Premium Weight
Red Trucks 20.00% 75.00% 65.85%
Green Trucks -20.00% 25.00% 34.15%
Weighted Average 10.00% 6.34%  

 

In this example, we show three traditional methods of measuring rate change: 

1) Calculate the weighted average premium per exposure; measure this quantity for the 
renewal portfolio relative to the expiring portfolio for the rate change.12 

2) Measure the rate change of each class or policy in the portfolio; blend these rate changes 
together using a weighted average; use expiring premium as the weights.13 

3) Measure the rate change of each class or policy in the portfolio; blend these rate changes 
together using a weighted average; use renewing premium as the weights.14 

Note that all of the traditional methods produce different answers; all of them measure the rate 
change approximately, but not one of them measures the rate change precisely. 

                                                           
12 See Jones [1], pp. 9 – 10, who focuses on average premium per exposure as a measure of rate change. 
13 See http://www.casact.org/education/reinsure/2008/handouts/schober.ppt. On slide 33, discussing commercial 
property, Schober suggests one “re-rate to expiring,” which refers to taking renewal policies and re-rating them on the 
basis of the expiring coverage. The wording appears to imply that one should use expiring premium as the weighting 
basis. 
14 Vaughn [5], p. 503. 
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The exhibit below shows the proposed approach. 

 

Exhibit 1C: Proposed Approach to Calculating Rate Change 
 

[1] [2] [3] [4] = [3] * [2] [5] [6] = [5]/[4] - 1

Expiring Premium

Renewing 
Exposures / 

Expiring 
Exposures

Expiring 
Premium 

Restated For 
Change in 
Exposure

Renewing 
Premiums Rate Change

Red Trucks 12,000,000            0.60 7,200,000         8,640,000     20.00%
Green Trucks 4,000,000              1.40 5,600,000         4,480,000     -20.00%
Total 16,000,000            12,800,000        13,120,000   2.50%  
 

Exhibit 1D: Comparison Exhibit 
 

Method Description
Calculated 

Rate Change

1 Ratio of Average Rate per Exposure Unit -10.87%

2 Expiring Premium Weighted Average of Rate Changes 10.00%

3 Renewing Premium Weighted Average of Rate Changes 6.34%

Proposed Restate Expiring Premium for Change in Loss Potential 2.50%  

 

The proposed approach builds upon the prior conceptual discussion and Equation (4.8); thus, 
expiring premium must be “restated” for all shifts in loss potential before measuring rate change.15 
In Exhibit 1D, we see that the proposed approach can generate significantly different rate change 
factors than other methods. 

                                                           
15 For the total portfolio, the premium must be restated for the shift in the total loss potential, which in turn depends 
upon the expected loss ratios of the various components of the portfolio. Here, however, we do not use any explicit 
assumptions about the components’ loss ratios. Thus, implicitly, we presume that the expiring expected loss ratios for all 
the components are equal. Given that one has chosen to combine the various components into one portfolio for 
measuring loss ratio, the assumption of equal loss ratios by component is usually reasonable. However, if one were to 
combine different segments of business with clearly different expected loss ratios, one would need to explicitly reflect 
the different loss ratios by component when measuring the “shift in loss potential” for the total portfolio. 
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5.2 Dealing with a Portfolio of Heterogeneous Exposure Bases 

The proposed framework for measuring rate change also allows us to solve the problem of how 
to deal with a portfolio with multiple, dissimilar exposure bases.  

The exhibits below demonstrate the proposed approach. 

 

Exhibit 2A: Dissimilar Exposure Bases 
 

Expiring

Premium Exposure Base Exposures
Premium per 

Exposure
Jane's Contracting 12,000,000       sales (000s) 600                20,000            
Jill's Stores 4,000,000         square feet (000s) 400                10,000            
Total 16,000,000       undefined undefined undefined

Renewing

Premium Exposure Base Exposures
Premium per 

Exposure
Jane's Contracting 8,640,000         sales (000s) 360                24,000            
Jill's Stores 4,480,000         square feet (000s) 560                8,000              
Total 13,120,000       undefined undefined undefined  
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Exhibit 2B: Measuring “Change in Premium from Change in Exposure Base Units” 
 

Proposed Approach to Measuring Rate Change

[1] [2] [3] [4] [5]  = [4]  * [2] [6]
[7] = [6] / 

[5] - 1

Expiring 
Premium Exposure Base

Renewing 
Exposures / 

Expiring 
Exposures

Expiring Premium 
Restated For 

Change in 
Exposure

Renewing 
Premiums

Rate 
Change

Jane's Contracting 12,000,000       sales (000s) 0.600               7,200,000             8,640,000   20.00%
Jill's Stores 4,000,000         square feet (000s) 1.400               5,600,000             4,480,000   -20.00%
Total 16,000,000       loss potential 0.800               12,800,000           13,120,000  2.50%

Measuring Exposure Change for Total Book
[1] [2] [3] [4]  = [3] / [2] [5] = [3] / [2] -1

Expiring 
Premium

Expiring 
Premium 

Restated For 
Change in 
Exposure Ratio

Change in 
Premium from 

Changes in 
Exposure Base 

Units

Total 16,000,000       12,800,000          0.800               -20.00%

 

Initially, the disparate exposure bases of the classes of business prevent us from measuring the 
exposure base change for the total book. However, by restating the expiring premium for shifts in 
exposure bases, we create a new way to measure total exposure base change; we simply measure the 
total change in premium arising from changes in exposure bases. Thus, the proposed procedure of 
restating expiring premium for shifts in loss potential provides a framework for measuring the total 
exposure base change for a portfolio that has multiple, incongruous exposure bases. 

5.3 Measuring Rate Change When Limits and Deductibles Change 

The proposed framework for measuring rate change also allows us to solve the problem of how 
to measure rate change when values of the limit and deductible of a renewing policy change from 
their values under an expiring policy, as demonstrated in the exhibits below: 
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Exhibit 3A: Change in Deductibles 
 

Expiring

Premium
Square Feet 

(000s) Limit Deductible

ILF Index = 
ILF(Limit) - 

ILF(Deductible)
Premium per 

Exposure
Joe's Stores 13,500,000    900           1,000,000        -                1.00                   15,000          
Bill's Stores 9,000,000      900           1,000,000        250,000         0.50                   10,000          
Total 22,500,000    1,800         12,500          

Renewing

Premium
Square Feet 

(000s) Limit Deductible

ILF Index = 
ILF(Limit) - 

ILF(Deductible)
Premium per 

Exposure
Joe's Stores 8,977,500      800           1,000,000        250,000         0.50                   11,222          
Bill's Stores 14,400,000    1,000         1,000,000        -                1.00                   14,400          
Total 23,377,500    1,800         12,988          

 

 

Exhibit 3B: Traditional Rate Change Calculations 
 

Class Change

Expiring 
Premium 
Weight

Renewing 
Premium 
Weight

Joe's Stores 49.6% 60.0% 38.4%
Bill's Stores -28.0% 40.0% 61.6%
Weighted Average 18.6% 1.8%  
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Exhibit 3C: Proposed Approach to Calculating Rate Change 
 

[1] [2] [3] = [1] * [2] [4] [5] = [3] * [4] [6]
[7] = [6] / 

[5]
[8] = [6] / 

[5] - 1

Expiring 
Premium

Renewing 
Exposures 
/ Expiring 
Exposures

Expiring 
Premium 

Restated For 
Change in 
Exposure

Renewing ILF 
Index / 

Expiring ILF 
Index

Expiring 
Premium 

Restated For 
Change in 

Exposure and 
Change in Limits 
& Deductibles

Renewing 
Premium

Rate 
Change 
Factor

Rate 
Change

Joe's Stores 13,500,000    0.889         12,000,000      0.50 6,000,000          8,977,500     1.496        49.6%
Bill's Stores 9,000,000      1.111         10,000,000      2.00 20,000,000        14,400,000   0.720        -28.0%

Total 22,500,000    22,000,000      26,000,000        23,377,500   0.899        -10.1%

Change in Premium from Change in Exposure ( = [3] total / [1] total - 1 ) -2.2%
Change in Premium from Change in Limits, Deductibles  ( = [5] total / [3] total - 1 ) 18.2%
Change in Premium from Rate Change  ( = [6] total / [5] total - 1 ) -10.1%

 
 

Exhibit 3D: Comparison Exhibit 
 

Method Description
Calculated Rate 

Change
1 Expiring Premium Weighted Average of Rate Changes 18.6%
2 Renewing Premium Weighted Average of  Rate Changes 1.8%

Proposed Approach Adjust Expiring Premium for Change in Loss Potential -10.1%  
 

 

Again, we see the importance of measuring rate change only after restating expiring premium for 
changes in loss potential. 

5.3.1 Clarifying Which ILFs to Use 

In the numerical example above (Exhibits 3A through 3D), we use ILFs (increased limits factors) 
to measure the change in loss potential from changing limits and deductibles. However, there is 
more than one type of ILF. “Loss ILFs” measure the relationship of loss costs at different limits and 
deductibles; they derive from measures of Limited Expected Value (LEV, aka LAS or Limited 
Average Severity). “Premium ILFs,” however, measure the relationship of the premium the 
company charges for different limits and deductibles; they incorporate LEVs, risk load, and 
expenses. So when measuring rate change and restating premium for changes to limits and 
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deductibles, which ILFs should one use? 

Equation (4.8) demonstrates that when measuring rate change one must restate expiring premium 
for changes in loss potential. Therefore, when measuring rate change, it is more precise to restate 
expiring premium via Loss ILFs than via Premium ILFs; after one has used Loss ILFs to restate the 
expiring premium, one can then calculate the rate change factor as the ratio of renewing premium to 
restated expiring premium. 

5.3.2 Tracking All Sources of Change 

Exhibit 3C highlights another benefit of the proposed approach: the ability to completely track all 
changes to premium. Other methods for measuring rate change do not necessarily provide the 
framework to fully track the changes in premium and to connect the expiring premium to the 
renewing premium in a comprehensive way; nor do they identify the catalysts that are driving the 
changes in premium. 

In contrast, the proposed approach allows one (as in Exhibit 3C) to measure all changes of 
premium, properly weighting together the changes of each policy or segment of the portfolio. In 
addition, applying all sources of change to the expiring premium will actually balance to the 
renewing premium. In other words, one can begin with expiring premium and then calculate: 

Expiring premium * (1+change in premium from exposure change) * (1+change in premium from change in 
limits & deductibles) * … * (1+ rate change) = Renewing premium [excluding new business] 

5.4 Change in Share 

Sometimes a company writes a portion of a policy; for example, one company might take only a 
50% “share” or “participation” in a given excess policy. The following exhibit describes such a 
situation: 
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Exhibit 4A: Change in Share 
 

Expiring

Premium 
@100% share

Square Feet 
(000s) Limit Deductible

ILF Index = 
ILF(Limit) - 

ILF(Deductible)

Premium 
per 

Exposure
Company 

Share

Premium 
@Company 

share
Joe's Stores 13,500,000    900           1,000,000    -             1.00                   15,000      50% 6,750,000     
Bill's Stores 9,000,000      900           1,000,000    250,000      0.50                   10,000      50% 4,500,000     
Total 22,500,000    1,800        12,500      11,250,000    

Renewing

Premium 
@100% share

Square Feet 
(000s) Limit Deductible

ILF Index = 
ILF(Limit) - 

ILF(Deductible)

Premium 
per 

Exposure
Company 

Share

Premium 
@Company 

share
Joe's Stores 8,977,500      800           1,000,000    250,000      0.50                   11,222      25% 2,244,375     
Bill's Stores 14,400,000    1,000        1,000,000    -             1.00                   14,400      75% 10,800,000    
Total 23,377,500    1,800        12,988      13,044,375    

 

 

In Exhibit 4A, the values are the same as in Exhibit 3A, but with one important change: the 
company’s share declines for the policy that receives a rate increase, whereas the company’s share 
increases for the policy that receives a rate decrease. The following exhibit demonstrates the 
proposed approach of measuring rate change in such a situation: 
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Exhibit 4B: Proposed Approach to Calculating Rate Change 
 

[1] [2] [3] [4] [5] = [3] * [4] [6]
[7] = [6] / 

[5] [8] = [7]-1

Expiring 
Premium 

@Company 
Share

Expiring 
Premium 

Restated For 
Change in 
Exposure

Expiring 
Premium 

Restated For 
Change in 

Exposure and 
Change in 
Limits & 

Deductibles

Renewing 
Share / 

Expiring 
Share

Expiring 
Premium Restated 

For Change in 
Exposure and 

Change in Limits 
& Deductibles 
and Change in 

Share
Renewing 
Premium

Rate 
Change 
Factor

Rate 
Change

Joe's Stores 6,750,000      6,000,000     3,000,000        0.50            1,500,000            2,244,375      1.496       49.6%
Bill's Stores 4,500,000      5,000,000     10,000,000      1.50            15,000,000          10,800,000    0.720       -28.0%

Total 11,250,000    11,000,000   13,000,000      16,500,000          13,044,375    0.791       -20.9%

Change in Premium from Change in Exposure ( = [2] total / [1] total - 1 ) -2.2%
Change in Premium from Change in Limits, Deductibles  ( = [3] total / [2] total - 1 ) 18.2%
Change in Premium from Change in Company Share  ( = [5] total / [3] total - 1 ) 26.9%
Change in Premium from Rate Change  ( = [6] total / [5] total - 1 ) -20.9%

 

 

Note that the rate change for each individual policy is unaffected by the change in company 
share; thus, each policy’s rate change in Exhibit 4B is exactly equal to the value calculated in Exhibit 
3C. However, there is now a significant difference in the rate change for the overall portfolio. Thus 
accurately measuring rate change for the portfolio requires that one use information about each 
policy’s share; conversely, measuring rate change by first “grossing up” each policy’s share to a 
common 100% basis can potentially lead to an imprecise rate change calculation for the portfolio. 

6. SUMMARY 

Quantitative analysis that projects an expected loss ratio often makes use of historical experience 
data and rate change factors. The appropriate application of such an analysis and the accurate 
calculation of rate change factors require a clear understanding of the conceptual foundations that 
undergird these methods. Having explored these foundational concepts, we conclude that the key 
goal of analyzing historical data is to forecast the interrelationship of losses and premiums for the 
projected book of business. Thus, when calculating rate change factors, one must first restate 
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expiring premium for changes in all sources of loss potential, including changes in exposure base 
units, limits and deductibles, company share, etc. As a result, one can take the theory of measuring 
rate change factors and apply it towards solving problems in practice. 
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Incorporating a Primary Insurer’s Risk Load  
into the Property Rate  

 
Kevin Burke 

 
Abstract: There have been numerous articles giving guidance on how to include the cost of reinsurance in 
rate indications. What has been missing from the discussion is a method to account for the risk assumed by 
the primary insurer at the higher layers of the reinsurance program. This note provides such a method, using 
information from a catastrophe model and a company’s reinsurance program. 
 
Keywords: Large loss and extreme event loading, traditional risk load (profit margin) 
 
 
 

1. INTRODUCTION 

 
Subsequent to the hurricanes of 2003–2004 came large increases in the cost of catastrophe 

reinsurance. Insurers responded to these costs in some combination of three ways: by (1) passing the 
costs along to the consumer, (2) restricting their business in areas prone to hurricanes, or (3) 
retaining more risk, most likely with the same risk load as the noncatastrophe portion of the 
homeowner rate. The purpose of this note is to present an elementary method for including a charge 
for this additional risk in the catastrophe premium and incorporating that charge in the rate 
indication. 

 
 

2. BACKGROUND 

 
Assume that an actuary computes the following indication: 
 

[A] Average Loss and Expense Ratio 70% 
[B] Fixed Underwriting Expenses 5% 
[C] Variable Underwriting Expenses 22% 
[D] (Variable) Profit and Contingency Factor 3% 
[E] Indicated Rate Change 0% 

 
[E]=([A]+[B])/(1-[C]-[D])-1 
 

(Here we assume that all loss adjustment expenses are contained in [A].) Suppose that the 
company has $10,000,000 in average annual catastrophic loss that the rating agencies and CEO are 
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concerned about. The CEO decides to reinsure 100% of this amount at a cost of $15,000,000. The 
actuary includes a provision for fixed reinsurance costs as in [6] (see also [3], [2].) 

 
[1] CY Direct Earned Premium 50,000,000 
[2] Modeled Loss Cost 10,000,000 
[3] Reinsurance Premium 15,000,000 
[4] Reinsured Portion of Loss Cost 10,000,000 
[5]=[3]-[4] Implied Reinsurance Expenses 5,000,000 
[6]=[5]/[1] Provision for Fixed Reinsurance Costs 10% 

  
The actuary then computes the rate indication: 

 
[A] Average Loss and Expense Ratio 70% 
[B1] Fixed Underwriting Expenses 5% 
[B2] Provision for Fixed Reinsurance Costs  10% 
[C] Variable Underwriting Expenses 22% 
[D] (Variable) Profit and Contingency Factor 3% 
[E] Indicated Rate Change 13.3% 

 
[E]=([A]+[B1]+[B2])/(1-[C]-[D])-1 
 

Practically, the reinsurer will require a retention and a coparticipation of 10%, with a reduction in 
premium, so assume that the following program is in place.1 
 

Layer Modeled Loss Cost
Reinsurance 

Premium 
$3,000,000 Retention 1,750,000 0 
Excess of $3,000,000 8,250,000 11,375,000 

 
The actuary again computes  

 
[1] CY Direct Earned Premium 50,000,000 
[2] Modeled Loss Cost 10,000,000 
[3] Reinsurance Premium 11,375,000 
[4] Reinsured Portion of Loss Cost 7,425,000 
[5]=[3]-[4] Implied Reinsurance Expenses 3,950,000 
[6]=[5]/[1] Provision for Fixed Reinsurance Costs 7.9% 

  
The actuary then computes the rate indication: 

 
[A] Average Loss and Expense Ratio 70% 

                                            
1 The examples and numbers here are designed to be illustrative. 
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[B1] Fixed Underwriting Expenses 5% 
[B2] Provision for Fixed Reinsurance Costs  7.9% 
[C] Variable Underwriting Expenses 22% 
[D] (Variable) Profit and Contingency Factor 3% 
[E] Indicated Rate Change 10.5% 

 
The CEO then makes the following observation to the actuary: “If a reinsurer assumes all the 

catastrophic risk the cost of assuming that risk is transferred to the policyholders but if the primary 
insurer assumes some (or all) of that risk, the current methodology doesn’t allow us to collect 
additional premium for the assumption of additional risk.” 

 
The actuary knows that the CEO is right. As the underlying risk changes, the profit load should 

change. The 3% profit and contingencies factor is computed using standard actuarial methods that 
take into account the short-tailed nature of property lines (see, for example, [5]) but does not 
properly take into account the catastrophic risk that his company faces. With a base premium of 
$500 and a catastrophic loss cost of $100, the actuary decomposes the premium. 
 

 

Scenario 1 
(no 

reinsurance) 

Scenario 2 
(100% 

reinsurance)

Scenario 3 
($3M 

retention) 
Hurricane Loss Cost 100 100 100 
Fixed Expenses 25 25 25 
Variable Expenses 110 125 122 
Profit & Contingencies 15.0 17.0 16.7 
Provision for Reinsurance 0 50 41 
Other Perils Loss Cost 250 250 250 
Indicated Premium 500 567 553 

 
The CEO’s complaint is more fully illustrated here. An increase in the company’s catastrophic 

exposure results in a decreased reinsurance premium but doesn’t result in a corresponding increase 
in profit. 



Incorporating Reinsurance Risk Load into the Property Rate 

Casualty Actuarial Society E-Forum, Winter 2009 26
 

 

3. RESULTS AND DISCUSSION 

 

3.1 Incorporating the Risk Load 
 

The approach taken in addressing this issue is nontheoretic and may not pass the scrutiny of 
those wishing to view risk transfer within a larger economic framework. The approach is, however, 
practical and easy to implement. An additional drawback is that it may not pass the review of 
regulators.2 

 
We begin by examining a typical catastrophe reinsurance program. Such a program is divided into 

layers L0, L1, …, Ln and corresponding retained percentages p0, p1, …, pn. The expected hurricane 
loss E[L] is given by ∑

=

=
n

j
jLELE

1
][][ , the expected retained loss is given by ∑

=

n

j
jj LEp

1
][ , and the 

expected ceded portion is ∑
=

−
n

j
jj LEp

1
][)1( . Each layer has a reinsurance premium Rj. Let 

jλ denote the risk premium for layer j, so that 

][)1(
1

jj

j
j LEp

R
−

=+ λ . 

 
We may then formalize the computation the provision for fixed reinsurance costs as follows. 
 

[1] Calendar Year Direct Earned Premium P  
[2] Modeled Loss Cost ∑ ][ jLE  

[3] Reinsurance Premium ∑ −+ ][)1)(1( ,LEp jjλ  

[4] Reinsured Portion of Loss Cost ∑ − ][)1( ,LEp j  

[5] Implied Reinsurance Expense ∑ − ][)1( ,LEp jjλ  

[6] Provision for Fixed Reinsurance Costs ∑ − ][)1(1
,LEp

P jjλ  

 
Note that, as observed earlier, the retained portion of the hurricane losses, ∑

=

n

j
jj LEp

0
][ , has no 

corresponding risk load and the additional risk taken on by the primary insurer is not reflected in the 
indication. To rectify this, we choose jπ  with jj λπ <≤0 . It is at this point where actuarial 

                                            
2 Note that Florida specifically addresses this issue in 627.062, F.S. which states that “…For that portion of the rate 
covering the risk of hurricanes and other catastrophic losses for which the insurer has not purchased reinsurance and has 
exposed its capital and surplus to such risk, the office must approve a rating factor that provides the insurer a reasonable 
rate of return that is commensurate with such risk.” 
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judgment or other analysis is used to select the primary company’s risk load. Our only constraint is 
that the reinsurer’s risk load is an upper bound for the primary company’s risk load. The selection 
could be guided, for example, by a desire to reach a target risk-adjusted return.3 The corresponding 
risk load for layer j is then given by 

 
][ jjj LEpπ  

 
The total company risk load ∑ ][ ,LEp jjπ is then built into the indication in the same manner as 

the provision for fixed reinsurance costs. 
 

Continuing with scenario 3 we see that  

 
E[L0]=1,750,000 p0=1.00 R0=0 
E[L1]=8,250,000 p1=0.10 R1=11,375,000

 
Clearly 00 =λ and  

 

532.1
000,425,7
000,375,111 1 ==+ λ . 

 
We choose 00 =π and 532.00 1 <≤ π  judgmentally selecting 25.01 =π gives a risk load for 

layer 1 of 0.25(825,000)=206,250 and a provision for primary company risk load of 
206,250/50,000,000=0.004. Incorporating this into the indication gives us the following adjusted 
indication. 

 
[A] Average Loss and Expense Ratio 70% 
[B1] Fixed Underwriting Expenses 5% 
[B2] Provision for Fixed Reinsurance Costs  7.9% 
[B3] Provision for Primary Company Risk 0.4% 
[C] Variable Underwriting Expenses 22% 
[D] (Variable) Profit and Contingency Factor 3% 
[E] Indicated Rate Change 11.1% 

 
[E]=([A]+[B1]+[B2]+[B3])/(1-[C]-[D])-1 
 
 
 

                                            
3 A discussion of the computation of a line of business’ risk-adjusted return on capital is beyond the scope of this note. 
The reader is directed to [1] for an introduction. 
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3.2 Allocation of Loading to Territory  
 

Once we arrive at the appropriate primary insurer risk load we allocate it to territory in the same 
way that Rollins allocates the Reinsurance Risk Load. For completeness, we illustrate the procedure 
(see Exhibit 9 of [6].) Let iσ  and ie denote the standard deviation of modeled losses and exposures 
for territory i, respectively. Let ][ iTE denote the average modeled hurricane loss cost per exposure in 
territory i. The risk load for each territory is given by ikσ  where k is chosen so that the total risk 
load is equal to the sum of the reinsurance risk load. We summarize Rollins’ result using the notation 
from Section 3.1. 
 

The reinsurance risk load (as a percent of gross loss cost) is given by  
 
 

∑

∑

=

=

−

n

j
j

n

j
jjj

LE

LEp

0

0

][

][)1(λ
 (3.1)

 
 

If there are m territories then the total risk load is given by 
 
 

i

m

i
iek∑

=1
σ  (3.2)

 
and the total modeled gross loss cost is given by 

 
 

∑
=

m

i
ii eTE

1

][  (3.3)

 
The total risk load (3.2) must equal the product of (3.1) and (3.3) so that 
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It will not, in general, be true that the total expected modeled loss costs in the territorial analysis 
is equal to the total expected modeled loss costs from the indication. This is because the territorial 
analysis will generally involve a subset of the risks used in the overall indication. 
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In order to extend this relationship to include the primary insurer’s risk load, we observe that, as 
a percentage of total modeled hurricane losses, the primary insurer’s risk load is given by 

∑

∑

=

=
n

j
j

n

j
jjj

LE

LEp

0

0

][

][π
 

We add this amount to the total reinsurance risk load and get 

( )
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∑

∑

∑

=

=

=

=

+−
= m

i
ii

m

i
ii

n

j
j

n

j
jjjjj

e

eTE

LE

LEpp
k

1

1

0

0
][

][

][)1(

σ

πλ
 

 
Returning to the illustrative example, suppose that our company has three territories, Inland, 

Seacoast, and Beach, and that we have the following information. 
 

Territory Exposures

Modeled 
Hurricane
Loss Cost

Modeled 
Standard 
Deviation

Inland 175,000 65 357.5
Seacoast 160,000 225 1,462.5
Beach 100,000 450 3,375.0
Total 435,000 212.36  

 
We then compute the following. 

 

∑
=

=
m

i
ii eTE

1

000,375,92][ 000,950,3][)1( , =−∑ LEp jjλ  
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The allocated risk load is then added to the modeled loss cost to obtain the risk adjusted 
hurricane loss cost. 
 

Territory Exposures Modeled Modeled Allocated Risk-Adjusted 
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Hurricane
Loss Cost

Standard 
Deviation

Risk 
Load 

Modeled 
Loss Cost 

Inland 175,000 65 357.5 21.65 86.65 
Seacoast 160,000 225 1,462.5 88.56 313.56 
Beach 100,000 450 3,375.0 204.36 654.36 
Total 435,000 212.36  88.26 300.62 

 
The risk-adjusted modeled loss cost can then be built into the territorial indication using standard 

actuarial techniques. 
  

3.3 Relationship to Standards of Practice and Statement of Principles 
 

Actuarial Standards of Practice 38 & 39, “Using Models Outside the Actuary’s Area of Expertise” 
and “Treatment of Catastrophe Losses in Property/Casualty Insurance Ratemaking,” respectively, 
provide guidance to the actuary when dealing with catastrophe losses, both actual and modeled. 
While there are regulatory hurdles and misconceptions concerning the use of the model (see [4] for a 
discussion of some of these issues), the use of catastrophe models in pricing is by now a standard 
pricing technique. In fact, projected climatic changes practically mandate the use of a model.  

 
The inclusion of reinsurance costs in the property rate and its allocation to territory are required 

by the CAS Statement of Principles Regarding Property and Casualty Insurance Ratemaking. The 
relevant principles are  

 
“A rate provides for all costs associated with the transfer of risk” 

“A rate provides for the costs associated with an individual risk transfer.” 
 

These costs must include a risk load. Standard of Practice Number 30: “Treatment of Profit and 
Contingency Provisions and the Cost of Capital in Property/Casualty Insurance Ratemaking,” tells 
us that 

 
“Property/casualty insurance rates should provide for all expected costs, including an appropriate 

cost of capital associated with the specific risk transfer.” 
 

By choosing to retain a portion of the catastrophic risk, a company is putting its surplus at risk. 
In return for putting that capital at risk, the insurer is entitled to a return commensurate with that 
risk. Using the reinsurer’s risk load as a proxy for an actual market return allows the actuary to 
incorporate that risk into the rate indication. Performing all of these steps is supported and required 
by the relevant Standards of Practice and Statements of Principles.  
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4. CONCLUSION 

 

The primary appeal of this method is its simplicity. We need only do the following: 

 
• Allocate reinsurance premium to state and line of business (this is done, e.g., in [2]). 
• Partition the modeled catastrophe loss cost by layer of reinsurance. 
• Compute the reinsurer’s risk load and select an appropriate company risk load. 
• Allocate the company risk load to territory. 

 
The numeric example shown was created to highlight the steps involved. There are no barriers to 

applying these principles to a more complicated reinsurance program. Finally, while there may be 
both institutional and regulatory objections to the inclusion of these costs, these objections must be 
addressed on an individual basis. 
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Revenue Management & Insurance Cycle 
J-B Crozet, FIA, CFA  

 
________________________________________________________________________ 

Abstract: This paper investigates how an insurer’s pricing strategy can be adapted to respond to 
market conditions, and in particular the insurance cycle. For this purpose, we explore the use of 
dynamic pricing strategies, such as the revenue management techniques used by other industries (e.g., 
airlines, car rentals, internet service providers) in an insurance context. We then compare these 
dynamic pricing techniques with the static ones currently used in the market, and demonstrate that 
they can prove very valuable to insurers looking to enhance their competitive strategy.  
 
Keywords: Cycle management, dynamic pricing, profit optimization, revenue management, dynamic 
programming 

             

1. INTRODUCTION 

This paper is a reflection on the optimal strategy for deploying a fixed amount of insurance 
capacity over a period of time. In particular, we consider the following questions: Which pricing 
strategy maximizes the expected profits? Should it be based on market conditions or shareholders’ 
expectations? Should it be static or dynamic? How does an insurer manage the insurance cycle? Can 
we expect to make a profit when market returns are negative? 

To respond, we introduce the theory of revenue management, which integrates market conditions 
and fluctuations in demand into the decision-making process. We use this framework to develop an 
optimal pricing strategy and demonstrate how it can be a valuable tool to manage the insurance 
cycle. In order to exemplify our case in point, we can think of an insurer with a surplus, denoted S, 
of $ 1 billion ($US) and a capacity constraint driven by a 5:1 maximum written premiums-to-surplus 
ratio imposed by its regulator.  

As a result, this insurer has a capital allocation of 20% of premiums written and it prices each 
policy based on a 15% charge on allocated capital, 15% being the target return on equity promised 
to its shareholders.1 

We have therefore the following pricing formula:  
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with 

- Pi: price-bid2 for policy i 

                                                 
1 We assume in this example that the shareholders’ equity is equal to the company’s surplus. 
2 I.e., the minimum acceptable premium for policy i 
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- Li: losses for policy i 

- E i: expenses for policy i 

- K i: capital allocated to policy i, here 20% * Pi 

- r: required return on allocated capital (a.k.a. capacity charge) 

As we can see, the insurer has a limited capacity for the underwriting year and each policy written 
“consumes” some of it.  

This example reflects a fairly common approach to pricing and charge for capacity, and the object 
of our analysis is to explore the following questions: Does this pricing strategy maximize the 
expected profits? If not, what would be the best alternative? 

 
2. BACKGROUND 

2.1 Revenue Management 

Revenue management techniques first appeared in the early 1980s in the airlines industry and have 
since been introduced progressively in other industries (e.g., hotels, car rentals, internet service 
providers, and others). Their objective is simple: maximizing the profits from a fixed supply of 
perishable goods and services over a period of time.  

For instance, airlines use sophisticated revenue management systems based on historical booking 
patterns to estimate the likelihood of an empty seat at departure. They need to balance the risk of 
not selling that seat, with the opportunity cost of passing up a “premium customer” willing to pay a 
higher price. “If a plane is not filling up as rapidly as historically expected, the probability of an 
empty seat goes up and the opportunity cost of selling more discounted seats goes down, so the 
airline’s management system may offer some tickets at an exceptionally low price. If, however, a 
group of seven business people suddenly books onto the flight, the probability of filling the flight 
jumps substantially, the opportunity cost goes up, and the airline’s management system blocks 
additional sales of the cheapest tickets.” [5] 

2.2 Insurance Applications 

From a practical viewpoint, revenue management techniques require the market to offer full 
flexibility in price setting. In an insurance context, this excludes lines of business where rates are 
subject to a tariff or to filing/approval by the regulator. There are, however, many insurance markets 
where rates are set freely and can be changed frequently by the market participants (e.g., excess & 
surplus lines, commercial lines, reinsurance, and personal lines in most European countries).  
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For those insurance markets with flexibility in price setting, it is fairly easy to see how these 
techniques can be applied:  

- insurers have a fixed supply of insurance capacity over a period of time (more accurately, 
capacity can be increased or decreased at times but it is fixed in between these events).  

- insurance capacity is perishable, in the sense that unused capital for an underwriting year can 
not be transferred to the next.3 

While revenue management can take several forms,4 the framework we present in this paper is 
purely price driven: we seek to set r over time so that it maximizes the expected profit based on 
market conditions and expected demand. The required return on allocated capital becomes a 
stochastic process r(t) and the pricing formula becomes: 

[ ] ( )[ ]iiii KtrELEPVtPPV *)()( ++=  (2.1)

We call pricing strategy a path r for r(t) over the underwriting period [0, T], r ={ }],0[),( Tttr ∈ . 
Our objective is to determine r* which maximizes the expected profit process Π*(t, st)5. 

We can describe the expected profit as the expected value of 1) the capacity sold (K) multiplied by 
2) the price charged for that capacity (r), over the time period until all the capacity is exhausted. If 
we use exponential discounting for converting these cash flows to present value, we obtain the 
following formula for Π*(t, st): 
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with 

- K(t, r(t)): capacity demand at time t for a given r(t), 

- st: remaining capacity inventory at time t, 

- τr,t,st: time when the all the capacity is exhausted, and 

- ρ: discount rate.  

Although our introductory example assumes a capital allocation based on premium writings over 
an underwriting year, our framework is more general and encompasses different capital allocation 

                                                 
3 We work under the assumption that capital usage is triggered by underwriting decisions; it would be fairly easy to 
integrate other sources of capital usage, such as running-off of existing policies, by only considering the capacity 
available for writing new policies. 
4 E.g., managing the release of capacity between classes of customers, such as business vs. economy travellers. 
5 On a present value basis; note that if Π is not independent over time (e.g., Markovian processes), the expected value 
becomes conditional on history ht; and we have Π(t, st, ht). 
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approaches (e.g., profit margin, rating agency or regulatory formulas, risk-based formulas, and so 
forth), time periods and definition of capacity (e.g., capital, resources). 

We choose to use the required return on allocated capital r* as our optimising variable, because 
prices are usually easier to adjust than capacity. It should be noted, however, that a similar revenue 
management framework could be derived to optimize capacity S* for a given pricing policy r. 

2.3 Insurance Cycle 

Most insurers face fluctuations in demand over time, resulting from 

- fluctuations in the flow of business shown to the insurer (e.g., changes in 
marketing/distribution strategy), and 

- the insurance cycle: progressive or abrupt shifts in market “supply and demand” 
conditions, resulting in shifts in the insurer’s demand function. 

Our revenue management framework provides a tool to adapt to these fluctuations: 

- it integrates expectations for market conditions (i.e., evolution of the insurance cycle), 
and 

- it can be re-parameterized dynamically in light of the latest information on actual 
capacity usage and demand expectations; for instance, an insurer could decide to review 
its strategy and retune its revenue management model on a monthly basis. 

An insurer can therefore manage the ups and downs of the cycle by adjusting its capacity charges 
so that its expected profits are maximized. 

3. MODELING FRAMEWORK 

We use the theory of revenue management to contend with our optimization problem: to 
“maximize the expected profits under the constraints of the capacity demand and capacity inventory 
processes.”  

In this section, we detail these two processes, formulate the optimization problem, and present 
methods to derive its optima.  

3.1 Capacity Demand 

The demand for the insurer’s capacity K(t, r(t)) can be analysed in two parts: the business flow 
shown to and quoted by the insurer N(t), and the demand function d(t, r(t)) which reflects the 
acceptance level of quotes by prospects. 
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The demand for capacity at time t for a given r(t) is therefore K(t, r(t)) = N(t) d(t, r(t)). 

Business Flow 

The business flow is the flow of requests for the insurer’s capacity, i.e., demand for quotes. It is 
modelled by a stochastic process N(t) which varies over time according to 

- the overall demand for the insurance products sold by the insurer, 

- the effectiveness of the marketing and distribution network, and 

- seasonal fluctuations (e.g. large renewal months). 

N(t) is typically modelled with Poisson λ(t), Mixed Poisson Λ(t) (e.g., Negative Binomial), or 
Geometric Brownian (μt, σt) processes. The model formulation and estimation can be derived from 
historical observations, after allowing for anticipated trends and future changes in the business flow 
process. In practice, this calibration exercise yields more robust results when the volumes of 
business are large and the business flow is stable over time. For instance, a personal lines insurer 
quoting thousands of policies daily would be expected to have a better assessment of its business 
flow than a reinsurer quoting a handful of treaties each day. 

Demand Function 

The demand function d(t, r(t)) reflects the price-elasticity relationship between the level of required 
return r(t) and the quantity of capacity sold at that level. It can be described as the probability 
distribution for the market reservation price, which is the highest price at which a prospect is willing 
to accept a quote.  

The demand function depends on 

- the competitive forces in the market place, determined by supply and demand, and 

- the prospects’ utility function. 

Commonly used families of demand functions are 

- exponential survival functions d(t, r(t)) = e-r(t)/ν(t), and other Weibull survival functions, 



Revenue Management & Insurance Cycle 

Casualty Actuarial Society E-Forum, Winter 2009 37 

- Normal survival functions d(t, r(t))= 1-Фμ,σ(r(t)), 

- iso-elastic functions d(t, r(t)) = (1+r(t))-ν(t), and 

- perfectly elastic functions, representing a single market clearing price. 

The form and parameters for the demand function can be inferred from empirical observations of 
“hit ratios” and/or using the quotations systems available in some markets, such as UK Motor. 

3.2 Capacity Inventory 

Starting with a capacity of S, the capacity inventory process is defined as: 
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The capacity inventory is exhausted at a time τr,t,st, at which point the demand process is turned off. 

3.3 Optimal Pricing Strategy 

Optimization Problem 

As noted in the introduction section, our optimization problem is finding the pricing strategy r* 
which maximizes the expected profits process Π*(t, st). This is summarized in Equation (3.2): 
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We will limit our range for r(t) to [0,+∞] as a negative required return strategy of selling below the 
expected marginal cost is always strictly dominated by abstaining from selling capacity. We note that, 
in practice, there may be instances where a negative required return strategy may be justified. For 
example, it may be more expensive to attract new clients when the market turns than it is to keep the 
current insureds at a loss. 

Dynamic Programming 

Dynamic programming is concerned with dynamic systems and their optimization over time, and 
we can use some of its classical results to find our optimal pricing strategy. Our optimization 
problem is an example of dynamic programming, with s(t) as the state variable, r(t) as the control 
variable and Π(t, st) as the value function. 
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The key idea in dynamic programming is the Principle of Optimality is “An optimal policy has the 
property that whatever the initial state and initial decision are, the remaining decisions must 
constitute an optimal policy with regard to the state resulting from the first decision” [1].  

This principle translates into the following recursive equation, known as the Optimality or Bellman 
Equation: 
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Closed-form solutions have been derived for particular formulations of N(t) and d(t, r(t)). For 
instance, 

- Gallego and van Ryzin [5]: time-invariant Poisson business flow with exponential 
demand functions, 

- Zhao and Zheng [14] for time-variant Poisson business flow with iso-elastic demand 
functions, and 

- Xu and Hopp [12] for Geometric Brownian business flow with iso-elastic demand 
functions. 

But these solutions correspond only to a limited number of practical applications, and numerical 
solutions provide a more flexible alternative.  

Numerical Solutions: Backward Recursion Algorithm 

We compute our numerical solutions to the “discretized” optimization problem using the 
backward recursion algorithm. This approach consists in: 

1. solving Π*(T, sT) for each possible value of sT, 

2. solving Π*(T-1, sT-1) using the values computed for Π*(T, sT): the principle of 
optimality states that the solution r*(T-1) for Π*(T-1, sT-1) will also maximize Π*(T, sT-1-
K(r*(T-1), d(T-1, r*(T-1)))), and 

3. solving Π*(t, st) for t=1…T-2 using the same iterative process.   

The advantage of the backward recursion approach is its computational efficiency, resulting from 
the principle of optimality. 

4. COMPARATIVE ANALYSIS 
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In this section, we apply the revenue management approach to a simple but realistic case study and 
compare the performance of different pricing strategies: one strategy based on shareholders’ 
expectations, one strategy based on market returns, and three revenue management strategies6 -- the 
first one static constant for the year, the second static but variable for each month (i.e., the pricing 
strategy for each month is set at the beginning of the year based on the initial anticipations), and the 
third one dynamic reparameterized each month (i.e., the pricing strategy is revised dynamically every 
month based on the revised anticipations for the rest of the year). 

4.1 Case Study Scenario 

The assumptions of our case study are as follows: 

- Insurer: 

 Mono-line insurer 

 Capacity constraint based on underwriting decisions (the actual capital allocation 
formula is not relevant) 

 Shareholders’ expectations: 15% return on equity 

- Capacity: 

 Fixed capacity of $ 1billion 

 Capacity is sold by blocks of $ 1million. 

- Time period: 

 One underwriting year with 12 monthly periods 

- Business flow: 

 Business flow process is Negative Binomial ($450 million, 0.2) with an expected 
value of $1.8 billion and standard deviation of $95 million. The simulations are plotted in 
Graph 1. 

 Monthly business flows follow a seasonal pattern (cf. Graph 2), with each month 
simulated as a Negative Binomial variable 

- Demand function: 

                                                 
6 We call revenue management strategy any optimal strategy derived from the revenue management framework (i.e., 
integrating market conditions and expected demand); we get different “optimal strategies” depending on the context of 
the optimization problem. For instance: 
- We can get the optimal fixed constant charge for the year, or allow the charge to vary monthly. 
- We can get a static or dynamic strategy: a static strategy is set at the beginning of the period and remains unchanged, 

whereas a dynamic strategy is reset periodically using the latest information available. 
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 Survival function of a Normal(μ(t), 3.5%) (cf. graph [3] with μ=5%); the Normal 
function has the advantage of being symmetrical and allowing negative capacity charges.  

 μ(t) is the average market reservation price; it can be interpreted as the market return 
in month t. 

- Market conditions: 

 The market return μ(t) is decreasing linearly from 10% capacity charge in month 1 to 
5% in month 12 (cf. graph [4]).7  

- Discount rate: 

 5% per annum constant over the year. 

Graph 1: Total Business Flow Simulations
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Graph 3: Demand Function μ=5.0% σ=3.5%
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Graph 4: Market Return by Month
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4.2 Alternative Strategies 

To respond to the questions specified in the introduction, we have compared the performance of 
the following five pricing strategies: 

                                                 
7 This assumption has been made to gauge the responsiveness of each strategy to changes in market conditions. An 
annual drop of 5% in market returns is not inconsistent with the changes observed in financial analysts forecasts at 
certain stages of a softening market. 
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- Strategy 1: “Charge 15% return for the year.” 

 A fixed charge r for the year, based on the target return to the shareholders of 
15%. 

 r= 15% for t=1 to 12. 

- Strategy 2: “Charge the market return each month.”  

 A variable charge r(t) based on the anticipated market conditions for each month. 

 r(t)= μ(t) for t=1 to 12 

- Strategy 3: “Charge the demand-driven price for the year.”  

 A fixed charge r based on the anticipated market conditions and the expected 
demand for the year. 

 r is determined using static revenue management for the year. 

 Market conditions are determined by the weighted average μ(t) for year. 

 Expected demand is determined by the expected total business flow of $ 1.8 billion 
and by the insurer’s demand function. 

- Strategy 4: “Charge the demand-driven price each month.”  

 A variable charge r(t) based on the anticipated market conditions and the expected 
demand for each month. 

 r(t) is determined using static revenue management for each month. 

 Market conditions are determined by μ(t) t=1 to 12. 

 Expected demand is determined by the expected business flow N(t) for each month 
and by the insurer’s demand function. 

- Strategy 5: “Charge the re-forecast demand-driven price each month.” 

 A variable charge r(t), recomputed at the end of each month based on 

1. actual writings to date and remaining capacity inventory, and 

2. anticipated market conditions and expected demand for rest of the year. 

 r(t) is determined using dynamic revenue management for each month. 

 Market conditions are determined by μ(t) t=1 to 12. 
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 Expected demand is determined by the expected business flow N(t) for each t=1 to 
12 and by the insurer’s demand function. 

The behaviour of these 5 strategies is illustrated on the example detailed in Graphs 5 and 6. Graph 
5 shows the simulated path for the business flow N(t); the total business flow is $1.869 million. 
Graph 6 plots the values of r(t) under the five strategies.   

 

Graph 5: Simulated Monthly Business Flow

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12

Expected Simulation
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- Strategy 1 is a flat r(t)=15% for the year. 

- Strategy 2 is a linear decrease in r(t) from 10% down to 5%, reflecting the evolution of 
μ(t) over the months. 

- Strategy 3 is a flat 7.6% for the year; 7.6% being the revenue management optimum for 
the year based on the weighted average μ(t) for year (which is 8.1%). 

- Strategy 4 is the revenue management optimum strategy based on the initial 
expectations for N(t). 

- Strategy 5 is also the revenue management optimum but reparameterized at time t based 
on the remaining capacity inventory (we assumed that the anticipations for the demand 
functions, business flow and market conditions are not changed over the year). 

We can note that Strategy 5 suggests higher r(t) than Strategy 4: this results from the higher than 
expected business flow, which translates into a lower capacity inventory sold at a higher price. 

4.3 Results 

Table 1 compares the results for the 5 strategies over 1,000 simulations. For each simulation, the 
business flow N(t) is the only stochastic variable as we have assumed that the demand function was 
deterministic.  
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Table 1 Strategy 1 Strategy 2 Strategy 3 Strategy 4 Strategy 5 

      

r  15.0% 8.1% 7.6% 7.6% 7.6% 

K $m 65 920 973 977 995 

Π $m 9.7 71.6 73.0 74.8 75.5 
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We note first that none of the strategies achieves the market return of 8.1% (i.e. weighted average 
μ(t)). This is due to the fact that the expected business flow of $ 1.8 billion is low in relation to the $ 
1.0 billion capacity and the 5:1 premium-to-surplus permitted; the company has to provide a 
discount on the market return to sell more and maximize its expected profits. 

Comparing the different strategies based on total profit, we can observe that: 

- Strategies 2-5 based on market conditions are superior to Strategy 1, which is based on 
shareholders’ expectations over the cycle. 

- Strategies 3-5 based on market conditions and expected demand are superior to 
Strategy 2, which only integrates market conditions. 

- Strategies 4-5 are superior to Strategy 3, as they are refined to include the monthly 
patterns in capacity demand and market conditions. 

- Strategy 5 is superior to Strategy 4, because capacity charges are set dynamically to 
incorporate the latest capacity inventory information. 

As could have been expected intuitively, the optimal pricing strategy is the dynamic revenue 
management approach. 

5. INSURANCE CYCLE APPLICATIONS 

In this section, we detail practical applications of the revenue management approach to the 

management of the insurance cycle. 

5.1 Optimal Pricing Strategy 
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We can use our model to investigate the optimal pricing strategy for the different stages of the 
insurance cycle. For this purpose, we have computed the optimal pricing strategy for various level of 
μ(t), kept constant for the year.8  

Graph 7 plots the average required return r* and Graph 8 the PV Profit Π* in millions of dollars for 
different level of market returns μ(t). They illustrate how an insurer can adapt to the different 
market conditions over the insurance cycle, in order to maximize its expected profits. 

Graph 7: Average Charge r* by Market Returns μ 
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Graph 8: PV Profit Π* by Market Returns μ 
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We can observe that the optimal approach to negative market returns consists in setting r so that it 
captures and maximizes the returns on the few accounts with a positive return. In practice this 
means a low but positive capacity charge.  

5.2 Optimal Capacity Strategy 

As discussed in the introduction, a revenue management framework similar to the one presented 
can be utilized to optimize the insurer’s amount of capacity to achieve a target return on equity for 
its shareholders over the cycle.9 For this purpose, we have computed the optimal capacity strategy in 
order to achieve a 15% return on equity for various level of μ(t), kept constant for the year.10  

Graph 9 plots the capacity S* and Graph 10 the PV Profit Π* in millions of dollars for different 
level of market returns μ(t).  

                                                 
8 all the other parameters as in the case study. 
9 all the other parameters as in the case study. 
10 all the other parameters as in the case study. 
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Graph 9: Capacity S* by Market Returns μ 
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Graph 10: PV Profit Π* by Market Returns μ 
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These graphs illustrate how an insurer can adapt to the different market conditions over the 
insurance cycle, in order to meet a target return on equity for its shareholders.  

Although adjusting capacity is more problematic than adjusting capacity charges, one could 
envisage that this could be partially achieved through a flexible reinsurance programme and/or a 
proactive capital management policy (e.g. dividends, buybacks, flexible debt/equity arrangements…). 

We can remark that the adjustments required to achieve the 15% target return on equity are fairly 
dramatic; and it becomes impossible for the insurer to achieve a 15% return on equity when the 
market returns are lower or equal to 5%.  

5.3 Strategic Marketing Decision 

We can also use our revenue management framework to assess the outcome of strategic decisions. 
For instance, we can compare the impact of a marketing campaign to increase business flow by 25% 
at different times in the insurance cycle.11  

Graph 11 plots the marginal increase in sales and Graph 12 shows the marginal benefit of the 
campaign in millions of dollars for different levels of market returns μ(t). 

Graph 11: Marginal Sales K* by Market Returns μ 
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Graph 12: Marginal Profit Π* by Market Returns μ 
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11 All the other parameters as in the case study. 
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We can note that the improvement in sales resulting from the increased business flow is the most 
significant when the market returns are between 0.0% and 5.0%, and nil above that level because the 
inventory would have been entirely sold without the marketing efforts.  

The marginal profit, however, is most impacted for market returns greater than 5.0%, as the insurer 
is able to sell all its capacity and attract a higher return on it. 

6. CONCLUSION 

Our investigation has provided very insightful results, which challenge some of the current pricing 
practices. For an insurer deploying a fixed amount of insurance capacity over a period of time, we 
constructed revenue management strategies based on market conditions and expected demand, and 
observed that: 

- These strategies were superior to other strategies based on the target return to shareholders or market 
conditions alone. As a result: 

 Companies should vary their capacity charge over time, as market conditions change. 

 Multi-line companies should adopt specific capacity charges for each business 
segment. 

 Pricing analyses should not be done independently of market conditions and 
expected demand; on the contrary, intelligence and research in these fields should be a 
key part of the pricing strategy.  

- Dynamic strategies delivered better results than static ones: 

 Integrating anticipations of future market conditions helps maximize the return on a 
limited insurance capacity by ensuring that it is sold at the best rates. 

 Regular reparameterization helps integrate the latest information on capacity 
inventory and adjust the strategy accordingly. 

- An insurer can maximize its expected profits over the insurance cycle by adapting its capacity charge to 
market conditions, and expect a profit even when market returns are negative. 

- Alternatively, this insurer can target a return on equity to its shareholders and adjust its capacity 
accordingly. 

To derive these conclusions we have used a revenue management framework, similar to those 
developed in other industries (e.g., airlines, hotels…). In these industries, revenue management is an 
essential piece of the pricing strategy. This framework proved very valuable and practical, and we are 
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expecting that insurers will start implementing these techniques to enhance their competitive 
strategy.  
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Class Ratemaking for Workers Compensation:  NCCI’s New 
Methodology 
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________________________________________________________________________ 
Abstract: 
 

For the first time in many years, NCCI is revising the methodology used to determine class relativities in 
workers compensation loss cost filings.  
 
This paper will describe the new methodology NCCI has developed, and reveal the research approach and 
analyses underlying the modifications NCCI will be implementing to several key class ratemaking 
components.  The paper will discuss in detail how the traditional areas of class ratemaking were modified, 
namely loss development, limiting large claims and applying expected excess provisions, updating credibility 
standards, and the derivation of industry group differentials.  
 
The paper will also focus on the new NCCI class ratemaking approach from an educational perspective for 
actuaries who are just becoming familiar with workers compensation. Exhibits are provided in Appendix B 
illustrating the stepwise derivation of a loss cost for a classification from beginning to end. 
 
Keywords:  workers compensation; NCCI ratemaking; NCCI loss cost filings; class ratemaking; loss 
development by part of body; expected excess by hazard group. 

             

1. INTRODUCTION 

NCCI has recently modified the methodology used to determine class relativities for workers 
compensation insurance. The last time the class relativity methodology was modified took place in 
1993. At that time, NCCI implemented the following changes: a) the number of policy periods used 
in determining pure premiums for each class was increased from three to five, b) the underlying 
class credibility formulas were modified, and c) the number of industry groups used for targeting 
class loss cost changes was increased from three to five.  

Some of my colleagues would jokingly quip that the number of people who understood these 
changes increased from three to five. So the primary motivation of this paper is to document the 
new NCCI class ratemaking methodology and the research analyses supporting it.  Many of my 
colleagues at NCCI made very significant contributions to the overall success of this huge 
undertaking, and are duly mentioned in the acknowledgement. This could not have been possible 
without their valuable insights and support. 
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1.1 Research Context 

The focus of this research is to document the various analyses and research approach used to 
support the modifications being implemented within the NCCI class ratemaking methodology. 
Current CAS literature that addresses some of the same issues include “Workers Compensation 
Ratemaking” by Sholom Feldblum, and “Workers Compensation Classification Credibilities” by 
Howard C. Mahler. 

1.2 Objective 

This paper updates the CAS literature on workers compensation ratemaking techniques, with 
particular attention to recent modifications in the NCCI class ratemaking methodology for handling 
large claims, improving the predictive ability of class loss development factors, and the approach 
used for updating certain other important components such as industry group differentials and 
credibility standards. To address its absence in the current CAS literature, this paper also provides a 
detailed stepwise illustration of the new workers compensation class ratemaking methodology. The 
methodology supporting the aggregate change in a state’s overall indicated loss cost level will not be 
addressed in this paper. The new methodology for determining the seven hazard groups and the 
methodology for determining the expected excess loss factors also will not be addressed in this 
paper.  

1.3 Outline 

The remainder of the paper proceeds as follows. Section 2 will discuss the reasons and impetus 
for the changes made, the thought process NCCI has followed, the specific class ratemaking 
methodology changes being implemented, and the supporting research analyses and results. Section 
3 contains two appendices of exhibits: Appendix A contains the supporting research exhibits and 
Appendix B contains exhibits that illustrate the new methodology for calculating the loss cost for a 
class code from beginning to end. 

2. BACKGROUND AND METHODS 

There were three motivational factors underlying the research approach that NCCI followed in 
making some recent significant changes to its class ratemaking methodologies.  They were:  

• To improve the predictive ability and adequacy of loss costs by class code. 
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• To provide year-to-year stability of loss cost changes by class code. 

• To explore the potential of new data elements that NCCI began collecting in the 1996 
Unit Report Expansion (URE), and try to utilize them accordingly. 

2.1 Availability of New URE Data Elements  

Many of the NCCI states approved the collection of the URE data elements in 1996.  Thus, the 
first complete policy period available in most states is policy year 1997. Furthermore, some states did 
not approve the collection of URE data in their state for a few more years (the last state was 
approved as late as January 1, 2002).  Thus, in a few states, the database is less complete historically, 
adding further to the challenges of our research agenda.   

The following is a list of some, but not all, of the new URE data elements to be reported to 
NCCI by carriers and available to the NCCI actuaries: 

• Paid ALAE (case reserves were optional) 

• Paid losses separate from “paid + case” losses 

• Injured part of body 

• Nature of injury 

• Cause of injury 

• Deductible reimbursement amounts 

• Lump sum indicator 

• Etc. 

More recently, effective with policy period 1999 and subsequent, carriers began mandatory 
reporting beyond a 5th report for all WCSP unit data and URE data elements on all open claims, up 
to and including a 10th report.   

2.1 Overview of the Methodology Changes 

Several significant changes to the NCCI class ratemaking are currently being targeted for 
implementation in 2009. The majority of changes are contained in the following six areas:  

1. Loss development factors (LDF) will be derived using claim characteristics such as injured 
body part, the open and closed claim status at 1st report, and the injury type category.  
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2.  The loss development triangles are being expanded from five reports out to 10 reports 
(eventually). 

3. Large claims will be capped at $500,000 and expected excess factors (derived from the new 
seven hazard group mapping by class code) will be used to calculate ultimate losses. 

4. Serious and non-serious pure premium components will no longer exist. There will only be 
indemnity and medical components. 

5.  The computation of the industry group differentials was slightly modified. 

6. The full credibility standards for indicated and national pure premiums were slightly 
modified. 

Each of these six major areas will be discussed in this paper, some in much more depth than others, 
and a summary of the analyses underlying the decisions will be presented.  

2.2 Background: The Current Loss Development Approach 

It is important to understand the nuances of the former approach to gain a better appreciation 
for the changes NCCI is now implementing and the reasoning behind the changes being made. The 
source data used is the NCCI Workers Compensation Statistical Plan (WCSP) data. The previous 
approach used by NCCI to generate loss development factors for class ratemaking was to segregate 
the dollars of loss generated from claims into two loss development categories. They were a) the 
serious grouping and b) the non-serious grouping.  An arbitrary dollar value, referred to as the 
critical value, which varied significantly by state, was determined for each loss cost filing.  All 
permanent partial claims whose indemnity dollar amount, as measured on a “paid + case” basis, 
exceeded the critical value were categorized to be included in the serious grouping, and referred to as 
major permanent partial claims. Four loss development triangles were compiled from the dollars of 
losses associated with these claims. The four triangles compiled were indemnity and medical, and 
each had a serious and non-serious component.  The serious grouping consisted of all fatalities, all 
permanent total claims, and the major permanent partial claims (i.e. those claims whose indemnity 
dollar amounts exceeded the critical value). The non-serious grouping consisted of all temporary 
total claims, the remaining minor permanent partial claims, and the medical-only claims. Examples 
of each of the serious and non-serious loss development triangles for a large state are shown in 
Exhibit 1.  

WCSP “paid + case” loss data is reported by carriers to NCCI at five different reports for open 
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claims. The losses are evaluated @18, @30, @42, @54, and @66 months, respectively.  A tail factor 
was applied to the serious loss development triangles only, and was derived from NCCI financial call 
data used in the overall aggregate loss cost indication for the state. It was assumed that all loss 
development beyond the 5th report was inherently due to serious claims only. In order to balance to 
the financial data tail, a significantly large tail factor was applied to the serious losses to generate a 
5th-to-ultimate, while a tail factor of unity was applied to the non-serious losses.  An illustration of 
the derivation of the tail factor is also found in Exhibit 1. 

The current loss development approach had four shortcomings, which made its serious and 
non-serious loss development groupings less than optimal. The key shortcomings were: 

1. As claims matured, many claims would “cross over” the critical value at subsequent reports, 
and therefore be reassigned into the serious grouping, and thus, distort the predictive ability 
of the loss development factors in the serious and non-serious triangles. 

2. Severity was not a good indicator of the propensity of a claim to develop in the future. 

3. The medical dollar amount was ignored in determining whether or not a claim was 
categorized as serious or non-serious.   

4. No distinction between serious and non-serious loss dollars was made within the medical 
loss triangles from 1st through 5th report. The only distinction between serious and non-
serious medical was that a 5th-to-ultimate medical tail factor was applied to the medical loss 
dollars associated with the serious lost-time claims. 

2.3 The Problem of Critical Value Crossover 

The research approach began as a review of the critical value methodology, which had begun to 
be used in class ratemaking at NCCI in 1966.  A previous attempt years earlier at improving the 
critical value methodology involved the idea of using an open and closed claim indicator, and only 
applying loss development to open claims. Although that idea was not embraced at the time, a better 
variation of it will be introduced to the reader later in the paper.  

Exhibit 2 demonstrates the distorting impact that critical value “crossover” inflicts on a dataset of 
permanent partial claims countrywide.  Claims below the critical value are deemed minor while those 
that exceed it are deemed major.  Various link ratios were computed for comparison from 1st report 
to 4th report. The true distortion of critical value “crossover” is illustrated by the second and third 
rows of the indemnity and medical sections of Exhibit 2.  These rows consist of claims where the 
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status changed from major to minor, and vice versa, between the 1st and 4th reports.  Columns (4) 
and (5) on Exhibit 2 provide a stark contrast of the distortion critical value crossover can inflict on 
the predictive nature of a link ratio. 

Although not illustrated in Exhibit 2, a “natural crossover” of claims moving between injury 
types may provide similar distortions to link ratios as claims evolve over time.  It is common in 
workers compensation for a temporary total claim to eventually evolve into a permanent partial 
claim, or a medical-only claim at 1st report to potentially become a lost-time claim at subsequent 
reports. The manner in which NCCI’s actuaries address natural crossover will be presented later in 
this paper.  One of the goals of the new methodology was to try to mitigate “crossover” in order to 
generate loss development factors that were more predictive. 

2.4 How We Solved the Crossover Problem 

A fresh approach was begun by investigating a new field, the injured part of body, that NCCI 
began collecting on its Unit Report Expansion starting with policies effective in 1996. NCCI 
actuaries soon began researching to see if the injured body part provided any causal relationship 
upon predicting whether or not a claim’s loss dollar amount developed upward at later reports. The 
initial approach NCCI took to research its loss development methodology proceeded as follows: 

1. Extract a large volume of claims containing claim-specific information such as injury type, 
report level, injured body part, and associated dollars of incurred loss.  

2. Review the impact that critical value “crossover” (illustrated earlier) and injury type 
“crossover” may have upon loss development factors. 

3. Determine if claim severity is an indicator of the propensity of a claim to develop. 

4. Analyze the injured body part to determine if it could provide value as a predictor of a 
claims’ propensity to develop (or not develop).  

5. Group the body part and injury type combinations into those more likely to develop and 
those not likely to develop so that the groupings are more predictive than the serious and 
non-serious groupings. 

6. Update NCCI’s Actuarial Committee and incorporate their feedback. 

Note that at the outset, the impact of the claim status (open or closed) was not considered. As the 
main thrust of the initial research was analyzing body part and injury type combinations, and 
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mitigating the crossover problem, claim status was not incorporated until much later. How claim 
status was incorporated into the research will be described later on in the paper. Exhibits 2 through 
9 reveal the initial research findings outlined in the steps above. 

The analysis of the distortion to link ratios that “cross over” caused provided valuable insight.  
True loss development can best be determined if claims are not allowed to migrate across different 
development groups to the extent possible.  As claims were moving over the critical value and 
across the injury types, a solution was posed as to how to research whether or not the injured body 
part was a determining characteristic of loss development.  The solution was to “lock down” the 
entire dataset of claims being studied at each link ratio. Thus, the exact same set of claims were 
observed at adjacent reports, such as 1st to 2nd, and the loss development measured accordingly.  
Note, the set of claims used to observe the loss development from 2nd to 3rd report could be a 
different set of claims than those observed at 1st to 2nd report. 

This approach was the key to determining which injured body parts developed more or less 
than others, and as you will later read, it also helped NCCI determine that two other key claim 
characteristics (claim status at 1st report and injury type) can also be associated with more or less 
dollars of loss development. 

2.4.1 How Was the Injured Body Part Approach Determined? 

Two new loss development triangle groupings were envisioned. The first was a grouping of 
claims whose injured body parts, and associated dollars of loss, were likely to develop upwards over 
time. The second grouping would consist of claims whose injured body parts, and associated dollars 
of loss, were not-likely-to-develop upwards over time. Grouping body parts together made sense as 
there were 55 body part codes in the WCSP, and credible volume at a state level by injured part of 
body was a concern. Loss development between the two groups would have to be compared relative 
to one another, as the losses in some states develop significantly more than others. For example, a 
back claim filed in a state having a lot of attorney involvement and longer durations would be 
expected to develop more than a similar back claim in a state with little or no attorney involvement 
and shorter durations.  (As an example of duration, many states have time limits for benefits, such as 
300 weeks or 425 weeks for permanent partial claims.) 

The next step was to determine which of the 55 body part categories would be mapped into the 
likely-to-develop and not-likely-to-develop. A listing of all the body part codes and the grouping to 
which they were mapped is shown in Exhibit 6. One drawback in using the NCCI WCSP data for 
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determining loss development in a long-term line of insurance like workers compensation is that 
only five reports of losses are provided to NCCI by carriers, yet much of the loss development can 
and does take place beyond the 5th report.  At times, certain analyses only used four reports of data 
simply because the 5th and final report was not yet reported to NCCI as the body part code was 
introduced in 1996 for the first time.  

Two different analyses were completed for body part grouping. The result of the first analysis is 
shown in Exhibit 3. This analysis measured loss development dollars by fixing the set of claims from 
1st through 4th report (at the time, 5th report was unavailable), quantifying the observed loss 
development per claim as follows: 

(Reported Losses @4th - Reported Losses @1st  ) 

Number of claims 

This approach provided an initial insight into which body parts developed more than others. 
Exhibit 3 shows that the following general areas of body parts contributed the largest amount of 
development per case:  back, head, neck, multiple body, and internal organs.  The downside of using 
this approach as the only measure for making body part decisions is that much loss development in 
workers compensation happens beyond 5th report, and until recently, carriers did not report WCSP 
data beyond the 5th.  (Starting in 2005, NCCI began collecting 6th reports of open claims, and will 
eventually collect up to a 10th report.  This expansion will be used to extend the class loss 
development triangles out beyond the 5th report, and eventually to a 10th). 

Thus, a second measure was considered to fine-tune the decision making for determining 
groupings of body parts into likely-to-develop and not-likely-to-develop categories. The second 
measure was to determine what percentage of claims, sorted by body part, remained open at 5th 
report.  Exhibits 4 and 5 illustrate these results for countrywide permanent partial and temporary 
total claims, respectively.  Those body parts having a higher percentage of open claims at the 5th 
report were assumed to be more likely to develop. 

Actuarial judgment also played a role in the final decisions to determine into which groupings 
the various body parts were ultimately placed. Some consideration was given to the fact that certain 
body parts are considered scheduled injuries in states having scheduled permanent partial injuries. 
Body parts like toes, fingers, hands, feet, arms, and legs are often mandated a pre-determined dollar 
amount in statutory benefit schedules, and therefore, are not likely to develop upward. Exhibit 6 
summarizes the grouping to which each body part has been mapped. 



Class Ratemaking for Workers Compensation: NCCI’s New Methodology 
 

Casualty Actuarial Society E-Forum, Winter 2009 56 

2.4.2 How Was the Injury Type Considered? 

More refinements to the grouping logic were researched after the body part mappings were 
completed. The first characteristic considered was the claim’s injury type. In workers compensation, 
different levels of indemnity benefits are paid based upon the injury type. The injury types are: fatal 
(F), permanent total (PT), permanent partial (PP), temporary total (TT), and medical only (MO). 

Two injury types initially examined in depth were TT and PP, as this is where the majority of 
claims and dollars of loss resides. Once the body parts were mapped to the likely-to-develop (L) and 
not-likely-to-develop (N) groupings, a few different tests were performed. The first was whether or 
not severity was a good indicator of the likelihood of a claim developing and the second was a test 
to see if the groupings of body parts produced link ratios that were larger for the L grouping than 
the N grouping. The second test would substantiate the mapping of body parts to the L and N 
groupings. 

Exhibit 7 shows results for both tests, again on a countrywide basis. A critical value of $26,000 

was selected.1  The claims were fixed at each adjacent link ratio to eliminate both critical value and 

natural “crossover” and to allow us to observe the development pattern that resulted.  The results 

shown on Exhibit 7 clearly illustrated three key observations: 1) claim severity itself is not a 

predictor of higher loss development, as evidenced that claims below $26,000 developed much 

greater for TT than those which began at a value greater than $26,000, 2) the medical pattern 

behaved differently than indemnity, in that the ldf from 1st to 5th was about the same whether above 

or below the $26,000,  and 3) claims within the L grouping developed significantly more than claims 

in the N grouping for both PP and TT, as evidenced by the much higher link ratios.     

At this point in the research process, the feedback from NCCI’s Actuarial Committee was 
positive, and the Committee requested to see what the new groupings and their new development 
pattern would look like by state as compared to serious and non-serious loss development factors 
(LDF). Exhibits 8 (indemnity) and 9 (medical) provide the support for LDF comparisons for two 
states, identified only as a large state and a small state. Note the characteristics of the serious and 
non-serious development factors: “crossover” generates very large serious factors and very low non-
serious factors. At the same time, relative to the serious and non-serious LDF, the likely-to-develop 
(L) and not-likely-to-develop (N) are much different: L produces LDF patterns that are much lower 
                                                           
1 $26,000 was an indemnity dollar amount determined arbitrarily assuming a typical weekly indemnity benefit of $500 per 
week for 52 weeks. 
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than serious while N is much higher than the non-serious LDF. As will be shown later on in this 
paper, class equity is affected in that class codes with more serious losses, such as contracting codes, 
will experience reduced loss costs under the new loss development methodology while classes with 
more non-serious losses (office and clerical) will experience increased loss costs due solely to the 
change in loss development methodology. (Other components of the new methodology do provide 
an offsetting impact. The expected excess provision is a good example as it is greater for contracting 
codes than it is for office and clerical.) 

Also note that for Exhibit 9, the previous methodology only provided a total LDF for medical 
from 1st to 5th.  Under the new methodology, an improvement is generated in that LDFs are 
bifurcated into two homogeneous groupings with distinctly different loss development patterns; that 
is, L and N. This refinement should improve class equity. 

Exhibits 8 and 9 show LDFs on an unlimited basis and on a limited (@ $500K) basis. This is 
because unlimited factors are used in the previous class ratemaking methodology. The new class 
ratemaking enhancements include limiting individual claims at $500K. Thus, a portion of the 
difference in the magnitude of LDF from previous to new methodology is due solely to a loss 
limitation being applied to the new NCCI class loss development methodology. 

It is important to note that Exhibits 8 and 9 are illustrating LDF patterns using the following 
loss development groupings of claims:  

 

Likely (L) = Fatal + PT + PP-L + TT-L (2.1)
Not Likely (N)= PP-N + TT-N + MO (2.2)

Serious = Fatal + PT + Major PP (2.3)
Non-Serious = Minor PP + TT + MO (2.4)

 

Because most fatal and permanent total claims are open at the 5th report, it was quickly decided 
to put them into the L grouping.  This also coincided well with the previous serious grouping. The 
reasoning used for assigning medical-only claims to the N grouping was that almost all of them close 
out quickly, and thus, are unlikely to develop further. 

The injury types that provided the NCCI actuaries with the biggest challenges were the 
permanent partial and temporary total claims.  In most states, these two injury types comprise 
between 70% and 80% of all loss dollars incurred. These claims also are intricately connected as 
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many temporary total claims evolve into permanent partial claims as injured workers reach a point in 
time referred to as maximum medical improvement. It was for these reasons that the research on 
injured body part focused on these two injury types for the most part. The L and N groupings 
would also benefit from a fairly even distribution of loss volume if each of these injury types were 
assigned to either the L or the N, based on injured body part.  

It was at this point in the research that some other NCCI colleagues were becoming heavily 
involved in the class ratemaking research, and began asking questions and probing into the details 
underlying the assignment of claims into the L and N groupings. The team started investigating 
injury type loss development patterns closely for the large state/small state analysis, and started 
questioning if other URE data elements could be used to further refine the L and N groupings. 
Some NCCI actuaries thought the fatal claims should be N and not L. Others thought temporary 
total claims should all be assigned to the N grouping. Others felt the disparity between the 
magnitude of the LDF for the L and N groupings was not large enough. So more research was 
conducted to try to resolve the issue of what is the optimal loss development grouping. 

2.4.3 The Final Refinements to the Loss Development Groupings 

Staff explored other URE data elements to determine if their presence could better 
determine the likelihood that a claim might develop upward.  Some of the data elements explored 
were claims including ALAE, the nature of injury, and the cause of injury. None of these provided 
any solutions. However, there was one data element that was clearly connected with the propensity 
of a claim to develop (or not). And that was the open or closed claim status.  The majority of 
development was coming from claims that were open at 1st report. It seemed so logical. Almost all 
actuaries, and non-actuaries, would agree that closed claims are not likely to develop (note that there 
are a small percentage of claims that do close and reopen in workers compensation).  So the research 
continued. 

A new countrywide (all NCCI states) data extract was created for policy years 1999 through 
2002 at each available report level, and for 1999, that now encompassed six reports of data. Dollars 
of loss were compiled for each policy year and state as follows:  

• By injury type at each report level 

• By the claim status open (O) or closed (C) at first report and each subsequent report 
level 
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• By the body part category L or N 

• Losses were limited at $500,000 

• Indemnity and medical aggregated separately 

• Only states and years in URE format (Oregon did not approve URE until 1-1-02.) 

The loss dollars were aggregated countrywide. Claims having an injured body part that was 
assigned to the L grouping were referred to as “likely” body parts. Similarly, claims having an 
injured body part that was assigned to the N grouping were referred to as “not-likely” body 
parts.2  All claims were “locked down” at each report level to examine the impact of true loss 
development, and therefore, not allowed to move across subcategories. Once “locked down” at 
the initial report, no claims were allowed to enter or leave the group throughout the entire 
observed development timeframe (i.e. 1st through 6th report or 2nd through 6th report).  This is a 
different variation of the “lock down” than that used earlier in the initial research of injured part 
of body, where the set of claims was the same only for adjacent reports for determining a link 
ratio.  The loss dollars were segregated into the following four subcategories and the LDF were 
computed: 

• LO — “likely” body part and claim open at 1st report 

• LC — “likely” body part and claim closed at 1st report 

• NO — “not-likely” body part and claim open at 1st report 

• NC — “not-likely” body part and claim closed at 1st report 

Exhibits 10 and 11 display a myriad of LDF combinations that have become the heart and 
soul of the new loss development proposal. Every injury type is broken out into the four 
subcategories and for policy years 1999 and 2000, the LDF are illustrated from 1st – 6th and 1st - 5th, 
respectively. The LDF patterns provided NCCI with remarkable evidence suggesting further 
refinements to the loss develop groupings should be made. Several key observations and conclusions 
generated from the analysis illustrated on Exhibits 10 and 11 follow. Specifically, for permanent 
partial (PP), temporary total (TT), and medical-only (MO) claims: 

1. Losses from claims in the L body part categories consistently develop much more than 

                                                           
2 In the future, NCCI may rename the “likely” body parts as Part of Body Group A and the “not-likely” body parts 
as Part of Body Group B to differentiate the body part assignments from the loss development groupings. 
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its N counterpart.  Thus, the body part assignments are sound. 

2. Claims that were open (O) at 1st report develop much more than the closed (C) claims 
do. Thus, the combination of L and O at 1st report generates the largest LDF by far. 

3. Focus on the arrows on Exhibit 10 for TTLC and PPLC. Claims that were L and 
closed (C) at 1st report align more closely with the TT-N and PP-N grouping. Thus, by 
moving claims having the combination of L and C at 1st report into the N grouping 
further refines the LDF patterns. 

4. Exhibit 11, Option 1 demonstrates that a greater differentiation in LDF magnitude 
occurs when the likely closed (LC) claims were removed from PP and TT and placed 
in the N grouping.  This is seen by a comparison of Option 1 relative to the grouping 
labeled “current” in the row above it. (Thus, within option 1, L = Fatal + PT + PPLO 
+ TTLO.) 

5. Although similar LDF patterns were observed for MO, it was decided to keep all MO 
claims in the N grouping for two reasons: a) only 1% of all losses shift, and b) some 
carriers may report their entire inventory of MO claims as closed claims when 
reporting WCSP data to NCCI, which could be problematic.  

6. Claims from the permanent total (PT) and fatal injury types do not demonstrate the 
same pattern of loss development characteristics. That is, the L and N body part 
categories do not discern loss development patterns as it does in other injury types. 
The LDF behave in the opposite manner (i.e., L < N). Also, the opposite behavior 
happens with the open and closed claim status LDF (C > O). 

The results of the last observation suggested that even more research should be conducted 
on the development patterns of fatal and PT claims.  Natural “crossover” across injury types further 
complicates the analysis so three groups of fatal and PT claims were created and the LDF observed: 

• Those claims which remained within the injury type across all report levels 

• Those claims that moved into the fatal and PT injury types after initially being 
reported as another injury type at 1st report 

• Those claims that migrated out of the injury type at later reports after initially being 
reported as fatal and PT at 1st report 

In this analysis, the injury type of claims were observed at 6th report for PY 1999 and 5th 



Class Ratemaking for Workers Compensation: NCCI’s New Methodology 
 

Casualty Actuarial Society E-Forum, Winter 2009 61 

report for PY 2000.  Assuming the most recent reported injury type is the best observation for these 
PT and fatal claims, we then observed the injury type of these claims at 1st report.  Exhibit 12 shows 
the loss development patterns for the three groups of fatal claims while Exhibit 13 shows the same 
for the PT claims. Several key observations, conclusions, and reasoning follow that were generated 
from the analysis illustrated on Exhibits 12 and 13. And, importantly, the debate over whether fatal 
claims should be placed in the L or N grouping was resolved. 

1st observation: Fatal claims (at 6th or 5th report), which were reported initially as a fatality at 
1st report, distinctly developed downward from 1st through 6th (and 5th) report (see top section of 
Exhibit 12). 

Conclusion #1: Move fatal claims at 1st report into the N grouping, and no longer 

assign them as likely-to-develop.  

Reasoning:  This one makes practical sense because only the dependents, if any, of the 
deceased worker receive benefits and these benefits are defined streams of payments over time in 
most states. A few states pay a predetermined lump sum of money to beneficiaries. Also, there is no 
need for carriers to estimate case reserves for future medical costs when the injured worker dies.  

2nd observation: Claims that become fatalities at subsequent reports (2nd through 6th) 
developed significantly upward from 1st to 6th (and 5th) report (see middle section of Exhibit 12). 

Conclusion #2: Claims that become fatalities at subsequent reports (2 nd through 6th 

and eventually 10th report) will continue to be categorized in the L grouping. 

Reasoning:  Claims of this nature were observed within all injury types, and conditions 
subsequently worsened to the point where the injured worker died. Large amounts of upward loss 
development dollars were observed, and medical costs become very large in many of these claims 
over time. 

Note at the bottom of Exhibit 12 a small amount of claims reported as fatalities at the 1st 
report actually moved to other injury types at subsequent reports. Upon investigating several of 
them, it was concluded that compensability was actually an issue. In other words, some claims were 
contested as to whether or not the death was due to work-related causes. In a few other instances, 
the initial injury type was simply misreported and corrected. As a group, this small number of claims 
did develop downwards and will be assigned to the N grouping. 

Now refer back to Exhibit 11, Option 2. It demonstrates that a greater differentiation in 
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LDF magnitude occurs, particularly for indemnity, when the fatal claims at 1st report were removed 
from the L grouping and placed in the N grouping.  This is seen by a comparison of Option 2 
relative to the groupings labeled “current” and Option 1 in the rows above it. (Thus, within option 
2, L = Fatal – Fatal @1st + PT + PPLO + TTLO.) 

3rd observation: An overwhelming number of PT claims (at 6th or 5th report), which were 
reported initially as other injury types at 1st report, developed significantly upward from 1st through 
6th (and 5th) report (see middle section of Exhibit 13).  

Conclusion #3: Categorize all PT claims, regardless of the report, into the L 

grouping. 

Reasoning:  Many PT claims were observed whereby they were initially reported as another 
injury type, and conditions subsequently worsened to the point where the injured worker became 
permanently totally disabled. Large amounts of upward loss development dollars were observed, and 
the medical costs become very large in many of these claims over time. Also, almost all PT claims 
were open at 1st report and were comprised mainly of Group A parts of body (i.e., likely). 

It should be noted that a subset of PT claims that stayed within the PT injury type at all 
reports had a slight downward development (see top of Exhibit 13). After considering moving those 
out of the L grouping, similar to fatal at 1st report, it was decided to be appropriate to keep assigning 
them to the L grouping, as most were still open at a 6th report, and could eventually develop 
upwards out in the tail if the claimant’s condition worsened in the future. 

Thus, Option 2 on Exhibit 11 represents the proposed final L grouping, which excludes 
fatalities at 1st report, and includes all PT claims. The equation is as follows: 

 

L = Fatal – Fatal @1st + PT + PPLO + TTLO. (2.5)

 

2.4.4 What about the Tail Factor? 

The tail factor in workers compensation presents a formidable challenge to NCCI actuaries. 
In aggregate ratemaking, in order to determine a state’s overall indicated change in loss cost or rate 
level, a tail factor is estimated separately for indemnity and medical and attached currently at a 19th 
report.  NCCI financial call data is used as the source. However, only five reports of the WCSP data, 
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which is the basis for class relativities, was required to be reported to NCCI by its affiliated carriers.  
This has changed recently.  Beginning with policy year 1999, NCCI is now collecting up to 10 
reports of open claims. 

For class ratemaking, in order to maintain consistency for a state’s class relativities, the 
financial tail factor is used as a starting point. NCCI actuaries assume that 100% of loss 
development beyond the 5th report is due to development on the serious claims, and 0% due to 
development on non-serious claims. A 5th – ultimate LDF is computed from the state financial data, 
referred to below as Fin5U. Thus, the following formula is used for indemnity losses to determine 
the class ratemaking 5th – ultimate LDF, referred to below as Class5UI. It is applied to serious losses 
at 5th report. 

 

Class5UI = [SER$I + (SER$I + NS$I) * (Fin5UI -1.000)] / SER$I. (2.6)

 

Where, 

SER$I = two years of limited “paid+case” serious indemnity loss dollars on-leveled and 
developed to 5th report for the state; 

NS$I = two years of limited “paid+case” non-serious indemnity loss dollars on-leveled and 
developed to 5th report for the state; 

Class5UI = unlimited 5th – ultimate indemnity (I) tail factor applied to serious losses at 5th report 
for each class code. No tail is applied to non-serious losses; 

Fin5UI = Unlimited statewide financial data 5th – ultimate tail factor for indemnity (I). 

The same exact approach is also used to determine a 5th – ultimate tail factor for medical 
losses, but is not shown here. Only the subscript would change from (I) to (M). Also note that 
although individual claims are limited in the current NCCI ratemaking at five times the state’s 
serious average cost per case, loss development factors are unlimited. By rearranging the formula, 
the following is derived: 

 

Class5UI = Fin5UI + [(NS$I / SER$I) * (Fin5UI – 1.000)] (2.7)
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Note that the magnitude of the class tail factor is inversely proportional to the percentage of 
serious losses in a state relative to the non-serious losses. The lower the percentage of serious losses, 
the higher the class ratemaking tail factor that is applied to the serious losses. Again, recall Exhibits 8 
and 9, and how much higher the serious LDF-to-ultimate towered above the likely-to-develop LDF-
to-ultimate in the bar charts. A good portion of that phenomenon is due to the pro rata share of 
serious and non-serious losses in a state. States with lower percentages of serious losses relative to 
non-serious generally have a much higher serious tail factor applied, all else equal.  As you will see 
shortly, the new class ratemaking loss development methodology will modify that phenomenon of a 
highly leveraged tail factor. 

The tail factor under the new methodology starts with a similar formula to determine the 
class ratemaking 5th – ultimate LDF, referred to below as Class5U. The notation is analogous except 
the likely-to-develop (L) and the not-likely-to-develop (N) groupings are substituted for serious and 
non-serious. From an analysis of other states, initial indications are that the pro rata share for L and 
N is closer to 50% than for serious and non-serious.   

The previous methodology assumed that all loss development in the tail beyond 5th report is 
due to serious claims only. This implies that 100% of the tail loss dollars were applied to serious and 
0% applied to non-serious. NCCI is modifying this assumption to be that a percentage of tail 
development, y, will be applied to the N grouping dollars of loss and (1-y) will be applied to the L 
grouping dollars of loss.  This practicality allows a portion of tail development to be applied to the 
not-likely-to-develop losses. Thus, two new class ratemaking tail factors could be applied at 5th 
report, one for L and one for N. The formulas are as follows: 

 

Class5UL, I = [L$I + (1-y)*(L$I + NL$I)* (Fin5UI – 1.000)] / L$I.. (2.8)
Class5UN, I = [NL$I + y*(L$I + NL$I)* (Fin5UI – 1.000)] / NL$I. (2.9)

 

Where, 

L$I = two years of limited likely-to-develop “paid+case” indemnity loss dollars on-leveled and 
developed to 5th report for the state. 

NL$I = two years of limited not-likely-to-develop “paid+case” indemnity loss dollars on-leveled 
and developed to 5th report for the state. 

Class5ULL, I = a likely-to-develop 5th – ultimate indemnity (I) tail factor applied to likely-to-
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develop losses at 5th report for each class code. It is limited at state threshold T. 

Class5ULN, I = A not-likely-to-develop 5th – ultimate indemnity (I) tail factor applied to not-
likely-to-develop losses at 5th report for each class code. It is limited at state threshold T. 

Fin5UI = Limited (at T) statewide financial data 5th – ultimate tail factor for indemnity (I). 

y = percentage between 0% and 100% used to allocate a portion of tail development dollars to 
the not-likely-to-develop grouping. 

Note that the new methodology uses limited loss development dollars (all claims are limited 
at $500K at all report levels). The previous methodology only limited loss dollars at the latest report, 
while LDF were unlimited. The same exact approach is also used to determine a 5th – ultimate tail 
factor for medical losses, but is not shown here. Only the subscript would change from (I) to (M). 

As NCCI collects URE data out to a 10th report, y could vary in magnitude as the tail 
attachment moves out toward 10th report. For example, at 5th report, y may be a higher percentage 
than what y would be at 10th report. It is also a consideration worth noting that y could vary between 
indemnity and medical.   Based on very recent research observing actual WCSP loss development 
patterns through 7th report, NCCI is initially using a value of 20% for y for both indemnity and 
medical for all tail attachment points out to 10th report.  Thus, 80% of the total dollars of tail 
development will be assigned to the likely-to-develop loss triangle, and 20% of the dollars to the 
not-likely triangle. NCCI will revisit this assumption when more WCSP unit reports are available 
through 10th report. 

The formulas above may be written in a more general form to account for the various tail 
attachment points that may be used in the future. Let each tail attachment point be time t, t = 
5,6,7,8,9,10. Then the formulas above may be rewritten as follows: 

 

Class tUL, I = [L$I + (1-y)*(L$I + NL$I)* (Fin tUI – 1.000)] / L$I (2.10)

Class tUN, I = [NL$I + y*(L$I + NL$I)* (Fin tUI – 1.000)] / NL$I (2.11)

 

Where, 

L$I = two years of limited likely-to-develop “paid+case” indemnity loss dollars on-leveled and 
developed to tth report for the state. 
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NL$I = two years of limited not-likely-to-develop “paid+case” indemnity loss dollars on-leveled 
and developed to tth report for the state. 

Class tUL, I = A likely-to-develop tth – ultimate indemnity (I) tail factor applied to likely-to-
develop losses at tth report for each class code. It is limited at state threshold T. 

Class tUN, I = A not-likely-to-develop tth – ultimate indemnity (I) tail factor applied to not-likely-
to-develop losses at tth report for each class code. It is limited at state threshold T. 

Fin tUI = Limited (at T) statewide financial data tth – ultimate tail factor for indemnity (I). 

y = percentage between 0% and 100% used to allocate a portion of tail development dollars to 
the not-likely-to-develop grouping. 

t = time t representing the report level of WCSP data at which the attachment point for the class 
ratemaking tail is applied. t = 5,6,7,8,9,10 

One improvement in the revised tail factor is the distribution of losses between L and N are 
more evenly distributed than the previous serious and non-serious distribution. This should help 
temper the leverage on the LDF in the new methodology. The tail factor is an area that warrants 
continued research, and should improve as 10 reports of data are analyzed.  

2.4.5 Summary of the New Loss Development Proposal 

Table 1 summarizes all of the decisions that were researched, discussed, and made by NCCI 
up to this point in the paper.  It introduces the Part of Body Group A and Group B terminology to 
refer to parts of body that are assigned to the likely-to-develop (L) and the not-likely-to-develop 
groupings (N), respectively. POB Group A consists of claims that have a greater potential to 
develop upward over time such as injuries to the back, head, shoulders, trunk, and multiple body 
parts. POB Group B consists of all others. 

Under NCCI’s new loss development methodology, claim dollars will be assigned to one of 
four development categories (listed below). The assignment will be a function of three claim 
characteristics: (1) injury type, (2) part of body, and (3) claim status (open vs. closed). 

 Medical — Likely-to-develop  

 Medical — Not-Likely-to-Develop 

 Indemnity — Likely-to-Develop 

 Indemnity — Not-Likely-to-Develop 
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Table 1 

 
Injury Claim Part of LDF
Type Status Body Grouping

1st Report

Fatal Open Group A Not Likely
   " Open Group B Not Likely
   " Closed Group A Not Likely
   " Closed Group B Not Likely

Permanent Total (PT) Open Group A Likely
   " Open Group B Likely
   " Closed Group A Likely
   " Closed Group B Likely

Permanent Partial (PPD) Open Group A Likely
   " Open Group B Not Likely
   " Closed Group A Not Likely
   " Closed Group B Not Likely

Temporary Total (TT) Open Group A Likely
   " Open Group B Not Likely
   " Closed Group A Not Likely
   " Closed Group B Not Likely

Medical Only (MO) Open Group A Not Likely
   " Open Group B Not Likely
   " Closed Group A Not Likely
   " Closed Group B Not Likely  

 

At subsequent reports (2nd through 10th), as noted above, only changes in injury type will be 

monitored for the purpose of assigning claims to development grouping. The claim status (open vs. 

closed) and body part, both evaluated at 1st report,  will be used for the purpose of determining the 

development category, regardless of what is reported on a subsequent report. 

The term “arising” refers to claims for which there is no 1st report that are reported as of 2nd 

report or subsequent. For the purpose of assigning claims to a development category, these claims 

will be assumed to be open at 1st report. The body part will be based upon the initial report 

submitted to NCCI. The injury type will be monitored at all reports. 
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Note the new loss development methodology will significantly reduce, but not completely 

eliminate, instances of crossover. The following list provides a few common examples of how 

crossover may still occur under the new methodology in certain injury types: 

• Medical Only (MO) — MO claims in POB Group A, open at 1st report, which 

become any other injury type at a later report, will move from N to L.  Another 

example is a lost-time claim, open at 1 st report and in POB Group A, which closes as 

a medical only. This claim would move from L to N. 

• Temporary Total (TT) — Crossover would occur on TT claims that evolve into a PT 

or fatality at a later report that were originally categorized in the N grouping. 

• Permanent Partial (PP) — Crossover would occur on PP claims that evolve into a 

PT or fatality at a later report that were originally categorized in the N grouping. 

These examples represent the most common crossover examples. A few other less likely (no 

pun intended) cases could be conjured as well.  

Exhibits 23a through 23f illustrate the loss development pattern of the new loss 

development methodology for a “test” state.  Note this is a different state than the triangles 

illustrated in exhibit 1 for a “large” state.  The reader should be able to discern the differences in the 

loss development patterns and the magnitude and derivation of the tail factor. 

2.4.6 Advantages and Disadvantages of the New Loss Development Groupings 

The most important advantage the new loss development methodology provides is better, 
more predictive loss development factors. Expanding the triangles out to 10th report should also 
improve the predictive ability. Much crossover has been mitigated due to the elimination of the 
critical value, and the new data element combination of body part, injury type, and claim status has 
improved the LDF groupings. Most importantly, class equity should improve as the class codes with 
more head, back, trunk, multiple body, etc., types of injuries will be charged more than class codes 
with other less complex injuries, all else equal. Thus, loss costs should be more predictive in the 
future.  

The use of injured body part in conjunction with the open and closed claim status also adds 
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a practical sense of logic to it all that most regulators and insurance industry actuaries and non-
actuaries should readily understand. 

 About the only disadvantage the new methodology has is that as claims evolve over time, 
and change injury types, some crossover from one grouping to another can still occur on occasion. 

2.5 Lower Loss Limits, Expected Excess, and the New Seven Hazard Groups  

The previous class ratemaking methodology limited large claims for a class code at a loss limit 
equal to five times the state’s serious average cost per case. For the NCCI states, these limits ranged 
from $300,000 to about $1M during the 2006 filing season. A multi-claim occurrence was capped at 
twice the single claim limit.  The claims underlying the loss development factors were unlimited.  It 
should also be noted that the excess dollars removed from the individual class codes were 
distributed to the industry group to which the class code belonged.  Thus, the indicated losses used 
within the industry group differential calculations were put back on an unlimited basis by deriving an 
unlimited-to-limited ratio for each industry group. In summary, the previous class ratemaking 
methodology limited large claims on a class code basis and in most other aspects of the ratemaking, 
unlimited loss dollars were used.  

The new ratemaking methodology is changing much of that. The most noteworthy changes are 
as follows: 

1. Standardizing the single claim loss limit for class codes across NCCI states to be $500,000 
(and the multi-claim occurrence to be three times the single claim limit). 

2. Basing loss development factors on claims limited at $500,000. 

3. Use of a multiplicative factor based on excess ratios to estimate the expected losses excess of 
$500K using excess ratios from the new seven hazard group mapping. 

4. Removing the unlimited-to-limited ratio from the class and industry group differential 
calculations, and replacing it with expected excess. 

This section of the paper will discuss and summarize the analyses and reasoning underlying these 
decisions.  

2.5.1 Applying the Loss Limitations to Individual Claims 

In workers compensation ratemaking, losses are separately analyzed by type of benefit; namely, 
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indemnity and medical losses. NCCI uses proportional capping to allocate limited claim amounts. 
This method of capping large claims for class ratemaking remains similar under the new 
methodology.  The WCSP losses used in class ratemaking are “paid+case”. Limited loss amounts for 
claims above the threshold will be allocated to indemnity and medical in the proportion that their 
values contribute to the total unlimited value of the claim and the threshold. In order to understand 
the mechanics of how claims are limited, the following hypothetical illustrative example is included: 

Illustration 1: A $1.5M single claim has pierced the threshold on a “paid+case” basis; State 
threshold = $500K: 

 

 

 

 

 

 

In this situation, the resultant limited amounts are as follows: 

 

LIMITED LOSSES ($000s) Total 

Indemnity 100 

Medical 400 

Total 500 

 

In Illustration 1, the formula for limited “paid+case” amounts for indemnity and medical are: 

Limited Indemnity = (300 / 1,500) x 0.5M = 100. 

Limited Medical = (1,200 / 1,500) x 0.5M = 400. 

Note that the NCCI procedure for capping large claims in the financial data is different than for 
class ratemaking. The financial data procedure uses a “paid first-case reserve second” approach that 
uses proportional capping.  Although an illustration of the multi-claim occurrence capping is not 

UNLIMITED LOSSES ($000s) Paid Case Total 

Indemnity 100 200 300 

Medical 300 900 1,200 

Total 400 1,100 1,500 
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included here, proportional capping amongst the claims is applied. The threshold was changed to be 
three times the single claim limit mainly because the previous single claim limit (i.e., five times the 
state’s serious average cost per case) times two is about $1.5M on average across NCCI states.  With 
the change of the single claim limit to 0.5M, the choice of three times the single claim limit kept the 
multi-claim cap approximately the same as in the past. 

2.5.2 Application of the Excess Ratios 

Adjusted per claim excess ratios will be used in calculating unlimited ultimate losses from limited 
ultimate losses. Excess losses are defined as the sum of the excess portion of claims above a given 
per claim threshold. NCCI produces proposed excess ratios with each loss cost or rate filing.  

The excess ratio, XST, for a given threshold T, is defined as:  

 

XS T =   Expected Excess  Losses Above Threshold  T 

Expected Total Unlimited Losses 

(2.12)

 

The threshold T is proposed to be $500,000 in all states for class ratemaking claim limitations. 
The ratio of excess losses to total unlimited losses is at an ultimate value. The excess ratio applied is 
on a per claim basis and varies by state. This differs from an excess loss factor as excess loss factors 
are on a per occurrence basis, and also may include a provision for expenses. For a more detailed 
discussion of the methodology underlying NCCI excess ratios, see the Fall 2006 CAS Forum paper 
by Engl and Corro titled, “The 2004 NCCI Excess Loss Factors” [1]. 

The adjusted, per claim excess ratio is applied as a factor, 1/ (1 – XS500K), to limited (@500K) 
ultimate losses that have been developed, on-leveled, and trended to the midpoint of the proposed 
filing effective period. Similarly, the excess ratio applied has also been trended to the midpoint of the 
proposed filing effective period. Within each policy period in the experience period, the same factor 
1/ (1 – XS500K) is applied to both indemnity and medical losses, since the size-of-loss distributions 
are on a combined indemnity and medical basis.  

NCCI uses five policy periods as the experience period for each class code. Excess ratios are not 
adjusted when applied to different experience period years for purposes of calculating pure 
premiums for class ratemaking. Therefore, in a given filing, the same excess ratio factor is applied to 
each of the five years in the experience period. NCCI considered de-trending the threshold as is 
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done in the state’s overall indicated loss cost level change. By de-trending the threshold in the loss 
development history, the proportion of losses above the threshold is preserved.  But unlike the 
aggregate ratemaking, where thresholds are de-trended 20 years, and the impact of de-trending can 
be significant, the impact of de-trending across the five policy periods used in class ratemaking 
resulted in a negligible impact on class relativities.  Practically speaking, it would add a lot of 
complication to de-trend the five policy periods for little or no added value. For this reason, NCCI 
chose not to de-trend in its class ratemaking. 

For many years, the excess ratios were determined for each of the four hazard groups in each 
state: that is, hazard groups I, II, III, and IV.  The vast majority of classes were assigned to HG II 
and III. In 2006, NCCI filed a countrywide item-filing, B-1403, which was successfully approved in 
all NCCI states and adopted by other independent bureau states as well. Based upon an analysis of 
countrywide excess ratios by class code, an entirely new mapping of class codes to seven hazard 
groups was implemented in 2007. This item-filing is referred to as the NCCI Hazard Group 
Remapping. One of the advantages that the new mapping provides is a much more uniform 
distribution of class codes across the hazard groups. 

The seven new hazard groups are referred to as A, B, C, D, E, F, and G. Class codes having the 

highest excess ratios were mapped to G and may be considered the most hazardous classes. Class 

codes having the lowest excess ratios were mapped to hazard group A and may be considered the 

least hazardous classes.  As you will soon see, the new hazard groups will be used to provide an 

excellent refinement for use in the future class ratemaking. This is because excess ratios are now 

produced for every state for all seven hazard groups.  For a more detailed discussion of the 

methodology underlying the NCCI hazard group mapping, see the paper by NCCI staff titled, 

“NCCI’s 2007 Hazard Group Mapping” submitted for publication [2]. 

2.5.3 Simulation and Expected Excess 

The factor 1/ (1 – XS500K) was selected by NCCI for use in the new class ratemaking to 

derive expected unlimited ultimate losses by class code based on limited (@500K) ultimate losses. It 

was selected after reviewing results from 16 different potential capping and excess spreading 

alternatives analyzed using a Monte Carlo simulation technique. Some alternatives used expected 

excess while others used actual excess. Other alternatives capped individual claims at three different 
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loss limits: $300K, $500K, and $1.0M. One alternative used unlimited losses. Exhibit 14 illustrates all 

of the options considered and analyzed. 

The simulation approach of testing the alternatives was completed as follows: 

1. Five years of simulated losses were produced for every class code in two large states and two 

small states. 

2. The claim counts were based on actual national incidence rates for the class code. A Poisson 

distribution was assumed with lambda equal to the national incidence rate by injury type 

multiplied by actual payroll for the class in each state. 

3. The new excess ratio loss distributions by injury type by state (per Corro and Engl) were used 

for determining the average cost per case. In determining the state distributions, each class 

was scaled to the state’s average cost per case adjusted for hazard group. 

4. One hundred different simulation trials by class code were produced. Each simulation 

generates five years of unlimited loss data for the given class. 

5. The simulated claims’ loss data was then modified by the specific capping alternative to 

provide modified expected unlimited losses. 

6. The performance of each alternative was assessed using four overall metrics. Two of the 

metrics measured loss cost adequacy and two measured loss cost stability across the 100 

simulation trials. 

The following are the four metrics that were used to assess the success of the various alternatives 

for limiting claims and allocating the excess.  

 
Adequacy Metric 1:   Desired range [-0.25, +0.25] 
  

 
 
 
 

(2.13)

 
μ
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Where,  
 
L n = 5 years of simulated losses for the nth trial whereby n = [1, 2, …100] 
 

L n
(k) = 5 years of simulated losses for the nth trial whereby the losses were capped as in 

alternative k for limiting losses and allocating the excess (see Exhibit 14 for alternatives). 

 

μ = hypothetical mean expected losses for a class code based on simulated frequency and actual 

severity times actual class payroll for that state. 

 
)(k

L  = the average losses for a specific class code over N simulations for alternative k.  

 

Mathematically, it equals: 

 

 
 
 

(2.14) 
 
 

 
Adequacy Metric 2: Desired range [0, +0.50] 
 
 

 
 
 
 

(2.15)

 
 

This metric differs from the first in that the high and low values cannot cancel out due to the 

absolute value. 

 
Stability Metric 1: Desired range [0, +0.10] 
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(2.16)

 
 

Where,  
 
CV (k) c  = the coefficient of variation for class code c under alternative k. 

 
)(

,
k

cnL = 5 years of simulated losses for the nth trial for class c whereby the losses were capped 

as in alternative k for limiting losses and allocating the excess. 

 
)(k

L c = average of simulated losses for alternative k over all simulations 

 

Thus, stability metric 1 is the coefficient of variation for a specific class under the conditions 

of alternative k for capping claims and allocating the excess. 

 

Stability Metric 2:  Desired range [0, +0.50] 
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)(
,

k
cnL = 5 years of simulated losses for the nth trial for class c whereby the losses were capped 

as in alternative k for limiting losses and allocating the excess. 

 
)(
,

k
cmL = 5 years of simulated losses for the mth trial for class c whereby the losses were capped 

as in alternative k for limiting losses and allocating the excess. 

 

μ c = hypothetical mean expected losses for a class code based on simulated frequency and 

actual severity times actual class payroll for that state. 

 

For the performance measurement of stability metric 2, the average absolute change in losses for a 

class is computed across all combinations of the 100 simulations for each alternative k.  

2.5.4 Choosing the Final Alternative 

Exhibits 15a) and 15b) were included to provide an illustrative example of the type of 

exhibits that were generated and observed for all four of the metrics for each state studied. Several 

statistics were analyzed such as minimum and maximum values, the classes which comprised these 

outliers, and various different percentile levels such as the 90th, 10th, and the median.  It was noted 

which capping and excess-spreading alternatives were succeeding the most and which ones were not 

succeeding. For example, on Exhibit 14a) alternative k = 0, which uses unlimited losses, performed 

most poorly as measured by the stability metric 1. Alternatives 11 and 12, which use expected 

excess, performed the best. Exhibits similar to 15b) were produced for each alternative so that we 

understood how many classes were changing within an industry group and by how much.  This 

exhibit shows a drill down on Alternative 12 for adequacy metric 1.  Outlier classes were sometimes 

reviewed, and often a class that performed poorly was a very small volume class. Typically, the 

outlier class had no losses for almost all of the simulation trials but a few. This is a real-life challenge 

that the various credibility formulae attempt to address. For the sake of brevity, the author has only 

chosen but a few examples simply to illustrate for the reader the type of analyses that were 

completed to select between alternatives for capping and allocating excess. 
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The final two loss limits NCCI considered were $300,000 and $500,000. The $1M loss limit 

was eliminated based on class stability considerations. It would have increased the loss limit 

significantly in most states. The expected excess at $300,000 was very significant upon reviewing the 

results of indicated pure premiums by class code in states with high excess ratios.  The choice of the 

$500,000 limit provided a nice balance between allowing a significant amount of actual loss 

experience of the class code into the pure premium calculation combined with less reliance on the 

expected excess provision. It was significantly lower than the loss limit used today, namely that 

based on five times the state serious average cost per case (SACC). Test results also revealed that 

actual excess losses were closer to expected excess losses at $500,000 than the lower loss limit.  It 

also aligned well with the fact that the 95th percentile of all countrywide large claims over a five year 

period was 2.5 times the SACC, one-half of the previous loss limitation.  NCCI decided to target the 

95th percentile, or approximately $500,000. Another practical consideration was that the loss limit 

coincides with the loss limit on the NCCI Large Loss Call #31.  The choice of loss limit will be 

reviewed in the future upon review of the results of the new methodology, and may be updated for 

inflation periodically.    

After reviewing the results of indicated pure premiums derived under the best performing 

alternatives for several states, Alternative 11 was chosen by NCCI to be the methodology for 

allocating the excess losses (over $500K) on a class code basis. The main reasons for this decision 

were: 

1. Alternative 11 performed very well on the four metrics. 

2. The use of the multiplicative excess factor, 1/ (1 – XS500K), is consistent with the 

methodology used for determining the overall statewide indicated loss cost change. 

3. Given two class codes of similar size within the same hazard group in a state, the 

class with greater primary losses would receive a greater proportional share of excess 

losses under alternative 11. 

4. After application of the three-way credibility procedure, alternative 11 produced very 

similar results compared to the other leading alternatives. 
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One final adjustment was made to the multiplicative excess factor methodology. Recall that 

the NCCI excess ratios are produced on a combined indemnity and medical basis. This implies that 

the excess split of losses into indemnity and medical under Alternative 11 is equivalent to the 

primary split of indemnity and medical. As varying amounts of credibility will be applied separately 

for indemnity and medical in the new class ratemaking methodology, a refinement was needed to 

account for the fact that the majority of excess loss in workers compensation is due to the medical 

component.  

One more analysis was prepared to study this and the result is shown in Exhibit 16.  This 

analysis shows only claims excess of $500,000 and the indemnity and medical split of primary and 

excess dollars. Note the results show an approximate split of the excess dollars to be around 71% 

medical. Similar results were derived using WCSP data.  

NCCI decided it was desirable to apply the 1/ (1 – XS500K) factor to indemnity and medical 

primary losses by class code initially to preserve the correct total excess dollar amount. An 

adjustment is then made to transfer 40% of the total excess dollars produced within the indemnity 

pure premium component to the medical pure premium component. The practical reasons for 

transferring 40% of the indemnity excess dollars include the following considerations: 

• It preserves state and class differences as it is a function of the actual primary 

indemnity and medical split. 

• It achieves the desired higher proportion of medical excess (i.e., close to the 70% 

figure across all states combined). 

• It never results in a medical excess provision percentage that falls below the medical 

primary provision percentage for any class or state. 

• It mirrors the reality that more of the excess dollars are medical.  
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2.5.5 Implications on the Industry Group (IG) Differential Methodology 

NCCI is maintaining its IG differential methodology, and it will look very similar to how it is done 

under the current methodology. The value that the IG differential calculation adds to class 

ratemaking is: 

• It reflects wage trend differences by industry group. 

• The industry group rate change is applied to determine the present-on-rate-level pure 

premiums, which are important for low credibility class codes. 

• It was the point where losses were brought to an unlimited basis in the previous 

methodology. 

 The majority of the calculation will look the same as before. Oversimplified, the IG 

differential is a ratio of five years of indicated losses from WCSP data to five years of expected 

losses, both brought to the proposed level. As a result of the methodology changes discussed to this 

point, a few changes had to be addressed within the calculations. They were: 

1. The unlimited-to-limited ratio by IG was removed.  

2. The new loss development groupings were applied to bring indicated losses to an ultimate 

level limited at $500K. 

3. The ultimate losses limited at $500K will be brought to an expected unlimited level via the 

multiplicative excess factor and transfer of 40% of the indemnity excess to medical. 

4. The full credibility standard was changed to 12,000 lost-time cases. It previously ranged from 

7,000 to 11,000 by IG. This will be discussed further in the credibility section of the paper.   

An example of the IG differential exhibit is found in Appendix B, which displays the calculation of a 

loss cost for a class code under the new methodology. 

2.6 New Credibility Standards 

It was mentioned early in the paper that in 1993 NCCI modified the credibility formulas 
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used in the class ratemaking. This is because changes were made to the experience period and 

number of industry groups, both going from three to five. The past formulas were derived using a 

limited fluctuation approach. The full approach is quite involved and a full expose may be found in 

NCCI Actuarial Committee Agenda, dated June 7, 1993 (ACT-93-7) [3]. This paper will present a 

very high-level overview of the past approach, and the challenges NCCI faced updating the 

credibility standards this time around. 

The new class ratemaking approach is adding stabilizing features that, all else equal, suggest 

the full credibility standards should be modified to provide more credibility on pure premiums. 

Those features include: 

• a lower loss limit of $500K should reduce class fluctuations  

• less volatile loss development factors due to reduced crossover and the introduction of a 

$500K loss limit 

• less variance in excess losses by using expected excess factors 

There was also a change within the new class ratemaking that may suggest reduced credibility 

on pure premiums: 

• Eliminating the serious and non-serious pure premiums and creating a more 

heterogeneous indemnity pure premium. 

The challenge NCCI faced was how to modify the full credibility standards, and by how 

much, for the changes being made without having the benefit of being able to observe the results of 

the new methodology over a substantial period of time. 

2.6.1 Background of Previous Class Credibility Formulae 

The previous methodology determined full credibility standards in 1993 based on the actual 

variability of indicated pure premiums over five successive rate revisions as measured by a 
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coefficient of variation (CV). The rate revisions were all brought to a common level of the latest 

revision. An average of the expected number of claims (N) for each class over the five revisions was 

computed by dividing its expected losses by its average cost per case in that revision.   

Next, the expected number of claims by class was plotted on the x-axis versus the CV on 

the y-axis and regression statistics observed for several states.  At the end, the following model was 

used:   

ln CV = a ln N + b (2.18)

 

Where, 

CV = coefficient of variation of indicated pure premiums over five rate revisions 

N = expected number of claims 

Nf = full credibility standard 

Rearranging the formula and exponentiating, the partial credibility z, assigned to the 

indicated pure premium in order to limit variability to an acceptable amount is: 

Z = CV acceptable/CV actual = (N f
 a e b / N a e b) = [N/ N f] –a (2.19)

The acceptable value for the CV was .10, chosen so as to limit the fluctuation of the pure 

premiums to within +/- 25% (NCCI swing limits) 95% of the time. The exponent, a, was computed 

as the slope of the regression line, and was determined to be approximately -0.4 using 95% 

confidence intervals. Thus, the final formula used today for all NCCI states is:  

Z = [N/ N f] 0.4 (2.20)

The table below provides the full credibility standards previously in effect for the state class 

indicated pure premiums.   
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Table 1: Indicated Pure Premiums 

Partial Pure Premium Full Credibility Standard N f 

Serious 125 

Non-Serious 350 

Medical 750 

The value Nf is applied to the average cost per case for each partial pure premium to derive a 

full credibility standard (FCS) of expected losses used across all class codes in each state’s loss cost 

filing.  The numerator of the class credibility formula is the class expected losses determined by the 

payroll for a class times its underlying pure premium.  One unusual nuance was that the medical 

partial pure premium FCS used the non-serious indemnity average cost per case. This is being 

changed, as will soon be described in this paper.  

2.6.3 Class Credibility Changes for the State Indicated Pure Premium 

The new methodology is eliminating the critical value which helped determine the serious 

and non-serious partial pure premiums. The new methodology is reducing the number of pure 

premiums to two: indemnity and medical.  So the question was raised as to what credibility to assign 

to each, given the observed results of the new methodology were not available.   

As mentioned earlier, there were stabilizing changes being put in place for the new 

ratemaking, and a countering influence from the added heterogeneity of the indemnity pure 

premium. Thus, the decision was made to compute new credibility standards that maintained 

approximately the same credibility as was applied in the previous ratemaking.  Longer term, after 

five years of the new methodology can be observed, new regressions of the fluctuations of indicated 

pure premiums can be calculated.  
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NCCI ran the same regression methodology for six states of various sizes using more recent 

data under the previous ratemaking methodology.  But a new twist was added. Revised indicated full 

credibility standards were derived for serious, non-serious, and for the new combined indemnity 

pure premium. Over time, the indicated FCS was significantly higher using the recent data.  See 

Exhibit 17 for the results. NCCI actuaries then assumed that the stabilizing forces of the new 

methodology would offset the need to move to the higher indicated FCS of the regressions. From 

Exhibit 17, new indicated standards were derived and a ratio of current to indicated was computed.  

For indemnity, that ratio was 61%, which was then applied to the indication of 1,397 to derive 850 

after rounding. For medical, the ratio of 56% was applied to 719 to derive a rounded value of 400. 

Table 2: Indicated Pure Premiums-New Methodology 

Partial Pure Premium New Full Credibility Standard N f 

Indemnity 850 

Medical 400 

Note that Nf will still be multiplied by the state average cost per case to determine expected 

losses. However, for medical, the medical average cost per case will be used in lieu of the non-

serious average cost per case. This more appropriately indexes the medical FCS over time. The 

medical average cost per case is computed using total medical dollars of loss (including medical-only 

losses) divided by lost-time claim counts, similar to the calculations NCCI computes in most other 

areas. 

The regressions indicated that the 0.4 power rule is still appropriate. The remaining 

credibility decisions include maintaining the 0.4 power rule shown earlier and the three-way 

credibility weighting procedure between the indicated, national, and present-on-rate-level pure 

premiums. In no case is the national credibility permitted to exceed 50% of the complement of the 

state credibility. 
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2.6.4 Class Credibility Changes for the National Pure Premium 

The credibility decisions for national pure premiums followed a very similar path. As 

background, the FCS for national pure premiums, also derived in 1993, use the actual number of 

lost-time claims, not expected claims and expected losses. 

Without going through more detailed calculations, the table below provides the full 

credibility standards previously in effect for the national pure premiums.   

Table 3: National Pure Premiums 

Partial Pure Premium Full Credibility Standard N f 

Actual # of Lost-Time Claims 

Serious 175 

Non-Serious 500 

Medical 1,000 

 

Table 4: National Pure Premiums: New Methodology 

Partial Pure Premium Full Credibility Standard N f 

Actual # of Lost-Time Claims 

Indemnity 1,150 

Medical 1,000 

Revised national pure premium full credibility standards were derived for serious, non-

serious, and a combined indemnity pure premium. The indicated FCS for the national using the 
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regressions was significantly higher using the recent data, just as with the state indicated pure 

premium.  See Exhibit 18 for the results. Similarly, NCCI actuaries then assumed that the stabilizing 

forces of the new methodology would offset the need to move to the higher indicated FCS of the 

regressions. From Exhibit 18, the new indicated national standards were derived and a ratio of 

current to indicated was computed.  For indemnity, that ratio was 54%, which was then applied to 

the indication of 2,127 to derive 1,150 after rounding. For medical, the ratio of 65% was applied to 

1548 to derive a rounded value of 1,000. 

The final step was to ensure that on average, a state’s overall credibility was remaining similar 

in magnitude after the changes to the new FCS. Exhibits 19 and 20 show the average credibility 

across the six states tested for indemnity and medical, respectively. The top 50 classes were also 

excluded to ensure the credibility of small volume classes was not changing much as well. These 

results showed that both state indicated pure premium and national pure premium credibility were 

approximately the same, which was the objective. 

2.6.5 Industry Group Credibility Changes 

The full credibility standard was changed to 12,000 lost-time cases in the new methodology, 
uniform for all industry groups. It previously ranged from 7,000 to 11,000 by IG. The previous FCS 
was based on the following square root rule where the probability, p, of the IG differential being 
within k= +/-.075 was 95%: 

 
Z = Min [(N i / N f, i) 0.5, 100%] (2.21)

Where, 

 Z i , s = the credibility assigned to industry group i within state s  

N i = the actual number of lost-time claims for industry group i 

N f,  i = full credibility standard for industry group i 
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Much of the theory underlying the square root rule is described in Gary Venter’s “Limited 
Fluctuations” approach, found in the “Credibility” chapter of Foundations of Casualty Actuarial Science 
[4]. The previous full credibility standards are in the table below. 

  Table 5: Previous FCS for IG Differentials 

Industry Group Full Credibility Standard N f 

Manufacturing 10,000 

Contracting 8,000 

Office & Clerical 7,000 

Goods & Services 9,000 

Miscellaneous 11,000 

To the extent that an industry group’s number of lost-time claims was less than the FCS, a 
value for zi,s is computed using the square root rule, whereby 0<zi,s<1. The complement of 
credibility, 1-zi,s, is assigned unity, or no change. In practice, the IG differential is judgmentally 
tempered to be between [.90, 1.10].   

The new FCS of 12,000 was based on an analysis of five successive years of five IG 

differential fluctuations across 36 states.  Exhibit 21 displays the results of applying various values of 

p and k, and the FCS that was indicated within each combination. The final selection by NCCI was 

to continue to use the same p and k (i.e., 95% and k=+/-.075). This resulted in 12,000 lost-time 

claims. Although this put a little less weight on the state’s IG differentials than the past methodology 

did, this was deemed appropriate given the volatility observed within an industry group in successive 

filings in the sample of data. 
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2.7 The Impact of the Methodology Changes 

One of the last steps in the process was to test the results of two states, a large and a small 
state, to determine the impact that all of the methodology changes had on class loss costs.  Each 
major change was measured individually and naturally, the final results were observed in a 
cumulative manner.  The results were determined by class and by industry group. The targeted 
aggregate statewide overall change was the same for both the previous and new methodologies. The 
national and present on-rate-level pure premiums were based on the previous methodology. Only 
the indicated pure premiums reflected the new methodology because at this time, it was not possible 
to construct national pure premiums using the new methodology. 

Exhibit 22a illustrates the observed results for the large state, which has many class codes 
receiving 100% credibility for the indicated pure premium.  Focus on the two industry groups 
contracting and office and clerical. Key observations include: 

• Column (2) of Exhibit 22a shows the new loss development methodology produced 
lower LDFs for classes that have a propensity to have serious claims, such as 
contractors, than for office and clerical. 

• The expected excess provision in column (3) offsets the loss development to a degree by 
applying a higher multiplicative expected excess provision to contractors than the 
provision applied to office and clerical. 

• The count of class codes in Exhibit 22b shows that the majority of all classes in the large 
state changed between +/- 7.5% from the previous to new methodologies. 

• The change in credibility methodology had a very small impact. 

These were only a few of many other results which were explored.  Other analyses included 

a review of the change in indicated pure premiums only, which were more volatile than final loss 

costs, the imposition of swing limits, and a drill down on class codes with larger changes than 

normal. NCCI plans on testing more states in the future prior to implementation. 
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2.8 The Pros and Cons of the Methodology Changes 

Implementing large modifications to class ratemaking brings with it many positive 
enhancements including more stability from year to year on a class code level.  Long-term loss cost 
adequacy should also be improved by some of the innovations leveraged from the expected excess 
from the new seven hazard group mapping and the new loss development methodology.  The use of 
new data elements like injured body part helps to invigorate the methodologies. 

The cons to making such a large number of changes will be the challenge of explaining the 

new methodology to regulatory entities, and obtaining their buy-in, as the loss costs underlying the 

new methodology, although very much improved, may generate unpalatable premium changes in the 

year of implementation for certain regulators and the employers within their jurisdictions. 

2.9 Possible Future Enhancements to NCCI Class Ratemaking 

The credibility formulas are a ripe area for further research. Once several rate revisions have 

been observed under the new methodology, much more work can be done to derive new standards 

and revisit the three-way credibility formula.  Other areas include revisiting the body part mappings 

after NCCI collects 10 reports of WCSP data, as well as the tail factor. Other areas that will need 

continuous monitoring over time include the loss limit, and the transfer of a percentage of excess 

dollars from indemnity to medical, and the groupings of likely-to-develop and not- likely-to-develop.  

Although the analysis is not presented in this paper, the potential use of allocated loss 

adjustment expense (defense and cost containment expense) was explored thoroughly.  The 

observed result was that the value that it would add to class relativities was minimal relative to issues 

its inclusion may create, particularly with experience rating modifier calculations. 

3. CONCLUSIONS 

This paper documents several important changes that are being implemented in the class 
ratemaking process used to determine workers compensation loss cost and rate changes by class.  
The changes NCCI is implementing support the long-term goals of adequacy and stability of loss 
costs and rates, and help to consistently estimate class relativities from state to state in the 
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ratemaking methodology.  

This paper also serves to provide an illustration of the derivation of a loss cost for a class code in 
workers compensation using NCCI’ s new methodology.  
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Abbreviations and notations 

 
AY — accident year 
C — refers to a claim closed at 1st report 
CAS — Casualty Actuarial Society 
Class tUL, I = A likely-to-develop tth – ultimate 

indemnity (I) tail factor applied to likely-to-develop 
losses at tth report for each class code. It is limited 
at state threshold T. 

Class tUN, I = A not-likely-to-develop tth – ultimate 
indemnity (I) tail factor applied to not-likely-to-
develop losses at tth report for each class code. It is 
limited at state threshold T. 

CVc
(k) — the coefficient of variation for class c under 
alternative (k) 

CV — coefficient of variation of indicated pure 
premiums based upon five successive rate revisions 

DSR — Designated Statistical Reporting level of NCCI 
FCS — full credibility standard 
Fa — claims reported within the fatal injury type 
Fin tUI = Limited (at T) statewide financial data tth – 

ultimate tail factor for indemnity (I) 
HG — hazard group 
IG — industry group 
k — acceptable tolerance around a mean value 
L — reference to likely-to-develop grouping 
LC — “likely” body part and claim closed at 1st report 
LDF — loss development factors 
LO — “likely” body part and claim open at 1st report 
L$I = two years of limited likely-to-develop 

“paid+case” indemnity loss dollars on-leveled and 
developed to tth report for the state 

L n = five years of simulated losses for the nth trial 
whereby n = [1, 2, …, 100] 

)(k
L  = the average losses for a specific class code over 

N simulations for alternative k 
)(k

L c = the average of simulated losses for alternative 
k over all simulations 

L n, (k) — five years of simulated losses for the nth trial 
for class c whereby the losses were capped as in 
alternative k 

Lm,(k)
c — five years of simulated losses for the mth trial 

for class c whereby the losses were capped as in 
alternative k. 

M — $millions 
MO — claims reported within the medical-only injury 

type 
N = the expected number of lost-time claims for a 

class 
Nf = full credibility standard 
N f, i = full credibility standard for industry group i 
Ni = the actual number of lost-time claims for industry 

group i 
N — reference to the not-likely-to-develop grouping in 

terms of loss development. 
NC — “not-likely” body part and claim closed at 1st 

report 
NCCI — National Council on Compensation 

Insurance, Inc. 
NL$I = two years of limited not-likely-to-develop 

“paid+case” indemnity loss dollars on-leveled and 
developed to tth report for the state 

NO — “not-likely” body part and claim open at 1st 
report 

NS$ I = two years of limited “paid+case” non-serious 
indemnity loss dollars on-leveled and developed to 
5th report for the state 
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O — refers to a claim open at 1st report 
p — probability 
POB — the injured part of body as reported on the 

claim 
POB Group A — claims with a greater potential to 

develop upward 
POB Group B — claims with less potential to develop 

upward 
PP — claims reported within the permanent partial 

injury type 
PT — claims reported within the permanent total 

injury type 
PY — policy year 
SACC — state serious average cost per case 
SER$I = two years of limited “paid+case” serious 

indemnity loss dollars on-leveled and developed to 
the 5th report for the state 

t = time t representing the report level of WCSP data at 
which the attachment point for the class ratemaking 
tail is applied. t = 5,6,7,8,9,10 

T — dollar threshold for capping large claims 
TT —claims reported within the temporary total injury 

type 
μ = hypothetical mean expected losses for a class code 

based on simulated frequency and severity times 
actual class payroll for that state 

URE — Unit Report Expansion 
WCSP — NCCI’s Workers Compensation Statistical 

Plan 
XST — Per Claim adjusted excess ratio at threshold T 
y = percentage between 0% and 100% used to allocate 

a portion of tail development dollars to the not-
likely-to-develop grouping 

z — partial credibility assigned to a pure premium 
Z i , s = the credibility assigned to industry group i 

within state s 
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UNLIMITED INDEMNITY LOSS   Exhibit 1a
DEVELOPMENT
Serious Large State

1st Report Start: 1/1/2003
1st Report End: 12/31/2003

PY Data 1st Report 2nd Report 3rd Report 4th Report 5th Report
1/98-12/98 460,401,442 535,321,008 574,106,684
1/99-12/99 340,191,451 489,175,745 560,465,442 592,806,690
1/00-12/00 141,410,721 312,882,740 450,176,823 526,656,041

1/1-12/1 128,481,157 295,773,844 438,063,233
1/2-12/2 108,611,922 260,153,546
1/3-12/3 105,915,019

Link Ratios 1:2 2:3 3:4 4:5
1/98-12/98 1.163 1.072
1/99-12/99 1.438 1.146 1.058
1/00-12/00 2.213 1.439 1.170

1/1-12/1 2.302 1.481
1/2-12/2 2.395

AVERAGE DEV. 1:2 2:3 3:4 4:5
2 Year Averages 2.349 1.460 1.158 1.065

2 YR. DEV. TO ULT. 1:U 2:U 3:U 4:U 5:U
Unadjusted 5.082 2.164 1.482 1.280 1.202

UNLIMITED INDEMNITY LOSS
DEVELOPMENT
Non-Serious Large State

1st Report Start: 1/1/2003
1st Report End: 12/31/2003

PY Data 1st Report 2nd Report 3rd Report 4th Report 5th Report
1/98-12/98 437,508,261 432,646,920 431,589,463
1/99-12/99 507,462,094 503,838,453 499,819,176 498,146,055
1/00-12/00 513,724,388 580,792,681 577,827,036 573,577,900

1/1-12/1 491,994,692 545,990,644 542,748,392
1/2-12/2 484,992,408 535,107,606
1/3-12/3 454,969,833

Link Ratios 1:2 2:3 3:4 4:5
1/98-12/98 0.989 0.998
1/99-12/99 0.993 0.992 0.997
1/00-12/00 1.131 0.995 0.993

1/1-12/1 1.110 0.994
1/2-12/2 1.103

AVERAGE DEV. 1:2 2:3 3:4 4:5
2 Year Averages 1.107 0.995 0.993 0.998

2 YR. DEV. TO ULT. 1:U 2:U 3:U 4:U 5:U
Unadjusted 1.092 0.986 0.991 0.998 1.000

Source:  NCCI WCSP Data
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SERIOUS DEVELOPMENT Exhibit 1b
TO ULTIMATE Large State
Unlimited Indemnity
(using 2-year average development)

(1) (2) (3) (4)
Modified

FIRST REPOR Incurred Development Amendment Losses
1/3-12/3 Losses 1:5 Factor (1)x((2)x(3))
Fatal 13,262,549 4.228 1.098 61,564,752
Permanent To 22,327,493 4.228 0.752 70,979,100
Major 70,324,977 4.228 0.907 269,696,287
Minor 135,337,672 1.092 0.907 133,984,295
Temporary To 319,632,161 1.092 0.983 342,965,309
Medical Only
Contract Medical

(5) (6) (7) (8)
Modified

SECOND REP Incurred Development Amendment Losses
1/2-12/2 Losses 2:5 Factor (5)x((6)x(7))
Fatal 11,800,628 1.800 1.258 26,716,622
Permanent To 57,888,155 1.800 0.569 59,277,471
Major 190,464,763 1.800 0.807 276,745,301
Minor 182,412,684 0.986 0.807 145,200,496
Temporary To 352,694,922 0.986 0.960 334,002,091
Medical Only
Contract Medical

CALCULATION OF SERIOUS FIFTH-TO-ULTIMATE
(9) Combined Serious Losses 764,979,533
(10) Combined Non-Serious Losses 956,152,191
(11) Combined Total Losses 1,721,131,724

(12) Financial Data Fifth-to-Ultimate Development Factors 1.090

(13) Fifth-to-Ultimate Loss Development 154,901,855
(13) = ((12)-1)x(11)

(14) Fifth-to-Ultimate Serious Loss Development Factors 1.202
(14) = ((9)+(13))/(9)

Source:  NCCI WCSP Data

Class Ratemaking for Workers Compensation:  NCCI’s New Methodology

Casualty Actuarial Society E-Forum, Winter 2009 94



Exhibit 1c
UNLIMITED MEDICAL LOSS
DEVELOPMENT
Total Medical Large State

1st Report Start: 1/1/2003
1st Report End: 12/31/2003

PY Data 1st Report 2nd Report 3rd Report 4th Report 5th Report
1/98-12/98 1,074,507,205 1,121,412,973 1,151,169,235
1/99-12/99 1,079,216,508 1,170,231,395 1,227,727,033 1,264,629,064
1/00-12/00 970,315,928 1,161,418,120 1,243,492,848 1,303,639,595
1/1-12/1 977,360,304 1,142,236,135 1,243,998,714
1/2-12/2 1,016,625,606 1,187,960,564
1/3-12/3 1,037,743,388

Link Ratios 1:2 2:3 3:4 4:5
1/98-12/98 1.044 1.027
1/99-12/99 1.084 1.049 1.030
1/00-12/00 1.197 1.071 1.048

1/1-12/1 1.169 1.089
1/2-12/2 1.169

AVERAGE DEV. 1:2 2:3 3:4 4:5
2 Year Averages 1.169 1.080 1.049 1.029

Serious Development for 
Ratemaking 1:U 2:U 3:U 4:U 5:U

2-Year Unadjusted 3.431 2.935 2.718 2.592 2.519

   Serious = Total Medical development to 5th report x Serious Medical 5th to Ultimate Tail Factor

NonSerious Development for 
Ratemaking 1:U 2:U 3:U 4:U 5:U

2-Year Unadjusted 1.362 1.165 1.079 1.029 1.000

   Non-Serious = Total Medical development to 5th report

Source:  NCCI WCSP Data
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Exhibit 1d
SERIOUS DEVELOPMENT
TO ULTIMATE
Unlimited Medical Large State
(using 2-year average development)

(1) (2) (3) (4)
Modified

FIRST REPORT Incurred Development Amendment Losses
1/3-12/3 Losses 1:5 Factor (1)x((2)x(3))
Fatal 3,769,846 1.362 1.008 5,175,999
Permanent Total 56,418,886 1.362 1.008 77,463,130
Major 92,132,869 1.362 1.008 126,498,429
Minor 202,853,463 1.362 1.008 278,517,805
Temporary Total 520,564,524 1.362 1.008 714,735,091
Medical Only 161,960,455 1.362 1.008 222,371,705
Contract Medical 43,345 1.362 1.008 59,513

(5) (6) (7) (8)
Modified

SECOND REPORT Incurred Development Amendment Losses
1/2-12/2 Losses 2:5 Factor (5)x((6)x(7))
Fatal 4,270,256 1.165 0.973 4,842,470
Permanent Total 91,136,323 1.165 0.973 103,348,590
Major 185,339,531 1.165 0.973 210,175,028
Minor 248,061,494 1.165 0.973 281,301,734
Temporary Total 507,060,323 1.165 0.973 575,006,406
Medical Only 152,090,873 1.165 0.973 172,471,050
Contract Medical 1,764 1.165 0.973 2,000

CALCULATION OF SERIOUS FIFTH-TO-ULTIMATE
(9) Combined Serious Losses 527,503,646
(10) Combined Non-Serious Losses 2,244,465,304
(11) Combined Total Losses 2,771,968,950

(12) Financial Data Fifth-to-Ultimate Development Factors 1.289

(13) Fifth-to-Ultimate Loss Development 801,099,027
(13) = ((12)-1)x(11)

(14) Fifth-to-Ultimate Serious Loss Development Factors 2.519
(14) = ((9)+(13))/(9)

Source:  NCCI WCSP Data
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Exhibit 2

(1) (2) (3) (4) (5)
(2)/(1) Link Ratio

Status of Claim Status of Claim Indemnity $ Indemnity $ Indemnity Based on Status Link Ratio
@ 1st @ 4th @ 1st @ 4th Link Ratio @ 1st Incl. Crossover
Major Major 613,981,619 820,980,453 1.337 2.033 *
Major minor 149,179,971 60,947,235 0.409
minor Major 207,820,368 730,279,392 3.514
minor minor 1,186,650,173 1,137,543,165 0.959 0.859 **

(1) (2) (3) (4) (5)
(2)/(1) Link Ratio

Status of Claim Status of Claim Medical $ Medical $ Medical Based on Status Link Ratio
@ 1st @ 4th @ 1st @ 4th Link Ratio @ 1st Incl. Crossover
Major Major 420,359,014 500,436,333 1.190 1.743
Major minor 92,457,889 63,417,464 0.686
minor Major 211,613,060 393,182,703 1.858
minor minor 1,154,460,758 1,074,742,398 0.931 0.833

* 2.033=(820,980,453+730,279,392)/(613,981,619+149,179,971)
** 0.859=(60,947,235+1,137,543,165)/(207,820,368+1,186,650,173)

Range of Critical Values across NCCI states = [$20K, $90K]

1.100

} 1.075

}
}

1.156

1.339

}

Illustration of Critical Value "Crossover"

Policy Year 1997
Countrywide - NCCI States

Permanent Partial Claims Only

Source:  NCCI WCSP Data
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Exhibit 3

Source:  NCCI WCSP Data
(##) - Part of Body code

Observed  Average Dollars of Loss Development Per Case
Permanent Partial Claims Only

Policy Year 1997 - Countrywide - NCCI States
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Exhibit 4a

Injured Body Part (code) Cases
% Open @ 
5th Report

Artificial appliance (64) 4 0.0%
Finger (36) 14,638 3.6%
Thumb (37) 3,427 4.0%
Teeth (16) 234 4.7%
Toes (57) 975 5.1%
Trachea (26) 29 6.9%
Great Toe (58) 108 7.4%
Abdomen (61) 640 8.0%
Hand (35) 9,314 8.3%
Mouth (17) 214 8.9%
Low Arm (33) 4,502 9.5%
Upper Arm (31) 11,259 9.8%
Wrist (34) 12,583 9.9%
Head soft tissue (18) 1,009 10.2%
Foot (56) 5,073 10.3%
Knee (53) 20,363 10.5%
Ankle (55) 5,680 10.5%
Spine (45) 299 10.7%
Nose (15) 265 10.9%
Upper Leg (52) 797 11.0%
Facial Bones (19) 344 11.0%
Pelvis (46) 1,072 11.2%
Elbow (32) 4,095 11.7%
Multiple Upper extremity (30) 5,123 12.1%
Lower Leg (54) 3,787 13.0%
Chest (44) 1,245 13.3%
Ear (13) 939 13.4%
Wrist & Hand (39) 778 14.0%
Neck soft tissue (25) 798 14.0%
Shoulder (38) 4,843 14.0%
Eye (14) 1,240 14.5%
Lower Back (42) 32,287 15.6%
Skull (11) 862 15.7%
Multiple Low extremity (50) 1,914 15.8%
Spine (63) 150 16.0%
Internal organs (48) 930 16.2%
Buttocks (62) 79 16.5%
Multiple Head (10) 1,607 17.0%
Multiple Body (90) 17,372 17.3%
Hip (51) 1,505 18.2%
Multiple Trunk (40) 2,768 18.5%
Multiple Neck (20) 1,930 18.8%
Spine (21) 402 19.2%
Multiple Body (65) 830 19.3%
Larynx (24) 31 19.4%
No physical Injury (66) 96 19.8%
Spine (47) 202 19.8%
Brain (12) 348 20.1%
Upper Back (41) 3,309 21.4%
Spine (22) 905 23.9%
Spine (23) 82 24.4%
Spine (43) 2,154 24.6%
Heart (49) 168 30.4%
Multiple Body (91) 300 31.7%
Lungs (60) 201 34.3%
TOTAL 186,109

Permanent Partial Cases Open at 5th Report 
Policy Year 1997

Countrywide

Source:  NCCI WCSP Data
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Exhibit 4b

Source: NCCI WCSP Data

Percentage of Permanent Partial Cases Open at 5th Report 
Policy Year 1997

Countrywide - NCCI States
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Exhibit 5a

Injured Body Part Cases
% Open @ 
5th Report

Artificial appliance (64) 5 0.0%
Great Toe (58) 320 1.3%
Abdomen (61) 5,100 2.4%
Pelvis (46) 6,792 2.8%
Thumb (37) 8,026 3.0%
Finger (36) 28,496 3.1%
Ankle (55) 22,323 3.3%
Toes (57) 5,030 3.4%
Foot (56) 17,922 3.9%
Upper Leg (52) 3,402 4.0%
Spine (45) 1,355 4.4%
Chest (44) 7,675 4.7%
Hand (35) 23,433 4.8%
Internal organs (48) 7,210 5.0%
Elbow (32) 8,709 5.1%
Lower Leg (54) 10,306 5.6%
Eye (14) 4,550 5.6%
Low Arm (33) 10,379 5.7%
Knee (53) 38,104 5.7%
Upper Arm (31) 24,281 5.8%
Nose (15) 895 5.9%
Wrist (34) 23,847 6.0%
Multiple Trunk (40) 9,064 6.0%
Lower Back (42) 107,245 6.2%
Head soft tissue (18) 2,532 6.3%
Shoulder (38) 6,514 6.6%
Facial Bones (19) 683 6.9%
Skull (11) 2,495 7.1%
Spine (63) 465 7.3%
Trachea (26) 94 7.4%
Mouth (17) 468 7.7%
Multiple Upper extremity (30) 8,815 7.7%
Neck soft tissue (25) 2,337 7.7%
Hip (51) 3,966 7.8%
Upper Back (41) 10,139 7.8%
Wrist & Hand (39) 924 8.3%
Multiple Neck (20) 4,544 8.7%
Spine (23) 171 9.4%
Teeth (16) 361 9.4%
Multiple Body (90) 47,079 9.8%
Multiple Low extremity (50) 5,011 10.3%
Multiple Body (65) 2,484 10.5%
Spine (43) 1,268 11.0%
Buttocks (62) 255 11.0%
Ear (13) 953 11.1%
Larynx (24) 132 11.4%
Spine (21) 866 12.4%
Multiple Body (91) 993 12.6%
Spine (22) 1,027 13.2%
No physical Injury (66) 222 14.0%
Spine (47) 300 14.3%
Brain (12) 675 16.3%
Multiple Head (10) 5,108 19.3%
Lungs (60) 340 22.9%
Heart (49) 352 25.3%
TOTAL 486,042

Temporary Total Cases Open at 5th Report
Policy Year 1997

Countrywide

Source: NCCI WCSP Data
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Exhibit 5b

Percentage of Temporary Total Cases Open at 5th Report
Policy Year 1997

Countrywide
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Exhibit 6 
 

URE WORKERS COMPENSATION STATISTICAL PLAN 
Part of Body—Injury Codes and Descriptions 

 

* Shaded areas are part of body codes considered “likely to develop.” 
 

Code* Narrative Description 

I. Head  
10 Multiple Head Injury Any combination of Head injuries 
11 Skull  
12 Brain  
13 Ear(s) Includes: Hearing, Inside Eardrum 
14 Eye(s) Includes: Optic Nerves, Vision, Eyelids 
15 Nose Includes: Nasal Passage, Sinus, Sense of Smell 
16 Teeth  
17 Mouth Includes: Lips, Tongue, Throat, Taste 
18 Soft tissue  
19 Facial Bones Includes: Jaw 
   

II. Neck  
20 Multiple Neck Injury Any combination of Neck injuries 
21 Vertebrae Includes: Spinal Column Bone, “Cervical Segment” 
22 Disc Includes: Spinal Column cartilage, “Cervical Segment” 
23 Spinal Cord Includes: Nerve Tissue, “Cervical Segment” 
24 Larynx Includes: Cartilage and Vocal Cords 
25 Soft Tissue Other than Larynx or Trachea 
26 Trachea  
   

III. Upper Extremities  
30 Multiple Upper Extremities Any combination of Upper Extremity injuries, excluding 

Hands and Wrists combined 
31 Upper Arm Humerus and Corresponding Muscles, excluding Clavicle 

and Scapula 
32 Elbow Radial Head 
33 Lower Arm Forearm—Radius, Ulna and Corresponding Muscles 
34 Wrist Carpals and Corresponding Muscles 
35 Hand Metacarpals and Corresponding Muscles - excluding 

Wrist or Fingers 
36 Finger(s) Other than Thumb and Corresponding Muscles 
37 Thumb  
38 Shoulder(s) Armpit, Rotator Cuff, Trapezius, Clavicle, Scapula 
39 Wrist(s) & Hand(s)  
   

IV. Trunk  
40 Multiple Trunk Any combination of Trunk injuries 
41 Upper Back Area (Thoracic Area) Upper Back Muscles, excluding 

Vertebrae, Disc, Spinal Cord 
42 Lower Back Area (Lumbar Area and Lumbo Sacral) Lower Back Muscles, 

excluding Sacrum, Coccyx, Pelvis, Vertebrae, Disc, Spinal 
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Exhibit 6 
 

URE WORKERS COMPENSATION STATISTICAL PLAN 
Part of Body—Injury Codes and Descriptions 

 

* Shaded areas are part of body codes considered “likely to develop.” 
 

Code* Narrative Description 
Cord 

43 Disc Spinal Column Cartilage other than Cervical Segment 
44 Chest Including Ribs, Sternum, Soft Tissue 
45 Sacrum and Coccyx Final Nine Vertebrae - Fused 
46 Pelvis  
47 Spinal Cord Nerve Tissue other than Cervical Segment 
48 Internal Organs Other than Heart and Lungs 
49 Heart  
60 Lungs  
61 Abdomen Excluding Injury to Internal Organs Including Groin 
62 Buttocks Soft Tissue 
63 Lumbar and/or Sacral Vertebrae 

(Vertebra NOC Trunk 
Bone Portion of the Spinal Column 

   

V. Lower Extremities  
50 Multiple Lower Extremities Any combination of Lower Extremity injuries 
51 Hip  
52 Upper Leg Femur and Corresponding Muscles 
53 Knee Patella 
54 Lower Leg Tibia, Fibula and Corresponding Muscles 
55 Ankle Tarsals 
56 Foot Metatarsals, Heel, Achilles Tendon and Corresponding 

Muscles - excluding Ankle or Toes 
57 Toes  
58 Great Toe  
   

VI. Multiple Body Parts  
64 Artificial Appliance Braces, etc. 
65 Insufficient Info to Properly Identify - 

Unclassified 
Insufficient information to identify part affected 

66 No Physical Injury Mental Disorder 
90 Multiple Body Parts (Including Body 

Systems & Body Parts) 
Applies when more than one Major Body Part has been 
affected, such as an Arm and a Leg and Multiple Internal 
Organs 

91 Body Systems and Multiple Body 
Systems 

Applies when functioning of an Entire Body System has 
been affected without specific injury to any other part, as 
in the case of Poisoning, Corrosive Action, Inflammation, 
Affecting Internal Organs, Damage to Nerve Centers, etc.; 
does NOT apply when the systemic damage results from 
an External Injury affecting an External Part such as a 
Back Injury that includes damage to the Nerves of the 
Spinal Cord 
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Exhibit 7

Cumulative 1st to 5th report *

ind_dev med_dev
PP-L 1.387 1.183
PP-N 1.234 1.028
TT-L<=26K 1.797 1.170
TT-N<=26K 1.373 1.014
TT-L>26K 1.226 1.168
TT-N>26K 1.084 0.953
TT-L 1.522 1.170
TT-N 1.271 1.001
TT<=26K 1.548 1.080
TT>26K 1.162 1.083

* Loss devlopment factors exclude all crossover.

     Loss Development on a fixed set of claims

Countrywide
 Policy Year 1997
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Large State
Indemnity Loss Development

1st to 5th
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5

6

Serious Non-ser Likely Not Likely Likely Limited 500k Not Likely Limited 500k

Exhibit 8a
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Large State
Indemnity Loss Development
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Exhibit 8b
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Small State
Indemnity Loss Development

1st to 5th
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Small State
Indemnity Loss Development
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Exhibit 8d
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Large State
Medical Loss Development

1st to 5th
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Large State
Medical Loss Development
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Small State
Medical Loss Development

1st to 5th
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Exhibit 9c
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Small State
Medical Loss Development
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Exhibit 10

ANALYSIS OF LOSS DEVELOPMENT
BY INJURY TYPE, PART OF BODY TYPE, AND OPEN/CLOSED (at 1st report)
STATISTICAL PLAN DATA - CLASS RATEMAKING

Summary Results

Analysis of Claim Status:

Claims Locked at 1st Development 1st to x (1:x) -- Limited Incurred Losses
Ind Ind Med Med I+M I+M

Injury Type 1999 2000 1999 2000 1999 2000
Category Description 1:6 1:5 1:6 1:5 1:6 1:5
TTLO TT Likely Body Part, Open at 1st 1.680 1.670 1.268 1.277 1.467 1.467
TTLC TT Likely Body Part, Closed at 1st 1.196 1.184 1.125 1.116 1.158 1.147
TTNO TT Not Likely Body Part, Open at 1st 1.475 1.465 1.089 1.085 1.267 1.260
TTNC TT Not Likely Body Part, Closed at 1st 1.140 1.124 1.085 1.074 1.108 1.095
TTL TT Likely Body Part 1.577 1.569 1.235 1.241 1.398 1.398
TTN TT Not Likely Body Part 1.378 1.370 1.088 1.082 1.218 1.212

PPLO PP Likely Body Part, Open at 1st 1.483 1.494 1.252 1.266 1.375 1.388
PPLC PP Likely Body Part, Closed at 1st 1.100 1.064 1.125 1.101 1.110 1.078
PPNO PP Not Likely Body Part, Open at 1st 1.325 1.324 1.047 1.058 1.188 1.192
PPNC PP Not Likely Body Part, Closed at 1st 1.068 1.061 1.071 1.063 1.069 1.062
PPL PP Likely Body Part 1.425 1.428 1.237 1.246 1.339 1.345
PPN PP Not Likely Body Part 1.270 1.268 1.052 1.059 1.163 1.165

MoLO Mo Likely Body Part, Open at 1st --- --- 1.552 1.592 2.629 2.822
MoLC Mo Likely Body Part, Closed at 1st --- --- 1.204 1.175 1.428 1.379
MoNO Mo Not Likely Body Part, Open at 1st --- --- 1.188 1.265 1.914 2.082
MoNC Mo Not Likely Body Part, Closed at 1st --- --- 1.111 1.118 1.232 1.230
MoL Mo Likely Body Part --- --- 1.270 1.252 1.668 1.645
MoN Mo Not Likely Body Part --- --- 1.120 1.135 1.318 1.333

FaLO Fa Likely Body Part, Open at 1st 0.884 0.914 0.710 0.829 0.868 0.906
FaLC Fa Likely Body Part, Closed at 1st 1.047 1.089 1.051 0.997 1.047 1.073
FaNO Fa Not Likely Body Part, Open at 1st 0.948 0.933 0.847 0.994 0.928 0.942
FaNC Fa Not Likely Body Part, Closed at 1st 1.018 0.999 1.095 1.018 1.040 1.004
FaL Fa Likely Body Part 0.899 0.926 0.750 0.852 0.885 0.919
FaN Fa Not Likely Body Part 0.953 0.937 0.875 0.996 0.937 0.947

PTLO PT Likely Body Part, Open at 1st 0.895 0.900 0.942 0.966 0.922 0.937
PTLC PT Likely Body Part, Closed at 1st 0.994 0.989 0.984 1.008 0.990 0.997
PTNO PT Not Likely Body Part, Open at 1st 0.937 0.960 0.957 0.873 0.948 0.915
PTNC PT Not Likely Body Part, Closed at 1st 1.015 0.981 1.048 0.985 1.029 0.983
PTL PT Likely Body Part 0.904 0.906 0.944 0.967 0.926 0.940
PTN PT Not Likely Body Part 0.949 0.962 0.967 0.882 0.958 0.920

Notes: Injury Type Category  = Injury Type + Body Part category + Claim Status at 1st

Injury Types: Body Part Categories:
Fa = Fatal N = Not likely body part
PT = Permanent Total L = Likely body part
PP = Permanent Partial
TT = Temporary Total Claim Status:
Mo = Medical Only C = Closed at 1st

O = Open at 1st

Data: All NCCI ratemaking states
Excludes carriers not reporting in URE format
Applies the single claim loss limitation at $500K
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Exhibit 11

Summary Results

Analysis of Development Combinations:

Claims Locked at 1st Development 1st to x (1:x) -- Limited Incurred Losses
Ind Ind Med Med I+M I+M I+M % I+M %

Devel. 1999 2000 1999 2000 1999 2000 1999 Total $ 2000 Total $
Options Category Injury Type Categories Included 1:6 1:5 1:6 1:5 1:6 1:5 $M Move $M Move
Current Likely Fa + PT + PPL + TTL 1.443 1.444 1.221 1.229 1.337 1.341 4,977 5,128

Not Likely All Other 1.459 1.454 1.105 1.106 1.242 1.241 5,594 5,771

Opt 1 Likely Fa + PT + PPLO + TTLO 1.500 1.504 1.242 1.253 1.377 1.385 4,127 -8% 4,264 -8%
Not Likely All Other 1.409 1.402 1.107 1.106 1.229 1.225 6,444 6,635

Opt 2 Likely Fa -Fa1 + PT + PPLO + TTLO 1.556 1.561 1.247 1.258 1.403 1.411 3,918 -10% 4,041 -10%
Not Likely All Other 1.375 1.369 1.105 1.105 1.218 1.216 6,654 6,859

Opt 3 Likely Fa -Fa1 + PT + PPLO + TTLO + MoLO 1.601 1.609 1.259 1.270 1.428 1.438 4,000 -9% 4,120 -9%
Not Likely All Other 1.343 1.335 1.096 1.095 1.201 1.197 6,572 6,780

Opt 4 Likely All Injury Types LO 1.554 1.560 1.258 1.271 1.410 1.420 4,130 -8% 4,263 -8%
Not Likely All Other 1.367 1.359 1.097 1.095 1.208 1.203 6,442 6,637

Opt 5 Likely All injury types LO, -Fa1 1.609 1.616 1.262 1.275 1.434 1.444 3,952 -10% 4,071 -10%
Not Likely All Other 1.340 1.332 1.095 1.094 1.199 1.195 6,619 6,829

Claims Not Locked 
-- Includes Crossover and Arisings on Subs Development 1st to x (1:x) -- Limited Incurred Losses

Ind Ind Med Med I+M I+M I+M I+M
Devel. 1999 2000 1999 2000 1999 2000 1999 2000

Options Category Injury Type Categories Included 1:6 1:5 1:6 1:5 1:6 1:5 $M $M
Current Likely Fa + PT + PPL + TTL 1.694 1.678 1.394 1.384 1.550 1.538 4,977 5,128

Not Likely All Other 1.411 1.426 1.096 1.106 1.218 1.230 5,594 5,771

Opt 1 Likely Fa + PT + PPLO + TTLO 1.771 1.757 1.426 1.419 1.607 1.596 4,127 4,264
Not Likely All Other 1.394 1.402 1.113 1.118 1.226 1.233 6,444 6,635

Opt 2 Likely Fa -Fa1 + PT + PPLO + TTLO 1.832 1.826 1.426 1.421 1.631 1.625 3,918 4,041
Not Likely All Other 1.375 1.377 1.114 1.119 1.223 1.227 6,654 6,859

Notes: Injury Type Category  = Injury Type + Body Part category + Claim Status at 1st

Injury Types: Body Part Categories:
Fa = Fatal N = Not likely body part
PT = Permanent Total L = Likely body part
PP = Permanent Partial
TT = Temporary Total Claim Status:
Mo = Medical Only C = Closed at 1st

O = Open at 1st
Fa1 = Fatal at 1st
LO = Likely body part, open at 1st

Data: All NCCI ratemaking states
Excludes carriers not reporting in URE format
Applies the single claim loss limitation at $500K

ANALYSIS OF LOSS DEVELOPMENT
BY INJURY TYPE, PART OF BODY TYPE, AND OPEN/CLOSED (at 1st report)
STATISTICAL PLAN DATA - CLASS RATEMAKING
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Exhibit 12

ANALYSIS OF LOSS DEVELOPMENT
BY INJURY TYPE, PART OF BODY, AND OPEN/CLOSED (at 1st report)
STATISTICAL PLAN DATA - CLASS RATEMAKING

Summary - Fatal and PT Development

FATAL FATAL
PY 1999 PY 2000

Category 
at 1st

Category 
at 6th

Ind+Med
at 1st

Ind+Med
at 6th

Ind+Med 
Development

Ind+Med
Injury Type 

Development
Category 

at 1st
Category 

at 5th
Ind+Med

at 1st
Ind+Med

at 5th
Ind+Med 

Development

Ind+Med
Injury Type 

Development
Stays in Injury Type Stays in Injury Type
FaLO FaL 172,831,898 149,614,886 -23,217,012 -23,217,012 FaLO FaL 186,762,580 169,522,620 -17,239,960 -17,239,960
FaLC FaL 18,522,409 19,393,256 870,847 870,847 FaLC FaL 15,910,070 17,079,627 1,169,557 1,169,557
FaNO FaN 11,940,325 11,054,696 -885,629 -885,629 FaNO FaN 13,298,124 12,123,076 -1,175,048 -1,175,048
FaNC FaN 1,101,646 1,140,701 39,055 39,055 FaNC FaN 1,058,062 1,060,164 2,102 2,102
Total Fa to Fa 204,396,278 181,203,539 -23,192,739 -23,192,739 Total Fa to Fa 217,028,836 199,785,487 -17,243,349 -17,243,349

Moves into Injury Type Moves into Injury Type
PTLO FaL 5,948,628 5,110,187 -838,441 5,110,187 PTLO FaL 3,966,358 3,819,262 -147,096 3,819,262
TTLO FaL 12,678,675 16,950,679 4,272,004 16,950,679 TTLO FaL 6,169,446 7,229,697 1,060,251 7,229,697
MoLO FaL 213,376 1,369,657 1,156,281 1,369,657 MoLO FaL 61,485 1,180,318 1,118,833 1,180,318
PPLO FaL 13,519,287 15,965,816 2,446,529 15,965,816 PPLO FaL 8,128,178 7,374,389 -753,789 7,374,389
---- FaL 0 12,583,421 12,583,421 12,583,421 ---- FaL 0 11,867,836 11,867,836 11,867,836
---- FaN 0 1,366,094 1,366,094 1,366,094 ---- FaN 0 1,623,951 1,623,951 1,623,951
TTLC FaL 339,998 520,788 180,790 520,788 TTLC FaL 583,054 826,786 243,732 826,786
MoLC FaL 23,952 979,881 955,929 979,881 MoLC FaL 92,349 463,387 371,038 463,387
PPLC FaL 265,121 226,770 -38,351 226,770 PPLC FaL 5,000 5,000 0 5,000
TTNO FaN 1,265,655 1,498,696 233,041 1,498,696 PTNO FaN 1,390,720 1,000,000 -390,720 1,000,000
MoNO FaN 30,028 938,698 908,670 938,698 TTNO FaN 1,431,739 1,560,824 129,085 1,560,824
PPNO FaN 1,321,388 2,025,430 704,042 2,025,430 MoNO FaN 45,319 961,661 916,342 961,661
TTNC FaN 37,411 55,284 17,873 55,284 PPNO FaN 768,723 1,238,737 470,014 1,238,737
MoNC FaN 6,722 38,582 31,860 38,582 TTNC FaN 54,585 235,528 180,943 235,528
PPNC FaN 53,961 71,656 17,695 71,656 MoNC FaN 15,095 78,620 63,525 78,620
Total Other to Fa 35,704,202 59,701,639 23,997,437 59,701,639 Total Other to Fa 22,712,051 39,465,996 16,753,945 39,465,996
Other LO to Fa 32,359,966 39,396,339 7,036,373 39,396,339 Other LO to Fa 18,325,467 19,603,666 1,278,199 19,603,666
Arising to Fa 0 13,949,515 13,949,515 13,949,515 Arising to Fa 0 13,491,787 13,491,787 13,491,787
All other to Fa 3,344,236 6,355,785 3,011,549 6,355,785 All other to Fa 4,386,584 6,370,543 1,983,959 6,370,543

Moves out of Injury Type Moves out of Injury Type
FaLO PTL 597,761 954,391 356,630 -597,761 FaLO PTL 1,238,018 1,105,647 -132,371 -1,238,018
FaLO TTL 3,373,971 3,034,733 -339,238 -3,373,971 FaLO TTL 1,500,046 1,697,990 197,944 -1,500,046
FaLO MoL 254,232 32,821 -221,411 -254,232 FaLO MoL 579,712 25,285 -554,427 -579,712
FaLO PPL 208,664 205,713 -2,951 -208,664 FaLO PPL 2,088,289 1,717,273 -371,016 -2,088,289
FaLC PTL 2,888 2,888 0 -2,888 FaLC TTL 5,536 11,236 5,700 -5,536
FaLC TTL 33,168 58,565 25,397 -33,168 FaLC MoL 2,591 2,553 -38 -2,591
FaLC MoL 21,257 1,255 -20,002 -21,257 FaLC PPL 239,984 240,284 300 -239,984
FaNO TTN 383,884 403,289 19,405 -383,884 FaNO TTN 292,945 687,510 394,565 -292,945
FaNO MoN 6,500 0 -6,500 -6,500 FaNO MoN 55,505 3,478 -52,027 -55,505
FaNO PPN 183,853 155,381 -28,472 -183,853 FaNO PPN 306,629 334,433 27,804 -306,629
FaNC TTN 18,617 22,089 3,472 -18,617 FaNC TTN 23,176 25,341 2,165 -23,176
FaNC PPN 5,650 8,364 2,714 -5,650
Total Fa to Other 5,090,445 4,879,489 -210,956 -5,090,445 Total Fa to Other 6,332,431 5,851,030 -481,401 -6,332,431

Locked Injury Type Development Locked Injury Type Development
209,486,723 186,083,028 -23,403,695 223,361,267 205,636,517 -17,724,750

0.888 0.921
Cross Over Injury Type Development Cross Over Injury Type Development

209,486,723 240,905,178 31,418,454 223,361,267 239,251,483 15,890,216
1.150 1.071

Notes: Injury Type Category  = Injury Type + Body Part category + Claim Status at 1st

Injury Types: Body Part Categories:
Fa = Fatal N = Not likely body part
PT = Permanent Total L = Likely body part
PP = Permanent Partial
TT = Temporary Total Claim Status:
Mo = Medical Only C = Closed at 1st

O = Open at 1st
LO = Likely body part, open at 1st

Data: All NCCI ratemaking states
Excludes carriers not reporting in URE format
Applies the single claim loss limitation at $500K
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Exhibit 13

ANALYSIS OF LOSS DEVELOPMENT
BY INJURY TYPE, PART OF BODY, AND OPEN/CLOSED (at 1st report)
STATISTICAL PLAN DATA - CLASS RATEMAKING

Summary - Fatal and PT Development

PERMANENT TOTAL PERMANENT TOTAL
PY 1999 PY2000

Category 
at 1st

Category 
at 6th

Ind+Med
at 1st

Ind+Med
at 6th

Ind+Med 
Development

Ind+Med
Injury Type 

Development
Category 

at 1st
Category 

at 5th Ind+Med @1st Ind+Med @5th
Ind+Med 

Development

Ind+Med
Injury Type 

Development
Stays in Injury Type Stays in Injury Type
PTLO PTL 83,291,688 81,330,910 -1,960,778 -1,960,778 PTLO PTL 76,210,396 80,732,133 4,521,737 4,521,737
PTLC PTL 7,474,144 7,494,083 19,939 19,939 PTLC PTL 5,739,227 5,690,608 -48,619 -48,619
PTNO PTN 24,646,111 24,954,711 308,600 308,600 PTNO PTN 25,918,704 25,534,009 -384,695 -384,695
PTNC PTN 4,647,731 4,751,566 103,835 103,835 PTNC PTN 3,480,736 3,415,996 -64,740 -64,740
Total PT to PT 120,059,674 118,531,270 -1,528,404 -1,528,404 Total PT to PT 111,349,063 115,372,746 4,023,683 4,023,683

Moves into Injury Type Moves into Injury Type
FaLO PTL 597,761 954,391 356,630 954,391 FaLO PTL 1,238,018 1,105,647 -132,371 1,105,647
TTLO PTL 58,296,074 180,949,875 122,653,801 180,949,875 TTLO PTL 54,534,730 162,970,263 108,435,533 162,970,263
MoLO PTL 1,350,219 12,210,680 10,860,461 12,210,680 MoLO PTL 271,881 9,962,765 9,690,884 9,962,765
PPLO PTL 90,115,408 271,054,396 180,938,988 271,054,396 PPLO PTL 81,150,562 241,413,195 160,262,633 241,413,195
---- PTL 0 38,971,217 38,971,217 38,971,217 ---- PTL 0 35,827,796 35,827,796 35,827,796
---- PTN 0 17,518,210 17,518,210 17,518,210 ---- PTN 0 17,544,736 17,544,736 17,544,736
FaLC PTL 2,888 2,888 0 2,888 TTLC PTL 679,688 3,055,005 2,375,317 3,055,005
TTLC PTL 779,756 4,115,315 3,335,559 4,115,315 MoLC PTL 57,968 5,425,783 5,367,815 5,425,783
MoLC PTL 50,962 6,193,259 6,142,297 6,193,259 PPLC PTL 1,045,229 1,387,697 342,468 1,387,697
PPLC PTL 503,709 3,619,431 3,115,722 3,619,431 TTNO PTN 21,615,791 77,574,737 55,958,946 77,574,737
TTNO PTN 27,315,144 94,919,491 67,604,347 94,919,491 MoNO PTN 65,919 3,759,852 3,693,933 3,759,852
MoNO PTN 218,603 4,241,846 4,023,243 4,241,846 PPNO PTN 35,776,820 109,426,819 73,649,999 109,426,819
PPNO PTN 35,247,948 111,113,846 75,865,898 111,113,846 TTNC PTN 919,653 2,442,629 1,522,976 2,442,629
TTNC PTN 452,656 2,778,277 2,325,621 2,778,277 MoNC PTN 25,279 1,874,535 1,849,256 1,874,535
MoNC PTN 38,566 2,329,502 2,290,936 2,329,502 PPNC PTN 162,571 1,232,692 1,070,121 1,232,692
PPNC PTN 679,326 3,250,047 2,570,721 3,250,047
Total Other to PT 215,649,020 754,222,671 538,573,651 754,222,671 Total Other to PT 197,544,109 675,004,151 477,460,042 675,004,151
Other LO to PT 150,359,462 465,169,342 314,809,880 465,169,342 Other LO to PT 137,195,191 415,451,870 278,256,679 415,451,870
Arising to PT 0 56,489,427 56,489,427 56,489,427 Arising to PT 0 53,372,532 53,372,532 53,372,532
All other to PT 65,289,558 232,563,902 167,274,344 232,563,902 All other to PT 60,348,918 206,179,749 145,830,831 206,179,749

Moves out of Injury Type Moves out of Injury Type
PTLO FaL 5,948,628 5,110,187 -838,441 -5,948,628 PTLO FaL 3,966,358 3,819,262 -147,096 -3,966,358
PTLO TTL 4,953,081 3,961,440 -991,641 -4,953,081 PTLO TTL 6,349,440 4,749,108 -1,600,332 -6,349,440
PTLO MoL 1,363,527 27,013 -1,336,514 -1,363,527 PTLO MoL 1,892,978 1,092,058 -800,920 -1,892,978
PTLO PPL 16,564,439 12,898,826 -3,665,613 -16,564,439 PTLO PPL 27,503,897 18,239,496 -9,264,401 -27,503,897
PTLC TTL 336,156 193,243 -142,913 -336,156 PTLC TTL 210,089 243,128 33,039 -210,089
PTLC MoL 5,760 5,756 -4 -5,760 PTLC PPL 151,118 148,666 -2,452 -151,118
PTLC PPL 237,237 278,250 41,013 -237,237 PTNO FaN 1,390,720 1,000,000 -390,720 -1,390,720
PTNO TTN 2,660,188 2,452,291 -207,897 -2,660,188 PTNO TTN 3,649,969 2,458,285 -1,191,684 -3,649,969
PTNO MoN 155,104 51,436 -103,668 -155,104 PTNO MoN 605,065 81,494 -523,571 -605,065
PTNO PPN 7,046,099 5,241,309 -1,804,790 -7,046,099 PTNO PPN 7,684,122 6,825,909 -858,213 -7,684,122
PTNC TTN 187,636 201,725 14,089 -187,636 PTNC TTN 126,692 128,622 1,930 -126,692
PTNC MoN 9,936 7,836 -2,100 -9,936 PTNC MoN 934 417 -517 -934
PTNC PPN 19,788 44,490 24,702 -19,788 PTNC PPN 65,145 64,953 -192 -65,145
Total PT to Other 39,487,579 30,473,802 -9,013,777 -39,487,579 Total PT to Other 53,596,527 38,851,398 -14,745,129 -53,596,527

Locked Injury Type Development Locked Injury Type Development
159,547,253 149,005,072 -10,542,181 164,945,590 154,224,144 -10,721,446

0.934 0.935
Cross Over Injury Type Development Cross Over Injury Type Development

159,547,253 872,753,941 713,206,688 164,945,590 790,376,898 625,431,308
5.470 4.792

Notes: Injury Type Category  = Injury Type + Body Part category + Claim Status at 1st

Injury Types: Body Part Categories:
Fa = Fatal N = Not likely body part
PT = Permanent Total L = Likely body part
PP = Permanent Partial
TT = Temporary Total Claim Status:
Mo = Medical Only C = Closed at 1st

O = Open at 1st
LO = Likely body part, open at 1st

Data: All NCCI ratemaking states
Excludes carriers not reporting in URE format
Applies the single claim loss limitation at $500K
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Exhibit 14

Alt k = Limit Using Actual Excess

0 Unlimited

1 $1M Allocates Actual IG Excess Uniformly by Class Within the IG

2 $300k Allocates Actual IG Excess Uniformly by Class Within the IG

3 $300k Allocates Actual HG Excess Uniformly by Class Within the HG

4 $300k Same as k=3 with factor to balance to IG Unlimited Losses

5 $300k Allocates Actual IG Excess by Class Within IG Using Limited Losses x XS% / (1-XS%)

6 $300k Allocates HG Actual Excess by Class Within HG Using Limited Losses x XS% / (1-XS%)

7 $300k Allocates Actual State Excess by Class Using Limited Losses x XS% / (1-XS%)

Alt k = Limit Using Actual Excess

8 $300k Allocates Actual IG Excess by Class Within IG Using Unlimited Losses x XS%

9 $300k Allocates Actual HG Excess by Class Within HG Using Unlimited Losses x XS%

10 $300k Allocates Actual State Excess by Class Using Unlimited Losses x XS%

13 Vary by Class* $100k, 
$300k, $1M Allocates Actual State Excess by Class Using Unlimited Losses x XS%

Alt k = Limit Using Expected Excess

11 $300k Limited Actual Losses x  1 / (1- XS%)

12 $300k Limited Losses + HG XS% x Unlimited Expected Losses (i.e. Mu)

14 Vary by Class* $100k, 
$300k, $1M Limited Actual Losses x  1 / (1- XS%)

15
Vary by Class* $100k, 

$300k, $1M Limited Losses + HG XS% x Unlimited Expected Losses (i.e. Mu)

Note: Alt 3 and Alt 6 are equivalent

Legend: IG - Industry Group
HG - Hazard Group
XS - per claim adjusted excess ratio

* Alts 13 - 15 proposed three loss limits:  100K for small classes, 300K for medium-size classes & $1M for large classes

Alternatives for Limiting Losses and Allocating Excess
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Comparison of Alternatives
Alabama - Manufacturing
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desired range (-.25, 0, .25) min -0.864
unweighted average -0.031
weighted average -0.007

max 0.766

Alabama, Manufacturing, Alternative k=12 
Loss Limit @ 300k + [ HG XS% x Unlimited Expected Losses (mu) for the Class ] 
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Exhibit 16

Claim 
PY Primary Ind. Primary Med. XS Ind. XS Med. Ind. Med. Count

Prior 169,816,166 139,683,834 70,279,751 182,840,412 27.8% 72.2% 619
1982 13,995,376 14,004,624 8,619,005 13,163,124 39.6% 60.4% 56
1983 62,784,206 65,715,794 39,612,997 119,661,433 24.9% 75.1% 257
1984 174,613,643 172,386,357 124,779,440 258,040,159 32.6% 67.4% 694
1985 189,175,924 179,824,076 127,426,362 269,832,016 32.1% 67.9% 738
1986 231,461,635 228,538,365 139,680,186 284,920,944 32.9% 67.1% 920
1987 251,592,143 251,907,857 164,604,780 340,891,816 32.6% 67.4% 1,007
1988 266,459,073 290,040,927 183,851,067 409,875,986 31.0% 69.0% 1,113
1989 263,077,846 281,922,154 177,611,338 370,323,060 32.4% 67.6% 1,090
1990 250,790,173 284,709,827 155,166,315 386,803,697 28.6% 71.4% 1,071
1991 211,153,813 258,346,187 126,792,831 374,456,842 25.3% 74.7% 939
1992 213,866,898 244,633,102 120,914,845 331,330,704 26.7% 73.3% 917
1993 177,959,200 215,040,800 112,139,690 298,596,771 27.3% 72.7% 786
1994 178,857,458 212,142,542 108,183,294 324,031,769 25.0% 75.0% 782
1995 166,982,566 223,017,434 101,467,025 308,899,713 24.7% 75.3% 780
1996 211,737,505 248,762,495 128,285,636 313,703,083 29.0% 71.0% 921
1997 235,761,313 279,738,687 148,148,864 430,926,448 25.6% 74.4% 1,031
1998 270,545,487 311,954,513 174,634,718 435,518,901 28.6% 71.4% 1,165
1999 279,735,890 312,764,110 183,062,743 429,648,973 29.9% 70.1% 1,185
2000 282,319,912 306,680,088 181,576,108 365,938,213 33.2% 66.8% 1,178
2001 244,889,269 281,610,731 161,786,219 410,967,203 28.2% 71.8% 1,053
2002 177,579,023 249,920,977 129,992,203 404,432,908 24.3% 75.7% 855
2003 133,019,301 215,480,699 112,305,448 425,846,975 20.9% 79.1% 697
2004 56,015,676 79,484,324 44,337,439 111,049,945 28.5% 71.5% 271
Total 4,714,189,497 5,348,310,503 3,025,258,303 7,601,701,096 28.5% 71.5% 20,125

Note:  Claims < $500,000 are excluded from the analysis.

Analysis of the Indemnity and Medical Excess (XS) Split
Call #31 Data as of 12-31-04 for all NCCI States

XS Split
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Proposal for State Indicated Pure 
Premium Full Credibility Standards

Current/
Current Indicated1 Indicated

Serious 125 244 51%
Non-serious 350 491 71%

Combined Indemnity -- 1,397 --
Medical (non-serious severity) 750 1,341 56%

Medical (medical severity) -- 719 --

Selection Selection Proposal /
Proposal Indication

Combined Indemnity 850 61%
Medical (non-serious severity) 750 56%

Medical (medical severity) 400 56%

Note: 1.  From p=95%, k=25% regression results averaged across all 6 states.

Exhibit 17
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Proposal for National Pure Premium Full 
Credibility Standards

(actual lost-time claims)
Current/

Current Indicated1 Indicated

Serious 175 271 65%
Non-serious 500 1,132 44%

Combined Indemnity -- 2,127 --
Medical 1000 1,548 65%

Selection Selection Proposal /
Proposal Indication

Combined Indemnity 1,150 54%
Medical 1,000 65%

Note: 1.  From p=95%, k=25% regression results averaged across all 6 states.

Exhibit 18

Class Ratemaking for Workers Compensation:  NCCI’s New Methodology

Casualty Actuarial Society E-Forum, Winter 2009 123



Comparison Of Current And Proposed 
Indemnity Statewide Credibility

Note: 1.  Assuming state Nf = 850 and national Nf = 1150.

23%21%10%10%TN
19%17%8%9%MO
22%21%9%11%CO
22%21%10%10%NC
10%14%4%6%IL
24%23%11%13%IA

National

55%60%82%82%TN
62%67%85%83%MO
55%58%82%77%CO
56%59%81%80%NC
80%75%93%90%IL
51%53%78%73%IA

State

Proposal Average1Current AverageProposal Average1Current Average

Statewide Credibility (excluding 50 largest classes)Statewide Credibility

Comparison Of Current And Proposed Indemnity Statewide Credibility

Exhibit 19

Class Ratemaking for Workers Compensation:  NCCI’s New Methodology

Casualty Actuarial Society E-Forum, Winter 2009 124



Comparison Of Current And Proposed 
Medical Statewide Credibility

Note: 1.  Assuming state Nf = 400 and national Nf = 1000.

15%13%6%5%TN
10%12%4%5%MO
14%14%5%5%CO
14%9%6%4%NC
5%5%2%2%IL

16%13%6%5%IA

National

72%76%89%91%TN
80%76%92%91%MO
73%72%90%90%CO
73%83%89%93%NC
91%89%96%96%IL
68%74%88%90%IA

State

Proposal Average1Current AverageProposal Average1Current Average

Statewide Credibility (excluding 50 largest classes)Statewide Credibility

Comparison Of Current And Proposed Medical Statewide Credibility

Exhibit 20
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Exhibit 21

Industry p 90% 90% 90% 98% 98% 98% 95% 95% 95%
Group Claim k 0.075 0.050 0.025 0.075 0.050 0.025 0.075 0.050 0.025

  Counts Nf 8,417 18,939 75,755 16,837 37,883 151,533 11,951 26,890 107,561
1,000 34% 23% 11% 24% 16% 8% 29% 19% 10%
2,000 49% 32% 16% 34% 23% 11% 41% 27% 14%
4,000 69% 46% 23% 49% 32% 16% 58% 39% 19%
8,000 97% 65% 32% 69% 46% 23% 82% 55% 27%

16,000 100% 92% 46% 97% 65% 32% 100% 77% 39%
32,000 100% 100% 65% 100% 92% 46% 100% 100% 55%
64,000 100% 100% 92% 100% 100% 65% 100% 100% 77%
State
Maine 69% 46% 23% 49% 32% 16% 58% 39% 19%

Vermont 73% 49% 24% 52% 34% 17% 61% 41% 20%
Alabama 100% 92% 46% 97% 65% 32% 100% 77% 39%

Illinois 100% 100% 95% 100% 100% 67% 100% 100% 80%

Using Typical Average Industry Group Claim Counts

Updated Square Root

Selection for IG Differential
FCS = 12,000
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Exhibit 22a

Large State

Impact of New Loss Development and Expected Excess by Industry Group

(1) (2) (3) (4) (5)
(1)x(2) (3) / Tot(3) (4)-1

Wtd Wtd Normalized
Industry Change in Change in Predicted Predicted Predicted
Group LDFs Excess Chg by IG Chg by IG %Chg by IG

Manufacturing 0.923 1.090 1.006 0.949 -5.1%
Contracting 0.892 1.170 1.043 0.984 -1.6%
Office & Clerical 0.975 1.101 1.073 1.012 1.2%
Goods & Services 0.988 1.096 1.083 1.021 2.1%
Miscellaneous 0.933 1.134 1.059 0.998 -0.2%

State Total 0.949 1.118 1.060 1.0000 0.0%

All five industry groups received IG credibility equal to 100% for Large state.
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All Classes – Final After Swing Limits
Large State - Statewide

Rate/Loss Cost Change = (New / Current) - 1
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LIMITED INDEMNITY LOSS Test State 04/01/08 Exhibit 23a
DEVELOPMENT
Likely

1st Report Start: 2/1/2004
1st Report End: 1/31/2005

PY Data 1st Report 2nd Report 3rd Report 4th Report 5th Report 6th Report 7th Report 8th Report 9th Report 10th Report
2/91-1/92 0 0 0 0 0 0 0 0 0 0
2/92-1/93 0 0 0 0 0 0 0 0 0 0
2/93-1/94 0 0 0 0 0 0 0 0 0 0
2/94-1/95 0 0 0 0 0 0 0 0 0 0
2/95-1/96 0 0 0 0 0 0 0 0 0 0
2/96-1/97 0 0 0 0 0 0 0 0 0
2/97-1/98 0 0 0 0 0 0 0 0
2/98-1/99 0 0 0 0 0 0 0
2/99-1/00 60,996,530 92,218,325 117,039,686 132,422,739 140,802,919 144,380,191
2/00-1/01 61,249,048 95,369,132 116,456,223 128,043,912 132,466,081
2/01-1/02 63,330,710 101,332,628 120,907,703 131,065,662
2/02-1/03 64,002,100 96,832,704 115,101,791
2/03-1/04 62,441,089 97,204,707
2/04-1/05 63,908,035

Link Ratios 1:2 2:3 3:4 4:5 5:6 6:7 7:8 8:9 9:10
2/91-1/92
2/92-1/93
2/93-1/94
2/94-1/95
2/95-1/96
2/96-1/97
2/97-1/98
2/98-1/99
2/99-1/00 1.512 1.269 1.131 1.063 1.025
2/00-1/01 1.557 1.221 1.100 1.035
2/01-1/02 1.600 1.193 1.084
2/02-1/03 1.513 1.189
2/03-1/04 1.557

AVERAGE DEV. 1:2 2:3 3:4 4:5 5:6 6:7 7:8 8:9 9:10
2 Year Averages 1.535 1.191 1.092 1.049
3 Year Averages 1.557 1.201 1.105
4 Year Averages 1.557 1.218
5 Year Averages 1.548

5 Yr Ex-Hi Lo Avgs 1.542

AVG DEV. TO 5TH 1:5 2:5 3:5 4:5 5th:Ult
2 Year Averages 2.095 1.365 1.146 1.049 1.090
3 Year Averages
4 Year Averages
5 Year Averages

5 Yr Ex-Hi Lo Avgs

AVG DEV. TO ULT. 1:U 2:U 3:U 4:U 5:U
2 Year Averages 2.281 1.486 1.248 1.143 1.090
3 Year Averages
4 Year Averages
5 Year Averages

5 Yr Ex-Hi Lo Avgs

Averaging Method
(Use '6' for 5 Yr Ex-HiLo) 2 2 2 2 2 2 2 2 2 2

Selected Average 1:2 2:3 3:4 4:5 5th:Ult
Development 1.535 1.191 1.092 1.049 1.090
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LIMITED INDEMNITY LOSS Test State 04/01/08 Exhibit 23b
DEVELOPMENT
Not-Likely

1st Report Start: 2/1/2004
1st Report End: 1/31/2005

PY Data 1st Report 2nd Report 3rd Report 4th Report 5th Report 6th Report 7th Report 8th Report 9th Report 10th Report
2/91-1/92 0 0 0 0 0 0 0 0 0 0
2/92-1/93 0 0 0 0 0 0 0 0 0 0
2/93-1/94 0 0 0 0 0 0 0 0 0 0
2/94-1/95 0 0 0 0 0 0 0 0 0 0
2/95-1/96 0 0 0 0 0 0 0 0 0 0
2/96-1/97 0 0 0 0 0 0 0 0 0
2/97-1/98 0 0 0 0 0 0 0 0
2/98-1/99 0 0 0 0 0 0 0
2/99-1/00 92,600,271 117,560,761 133,963,360 141,479,415 146,067,806 147,360,667
2/00-1/01 95,374,095 116,001,514 131,138,809 138,472,791 141,250,877
2/01-1/02 97,129,731 122,748,458 135,195,013 139,317,464
2/02-1/03 95,563,495 115,415,827 126,594,218
2/03-1/04 90,843,197 109,219,366
2/04-1/05 96,958,872

Link Ratios 1:2 2:3 3:4 4:5 5:6 6:7 7:8 8:9 9:10
2/91-1/92
2/92-1/93
2/93-1/94
2/94-1/95
2/95-1/96
2/96-1/97
2/97-1/98
2/98-1/99
2/99-1/00 1.270 1.140 1.056 1.032 1.009
2/00-1/01 1.216 1.130 1.056 1.020
2/01-1/02 1.264 1.101 1.030
2/02-1/03 1.208 1.097
2/03-1/04 1.202

AVERAGE DEV. 1:2 2:3 3:4 4:5 5:6 6:7 7:8 8:9 9:10
2 Year Averages 1.205 1.099 1.043 1.026
3 Year Averages 1.225 1.109 1.047
4 Year Averages 1.223 1.117
5 Year Averages 1.232

5 Yr Ex-Hi Lo Avgs 1.229

AVG DEV. TO 5TH 1:5 2:5 3:5 4:5 5th:Ult
2 Year Averages 1.417 1.176 1.070 1.026 1.030
3 Year Averages
4 Year Averages
5 Year Averages

5 Yr Ex-Hi Lo Avgs

AVG DEV. TO ULT. 1:U 2:U 3:U 4:U 5:U
2 Year Averages 1.459 1.211 1.102 1.057 1.030
3 Year Averages
4 Year Averages
5 Year Averages

5 Yr Ex-Hi Lo Avgs

Averaging Method
(Use '6' for 5 Yr Ex-HiLo) 2 2 2 2 2 2 2 2 2 2

Selected Average 1:2 2:3 3:4 4:5 5th:Ult
Development 1.205 1.099 1.043 1.026 1.030
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LIKELY DEVELOPMENT Test State           Exhibit 23c
TO ULTIMATE 04/01/08

Limited Indemnity - Combined
(using 2-year average development)

(1) (2) (3) (4)
Limited Modified

FIRST REPORT Incurred Development Amendment Losses
2/04-1/05 Losses 1:5 Factor (1)x((2)x(3))
Fatal-Likely 0 2.095 1.045 0
Fatal-Not Likely 10,269,396 1.417 1.045 15,208,975
Permanent Total 4,413,333 2.095 1.046 9,669,613
Perm. Partial-Likely 42,468,001 2.095 1.025 91,178,798
Perm. Partial-Not Likely 53,963,071 1.417 1.025 78,354,379
Temp. Total-Likely 17,026,701 2.095 1.046 37,305,502
Temp. Total-Not Likely 32,726,405 1.417 1.046 48,500,532

(5) (6) (7) (8)
Limited Modified

SECOND REPORT Incurred Development Amendment Losses
2/03-1/04 Losses 2:5 Factor (5)x((6)x(7))
Fatal-Likely 1,299,643 1.365 1.051 1,864,988
Fatal-Not Likely 8,017,542 1.176 1.051 9,909,682
Permanent Total 11,441,423 1.365 1.052 16,429,883
Perm. Partial-Likely 71,430,014 1.365 1.029 100,359,170
Perm. Partial-Not Likely 70,091,621 1.176 1.029 84,810,861
Temp. Total-Likely 13,033,627 1.365 1.052 18,716,288
Temp. Total-Not Likely 31,110,203 1.176 1.052 38,483,321

CALCULATION OF LIKELY 5TH-TO-ULTIMATE
(9) Combined Likely Losses 275,524,242
(10) Combined Not-Likely Losses 275,267,750
(11) Combined Total Losses 550,791,992

(12) Financial Data 5th-to-Ultimate Development Factors 1.060

(13) 5th-to-Ultimate Loss Development 33,047,520
(13) = {(12)-1}x(11)

(14) % of Loss Development attributable to Not-Likely Losses at 5th rpt 0.250

(15) 5th-to-Ultimate Likely Loss Development Factors 1.090
(15) = {(9)+ [1-(14)]x(13)}/(9)

(16) 5th-to-Ultimate Not-Likely Loss Development Factors 1.030
(16) = {(10)+ (14)x(13)}/(10)
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LIMITED MEDICAL LOSS Test State 04/01/08 Exhibit 23d
DEVELOPMENT
Likely

1st Report Start: 2/1/2004
1st Report End: 1/31/2005

PY Data 1st Report 2nd Report 3rd Report 4th Report 5th Report 6th Report 7th Report 8th Report 9th Report 10th Report
2/91-1/92 0 0 0 0 0 0 0 0 0 0
2/92-1/93 0 0 0 0 0 0 0 0 0 0
2/93-1/94 0 0 0 0 0 0 0 0 0 0
2/94-1/95 0 0 0 0 0 0 0 0 0 0
2/95-1/96 0 0 0 0 0 0 0 0 0 0
2/96-1/97 0 0 0 0 0 0 0 0 0
2/97-1/98 0 0 0 0 0 0 0 0
2/98-1/99 0 0 0 0 0 0 0
2/99-1/00 75,200,873 90,059,436 100,912,427 109,486,363 115,848,096 120,187,414
2/00-1/01 71,384,912 88,432,334 97,351,469 102,016,362 104,712,638
2/01-1/02 82,626,918 100,990,563 107,850,140 114,019,998
2/02-1/03 86,723,140 101,434,110 109,735,237
2/03-1/04 88,194,204 104,765,903
2/04-1/05 97,105,237

Link Ratios 1:2 2:3 3:4 4:5 5:6 6:7 7:8 8:9 9:10
2/91-1/92
2/92-1/93
2/93-1/94
2/94-1/95
2/95-1/96
2/96-1/97
2/97-1/98
2/98-1/99
2/99-1/00 1.198 1.121 1.085 1.058 1.037
2/00-1/01 1.239 1.101 1.048 1.026
2/01-1/02 1.222 1.068 1.057
2/02-1/03 1.170 1.082
2/03-1/04 1.188

AVERAGE DEV. 1:2 2:3 3:4 4:5 5:6 6:7 7:8 8:9 9:10
2 Year Averages 1.179 1.075 1.053 1.042
3 Year Averages 1.193 1.084 1.063
4 Year Averages 1.205 1.093
5 Year Averages 1.203

5 Yr Ex-Hi Lo Avgs 1.203

AVG DEV. TO 5TH 1:5 2:5 3:5 4:5 5th:Ult
2 Year Averages 1.390 1.179 1.097 1.042 1.647
3 Year Averages
4 Year Averages
5 Year Averages

5 Yr Ex-Hi Lo Avgs

AVG DEV. TO ULT. 1:U 2:U 3:U 4:U 5:U
2 Year Averages 2.291 1.943 1.807 1.716 1.647
3 Year Averages
4 Year Averages
5 Year Averages

5 Yr Ex-Hi Lo Avgs

Averaging Method
(Use '6' for 5 Yr Ex-HiLo) 2 2 2 2 2 2 2 2 2 2

Selected Average 1:2 2:3 3:4 4:5 5th:Ult
Development 1.179 1.075 1.053 1.042 1.647
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LIMITED MEDICAL LOSS Test State 04/01/08 Exhibit 23e
DEVELOPMENT
Not-Likely

1st Report Start: 2/1/2004
1st Report End: 1/31/2005

PY Data 1st Report 2nd Report 3rd Report 4th Report 5th Report 6th Report 7th Report 8th Report 9th Report 10th Report
2/91-1/92 0 0 0 0 0 0 0 0 0 0
2/92-1/93 0 0 0 0 0 0 0 0 0 0
2/93-1/94 0 0 0 0 0 0 0 0 0 0
2/94-1/95 0 0 0 0 0 0 0 0 0 0
2/95-1/96 0 0 0 0 0 0 0 0 0 0
2/96-1/97 0 0 0 0 0 0 0 0 0
2/97-1/98 0 0 0 0 0 0 0 0
2/98-1/99 0 0 0 0 0 0 0
2/99-1/00 153,833,071 168,754,862 175,377,809 179,794,298 181,687,652 185,095,079
2/00-1/01 161,733,484 171,565,896 177,139,040 179,298,295 181,208,310
2/01-1/02 172,959,433 185,061,442 188,700,978 189,239,144
2/02-1/03 184,611,262 192,918,145 195,760,677
2/03-1/04 181,237,908 188,403,055
2/04-1/05 193,744,461

Link Ratios 1:2 2:3 3:4 4:5 5:6 6:7 7:8 8:9 9:10
2/91-1/92
2/92-1/93
2/93-1/94
2/94-1/95
2/95-1/96
2/96-1/97
2/97-1/98
2/98-1/99
2/99-1/00 1.097 1.039 1.025 1.011 1.019
2/00-1/01 1.061 1.032 1.012 1.011
2/01-1/02 1.070 1.020 1.003
2/02-1/03 1.045 1.015
2/03-1/04 1.040

AVERAGE DEV. 1:2 2:3 3:4 4:5 5:6 6:7 7:8 8:9 9:10
2 Year Averages 1.043 1.018 1.008 1.011
3 Year Averages 1.052 1.022 1.013
4 Year Averages 1.054 1.027
5 Year Averages 1.063

5 Yr Ex-Hi Lo Avgs 1.059

AVG DEV. TO 5TH 1:5 2:5 3:5 4:5 5th:Ult
2 Year Averages 1.082 1.037 1.019 1.011 1.138
3 Year Averages
4 Year Averages
5 Year Averages

5 Yr Ex-Hi Lo Avgs

AVG DEV. TO ULT. 1:U 2:U 3:U 4:U 5:U
2 Year Averages 1.232 1.181 1.160 1.151 1.138
3 Year Averages
4 Year Averages
5 Year Averages

5 Yr Ex-Hi Lo Avgs

Averaging Method
(Use '6' for 5 Yr Ex-HiLo) 2 2 2 2 2 2 2 2 2 2

Selected Average 1:2 2:3 3:4 4:5 5th:Ult
Development 1.043 1.018 1.008 1.011 1.138
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LIKELY DEVELOPMENT Test State           Exhibit 23f
TO ULTIMATE 04/01/08

Limited Medical - Combined
(using 2-year average development)

(1) (2) (3) (4)
Limited Modified

FIRST REPORT Incurred Development Amendment Losses
2/04-1/05 Losses 1:5 Factor (1)x((2)x(3))
Fatal-Likely 0 1.390 1.000 0
Fatal-Not Likely 1,434,476 1.082 1.000 1,552,103
Permanent Total 7,075,471 1.390 1.000 9,834,905
Perm. Partial-Likely 53,804,199 1.390 1.000 74,787,837
Perm. Partial-Not Likely 66,844,773 1.082 1.000 72,326,044
Temp. Total-Likely 36,225,567 1.390 1.000 50,353,538
Temp. Total-Not Likely 68,052,815 1.082 1.000 73,633,146
Medical Only 57,388,896 1.082 1.000 62,094,785
Contract Medical 23,501 1.082 1.000 25,428

(5) (6) (7) (8)
Limited Modified

SECOND REPORT Incurred Development Amendment Losses
2/03-1/04 Losses 2:5 Factor (5)x((6)x(7))
Fatal-Likely 225,002 1.179 1.000 265,277
Fatal-Not Likely 660,108 1.037 1.000 684,532
Permanent Total 10,473,697 1.179 1.000 12,348,489
Perm. Partial-Likely 66,975,353 1.179 1.000 78,963,941
Perm. Partial-Not Likely 67,728,416 1.037 1.000 70,234,367
Temp. Total-Likely 27,091,851 1.179 1.000 31,941,292
Temp. Total-Not Likely 62,029,074 1.037 1.000 64,324,150
Medical Only 57,984,300 1.037 1.000 60,129,719
Contract Medical 1,157 1.037 1.000 1,200

CALCULATION OF LIKELY 5TH-TO-ULTIMATE
(9) Combined Likely Losses 258,495,279
(10) Combined Not-Likely Losses 405,005,474
(11) Combined Total Losses 663,500,753

(12) Financial Data 5th-to-Ultimate Development Factors 1.336

(13) 5th-to-Ultimate Loss Development 222,936,253
(13) = {(12)-1}x(11)

(14) % of Loss Development attributable to Not-Likely Losses at 5th rpt 0.250

(15) 5th-to-Ultimate Likely Loss Development Factors 1.647
(15) = {(9)+ [1-(14)]x(13)}/(9)

(16) 5th-to-Ultimate Not-Likely Loss Development Factors 1.138
(16) = {(10)+ (14)x(13)}/(10)
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Exhibit 1

Step 1:  Start with 5 policy periods of Limited Losses and Payroll (00's)

Class Code 1234 Hazard Group C IG: Goods & Services

Current Loss Cost = 4.00
PY Report Payroll Actual Limited Losses

1/00 thru 12/00 5 50,000,000 800,000                             

1/01 thru 12/01 4 53,200,000 690,000                             

1/02 thru 12/02 3 57,700,000 750,000                             

1/03 thru 12/03 2 61,000,000 730,000                             

1/04 thru 12/04 1 64,995,000 700,000                             

Notes:
a) The losses for each policy period are comprised of finer subcategories (see Step 2) 

b) Individual claims are limited at $500,000.

c) The loss cost in this NCCI state includes loss adjustment expense (LAE).

New Class Ratemaking: Indicated Pure Premiums
Appendix B

NCCI State
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Exhibit 2
New Class Ratemaking: Indicated Pure Premiums

Step 2:  Adjust Limited Losses to Midpoint of Proposed Effective Date
Use Primary Conversion Factors (PCF varies by report)

Class HG Report Actual Limited Losses Dev't Group LDF Other PCF  Adjusted Limited Losses
1234 C 5 75,000                              Fatal-L 1.400 0.95 99,750                                      
1234 C 5 45,000                              Fatal-N 1.100 0.95 47,025                                      

1234 C 5 200,000                            Permanent Total 1.400 0.99 277,200                                    

1234 C 5 40,000                              Permanent Partial-L 1.400 1.01 56,560                                      

1234 C 5 20,000                              Permanent Partial-N 1.100 1.01 22,220                                      

1234 C 5 10,000                              Temporary Total-L 1.400 0.94 13,160                                      

1234 C 5 9,000                                Temporary Total-N 1.100 0.94 9,306                                        

1234 C 5 360,000                            Medical-L 1.750 1.15 724,500                                    

1234 C 5 41,000                              Medical-N 1.250 1.15 58,938                                      
800,000                            

1234 C 4 40,000                              Fatal-L 1.480 0.96 56,832                                      
1234 C 4 30,000                              Fatal-N 1.125 0.96 32,400                                      

1234 C 4 170,000                            Permanent Total 1.480 0.98 246,568                                    

1234 C 4 40,000                              Permanent Partial-L 1.125 1.02 45,900                                      

1234 C 4 45,000                              Permanent Partial-N 1.125 1.02 51,638                                      

1234 C 4 40,000                              Temporary Total-L 1.480 0.94 55,648                                      

1234 C 4 27,000                              Temporary Total-N 1.125 0.94 28,553                                      
1234 C 4 222,000                            Medical-L 1.900 1.15 485,070                                    

1234 C 4 76,000                              Medical-N 1.300 1.15 113,620                                    

690,000                            

1234 C 3 5,000 Fatal-L 1.550 0.97 7,518                                        
. . . . . .
. . . . . .
. . . . . .

Notes:

a) The LDF is shown separately from the PCF for illustrative purposes only, and will be included in the PCF.

b) The Other PCF includes the LR trend to proposed level midpoint and benefit on-level factors. 

c) Adjusted Limited Losses = Actual Limited Losses * LDF * Other PCF

d) The medical has similar injury type components plus medical only and contract medical, and is 

     condensed simply for illustrative purposes.

Appendix B

NCCI State
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Exhibit 3
New Class Ratemaking: Indicated Pure Premiums

Step 3:  Compute Expected Excess Losses @$500,000 
Use State Adjusted Per Claim Excess Ratios (vary by hazard group)

Class HG Report Dev't Group  Adjusted Limited Losses XS Ratio XS Factor  Unadjusted XS Losses
1234 C 5 Fatal-L 99,750                                     0.194 1.241 24,009
1234 C 5 Fatal-N 47,025                                     0.194 1.241 11,319

1234 C 5 Permanent Total 277,200                                   0.194 1.241 66,721

1234 C 5 Permanent Partial-L 56,560                                     0.194 1.241 13,614

1234 C 5 Permanent Partial-N 22,220                                     0.194 1.241 5,348

1234 C 5 Temporary Total-L 13,160                                     0.194 1.241 3,168

1234 C 5 Temporary Total-N 9,306                                       0.194 1.241 2,240

1234 C 5 Medical-L 724,500                                   0.194 1.241 174,383

1234 C 5 Medical-N 58,938                                     0.194 1.241 14,186

1234 C 4 Fatal-L 56,832                                     0.194 1.241 13,679
1234 C 4 Fatal-N 32,400                                     0.194 1.241 7,799

1234 C 4 Permanent Total 246,568                                   0.194 1.241 59,348

1234 C 4 Permanent Partial-L 45,900                                     0.194 1.241 11,048

1234 C 4 Permanent Partial-N 51,638                                     0.194 1.241 12,429

1234 C 4 Temporary Total-L 55,648                                     0.194 1.241 13,394

1234 C 4 Temporary Total-N 28,553                                     0.194 1.241 6,872
1234 C 4 Medical-L 485,070                                   0.194 1.241 116,754

1234 C 4 Medical-N 113,620                                   0.194 1.241 27,348

1234 C 3 Fatal-L 7,518                                       0.194 1.241 1,809
. . . . . . .
. . . . . . .
. . . . . . .

Notes:

a) The adjusted per claim excess ratio (XS ratio) is indemnity and medical combined.

b) The XS Factor = [ 1.0 / (1.0 - XS Ratio) ]

c) Unadjusted XS Losses = (XS factor -1.0) * Adjusted Limited Losses

d) The medical has similar injury type components plus medical only and contract medical, and is 
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Exhibit 4

Step 4:  Transfer 40% of Expected Excess Losses from Indemnity to Medical 

Class HG Report  Unadjusted XS Losses Dev't Group  Adjusted XS Losses
Indemnity Indemnity Indemnity

1234 C 5 107,511                               Likely 64,507                             

1234 C 5 18,907                                 Not Likely 11,344                             

Total C 5 126,418                               Total 75,851                             

Medical Medical Medical

1234 C 5 174,383                               Likely 217,388                           

1234 C 5 14,186                                 Not Likely 21,749                             
Total C 5 188,569                               Total 239,137                           

314,987                               314,987                           
Indemnity Indemnity Indemnity

1234 C 4 97,469                                 Likely 58,481                             

1234 C 4 27,100                                 Not Likely 16,260                             

Total C 4 124,569                               Total 74,741                             

Medical Medical Medical
1234 C 4 116,754                               Likely 155,741                           

1234 C 4 27,348                                 Not Likely 38,188                             

Total C 4 144,102                               Total 193,929                           

268,670                               268,670                           
. . . . . .
. . . . . .
. . . . . .

Notes:

a) The indemnity adjusted XS losses = .60 * unadjusted XS losses for indemnity (see exception in (c) ).

b) The medical adjusted XS losses = unadjusted med. XS loss + 40% unadjusted indemnity XS loss (exception in (c) 

c) If the unadjusted medical XS losses = $0 (for L or NL), transfer $0 excess to medical (L or NL).

d) At each report for each class code, adjusted XS loss = unadjusted XS loss for indemnity and medical combined.

e) Adjusted XS loss is allocated to all remaining non-zero injury type/dev't group combinations

    based on its share of adjusted losses at each report.

New Class Ratemaking: Indicated Pure Premiums
Appendix B

NCCI State
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Exhibit 5

Step 5:  Combine Adjusted Limited Losses with Adjusted XS Losses
Then Apply Secondary Conversion Factors (SCF vary by report)

Class Report Dev't Group Adjusted Limited Losses Adjusted XS Losses SCF  Expected Unlimited Losses
1234 5 Fatal-L 99,750                                    14,406                          1.220 139,270
1234 5 Fatal-N 47,025                                    6,791                            1.220 65,656

1234 5 Permanent Total 277,200                                  40,032                          1.220 387,023

1234 5 Permanent Partial-L 56,560                                    8,168                            1.220 78,968

1234 5 Permanent Partial-N 22,220                                    3,209                            1.220 31,023

1234 5 Temporary Total-L 13,160                                    1,901                            1.220 18,374

1234 5 Temporary Total-N 9,306                                      1,344                            1.220 12,993

1234 5 Medical-L 724,500                                  217,388                        1.220 1,149,103

1234 5 Medical-N 58,938                                    21,749                          1.220 98,437
314,987                        

1234 4 Fatal-L 56,832                                    8,207                            1.180 76,747
1234 4 Fatal-N 32,400                                    4,679                            1.180 43,753

1234 4 Permanent Total 246,568                                  35,609                          1.180 332,968

1234 4 Permanent Partial-L 45,900                                    6,629                            1.180 61,984

1234 4 Permanent Partial-N 51,638                                    7,457                            1.180 69,732

1234 4 Temporary Total-L 55,648                                    8,037                            1.180 75,148

1234 4 Temporary Total-N 28,553                                    4,123                            1.180 38,558
1234 4 Medical-L 485,070                                  155,741                        1.180 756,157

1234 4 Medical-N 113,620                                  38,188                          1.180 179,133

268,670                        

. . . . . .

. . . . . .

. . . . . .

Notes:

a) The medical is condensed for illustrative purposes, but has similar injury type components plus medical only and contract medical.

b) The SCF includes: the aggregate statewide loss cost change,  the factor to adjust for proposed IG differential, proposed loss-based expense

    the balancing of indicated to expected losses,  and misc. premium adjustments (a few states).

c) Secondary conversion factors vary by report and industry group.

d) Expected Unlimited Losses = (Adjusted Limited Losses + Adjusted XS Losses) * SCF

New Class Ratemaking: Indicated Pure Premiums
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Exhibit 6

Step 6:  Organize Expected Unlimited Losses (a.k.a. Converted Losses) into Indemnity and Medical Components
Compute Indicated Pure Premiums 

CLASS
1234

Industry Group: Goods and Services CONVERTED LOSSES

Hazard Group C INDEMNITY LIKELY INDEMNITY NOT-LIKELY MED LIKELY MED NOT-LIKELY TOTAL TOTAL

POLICY PERIOD PAYROLL CASES AMOUNT CASES AMOUNT AMOUNT AMOUNT AMOUNT PURE PREM.

1/00 thru 12/00 50,000,000               19 623,636 40 109,672 1,149,103 98,437 1,980,848 3.96
1/01 thru 12/01 53,200,000               17 546,847 50 152,043 756,157 179,133 1,634,180 3.07
1/02 thru 12/02 57,700,000               20 500,000 65 400,000 800,000 700,000 2,400,000 4.16
1/03 thru 12/03 61,000,000               18 310,000 57 300,000 1,150,000 850,000 2,610,000 4.28
1/04 thru 12/04 64,995,000               12 300,000 60 450,000 720,000 1,100,000 2,570,000 3.95
5 YR. TOTAL 286,895,000 86 2,280,482 272 1,411,715 4,575,261 2,927,570 11,195,028 3.90

INDEMNITY

CRED. PURE PREM.* CRED. PURE PREM.*

Indicated Pure Premium 66% 77% 3.90

Notes:

a) The indemnity and medical components replace the former serious, non-serious, and medical partial pure premiums.

b) Indemnity and Medical credibilities are derived in Step 7.

MEDICAL

1.287 2.615
PURE PREM.*

New Class Ratemaking: Indicated Pure Premiums
Appendix B
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Exhibit 7

Step 7:  Derive Expected Losses for Class 1234 for the Indemnity and Medical Components
Compute Credibility for each Component 

Background:

Credibility Formula used for all classes Full Credibility Standards (all classes)

Z = [N/ N f]
 0.4 N f  :  850 Indemnity

N f  :  400 Medical

*Pure premium underlying current loss cost for 1234 = 1.70 Indemnity

*Pure premium underlying current loss cost for 1234 = 2.10 Medical

* Adjusted to proposed level via changes in trend, benefits, and experience.

Average Cost per Case for NCCI state: SACC = $16,000 Indemnity

SACC = $28,500 Medical

Expected Losses for class code 1234= (5 years payroll in '00s ) x Underlying PP

c) Full Credibility Standard (all classes) expected losses = N f  x SACC

Calculations:
Indemnity
N= Expected Losses for class code 1234= 2,868,950 X 1.70
N= Expected Losses for class code 1234= 4,877,215

Medical
N=Expected Losses for class code 1234= 2,868,950    X 2.10
N=Expected Losses for class code 1234= 6,024,795

c) Indemnity  N f  = 16,000 X 850 = 13,600,000

c) Medical  N f  = 28,500 X 400 = 11,400,000

Indemnity  Z  = 66.35%

Medical  Z  = 77.48%

Notes:

a) Credibility is rounded to nearest whole number percentage.
b) The SACC for medical includes all medical loss dollars (i.e. incl. med.-only dollars) divided by lost-time claims.
c)  The Full Credibility Standard is also adjusted by a statewide balancing factor of 5 years of indicated-to-expected losses.
     This calculation assumes that the statewide balancing factor is unity for this state.
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Exhibit 8
New Class Ratemaking: National Pure Premiums

Step 8:  Derive National Pure Premiums for Class 1234 * 

1.  Compute a payroll-weighted average of the new revision indicated pure premiums 
across all classes in the reviewed state using reviewed states' payroll (5 years). 

2. Compute Step 1 for indemnity and medical separately.

3. For all other NCCI states, compute a payroll-weighted average of derived-by-formula
pure premiums (3 years) for each state using all classes in common with the reviewed state. 

4. Compute Step 3 using the reviewed state payroll (5 years) for indemnity and medical separately.

5. Compute adjustment factor k for each state for indemnity and medical:  k = (step 2 / step 4).

6. Adjust each state's losses by class code (3 years) to reviewed state level by multiplying by k.

7. Compute national pure premiums nc (for indemnity and medical separately) for each class code c. 

3 years other states' losses (adjusted to reviewed state level)
n c = 3 years other states' payroll (in 00's) for class c

Final adjustment: balance the national pure premiums to the indicated pure premiums in the reviewed state.

8. For each industry group (IG), compute the total indicated pure premium. Do this  
by extending 5 years of reviewed state payroll by the reviewed state indicated pure premiums.

9. For each industry group (IG), compute the total adjusted unbalanced national pure premium. Do this 
by extending 5 years of reviewed state payroll by the adjusted unbalanced national pure premiums.

10.  Compute balancing factor BIG for each IG,  where BIG =  (step 8 / step 9). 

11.  Compute final balanced national pure premiums for reviewed state for each class c:    N c = B IG x n c

*  For a numerical illustration of the national pure premium calculation, refer to: 

Boor, J.A. , "The Complement of Credibility," PCAS LXXXIII, 1996, pp 14-18

Appendix B

NCCI State

Class Ratemaking for Workers Compensation:  NCCI’s New Methodology

Casualty Actuarial Society E-Forum, Winter 2009 142



Exhibit 9

Step 9:  Derive Present-On-Rate-Level (PORL) Pure Premium for Class 1234 

Pure premium underlying current loss cost for 1234 = $1.70 Indemnity

Pure premium underlying current loss cost for 1234 = $2.10 Medical

Apply separate adjustment factors for the indemnity and medical components
to adjust to the proposed level of the loss cost filing.

Indemnity Medical Total

1.  PP underlying current loss cost: $1.70 $2.10

Adjustments:

2. Change in Proposed LR Trend: 0.990 1.010

3. Proposed Change in Benefits: 1.005 0.980
4. Proposed Change in LBE: 1.000 1.000

5. Proposed Change in Off-Balance: 0.990 0.990
6. Proposed SW Experience Change 1.010 1.010
7. Adjusted IG Differential: 1.021 1.021
8. Miscellaneous factors 1.000 1.000
9. Product of Step 2. through Step 8. 1.016 1.010

10. Present On-Rate-Level Pure Premium: 1.727 2.122 3.849
(The Product of Step 1 and Step 9)

Notes:

a) The PP underlying the current loss cost includes LAE (if any), the test correction factor, and applied swing limits

b) The PP underlying the current loss cost excludes the manual to standard premium ratio.

c) No loss development adjustment is necessary as the value is already at an ultimate level.

d) All adjustments are for a one-year timespan

e) Change in loss-based expenses (LBE) is change in LAE and change in any other Loss based assessments.

f) Proposed change in off-balance is current M/E / proposed M/E for the IG where class 1234 resides.

New Class Ratemaking: Present-On-Rate-Level Pure Premiums
NCCI State
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Exhibit 10

Step 10:  Compute Credibility for National and PORL Pure Premiums for Class 1234 

Background: National Pure Premium

Credibility Formula used for all classes Full Credibility Standards (all classes)

Z = min { 0.5*(1- State Z), [N/ N f]
 0.4 } N f  : 1,150 Indemnity

N f : 1,000 Medical

N f and  N  for the  national pure premiums are based on actual number of lost-time claims
based upon the latest three years of national data for the class code.

Calculations: National Pure Premium
Indemnity and Medical
N= Actual # of lost-time claims (all states)  for class code 1234 = 1,025

National Z for Indemnity  = Z = min { 0.5*(1- State Z), [N/ N f]
 0.4 }

National Z for Indemnity  =       min { 17% or 96% }      = 17%

National Z for Medical  = Z = min { 0.5*(1- State Z), [N/ N f]
0.4 }

National Z for Medical  =       min { 11% or 100% }      = 11%

Background: Present On-Rate Level Pure Premium

Z = (1-  State Z  - National Z)

Calculations: Present On-Rate Level Pure Premium

PORL  Z  for Indemnity  =  (    1    -  66%      -  17%  )    = 17%

PORL  Z  for Medical  =  (    1    -  77%      -  11%  )    = 12%

Notes:

a) Credibility is rounded to nearest whole number percentage.

New Class Ratemaking: Remaining Credibility Steps
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Appendix B Exhibit 11

NCCI State

Step 11:  Apply Three-way Credibility Formula to the  Indemnity and Medical Components
Compute the Derived By Formula Pure Premium 

CLASS
1234

Industry Group: Goods and Services CONVERTED LOSSES

Hazard Group C INDEMNITY LIKELY INDEMNITY NOT-LIKELY MED LIKELY MED NOT-LIKELY TOTAL TOTAL

POLICY PERIOD PAYROLL CASES AMOUNT CASES AMOUNT AMOUNT AMOUNT AMOUNT PURE PREM.

5                             50,000,000           19 623,636 40 109,672 1,149,103 98,437 1,980,848 3.96
4                             53,200,000           17 546,847 50 152,043 756,157 179,133 1,634,180 3.07
3                             57,700,000           20 500,000 65 400,000 800,000 700,000 2,400,000 4.16
2                             61,000,000           18 310,000 57 300,000 1,150,000 850,000 2,610,000 4.28
1                             64,995,000           12 300,000 60 450,000 720,000 1,100,000 2,570,000 3.95

5 YR. TOTAL 286,895,000 86 2,280,482 272 1,411,715 4,575,261 2,927,570 11,195,028 3.90
INDEMNITY TOTAL

CRED. CRED. PURE PREM.* PURE PREM.*

Indicated Pure Premium 66% 77% 3.90

Pure Premium Indicated by National 17% 11% 4.00
Pure Premium Present on Rate Level 17% 12% 3.85
Pure Premium Derived by Formula 3.92

2.800
2.122

1.345 2.579

1.200
1.727

MEDICAL

PURE PREM.*

2.6151.287

Class Code Description

New Class Ratemaking: Derived By Formula Pure Premiums
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Exhibit 12
New Class Ratemaking: Final Loss Cost / Rate Calculation

Step 12:  Compute the final proposed loss cost by adjusting pure premium derived by formula
Current Loss Cost for Class 1234 = 4.00

Indemnity Medical Total

1 Indicated Pure Premium 1.287 2.615 3.90

2 Pure Premium Indicated by National Relativity 1.200 2.800 4.00

3 Pure Premium Present on Rate Level 1.727 2.122 3.85

4 State Credibilities 66% 77% xxx

5 National Credibilities 17% 11% xxx

6 Residual Credibilities = 100% - (4) - (5) 17% 12% xxx

7 Derived by Formula Pure Premiums

= (1) x (4) + (2) x (5) + (3) x (6) 1.345 2.579 3.92

8 Test Correction Factor 0.9963 0.9963 xxx

9 Underlying Pure Premiums = (7) x (8) * 1.341 2.569 3.91

10 Ratio of Manual to Standard Premium 1.063

11 Target Cost Ratio (TCR) 1.00

12 Loss Cost = (9) x (10) / (11) 4.16

13 Loss Cost Within Swing Limits 4.16

Current Loss Cost x Swing Limits
 a) Lower bound = .75  x 4.00
 b) Upper bound = 1.25 x 4.00

14 Pure Premiums Underlying Proposed Loss Cost* 1.341 2.569 3.91
((14TOT) / (9TOT)) x (9) ; (14TOT) = (13) x (11) / (10))

15 Disease, PAP, and/or Miscellaneous Loadings 0.00

16 Final Proposed Loss Cost 4.16

* Indemnity pure premium is adjusted for the rounded total pure premium:

Notes:

a) The swing limits are applied as +/- 25% change around the IG change in most states. 
b) The test correction factor is computed by IG to redistribute premium for classes exceeding swing limits.
c) The TCR is the fraction of the adequate premium dollar accounting for losses and loss-based expenses.
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Appendix B Exhibit 13
New Class Ratemaking: Derivation of Industry Group Differentials

NCCI State

II.  Derivation Of Industry Group Differentials

a)  INDUSTRY GROUP WAGE TREND ADJUSTMENT
(1) (2) (3) (4) (5) (6) (7)

Converted Converted Converted Normalized
Indicated Indicated Indicated CPS Wage Medical Loss Medical Loss

Industry Indemnity Medical Total Average Weekly Trend Wage Trend Wage Trend
Group Losses* Losses* Losses* Wage Trends** Differential Adjustments Adjustments

I 321,604,662 247,834,851 569,439,513 1.130 0.979 0.991 0.990
II 542,740,889 488,814,443 1,031,555,332 1.100 1.005 1.002 1.001
III 242,098,488 248,912,602 491,011,090 1.099 1.006 1.003 1.002
IV 488,290,147 467,545,456 955,835,603 1.091 1.014 1.007 1.006
V 361,406,704 241,602,904 603,009,608 1.123 0.985 0.994 0.993
VI 0 0 0 0.000 1.000 1.000 0.999

ALL 1,956,140,889 1,694,710,257 3,650,851,146 1.106 1.001 1.000

* These expected unlimited losses are at ultimate, on-level, include the proposed experience and loss based expense changes and any miscellaneous premium adjustments (excludes trend).
** These CPS average weekly wage trends were fit to CPS average weekly wages based on the $150k payroll cap.

b)  EXPECTED LOSSES
(8) (9) (10) (11) (12) (13) (14) (15) (16) (17)

Latest Year Five Year Five Year Current Proposed Latest Year Five Year Five Year Adjustment to
CURRENT CURRENT PROPOSED Ratio of Manual Ratio of Manual CURRENT CURRENT PROPOSED Current / Proposed for

Industry Manual Manual Manual to Standard to Standard Expected Losses** Expected Losses** Expected Losses** Proposed Current Relativities
Group Pure Premium* Pure Premium* Pure Premium* Premium Premium (8) x (11) / (12) (9) x (11) / (12) (10) x (11) / (12) (9) / (10) (16) /  0.975

I 119,092,461 559,793,421 574,558,035 1.088 1.072 120,869,960 568,148,546 583,133,528 0.974 0.999
II 240,949,465 1,051,366,791 1,076,899,697 1.096 1.077 245,200,198 1,069,914,580 1,095,897,928 0.976 1.001
III 104,805,551 464,202,966 476,975,093 1.109 1.086 107,025,190 474,034,153 487,076,776 0.973 0.998
IV 240,216,710 1,035,955,411 1,065,551,933 1.052 1.063 237,730,930 1,025,235,271 1,054,525,525 0.972 0.997
V 145,206,659 614,567,457 627,887,892 1.092 1.089 145,606,677 616,260,480 629,617,611 0.979 1.004
VI 0 0 0 1.000 1.000 0 0 0 0.000 0.000

ALL 850,270,846 3,725,886,046 3,821,872,651 856,432,955 3,753,593,030 3,850,251,368 0.975 1.000

* The CURRENT pure premiums are payroll extended underlying pure premiums.  The PROPOSED pure premiums are adjusted to include the proposed experience, trend, benefit
and loss based expense changes as well as any miscellaneous premium adjustments.

** The CURRENT expected losses are payroll extended underlying pure premium adjusted by the change in off-balance by industry group.  The PROPOSED pure premiums are further adjusted
to include the proposed experience, trend, benefit and loss based expense changes as well as any miscellaneous premium adjustments.

c)  INDUSTRY GROUP DIFFERENTIALS
(18) (19) (20) (21) (22) (23) (24) (25) (26) (27)

Converted Five Year Indicated Five Year Full Standard Credibility Weighted Normalized Final
Indicated Ind to Exp Ratios Differentials Ind to Exp Ratios for Credibility Credibility Ind to Exp Ratios Credibility Weighted Industry

Industry Balanced (w/o Wage Trend) (w/o Wage Trend) (w/ Wage Trend) Lost-Time Lost-Time Minimum of 1.00 and (25) x (21) + Ind to Exp Ratios Group
Group Losses* (18) / [(15) x (17)] (19) / 0.818 (19) x (7) Cases Cases [(23) / (24)] ^ 0.50 [1 - (25)] x (21) Total (aka IG Differentials) Differentials

I 478,573,006 0.822 1.005 0.814 12,088 12,000 1.00 0.814 0.996 0.996
II 877,674,956 0.800 0.978 0.801 15,366 12,000 1.00 0.801 0.980 0.980
III 424,625,861 0.874 1.068 0.876 9,648 12,000 0.90 0.870 1.065 1.065
IV 869,514,555 0.827 1.011 0.832 27,209 12,000 1.00 0.832 1.018 1.018
V 497,494,959 0.787 0.962 0.781 10,494 12,000 0.94 0.783 0.958 0.958
VI 0 1.000 1.000 1.000 0 12,000 0.00 1.000 1.000 1.000

ALL 3,147,883,337 0.818 0.817 0.817 1.000

* These expected unlimited losses are at ultimate, on-level, trended, and include the proposed experience and loss based expense changes as well as any miscellaneous premium adjustments.  These losses have also been
balanced to the proposed level via the balancing factors.
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More Flexible GLMs  
Zero-Inflated Models and Hybrid Models 
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________________________________________________________________________ 
Motivation: GLMs are widely used in insurance modeling applications.  Claim or frequency models are a key 
component of many GLM ratemaking models.  Enhancements to the traditional GLM that are described in this 
paper may by able to address practical issues that arise when fitting count models to insurance claims data.  
   For modeling claims within the GLM framework, the Poisson distribution is a popular distribution choice.  In the 
presence of overdispersion, the negative binomial is also sometimes used.  The statistical literature has suggested that 
taking excess zeros into account can improve the fit of count models when overdispersion is present.  In insurance 
excess zeros may arise when claims near the deductible are not reported to the insurer, thus inflating the number of 
zero policies when compared to the predictions of a Poisson or Negative Binomial distribution. 
   In predictive modeling practice, data mining techniques such as neural networks and decision trees are often used 
to handle data complexities such as nonlinearities and interactions.  Data mining techniques are sometimes combined 
with GLMs to improve the performance and/or efficiency of the predictive modeling analysis.  One augmentation of 
GLMs uses decision tree methods in the data preprocessing step.  An important preprocessing task reduces the 
number of levels on categorical variables so that sparse cells are eliminated and only significant groupings of the 
categories remain.  
Method: This paper addresses some common problems in fitting count models to data.  These are: 

• Excess zeros 
• Parsimonious reduction of category levels 
• Nonlinearity 

Results: The research described in this paper applied zero-inflated and hybrid models to claim frequency data.  The 
research suggests that mixtures of GLM models incorporating adjustments for excess zeros improves the fit of the 
model compared to single distribution count models on some count data.  The analysis also indicates that variable 
preprocessing using the CHAID tree technique can help reduce the complexity of models by retaining only category 
groupings that are significant with respect to their impact on the dependant variable. 
Conclusions:  By incorporating greater flexibility into GLM count models, practitioners may be able to improve the 
fit of models and increase the efficiency of the modeling effort.  Use of the ZIP or ZINB improves the model fit for 
an illustrative automobile insurance database.  The ZIP or ZINB distributions also provided a better overall 
approximation to the unconditional distribution of the data for the fit of a few additional insurance and non-
insurance database.  While the categorical variables in our illustrative data contained only a few categories compared 
to most realistic applications databases encountered in insurance, the fit of several predictive models.  We also 
illustrate how the procedure can be applied to efficiently preprocess categorical variables with large numbers of 
categories.  
Availability: Excel spreadsheets comparing the Poisson, negative binomial, zero-inflated Poisson and zero-inflated 
negative binomials well as R code for reproducing many models used in this paper will be available on the CAS Web 
Site. 

 
Keywords: Predictive modeling, automobile ratemaking, generalized linear models, data mining 
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1. INTRODUCTION 

Generalized linear models (GLMs) use a regression procedure to fit relationships between 
predictor and target variables.  Unlike classical ordinary least squares regression where the random 
component (i.e., the error term) is assumed to follow a normal distribution, the random component 
in a GLM is assumed to belong to the exponential family of distributions.  This family includes, 
along with the normal, the Poisson, the gamma and others commonly encountered in statistical 
analysis.  GLMs are widely used in insurance modeling applications.  In both the classical statistical 
literature (McCullagh and Nelder, 1989) and insurance-specific literature (de Jong and Heller, 2008) 
GLM techniques are applied to modeling insurance frequency and severity data.  GLMs are a linear 
modeling procedure, since the relationship between a suitable transform of the dependent variable 
and the independent variables is assumed to be linear. 

Commonly used data mining techniques employ automated procedures to efficiently address 
some limitations of linear modeling approaches, such as nonlinear relationships that are not 
adequately modeled by common transformations of variables.  The group of procedures that 
includes GLMs and data mining techniques are often referred to as predictive models by insurance 
actuaries.  In this paper we will show how data mining techniques and GLMs can be combined to 
take advantage of the strengths of each approach.  In addition, we will present a common problem 
that arises in the modeling of count data: excess zeros.  That is, sometimes, when actual instances of 
zero counts are compared to the theoretical values under the Poisson assumptions, there are 
significantly more zeros than the fitted distribution predicts.  In the insurance context, this is 
believed to be due to the underreporting of small claims (Yip and Yau, 2005). 

One of the symptoms of zero-inflated distributions is overdispersion.  That is, under the Poisson 
assumption; the variance of the distribution is equal to its mean.  Table 1.1 presents some 
automobile insurance count data from Yip and Yau that will be used throughout this paper to 
illustrate techniques and concepts.  For this data the variance exceeds the mean.   When the variance 
exceeds the mean, the situation is referred to as overdispersion, and a number of approaches are 
used to address it.  One approach is to use a negative binomial model rather than a Poisson, as the 
variance of the negative binomial distribution exceeds the mean. 
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Table 1.1 

Example of Overdispersion 
K Count P(X=x) 

0 1,706 0.607 
1 351 0.125 
2 408 0.145 
3 268 0.095 
4 74 0.026 
5 5 0.002 

Total 2,812  
Mean 0.815  
Variance 1.364  

 

Figure 1.1 displays a comparison of actual and theoretical probabilities at each value of K (or the 
five-year frequency) for the auto data.  Note the actual data contains more zeros and fewer ones 
than predicted by the Poisson. 

Figure 1.1 

Actual Frequencies vs. Poisson Theoretical Frequencies 

 

 

 

 

  

 

 

 

 

Table 1.2 displays the average claim frequency for the six car type categories in the data.  The 
table indicates that some of the types such as Pickup and Van have similar frequencies.  Might we be 
able to combine some of these categories and reduce the number of parameters in a regression 
model that uses categorical predictors?  What procedures will facilitate efficiently combining of 
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categories that are not statistically different with respect to their effect on the dependent variable?  

 

Table 1.2 
Type of Car Avg #Claims 

(Past 5 Years) 
Panel Truck 0.9133
Pickup 0.8262
Sedan 0.6674
Sports Car 0.9296
SUV 0.8092
Van 0.8449
Total 0.8006

 

1.1 Research Context 

As can be seen in some of the early literature on the subject (Bailey and Simon, 1959; Simon, 
1962), the Poisson distribution has long been used in actuarial science as a stochastic model for 
claim count data.  The negative binomial distribution is a key alternative when the variance of the 
count data exceeds the mean (Simon, 1962).  Both distributions are members of the exponential 
family of distributions and have become popular for modeling frequency data in predictive modeling 
applications.  Thus, the Poisson and negative binomial can be used within the GLM framework to 
fit regression models to insurance/claim frequency data.  

Anderson et al. (2005) mention the problem of overdispersion that frequently occurs when using 
the Poisson distribution.  Their suggested remedy follows that of the classic reference by McCulloch 
and Nelder (1989).  The classical approach to overdispersion involves estimating an additional scale 
parameter for the Poisson distribution.  This scale parameter has no effect on the estimated 
coefficients of the independent variables used in the regression model but does affect tests of 
significance for the variables.  Ismail and Jemain (2007) extend the classical treatment of 
overdispersion using generalized Poisson and negative binomial models.  

In Hilbe’s recent book (Hilbe, 2007) points out that excess variability in Poisson regression can 
be due to a number of additional factors not remedied by using an overdispersion parameter or the 
negative binomial distribution including:  

• Missing independent variables 

• Interactions not included in the model 
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• Excess zeros  

Yip and Yau (2005) illustrate how to apply zero-inflated Poisson (ZIP) and zero-inflated negative 
binomial (ZINB) models to claims data, when overdispersion exists and excess zeros are indicated.  
They also present another alternative, hurdle models, to approximate distributions with excess zeros.  
Jackman (2007) describes functions implemented in the statistical software R that can be used to 
implement ZIP, ZINB, and hurdle models.  In this paper we will extend the work of these authors 
by combining ZIP, ZINB, and hurdle models with data mining procedures that efficiently search for 
significant terms in the data and reduce the dimensionality of categorical variables by clustering 
together categories of categorical dependent variables.  

1.2 Objective 

The paper attempts to improve the application of GLM procedures to claim prediction in 
property casualty insurance.  

In this paper we will: 

• Illustrate the problem of excess zeros in claim count data and then show how to remedy 
it with zero-adjusted mixture  models 

• Show how GLM models for count data can be combined with traditional data mining 
approaches to produce more robust models 

• Apply the procedures to an insurance database as an illustration 

1.3 Outline 

The remainder of the paper proceeds as follows.  Section 2 will present the problems of excess 
zeros in count data and show how to address it with zero-inflated models.  In Section 3 we show 
how to augment GLM models with traditional data mining approaches to efficiently model 
nonlinear relationships and reduce the number of parameters contributed by categorical variables.  
In Section 4 we present overall conclusions.  We have provided code in SAS for implementing some 
of the models in Appendices but numerous statistical tools contain the technology for implementing 
the models in this paper.  Additional Code using R will be made available on the CAS’s Web Site.  

2. ZERO-INFLATED AND HURDLE MODELS 
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2.1 The Data 

We will illustrate many of our key concepts using the auto data from Yip and Yau (2001).  Yip 
and Yau supplied a frequency table of personal automobile claims that we use to illustrate Univariate 
distribution fitting methods. An additional database from Yip and Yau of personal automobile 
policy level information contains approximately 10,000 records and is used to illustrate multivariate 
regression models.  Table 2.1 displays the variables in the data.  The first variable on the list, claim 
frequency, is used as a dependent variable in the GLM, ZIP, and hybrid models.  All other variables 
when used are used as predictor variables.  

Table 2.1 

Variables in Automobile Database 

Variable Description 
CLM_FREQ No. of claims in 5 years 
AGE Policyholder age 
BLUEBOOK Blue book value of car 
CAR_TYPE Type of car: sedan, SUV, etc. 
CAR_USE Private or Commercial use 
CLM_DATE Accident Date 
DENSITY Population Density (rural, urban) 
GENDER Gender 
HOME_VALUE House value 
HOMEKIDS No. of children at home 
INCOME Policyholder income 
JOBCLASS Job category 
KIDSDRIVE No. of children that drive 
MARRIED Marital status 
MAX_EDUC Highest education 
MVR_PTS Motor Vehicle Points 
NPOLICY Number of policies 
PARENT1 Single Parent? 
PLCYDATE Policy Inception Data 
RETAINED Number of years policy renewed 
REVOKED Licensed revoked? 
SAMEHOME How many years in current house?
TRAVTIME Travel time to work 
YOJ Years on current job 

 

Before fitting a conditional model of claim frequency using the predictor variables in the auto 
data, we first investigate the distribution of marginal claims (displayed in Table 1.1).  Figure 1.1 
presented a comparison of actual and fitted Poisson claim frequencies for this data and indicated 
that the actual number of zero claims exceeds those that would be expected if the data were Poisson 
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distributed.  A negative binomial distribution was fit next.  A larger number of zeros (as well as 
larger frequencies) could be expected under a negative binomial model. 

Figure 2.1 

Comparison of Actual, Poisson, and Negative Binomial Frequencies 
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From Figure 2.1 it is apparent that the negative binomial distribution approximates the data 
better than the Poisson distribution.  However, the actual data compared to the negative binomial 
shows an excess probability of zero claims and a significantly lower probability at a count of one.  

 

2.2.1. Introduction to Zero-Inflated and Hurdle Probability Distributions 

An alternative probability distribution when “excess” zeros appear to be present is the zero-
inflated Poisson.  The zero-inflated Poisson assumes the observed claim volumes are the result of a 
two-part process 1) a process that generates “structural zeros” and 2) a process that generates 
random claim counts.  In insurance the “structural zeros” may be due to underreporting of small 
claims.  Especially when claims are near or less than the policy deductible, a policyholder may not 
report the claim because 1) there may be no expected payment under the policy and 2) the 
policyholder may wish to avoid premium increases under an experience rating or merit rating 
system.  The ZIP distribution is a mixture of exponential family distributions.  Under the zero-
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inflated Poisson, the structural zeros are assumed to follow a Bernoulli process with parameter φ, 
denoting the probability of a zero and the random counts are assumed to follow a Poisson with 
parameterλ , the mean of the distribution.  The distribution of the zero-inflated Poisson is: 

 

(2.1) 
 
 
 

The theoretical mean of the ZIP model is φ+ (1-φ)λ.  The variance is (1-φ)λ(1+φλ). 

The parameters of the Poisson and negative binomial distribution can be estimated from the 
sample mean (Poisson) and the sample mean and variance (negative binomial).  However, a 
numerical optimization procedure must be used to estimate the parameters of zero-inflated models.  
A description of the specific procedure we implemented in Excel is provided in Appendix G.   

The parameters fit with Excel solver are displayed in Appendix G, Table G-2.  The table 
indicates that on average, 54% of the records have structural zeros.  For the remaining 
policyholders, the mean claim frequency over a five-year period is approximately 1.9.  Figure 2.3 
compares the negative binomial to the zero-inflated Poisson.  The ZIP model appears to provide a 
better fit to the data.  
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Figure 2.3 
Actual, Negative Binomial, and Zero-Inflated Poisson Frequencies 
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The Chi-Squared test can be used to test whether the ZIP model is a significantly better fit to the 
data than the negative binomial or Poisson models.  The Chi-Squared statistic is: 

 

(2.3)                                  
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χ −
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The Chi-Squared statistic compares the observed and fitted claim counts.  It has degrees of 

freedom equal to k-1, where k is the number of categories (here equal to six). 

Table 2.2 
Chi Squared Statistic for Poisson, Negative Binomial and ZIP Models 

 Chi-Squared 
Model Statistic 
Poisson               935.3 
Negative Binomial               351.9 
ZIP                 60.2 

 
Note that the critical value for the Chi-Squared statistic at the 5% level is about 11, so that all 

three fitted models would be deemed significantly different from the data by this statistic.1  

                                                           
1 It should be noted that a well-known limitation of the Chi-Square statistic is that it is very conservative when 
comparing actual to fitted distributions.  That is, it is common for the distribution to be significantly different from the 
actual empirical distribution according to this measure. 
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However, it can be seen that the ZIP model provides a much better fit to the data.   

Another mixed probability distribution related to the ZIP model is the zero-inflated negative 
binomial (ZINB) model.  The ZINB is a mixture of a Bernoulli variable (for the structural zeros) 
and a negative binomial for the random counts.  The distribution’s formula is:  
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The mean of the negative binomial is r (1-p)/p. The variance is r (1-p)/p2.  As with the ZIP model, 

the ZINB model can be fit in Microsoft Excel.  Table G.3 in Appendix G shows the values of the 
estimated parameters. 

In the example, the estimated parameters for φ  is zero, indicating that the single negative 
binomial model is a better fit than the ZINB mixed model.  Note the chi-square statistic for this 
model (397) was higher than that of the negative binomial fitted using the first two moments of the 
data.   

A model related to the zero-inflated models is the hurdle model.  The hurdle models assume two 
processes: 1) a process that generates no claim or at least one claim and 2) a process that generates 
the number of claims given that at least one claim occurs.  A Bernoulli process is used to model the 
occurrence/nonoccurrence of a claim while a truncated Poisson or negative binomial is used to 
model positive claim counts.  The formula for the hurdle Poisson model is shown in (2.5) and the 
fitted parameters are shown in Table G.4 of Appendix G.  For this data the hurdle Poisson does not 
fit the data as well as the ZIP model, as it has a larger weighted squared deviation and its Chi-Square 
statistic of 97 is larger than that of the ZIP model.  

 

 

(2.5)2     

                                                           
2 The mean of the hurdle Poisson is λ/ (1-exp(-λ)).  The variance of the hurdle Poisson is λ/ (1-exp(-λ)) (1- λ exp(-λ))/ 
(1-exp(-λ)).  
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A negative binomial hurdle model was also fit to the data, but as with the ZINB model, the fitted 
model contained no Bernoulli parameter.  

2.2.1.a Zero-Adjusted Models for Other Data Sets 

Since the Yip and Yau data in our illustrations were used in their paper advocating the use of ZIP 
and ZINB models, one is not surprised when a zero-adjusted mixed model fits the data better than 
single count distribution models.  In order to explore the broader applicability of zero-adjusted 
models, several other sample datasets were tested to determine if the ZIP or ZINB provided a better 
fit than simpler models: 

• The Bailey and Simon credibility study (Bailey and Simon, 1959) used the experience 
from 1957 and 1958 for Canadian Private Passenger automobile exposure excluding 
Saskatchewan.  The data is shown in Table 1 of their paper.  This data is reorganized and 
displayed in Table F.1 of Appendix F.  The data displayed was aggregated to the class 
level.  For this data the negative binomial is a much better fit than the Poisson (illustrating 
the need to test for the negative binomial as an alternative to the Poisson), as well as the 
ZIP model.  The ZINB, however, fits the data better than the negative binomial but the 
difference is not of the same magnitude as that between the negative binomial and 
Poisson.  For this data, under the Poisson and ZIP assumptions observations are 
expected to be much closer to the distribution’s mean value, while many of the actual 
observations are far from the mean, causing a very high chi-square values under Poisson 
and ZIP assumptions. 

• Zero-inflated count data are also found in non-insurance applications.  Five different 
datasets from various non-insurance analyses are displayed in Appendix F. Most of the 
examples tested displayed a very large variation in the goodness of fit.  This wide 
variation indicates it may be prudent to test a number of possible alternatives before 
selecting a distribution to incorporate into a predictive model.  

o Hospital visit data from Deb and Trevedi (1997).   The data contain the number 
of visits and hospital stays for a sample of United States residents aged 66 and 
over.  For this data the ZINB was the best fit and the Poisson was a very poor fit. 
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o Doctor office visit data from Deb and Trevedi (1997).  For this data the negative 
binomial was the best fit and the Poisson and ZIP were very poor fits.   

o Patents data from Wang, Cockburn and Puterman (1998).  The data contain the 
number of patents for a sample of pharmaceutical and biomedical companies.  
For this data the ZINB was the best fit and the Poisson and ZIP were very poor 
fits. 

o Apple tree root cultivar3 count data from Ridout and Demetrio (1998). For each 
cultivar, the number of roots produced during different experimental protocols 
was tabulated.  For this data the ZINB was the best fit. 

2.2.2. Poisson, Negative Binomial, ZIP, ZINB, and Hurdle Models with SAS 

For simplicity of exposition, we have shown how to fit univariate zero-inflated and hurdle 
models in Microsoft Excel.  However, nonlinear curve-fitting applications are typically performed in 
statistical or mathematical programming languages such as SAS, MATLAB, and R.  For certain other 
distributions, specifically those that are members of the exponential family of distributions, a 
generalized linear model (GLM) can be use to fit the parameters of the distribution.  For example an 
intercept-only GLM model with a Poisson distribution and log link can be used to estimate Poisson 
parameters.  While this is a trivial example because the Poisson parameter equals its mean, it 
illustrates how common statistical software can be used to parameterize probability distributions.   
The model fit is: 

(2.5)                            Y = a +e, where e is a random error term. 

That is, a GLM procedure is used to fit a model that only has an intercept term, but no 
independent variables.  For the Poisson, the intercept will equal the Poisson parameter.  See 
Appendix B for an example of SAS code that can be used to fit the Poisson parameters. 

For more complicated probability distributions such as zero-adjusted distributions, the analyst 
will want to use an approach that solves for parameters, given a function of the parameters to 
optimize.  For instance in Appendix G the distance between an actual and fitted distribution is 
minimized when estimating the parameters of distributions using the Excel solver.  It is common in 
distribution fitting to maximize the log of the likelihood function.  For many common claim count 

                                                           
3 A cultivar (short for cultivated variety) is a cultivated plant with unique characteristics that separate from other similar 
cultivated plants.   
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distributions, the log-likelihood function is readily specified, either from first principles or from one 
of the many references on probability distributions (Hogg and Klugman, 1982).  In Appendix A we 
present the PDF and log-likelihood function for the Poisson.  Once a likelihood function has been 
specified, an optimization procedure is used to solve for the distribution’s parameters.  For common 
one and two parameter distributions, it is often unnecessary to specify a likelihood function, as these 
functions are prepackaged in statistical fitting software.  

For more complex models, many software packages offer the user a procedure that fits nonlinear 
mixed models using a nonlinear fitting procedure.  This is appropriate for the zero-adjusted models, 
which do not have a closed-form solution for the parameters, but such procedures can often be used 
to fit more familiar distributions (i.e., Poisson, logNormal) as well (ignoring any “mixed” model 
structure).  Appendix A presents an example using SAS code to generate fitted distributions and 
predicted probabilities. 

Figures 2.1 and 2.2 suggest that the actual claim data contain excess zeros compared to those 
expected under both the Poisson and negative binomial distribution approximations. Prior to fitting 
a zero-inflated distribution, we can formally test for zero inflation.  Van den Broek (1995) provides a 
score test for zero inflation relative to a Poisson distribution.  The statistic is based on a comparison 
of actual zeros to those predicted by the model:  
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In formula (2.6) S is the score, I(xi=0) is an indicator function that is 1 if a given observation 

equals zero, and 0 otherwise.  Denoting the probability, p0i does so under the assumed distribution 
(typically Poisson) of a zero observation for observation i.  Note that the probability is allowed to 
vary by observation.  The score is assumed to follow a chi-squared distribution with one degree of 
freedom.  Appendix C presents sample code that can be used to apply the score test.  As seen in 
Appendix C, the score for our automobile count data was an 869, which is significant at the 0.001 
level.  

As the score statistic supports the possibility of a zero-inflated distribution, we proceed with 
fitting zero-inflated distribution using statistical software.  Appendix D presents an example of 
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fitting a zero-inflated distribution using a nonlinear mixed models procedure.  

As discussed in section 2.1.1, in the presence of excess zeros, a hurdle model rather than a zero-
inflated model may be more appropriate.  Hurdle (Mullahy,1986) or two-part (Heilbron, 1994) 
models are so-called because the likelihood function is constructed to be separable, that is, the 
zero/positive component is typically handled with a logistic or Probit model, whereas the model for 
positive counts can include or exclude zeros.  The count portion of the hurdle model may be 
Poisson, negative binomial, or other count model.  Appendix D presents SAS procedures that can 
be used to fit these hurdle models.  

If zeros are excluded from the count portion of the model, then the positive portion can be 
modeled via a zero-truncated Poisson, for example.  (The formula was given earlier in equation 2.5).  
Additional applications of truncated count models include Grogger and Carson (1991), Shaw (1988), 
and Winkelmann and Zimmerman (1995).  Alternatives to the truncated Poisson include subtracting 
one from the dependent count variable.  This has been described as a shifted or positive Poisson 
distribution (Shaw, 1988).  Johnson and Kotz (1969) refer to this as a displaced Poisson distribution.  

 

2.3 Regression Models 

In this section, the zero-inflated and hurdle models are generalized to regression applications.  
We will use the 10,000 record Yip and Yau automobile insurance dataset to develop a model to 
predict claim frequency.  This section will show how to augment the Poisson and negative binomial 
models commonly used for count predictions with zero-inflated and hurdle capabilities.  

We first review the basic assumptions of generalized linear models.  See Anderson et al. (2005) 
for a more complete introduction to GLMs.   

A generalized linear model is denoted:           Y = η+e = x'β+e. 

It has the following components: 

• a random component, denoted e 

• a linear relationship between a dependent variable and its predictors.  The estimate or expected 
value of the prediction is denoted η. 

• 1 1 2 2 ... n na b x b x b xη += + +  

• a link function captures the form of the relationship between the dependent variable and the 



More Flexible GLMs: Zero-Inflated Models and Hybrid Models 
 

Casualty Actuarial Society E-Forum, Winter 2009 162 

regression expected value.  Two common link functions used when applying GLMs to ratemaking are: 

• the identity link μ=η 

• the log link μ=exp(η) or η=log(μ). 

Under the log link, each predictor variable’s impact on the estimate is multiplicative.  That is: 

1 1 2 2exp( )exp( )...exp( )n nY A b x b x b x= .  In ratemaking applications it is common for the 
classification variables to raise or lower a rate by a percentage.  Hence, the log link is intuitive for the 
ratemaking models being presented in this paper.  

Another common link function is the logit link: η=log(p/ (1-p)), where p denotes a probability 
between zero and one and p/(1-p) is the odds ratio or the odds of observing the target variable.  The 
logit link is commonly used with a Bernoulli (binary) dependent variable. 

In claim frequency modeling, it is common for the random component of the GLM to be the 
Poisson or negative binomial distribution.  The Poisson and under certain assumptions, the negative 
binomial (i.e., when the scale parameter is known) are members of the exponential family of 
distributions that also includes the normal and gamma.  The zero-inflated and hurdle models 
generalize the GLM to include mixture models.  For instance, the ZIP model is a mixture of two 
distributions from the exponential family: the Bernoulli and the Poisson.  The hurdle Poisson model 
is also a mixture of a Bernoulli and a Poisson random variable, but with the hurdle model, the 
Poisson is a truncated Poisson that models only positive claim counts and the zeros are modeled 
exclusively with the Bernoulli distribution. 

This paper’s first predictive modeling illustration will use four variables to predict claim 
frequency.  The four variables are car use, marital status, density, and gender.  Each of the predictor 
variables is categorical.  Thus the model is:  

 

(2.7)1. Y = f(car use, marital status, density, gender) + e. 

 

Where Y denotes the dependent variable, number of claims reported within a five-year period.  
In the Poisson and negative binomial regressions, the log link will be used.  

 In this section, classical GLM count regression models are compared to zero-inflated and hurdle 
alternatives.  As discussed in Section 1, overdispersion in count models is commonly handled by 
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fitting an over-dispersed Poisson, which allows the variance to exceed the mean by a constant factor.  
We also present results for a geometric as well as a negative binomial model as the negative binomial 
becomes a geometric when the size parameter r is 1.  Poisson and negative binomial regressions will 
be compared to ZIP, ZINB, and hurdle Poisson and hurdle negative binomial models.  Under the 
zero-inflated and hurdle model there are two components denoted Y and Z:  

Y = f (car use, marital status, density, gender) + e, Z = f(car use, marital status, density, gender) + 
e. 

 

Thus, the predictor variables are used both to estimate the Bernoulli parameter p (the Z 
component) and are also used to estimate the Poisson expected claim count (the Y component).  It 
is likely that the different variables will have a different importance in each component of the model.  
A nonlinear mixed models procedure can be used to estimate the parameters of the ZIP model.  
When using nonlinear mixed models procedures (or any other nonlinear optimization software) it is 
typically necessary to specify the log-likelihood function.  For the ZIP regression the log-likelihood 
(denoted ll) is straightforward: 

 

(2.8)  

 

Appendix E presents code for fitting these models.  In the particular example in Appendix E, the 
Bernoulli parameter p enters the function as a constant; that is, it is the same for every record, 
regardless of the value of the predictor variables, while the Poisson parameter is estimated from the 
regression function.  It is straightforward to add a regression function for the Bernoulli parameter.  
To assess the goodness of fit of the models we compute the negative log-likelihoods (actually -2* the 
log-likelihood).  In Table 2.3 the log-likelihood statistics from the different model fits are presented.  
It can be seen that the ZIP fits the data best while the simple Poisson regression provides the worst 
fit.  Moreover, there is a significant improvement in fit when moving from the Poisson the ZIP.   

The results indicate that the model fit to our sample auto claim counts was improved by using a 
zero-adjusted model.  In the next section, we will compare and contrast a GLM and a zero-adjusted 
model with models augmented using hybrid techniques that employ a decision tree method to 
preprocess data.  To keep the kinds of models to a manageable number we will only use the simple 
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Poisson and ZIP (the best performing model in Table 2.3) models in the next section. 

Table 2.3 

Model -2*log-likelihood 
Poisson 7,141.9  
Overdispersed Poisson                  6,843.9  
Geometric                  6,764.1  
Negative Binomial                  6,764.1  
ZINB                  6,541.2  
ZIP                  6,404.0  

 3. CHAID HYBRID MODELS 

3.1 The CHAID method 

The term “data mining” is loosely refers to a number of very different methods that apply 
computationally intensive nonparametric procedures, typically to large databases with many potential 
predictor variables and many records. Among the common data mining techniques used for 
prediction are neural networks and tree models. Trees fit a model by recursively partitioning the data 
into two or more groups, where data for each partition are more homogenous than the pre-
partitioned data.  The different groups are statistically determined to have significantly different 
values for the dependent variable.  In the most common tree method, Classification and Regression 
Trees (C&RT), the data is split into two groups, one with a high average value for the dependent 
variable and the other group with a lower average value on the dependent variable.  Each partition 
of the data in a tree model is referred to as a node.  

The CHAID tree method is one of the oldest tree-based data mining methods and one of the 
earliest to appear in the casualty actuarial literature.  The method was applied to classification 
ratemaking by Fish et al. (1990) following the passage of Proposition 103 in California.4 Unlike 
C&RT, CHAID can partition data into more than two groups.  CHAID is an acronym for chi-
squared automatic interaction detection.  As the name implies, CHAID relies heavily on the chi-
squared statistic (Formula 2.3 in section 2) to partition data. In classical statistics the chi-squared 
statistic is typically used to assess whether discrete categorical variables are independent or whether a 
relationship exists between the variables (Faraway, 2006).   

                                                           
4 Proposition 103 constrained how variables could be used in automobile ratemaking. 
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One of the data preparation steps that is often applied prior to fitting of predictive models is 
cardinality reduction. Cardinality reduction refers to reduction of the number of categories in 
nominal and ordinal variables (Refaat, 2007).  The CHAID procedure is a procedure that can be 
used to preprocess categorical variables and to group like categories of the independent variables 
together. A problem with nominal and ordinal variables with many categories is that some of the 
categories are sparsely populated and some of the categories are very similar with respect to their 
effect on the dependent variable. Inclusion of all the levels of a categorical variable can lead to 
overfit/overparameterized models that fit parameters to noise rather than legitimate patterns in the 
data.  Using the chi-squared statistic, categories that are not significantly different with respect to 
their effect on a dependant variable can be combined and the total number of categories reduced. 

For instance, the categorical variable density from the automobile database has four levels or 
categories: highly urban, urban, rural, and highly rural.  Suppose the analyst is interested in knowing 
whether a relationship exists between population density and the likelihood of having at least one 
claim. Let the likelihood of having a claim be denoted by a binary categorical indicator variable that 
is 1 if the policyholder has had at least 1 claim and 0 otherwise.  Table 3.1 displays a crosstabulation 
of density and the indicator variable based on data from the automobile database.  The bottom 
section of the table shows that urban and highly urban policyholders have a significantly higher 
frequency of claims than do rural and highly rural policyholders. The chi-squared statistic can be 
used to test whether this apparent relationship is significant.  
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Table 3.1 

Crosstabulation of Population Density vs. Binary Claim Indicator 

Home/Work Area * Claim Indicator Crosstabulation 
   Claim Indicator   
   No Claim Claims Total 

Highly Rural 4,52 56 508 
Highly Urban 1,732 1,867 3,599 
Rural 1,369 196 1,565 

H
om

e/
W

or
k 

Urban 2,740 1,891 4,631 

  Total 6,293 4,010 10,303 

Percent of Policies With Claims 
   Claim Indicator   
   No Claim Claims Total 

Highly Rural 89% 11% 100% 
Highly Urban 48% 52% 100% 
Rural 87% 13% 100% 

H
om

e/
W

or
k 

Urban 59% 41% 100% 

  Total 61% 39%   

 

The chi-squared statistic requires both an observed and expected record count for each of the 
cells in the crosstabulation.  An expected count can be computed by applying the marginal 
proportions shown at the bottom of Table 3.1 (61% no claim, 29% at least one claim) to the total 
number of policyholders in each density category. This is shown in Table 3.2. For instance, the 
expected number of highly rural drivers with no claims is 310.3 (0.89*508). The expected count is 
then used in the computation of the chi-squared statistic, shown also in Table 3.2.  This statistic has 
degrees of freedom equal to the number (c-1)*(r- 1) (here 6) where c denotes the number of columns 
and r denotes the number of rows. Its value as shown at the bottom of Table 3.2, 886, is significant 
at (less than) the .1% level, suggesting a relationship between density and propensity for an 
automobile claim.  
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Table 3.2 Expected Count & Chi-Squared Statistic 

Expected Count 
   Claim Indicator Total 

    No Claim Claims   
Highly Rural 3,10.30 197.70 508 
Highly Urban 2,198.20 1,400.80 3,599 
Rural 955.90 609.10 1,565 

H
om

e/
W

or
k 

Urban 2,828.60 1,802.40 4,631 

          
       

Chi-Squared Statistic: (O-E)2/E 
   Claim Indicator   
    No Claim Claims   

Highly Rural 64.70 101.60   
Highly Urban 98.90 155.20   
Rural 178.50 280.20   

H
om

e/
W

or
k 

Urban 2.80 4.40   
     886.20   

 

Suppose the claims are sorted in ascending order by proportion of policies with a claim.  This is 
shown in Table 3.3.  The table suggests that some of the categories of the density variable may not 
be significantly different from each other and therefore could be combined.  For instance, the highly 
rural and rural categories at positive claim  proportions of 11% and 13%, respectively, could perhaps 
be combined into a “rural” category, if the difference (in likelihood of having a claim) is not 
significant. 

Table 3.3 

Percent of Policies With Claims 
   Claim Indicator 

   No Claim Claims 

Highly Rural 89% 11%
Rural 87% 13%
Urban 59% 41%

H
om

e/
W

or
k 

Highly Urban 48% 52%

  Total 61% 39%
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Table 3.4 displays the calculation of the chi-squared statistic, including the calculation of expected 
counts, for the highly rural and rural categories. The chi-squared statistic of 0.81 (see bottom row of 
Table 3.4) is not significant, indicating the two categories can be combined. 

Table 3.4 
Comparison of Rural and Highly Rural Categories Using Chi-Squared Statistic 

 Observed  

 
No 

Claim
Claim

Total

Highly Rural    452 
 

56 
 

508

Rural 
 

1,369 
 

196 
 

1,565  

Total 
 

1,821 
 

252 
 

2,073  
 Expected 

 
No 

Claim
Claims

Total

Highly Rural 
 

446.25 
 

61.75 
 

508  

Rural 
 

1,374.75 
 

190.25 
 

1,565  
Chi Squared 
No 

Claim
Claims

Highly Rural        0.07 
 

0.54 

Rural        0.02 
 

0.17 

Total 0.09
 

0.81 

The chi-squared statistic can be computed for all other pairs of combinations (actually it only 
makes sense to compare pairs of categories that are contiguous in a sorted table such as Table 3.3).  
Once the chi-squared statistic has been computed for the pair-wise comparisons, the two categories 
with the lowest chi-squared values can be combined, provided the chi-square statistic is not 
significant.5 In this example, the rural and highly rural categories have the lowest chi-squared 
statistics, so they are combined, resulting in three density groupings.6  Table 3.5 shows the new table 
that is created when the categories are combined.  Using the new crosstabulation, the chi-squared 

                                                           
5 It is common to use the 5% level as the threshold for significance, though other levels can be chosen. Thus categories 
where the significance levels below the threshold can be combined.  If the chi-squared statistic is significant, the two 
categories should not be combined, as the null hypothesis that there is no difference between the categories in their 
effect on the dependent variable is rejected. 
6 The chi-squared for all other comparisons was more than 99.0, which is significant at the 5% level. 
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Area * Claim Indicator Crosstabulation

No Claim Claims Total

Rural 1,821 252 2,073

Urban 2,740 1,891 4,631
Highly Urban 1,732 1,867 3,599

Total 6,293 4,010 10,303

Percent of Policies With A Claim

No Claim Claims Total

Rural 88% 12% 508

Urban 59% 41% 3,599

Highly Urban 48% 52% 1,565

Claim Indicator

Claim Indicator

statistic can be recomputed for the new table and the categories with the lowest chi-squared statistic 
can be combined.  The recursive process of combining categories continues until no more 
significant differences between the categories can be found. 

Table 3.5 

Crosstabulation after Combining Two Categories 

 

 

 

 

 

 

 

 

 

The results of the partitioning of the variables can be displayed graphically in a tree diagram.  The 
tree diagram for the car density example is shown in Figure 3.1.  The top box or “node” is a 
“parent” node. It displays the overall claim indicator statistics for all records before any partitioning 
occurs. Below the parent node are the “child” nodes resulting from the partitioning of the density 
variable using CHAID.7  The nodes in this layer are also “terminal” nodes, as there is no further 
partitioning of the data.  The terminal nodes contain the model’s final prediction, which is typically 
the overall proportion of target variable records in the node. 

 

 

                                                           
7 The CHAID models used in this paper were fit with SPSS Classification Trees.  We are not aware of either SAS 
Stat or R  functions for CHAID. 
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Figure 3.1 

Tree for Population Density (Independent Variable) and Claim Indicator (Dependent 

Variable) 

 
 

By adding a second variable to the model, say car use, it is possible to add another layer to the 
tree, however. To create a tree with two layers of nodes, it is necessary to partition the data on a 
second variable, after the partitions on the first variable, (density), have been completed.  An 
example of partitioning using two variables is shown in Figure 3.2.  As can be seen from Figure 3.2, 
not all nodes from the first layer can be further partitioned.  When two variables are included in the 
model, CHAID performs the following process: 

• Compute the beat partitioning of the data for the first variable and compute the chi-
squared statistic for the partitioned data after categories that are not significantly different 
have been combined 

• Compute the best partitioning of the data for the second variable and compute its chi-
squared statistic. (In this very simple example, the car use variable has only two 
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categories, so no further combining of categories can be done) 

• Select the variable that produces the highest chi-squared statistic to partition the data first 

• Repeat the process for each of the nodes from the first partitioning.  If none of the nodes 
can be further partitioned, stop. 

Since, the focus of the current discussion is on the use of CHAID for cardinality reduction of 
categorical variables before fitting a GLM or other predictive model, further discussion of the 
CHAID for multivariable models is outside the scope of this paper.   However, complete predictive 
models can be built using CHAID and other decision tree techniques. 
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Figure 3.2 

CHAID Tree with Two Variables 

 
It should be noted that the example of category reduction for the density variable is a relatively 

trivial one, as inspection of the statistical output from the fitted GLM, ZIP, and hurdle models could 
probably be used to reduce the number of categories.  However, fast and computationally efficient 
procedures are needed for variables containing a large number of levels.  Such variables occur 
frequently in insurance predictive models. 

As a more realistic example, consider the car-type variable, which has six levels (Table 3.6).  With 
six levels for a variable, there are hundreds of possible ways to combine categories.8 In a typical 
automobile ratemaking database, there would likely be many more than six levels on a car-type 
variable.  Figure 3.3 presents the CHAID tree that was fit using the car-type variable. 

                                                           

8 The number of all possible combinations is 
k

x
k
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ , but when the categories are ordered based on the proportion of 

policies with claims, the number goes down. 
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Car Type Frequency Percent
Panel Truck 853 8%

Pickup 1,772 17%

Sedan 2,694 26%

Sports Car 1,179 11%

SUV 2,883 28%

Van 922 9%

Total 10,303 100%

Table 3.6 

Car Type Frequency Tabulation 

 

 

 

 

 

 

Figure 3.3 

CHAID Model for Car-type Variable 

 
From Figure 3.3, the number of groupings is reduced from six to three when CHAID is used to 

preprocess the car-type variable. 

When the dependent variable in the model is numeric, rather than categorical, most CHAID 
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residual sum of squares
p degrees of freedom for model 1
p  is degrees of freedom for model 2

RSS RSS p pF
RSS p

RSS

− −
=

=
=

procedures use the F-statistic rather than the chi-squared statistic to partition data. 

 

(3.1)   

 
 

  

When only two categories are compared, the F-test reduces to a T test.9  Thus the categories can 
be compared using the F (or T) statistic and the categories that are not significantly different can be 
merged.  The first two categories merged are the categories with the lowest T statistic.   

Suppose, instead of using a binary categorical dependent variable, we treat claim frequency 
(number of claims in the past five years) as a numeric variable and use the T test to merge categories. 
Table 3.7 displays the mean claim frequency, along with standard deviations and confidence intervals 
for the density variable.  It is clear that the rural and highly rural categories can be merged, as their 
claim frequencies are the same. 

 

Table 3.7 

Mean Five-Year Claim Frequency by Density 

 
95% Confidence Interval for Mean 

N Mean Std. Deviation Std. Error Lower Bound Upper Bound 

Highly Rural 508 .24 .758 .034 .18 .31

Highly Urban 3,599 1.07 1.223 .020 1.03 1.11

Rural 1,565 .24 .707 .018 .21 .28

Urban 4,631 .84 1.171 .017 .81 .88

Total 10,303 .80 1.154 .011 .78 .82

 

Figure 3.4 shows that if claim frequency is treated as a numeric variable, and is used to group the 

                                                           
9 T= 1 2 x( ) / ,  is mean of group and s  is sd of differencexx x s x−  between means 
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categories of the car-type variable, the same grouping is created as for the binary claim indicator 
variable in Figure 3.3, which used the chi-squared statistic to partition data. 

Figure 3.4 

CHAID Tree for Car Type with Numeric Dependent Variable 

 
A new categorical variable can be created using the results of the CHAID analysis. The new car-

type variable has three rather than six categories. Two predictive models were than fitted, using the 
new variables 1) a Poisson regression and 2) a ZIP regression.  As a measure of goodness of fit, we 
use the Akaike Information Criterion (AIC) statistic.  This statistic penalizes the log of the likelihood 
function when degrees of freedom, i.e., additional parameters, are incorporated into the model.  
Each variable in the model adds to its degrees of freedom.  A model with a categorical variable 
having six levels adds five degrees of freedom10 to the model, while a variable having three levels 
adds only two degrees of freedom.  The formula for the AIC is: 

                                                           
10 One degree of freedom for each binary dummy variable created which is k-1, where k is the number of categories 
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(3.2)                  2* 2* log  AIC df likeihood= −  
 From Table 3.8, the AIC statistic indicated a better fit for both the Poisson regression and the 

ZIP regression when the car-type variable has been preprocessed to reduce the number of 
categories. 

Table 3.8 

Akaike Information Criterion, Car Type and Grouped Car Type 
 
 

 
Original 

Variables
Reduced 
Variables 

Poisson Regression 12,066 12,026 
ZIP 12,006 12,020 

 
 
 

The CHAID procedure can also be used to preprocess numeric variables. The relationship 
between continuous independent variables and a dependent variable is frequently nonlinear.  One 
way to model the nonlinearities is to bin the numeric variables.  When a variable is binned, ranges of 
the variable are grouped together and treated as a level of a categorical variable.  Thus, claimant ages 
can be binned into 0 – 10, 11 – 20, etc.  Tree procedures such as CHAID can be used to optimally 
bin numeric variables (Refaat, 2007).  To illustrate how this can be done, the CHAID procedure will 
be used to bin the motor vehicle record (i.e., the number of points on the policyholder’s record) 
variable from the automobile data. Table 3.9 displays a frequency distribution for the motor vehicle 
record variable.  It can be seen that the number of points ranges from 0 to 13. 

The distribution is a skewed distribution.  That is, most of the values exceed the distribution’s 
median.  About 45% of policyholders have no points and 60% have one or fewer points.  Figure 3.5, 
which displays the average frequency by motor vehicle record, indicates that the relationship 
between motor vehicle record and frequency is nonlinear.  Claim frequency increases between zero 
and about five points and then (ignoring the inherent variability at high point values due to the 
sparseness of the data) appears to level off. 
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Motor Vehicle Record Points

    Liscense 
Points Frequency Percent

Cumulative 
Percent

0 4,659 45.2 45.2
1 1,467 14.2 59.5
2 1,199 11.6 71.1
3 966 9.4 80.5
4 727 7.1 87.5
5 528 5.1 92.7
6 341 3.3 96
7 213 2.1 98
8 114 1.1 99.1
9 53 0.5 99.7

10 20 0.2 99.8
11 13 0.1 100
12 1 0 100
13 2 0 100

Total 10,303 100

 

Table 3.9 

Frequency Distribution for Motor Vehicle Record 
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Figure 3.5 

Average Claim Frequency by Motor Vehicle Record 

 
How can the analyst best bin the motor vehicle record variable to approximate the relationship 

between motor vehicle points and claim frequency?   One approach is to use the CHAID procedure 
to group together values of motor vehicle record with similar values for average claim frequency.  
Figure 3.6 displays the output of the CHAID procedure for motor vehicle record.  Figure 3.6 
indicates that each value from one through four is significantly different from other values and that 
it should stand alone as a bin.  In predictive modeling, once the motor vehicle records have been 
binned, the new variable containing the binned categories can be used as a nominal variable in a 
regression.  Alternatively, Figure 3.5 suggests that the relationship between motor vehicle record and 
claim frequency may be linear until about a value of 5 and then level off. 
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Figure 3.6 

Tree Displaying Bin for Motor Vehicle Record 

 
 

To test which treatment of the motor vehicle variable might work best, both a Poisson and ZIP 
regression were fit using the original variable, the variable capped at a value of 5 and the binned 
variable.  For both the Poisson and the ZIP model, the binned variable performed better than the 
capped or original variable when AIC is used a goodness-of-fit measure.  The lowest AIC was for 
the ZIP model with MVR binned. 

 

Table 3.10 

AIC for Original Variable, Capped Variable and Binned Variable 

Treatment of 
Variable Poisson ZIP 

MV Points 12,593 11,022 
Capped MV Points 12,502 11,066 
Binned MV Points 12,496 10,946 
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3.2 Results for Multi-Variable Model 

To test the different methods a model that contained six variables (car use, gender, marital status, 
density, car type, and motor vehicle points) was fit. The number of categories for the density and 
car-type variables was reduced using CHAID. The motor vehicle record variable had two scenarios: 
MVR capped and MVR binned.  The results for the Poisson regression and the ZIP regression are 
displayed in Table 3.11.  Table 3.11 indicates that preprocessing improves the fit of the Poisson 
regression.  The improvement was approximately the same whether motor vehicle record was 
capped or binned.  On the other hand, the fit of the ZIP model declined when motor vehicle record 
was capped, but improved when it was binned.  The AIC statistics in Table 3.11 also indicate that 
the ZIP model provides a significantly better fit than the Poisson model. 

 

Table 3.11 

AIC for Full Regression, Original Data and Preprocessed Data 

 

Treatment of 
Variable Poisson ZIP 
Original Variables                   12,066                     10,622  
CHAID, MV Capped                   12,009                     10,676  
CHAID, MV Binned                   12,003                     10,546  

 

3.2.1 Out of Sample Goodness-of-Fit Measures 

In predictive modeling, it is customary to test models on a sample of data that was set aside 
specifically for that purpose. The data used in this paper was split into two samples: a “training” 
sample used to fit the model’s parameters and a “testing” sample used to test the fit of the model, 
once parameters have been estimated using the “training” sample. 

In typical insurance databases, traditional measures of goodness of fit often perform poorly.  For 
instance, the R2 for the zip model applied to the test sample is 0.22, a number which, although low, 
is higher than what can be obtained in most data bases, likely because the frequencies in the data are 
based on five years of experience.  In an automobile insurance data base where frequencies are based 
on annual experience, perhaps 90% of policyholders will not have experienced a claim, even though 
all policyholders have some positive expectation of a claim.  Thus the actual value for most records 
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will be “0” while the predicted value will be greater than “0” resulting in an R2 statistic that tends to 
be low.  To provide a useful test, comparisons must be based on aggregates of the data that are 
sufficiently large that the mean frequency in a group will be greater than zero. One way to aggregate 
the data is to create groups based on the value of the model’s predicted value.  The predicted value 
is sometimes referred to as the model’s “score.”  All records can be sorted based on their score.  The 
test data can then be grouped into quantiles based on the model score.  For instance, the data can be 
split into ten groups based on the model score assigned to each record.  For each decile, the actual 
frequency from the data can be computed.  A graph comparing the actual to the predicted values 
within each decile can be created and used to visually evaluate the fit.  

Figure 3.7 

Predicted and Actual Frequencies, Poisson, and ZIP Models 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 displays a comparison of actual and predicted frequencies for test data grouped by 
decile of the models score. A model with good predictive ability should be upward sloping; for each 
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increase in decile based on model score, the actual frequency should increase. Also, a high 
correlation between actual and predicted frequency indicates a good fit.  In Figure 3.7 the best fitting 
line based on ordinary least squares regression is shown. A high correlation between actual and 
predicted values is indicated by a small scatter of points around the line. In table 3.12, the correlation 
coefficient of the six models on the test data is shown. 

 

Table 3.12 
Treatment of 
Variable Poisson ZIP 

Original Variables 
     
0.9720  

         
0.9900  

CHAID, MV Capped 
     
0.9860  

         
0.9900  

CHAID, MV Binned 
     
0.9810  

         
0.9940  

 
The correlations in Table 3.12 indicate that the ZIP models fit the out of sample data better than 

the Poisson models.  It also indicates that preprocessing of variables with CHAID improves the fit 
of the Poisson regression models, but appears to have minimal effect on the ZIP models. 

Meyers (2006) presented another curve that can be used to visualize the fit of models on out of 
sample data.  The curve is based on the Lorenz curve.  The Lorenz curve arose out of studies of 
income inequality by 19th and 20th century economists (Arnold, 1983). For example, Figure 3.8 
displays a distribution of incomes from the 2000 census for the state of Pennsylvania.  From this 
graph, it can be seen that earners in the highest percentiles earned a disproportionate share of 
incomes.  The top 1% of individuals earned 13% of the state of Pennsylvania’s income. 
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Figure 3.8: Income Distribution from 2000 Census 

 

 

 

 

 

 

 

 

 

 

 

By cumulating the data from Figure 3.8, i.e., computing the cumulative percent of all income 
earned by a given percent of the population, a Lorenz curve can be created.  This is shown in Figure 
3.9. 

Figure 3.9 

Lorenz Curve for Income from 2000 Census 
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If income distribution were perfectly equal, incomes would be distributed according to the 
diagonal line.  The area between this line and the curve for the income distribution is a measure of 
income known as the Gini Index.  The greater the income inequality, the larger the Gini Index 
should be.  A simple formula for this area based on the trapezoidal rule for numerical integration 
(Press et al., 1989) is: 

 

 

(3.5)                                

 

The statistic in (3.5) is also known as the Gini Index.  It was introduced by Meyers (2006) as a 
general procedure for assessing the fit of models. A Lorenz curve can also be constructed from 
predictive models and the insurance data they are applied to. Figure 3.9 displays an approximation to 
the Lorenz curve based on the Poisson model.  This approximation is based on only 10 groups or 
deciles of the data,11 although often more intervals are used. 

                                                           
11 The test was limited to deciles, as a model with categorical predictors that have only a few levels may have a limited 
number of possible values. 
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Figure 3.9 

Lorenz Curve for Poisson Predictive Model 
 
 

 

 

 

 

 

 
 
 
 
 
 
 

The data was also used to compute an approximation to the Gini Index. Table 3.13 presents the 
approximation Gini Index for the six models. 

 
Table 3.13 

Gini Index for Models 
Treatment of 
Variable Poisson ZIP 

Original Variables 
     
0.1770  

         
0.1830  

CHAID, MV Capped 
     
0.1780  

         
0.1800  

CHAID, MV Binned 
     
0.1760  

         
0.1800  
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The out of sample tests in Table 3.13 indicate that the ZIP model fits better than the Poisson.  
For the Poisson model, it also indicates that preprocessing the variables using CHAID to construct a 
capped MVR variable improves the fit of the Poisson model but not of the ZIP model. 

4. CONCLUSIONS 

In this paper, alternatives to the Poisson and negative binomial distributions for count 
regressions were presented.  One alternative makes use of mixed zero-adjusted (zero-inflated and 
hurdle) distributions. These are mixture models composed of two distinct probability distributions, 
thus the resulting distribution is not a member of the exponential family of distributions. The 
alternative provided a significantly better fit to a database of automobile insurance claims than did 
the Poisson and negative binomial models.  Moreover, many other authors (Yip and Yau, 2005; 
Heilbron, 1994) use zero-inflated and hurdle models to better approximate data than simple Poisson 
and negative binomial models.  In our day-to-day property/casualty insurance modeling, we have 
found that zero-inflated and hurdle models frequently fit the data better than Poisson and negative 
binomial models.  We have found this to be the case across a number of different lines, including 
homeowners, personal automobile, and workers compensation.  The phenomenon of excess zeros is 
also commonly encountered in non-insurance applications such as quality control (Lambert, 1992) 
and biostatistics (Ridout et al., 1998).  We tested a small selection of non-insurance databases and 
zero-adjusted distributions provided a better fit to some of the data. Thus it seems appropriate to 
test for excess zeros using a test such as Van den Broek’s score test.  See Appendix C for more 
information on this test. If excess zeros are indicated, either a zero-inflated or hurdle model is likely 
to provide a better model than a classical Poisson or negative binomial regression.  The testing 
displayed wide variation between the goodness of fit of the different distributions assessed, 
suggesting that it is prudent to test several alternative distributions before fitting a model. 

A limitation of many GLMs that incorporate categorical variables is over-parameterization.  This 
occurs when more categories are included than are needed.  When categories that are statistically 
equivalent are combined, the over-parameterization is eliminated. In this paper a relative quick and 
efficient procedure for reducing the cardinality of nominal variables was presented.  The procedure 
in this paper used the CHAID decision tree procedure to statistically determine the appropriate way 
to combine categories.  This paper provided an example where application of the CHAID procedure 
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to group categories of categorical variables improved the fit of the model. Typical predictive 
modeling applications databases contain a number of categorical variables with many levels. For 
instance, there may be 100 or more different types of vehicles in a vehicle-type variable, and many 
are sparsely populated.  Since the categorical variables in our data had only a relatively small number 
of categories, the benefit of preprocessing categorical data was illustrated but could not be fully 
exploited.   

Another limitation of GLMs with numeric predictor variables is that the relationship between the 
predictor and dependent variable may be nonlinear. The CHAID technique can be used to 
preprocess numeric variables to approximate the nonlinear relationship.  
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Supplementary Material 
Excel spreadsheets, R and SAS Code will be available on the CAS Web Site. 

 
Appendix A 

The Poisson Distribution and the Use of Nonlinear Mixed Modeling Procedures to Fit 
Parameters 

We begin this illustration by using SAS Proc NLMIXED to estimate the parameters of the 
Poisson.  We will derive the log-likelihood of the Poisson from its PDF, to illustrate its use in Proc 
NLMIXED. 

The Poisson PDF is 

where y = 0, 1, 2, 3, ...( | )  
!

yeY y
y

λλμ
−

= =  

with: 

( | )

2
var ( | )

mean E Y X xi

Var Y X x

λ

σ λ

= = =

= = = =
 

 
It is clear from the above formulas that the mean of the Poisson equals its parameter, lambda. 

Differentiating the PDF with respect to our mean parameter, lambda; the log-likelihood: 

ll=-λ+y*log(λ)-lgamma(y+1) . 
 

Below we illustrate the use of this function in a SAS procedure that is used to estimate the 
parameter of the Poisson.  We also illustrate how to directly fit the Poisson, without specifying a 
likelihood function.  Proc NLMIXED is designed to estimate the parameters of nonlinear mixed 
models.  A mixed model arises when some of the independent variables in a model are themselves 
random realizations from a distribution rather than fixed quantities (see Venables and Ripley, 2002; 
Faraway, 2006).  A discussion of mixed models is beyond the scope of this paper; however, 
knowledge of how to specify random effects is unnecessary when using Proc NLMIXED to fit 
common probability distributions such as the Poisson.  Below is the SAS code used for the fit: 

 
proc sql; 
 select max(clm_freq) into :y_max from claims2; 
quit; 
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%put *** y_max=&y_max.; 
 
%macro estimate; 
 %do i = 0 %to &y_max.; 
  estimate "p(&i.)" pdf('poisson',&i., lambda);   
 %end; 
%mend; 
proc nlmixed data=claims2; 
 parms eta=-0.2; 
 lambda = exp(eta); 
 y = clm_freq; 
 model y ~ poisson(lambda); 
/* or / 
 loglike = -lambda + y*log(lambda) - lgamma(y + 1); 
  model y ~ general(loglike); 
/* or / 
 pdf = (exp(-lambda)*lambda**y)/fact(y); 

loglike=log(pdf); 
  model y ~ general(loglike); 
 estimate 'lambda' lambda; 
 %estimate;  
 predict lambda out=predpoi(keep=clm_freq pred); 
 title 'Poisson model via Proc NLMIXED'; 
run; 
title; 
 
 

 Poisson model via Proc NLMIXED  

The NLMIXED Procedure 

Specifications 

Data Set WORK.CLAIMS2 

Dependent Variable y 

Distribution for Dependent Variable Poisson 

Optimization Technique Dual Quasi-Newton 

Integration Method None 
 
 

Dimensions 

Observations Used 2812

Observations Not Used 0

Total Observations 2812

Parameters 1
 
 



More Flexible GLMs: Zero-Inflated Models and Hybrid Models 
 

Casualty Actuarial Society E-Forum, Winter 2009 190 

Parameters 

eta NegLogLike

-0.2 3782.77991
 
 

Iteration History 

Iter  Calls NegLogLike Diff MaxGrad Slope 

1  4 3782.75728 0.022624 1.211746 -51.3544 

2  5 3782.75696 0.00032 0.002708 -0.00064 

3  6 3782.75696 1.728E-9 7.161E-7 -3.2E-9 
 
 

NOTE: GCONV convergence criterion satisfied. 
 
 

Fit Statistics 

-2 Log Likelihood 7565.5

AIC (smaller is better) 7567.5

AICC (smaller is better) 7567.5

BIC (smaller is better) 7573.5
 
 

Parameter Estimates 

Parameter Estimate 
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper Gradient

eta -0.2045 0.02089 2812 -9.79 <.0001 0.05 -0.2454 -0.1635 7.161E-7
 
 

Additional Estimates 

Label Estimate 
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper 

lambda 0.8151 0.01703 2812 47.87 <.0001 0.05 0.7817 0.8485 

 
 
SAS Proc NLMIXED also makes it very simple to fit a negative binomial distribution to the sample 
data.  Again, there several ways to specify the distribution.  The ability to code with programming 
statements within Proc NLMIXED is very flexible.  One can use the internal specification for 
negative binomial, specify the negative binomial PDF, take the log and use the model general 
option, or directly specify the log-likelihood one wishes to solve for it directly.   Beside the model fit, 
we can also ask for some additional statistics such as contrast testing for whether our Negbin 
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dispersion is significantly different from zero (Poisson), as well as the estimated variance and 
predicted probabilities for each count. 
 
%macro estimate; 
 %do i = 0 %to &y_max.; 
 estimate "p(&i.)"  (gamma(&i. + k)/(gamma(&i. + 1)*gamma(k)))*     
               (((1/k)*mu)**&i.)/(1 + (1/k)*mu)**(&i. + (k)); 
 %end; 
%mend; 
 
proc nlmixed data=claims2; 
 parms  b_0=-.2 k=1.4; 
 eta = b_0; 
   mu = exp(eta); 
 y = clm_freq; 
/* specify the full log-likelihood */ 
/* loglike = (lgamma(y + (1/k)) - lgamma(y + 1) - lgamma(1/k) + */ 
/*             y*log(k*mu) - (y + (1/k))*log(1 + k*mu)); */ 
/*  model y ~ general(loglike);*/ 
/* or, use the internal negbin(n,p) representation */ 
 p = exp(-eta)/(1 + exp(-eta)); 
  model y ~ negbin(1/k,p);  
 predict mu out=out2(keep=clm_freq pred); 
   contrast 'k = 0' k - 0; 
 estimate 'exp(b_0)' exp(b_0); 
 estimate 'mean' mu; 
 estimate 'k' k; 
 estimate 'variance' mu + k*mu**2; 
 %estimate; 
 title 'Negative Binomial model via Proc NLMIXED'; 
run; 

Specifications 

Data Set WORK.CLAIMS2 

Dependent Variable y 

Distribution for Dependent Variable Poisson 

Optimization Technique Dual Quasi-Newton 

Integration Method None 
 
 

Dimensions 

Observations Used 2812

Observations Not Used 0

Total Observations 2812

Parameters 1
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Parameters 

eta NegLogLike

-0.2 3782.77991
 
 

Iteration History 

Iter  Calls NegLogLike Diff MaxGrad Slope 

1  4 3782.75728 0.022624 1.211746 -51.3544 

2  5 3782.75696 0.00032 0.002708 -0.00064 

3  6 3782.75696 1.728E-9 7.161E-7 -3.2E-9 
 
 

NOTE: GCONV convergence criterion satisfied. 
 
 

Fit Statistics 

-2 Log Likelihood 7565.5

AIC (smaller is better) 7567.5

AICC (smaller is better) 7567.5

BIC (smaller is better) 7573.5
 
 

Parameter Estimates 

Parameter Estimate 
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper Gradient

eta -0.2045 0.02089 2812 -9.79 <.0001 0.05 -0.2454 -0.1635 7.161E-7
 
 

Additional Estimates 

Label Estimate 
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper 

lambda 0.8151 0.01703 2812 47.87 <.0001 0.05 0.7817 0.8485 
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Negative Binomial model via Proc NLMIXED 

 

Specifications 

Data Set WORK.CLAIMS2 

Dependent Variable y 

Distribution for Dependent Variable Negative Binomial 

Optimization Technique Dual Quasi-Newton 

Integration Method None 
 
 

Dimensions 

Observations Used 2812

Observations Not Used 0

Total Observations 2812

Parameters 2
 
 

Parameters 

b_0 k NegLogLike

-0.2 1.4 3560.13868
 
 

Iteration History 

Iter  Calls NegLogLike Diff MaxGrad Slope 

1  3 3502.65393 57.48475 37.59117 -2543.71 

2  4 3501.12368 1.53025 11.94101 -2.31042 

3  5 3500.97924 0.144435 1.374487 -0.31788 

4  6 3500.97779 0.001458 0.050886 -0.003 

5  7 3500.97778 1.233E-6 0.00302 -2.59E-6 
 
 

NOTE: GCONV convergence criterion satisfied. 
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Fit Statistics 

-2 Log Likelihood 7002.0

AIC (smaller is better) 7006.0

AICC (smaller is better) 7006.0

BIC (smaller is better) 7017.8
 
 

Parameter Estimates 

Parameter Estimate 
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper Gradient

b_0 0.1388 0.07768 2812 1.79 0.0741 0.05 -0.01354 0.2911 0.002728

k 1.4095 0.1006 2812 14.01 <.0001 0.05 1.2122 1.6068 -0.00302
 
 

Contrasts 

Label
Num 

DF
Den 
DF F Value Pr > F

k = 0 1 2812 196.23 <.0001

k = 1 1 2812 16.56 <.0001
 
 

Additional Estimates 

Label Estimate 
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper 

exp(b_0) 1.1489 0.08924 2812 12.87 <.0001 0.05 0.9739 1.3238 

mean 1.1489 0.08924 2812 12.87 <.0001 0.05 0.9739 1.3238 

k 1.4095 0.1006 2812 14.01 <.0001 0.05 1.2122 1.6068 

variance 3.0092 0.5030 2812 5.98 <.0001 0.05 2.0229 3.9956 

 
 
Appendix B 
Count Distribution Parameter Estimation Using SAS Proc GENMOD 

Below a Poisson distribution is fit to the data with Proc GENMOD, SAS Generalized Linear 
Model procedure.  The estimate statement applies the inverse of the log link, eponentiating the 
intercept displaying the estimated mean as 0.82 along with a 95% confidence interval of 
(0.7824,0.8491).  Note that the log likelihood reported in Proc GENMOD is not directly 
comparable to those reported in Proc NLMIXED or some other software as Proc GENMOD 
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drops the y-factorial component of the likelihood as this does not contribute to estimating the mean 
parameter and can cause numeric instabilities with high counts. 
proc genmod data=claims2; 
 model clm_freq = / link=log dist=Poisson noscale; 
 estimate 'mean' intercept 1 / exp; 
 title 'Poisson Distribution'; 
run; 
 

   

SAS Proc GENMOD also makes it very simple to fit a negative binomial distribution to our sample 
data.  Here we simply change the dist= option to our model statement. 
 
proc genmod data=claims2; 
 model clm_freq = / link=log dist=NegBin;  
 estimate 'mean' intercept 1 / exp; 
 title 'NegBin model'; 
run; 

NegBin Model 

The GENMOD Procedure 

 

Model Information 

Data Set WORK.CLAIMS2  

Distribution Negative Binomial  

Link Function Log  

Dependent Variable CLM_FREQ #Claims(Past 5 Years) 
 
 

Number of Observations Read 2812

Number of Observations Used 2812
 
 

Parameter 
Information 

Parameter Effect 

Prm1 Intercept
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Criteria For Assessing Goodness Of Fit 

Criterion DF Value Value/DF

Deviance 2811 2549.6471 0.9070

Scaled Deviance 2811 2549.6471 0.9070

Pearson Chi-Square 2811 2190.0408 0.7791

Scaled Pearson X2 2811 2190.0408 0.7791

Log Likelihood -2478.8688
 
 

Analysis Of Parameter Estimates 

Parameter DF Estimate 
Standard 

Error

Wald 95% 
Confidence 

Limits Chi-Square Pr > ChiSq 

Intercept 1 -0.2045 0.0306 -0.2645 -0.1445 44.59 <.0001 

Dispersion 1 1.4095 0.1006 1.2123 1.6067  
 
 
Note: The negative binomial dispersion parameter was estimated by maximum likelihood. 
 
 

Contrast Estimate Results 

Label Estimate 
Standard 

Error Alpha
Confidence 

Limits Chi-Square Pr > ChiSq 

mean -0.2045 0.0306 0.05 -0.2645 -0.1445 44.59 <.0001 

Exp(mean) 0.8151 0.0250 0.05 0.7676 0.8655   

 
 
 
Appendix C 

SAS Code for SCORE Test 

/***************************************************************/ 
/* Van den Broek (1995) score test                             */ 
/* Van den Broek, Jan,  
 A score test for zero inflation in a Poisson distribution,  
 Biometrics, 1995, v51, n2, p738-743                           */ 
/***************************************************************/ 
proc sql; 
 select sum(((clm_freq=0) - exp(-pred))/exp(-pred))**2 as num, 
   sum((1 - exp(-pred))/exp(-pred)) - 
count(clm_freq)*mean(clm_freq) as denom, 
    count(clm_freq) as n, mean(clm_freq) as ybar,  
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  (sum(((clm_freq=0) - exp(-pred))/exp(-pred))**2) / 
   (sum((1 - exp(-pred))/exp(-pred)) - 
count(clm_freq)*mean(clm_freq)) as score, 
    1 - probchi(calculated score, 1) as p format 8.6 
   into :num, :denom, :n, :ybar, :score, :p 
     from out2; 
quit; 
%put *********************************************************************; 
%put *** Van den Broek - Score statistic for extra zeros; 
%put *** num=&num, denom=&denom., n=&n., ybar=&ybar., score=&score., p=&p.; 
%put *********************************************************************; 
 

Van den Brock – Score Statistic for extra zeros 

numerator denom n ybar score p
 1,086,713.00   1,249.30 2812 0.8151 869.9 0.000001
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Appendix D 

SAS Code for Zero-Inflated Models 

This appendix shows how to fit a zero-inflated distribution in SAS Proc NLMIXED. (Also, an 
experimental procedure under the SAS/ETS product, Proc COUNTREG directly fits ZIP and 
ZINB models. See http://support.sas.com/kb/26/addl/fusion26161_3_countreg.pdf.  Here, we 
add some options.  The parameters statement allows us to specify starting values for our parameters 
to be estimated.  The bounds statement allows us to constrain our zero-inflation factor to the logical 
range.  Again, we utilized the flexibility of programming and the estimate statements to calculate 
several useful estimates such as the expected number of conditional ZIP mean and variance.   
%macro estimate; 
 %do i = 0 %to &y_max.; 
  %if &i.=0 %then %do; 
 estimate "p(&i.)" p_0 + (1 - p_0)*pdf('poisson',&i., lambda);  
 %end; 
  %else %do; 
  estimate "p(&i.)" (1 - p_0)*pdf('poisson',&i., lambda);  
 %end; 
 %end; 
%mend; 
proc nlmixed data=claims3;  
  parameters  p_0=0.57 bll_0=0.5;  
  bounds 0<p_0<1; 
  eta = bll_0;  
  lambda = exp(eta); 
  y = clm_freq; 
  if y=0 then loglike = log(p_0 + (1 - p_0)*exp(-lambda)); 
     else loglike = log(1 - p_0) + y*log(lambda) - lambda - lgamma(y + 1); 
  model y ~ general(loglike); 
  contrast 'p_0 - 0' p_0 - 0; 
  estimate "p_0" p_0; 
  estimate "Expected zeros=exp(-lambda)" exp(-lambda); 
  estimate 'Conditional Poisson Mean (lambda)' lambda; 
  estimate 'ZIP Mean (1-p_0)*lambda' (1 - p_0)*lambda; 
  estimate 'ZIP Var(1-p_0)*lambda*(1+lambda+(1-p_0)*lambda)' 
      (1 - p_0)*lambda*(1 + lambda + (1 - p_0)*lambda); 
/*  estimate "Proportion of 'extra' zeros (theta)" theta; */ 
  estimate 'theta=p_0/(1-p_0)' p_0/(1 - p_0); 
  %estimate; 
  predict p_0 out=pred_zi(keep=pred); 
  predict lambda out=pred(keep=clm_freq pred); 
  predict (1 - p_0)*lambda out=out2(keep=clm_freq pred); 
 
  title 'Zero-Inflated Poisson (ZIP) distribution'; 
run; 
title; 
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Zero-Inflated Poisson (ZIP) Distribution 

 

Specifications 

Data Set WORK.CLAIMS3 

Dependent Variable y 

Distribution for Dependent Variable General 

Optimization Technique Dual Quasi-Newton 

Integration Method None 
 
 

Dimensions 

Observations Used 2812

Observations Not Used 0

Total Observations 2812

Parameters 2
 
 

Parameters 

p_0 bll_0 NegLogLike

0.57 0.5 3360.90317
 
 
 

Fit Statistics 

-2 Log Likelihood 6695.2

AIC (smaller is better) 6699.2

AICC (smaller is better) 6699.2

BIC (smaller is better) 6711.1
 
 

Parameter Estimates 

Parameter Estimate 
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper Gradient

p_0 0.5177 0.01231 2812 42.04 <.0001 0.05 0.4935 0.5418 4.247E-7

bll_0 0.5247 0.02658 2812 19.74 <.0001 0.05 0.4726 0.5768 6.041E-6
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Contrasts 

Label 
Num 

DF
Den 
DF F Value Pr > F

p_0 - 0 1 2812 1767.27 <.0001
 
 

Additional Estimates 

Label Estimate
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper

p_0 0.5177 0.01231 2812 42.04 <.0001 0.05 0.4935 0.5418

Expected zeros=exp(-lambda) 0.1845 0.008289 2812 22.26 <.0001 0.05 0.1683 0.2008

Conditional Poisson Mean (lambda) 1.6899 0.04492 2812 37.62 <.0001 0.05 1.6018 1.7780

ZIP Mean (1-p_0)*lambda 0.8151 0.02331 2812 34.96 <.0001 0.05 0.7694 0.8608

ZIP  
Var(1p_0)*lambda*(1+lambda+ 
(1-p_0)*lambda) 

2.8568 0.1254 2812 22.79 <.0001 0.05 2.6110 3.1026

theta=p_0/(1-p_0) 1.0733 0.05293 2812 20.28 <.0001 0.05 0.9695 1.1771

 

 

Given the additional flexibility introduced with the zero-inflation parameter, The zero-inflated 
negative binomial (ZINB) distribution fit estimates a very small dispersion parameter, k. 
 
proc nlmixed data=claims3; 
 parms bp_0=.07 bll_0=0.52 k=0.000033; 
 bounds k>0; 
      eta_zip = bp_0; 
   p0_zip = exp(eta_zip)/(1 + exp(eta_zip)); 
      eta_nb = bll_0; 
      mean   = exp(eta_nb); 
 y = clm_freq; 
     p0 = p0_zip + (1 - p0_zip)*exp(-(y + (1/k))*log(1 + k*mean)); 

p_else = (1 - p0_zip)*exp(lgamma(y + (1/k)) - lgamma(y + 1) –  
  lgamma(1/k) + y*log(k*mean) - (y + (1/k))*log(1 + k*mean)); 
if y=0 then loglike = log(p0); 

     else    loglike = log(p_else); 
    model y ~ general(loglike); 
    estimate "Estimated proportion of 'extra' zeros (theta)" p0_zip; 
    estimate 'Estimated Conditional Poisson Mean (Lambda)' mean; 
    estimate 'Estimated Unconditional ZIP Mean' (1-p0_zip)*mean; 
    estimate 'Estimated Unconditional ZIP Variance'  

(1-p0_zip)*mean*(1+p0_zip*mean); 
    predict mean out = mean_hat; 
    title 'Zero-inflated Negative Binomial ZINB Distribution'; 
run; 
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Zero-Inflated Negative Binomial ZINB Distribution 

 

Specifications 

Data Set WORK.CLAIMS3 

Dependent Variable y 

Distribution for Dependent Variable General 

Optimization Technique Dual Quasi-Newton 

Integration Method None 
 
 

Dimensions 

Observations Used 2812

Observations Not Used 0

Total Observations 2812

Parameters 3
 
 

Parameters 

bp_0 bll_0 k NegLogLike

0.07 0.52 0.000033 3347.62028
 
 

Fit Statistics 

-2 Log Likelihood 6695.2

AIC (smaller is better) 6701.2

AICC (smaller is better) 6701.2

BIC (smaller is better) 6719.0
 
 

Parameter Estimates 

Parameter Estimate 
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper Gradient

bp_0 0.07089 0.04949 2812 1.43 0.1521 0.05 -0.02614 0.1679 0.083701

bll_0 0.5246 0.02698 2812 19.44 <.0001 0.05 0.4717 0.5775 -0.11562

k 1.187E-6 0.001040 2812 0.00 0.9991 0.05 -0.00204 0.002041 229.649
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Additional Estimates 

Label Estimate
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper

Estimated proportion of 'extra' zeros 
(theta) 

0.5177 0.01236 2812 41.90 <.0001 0.05 0.4935 0.5419

Estimated Conditional ZINB Mean 
(Lambda) 

1.6898 0.04559 2812 37.06 <.0001 0.05 1.6004 1.7793

Estimated Unconditional ZINB Mean 0.8150 0.02340 2812 34.83 <.0001 0.05 0.7691 0.8609

Estimated Unconditional ZINB Variance 1.5280 0.05533 2812 27.61 <.0001 0.05 1.4195 1.6365

 
Appendix D 

SAS Code for Hurdle Model 

/****************************************/ 
/* fit Hurdle - Binomial for 0/1        */ 
/****************************************/ 
data claims4; 
 set claims2; 
 clm=(clm_freq>0); 
run; 
proc nlmixed data=claims4; 
   parms b_o=-0.52; 
 y = clm;        
   eta = b_o; 
   p1 = exp(eta)/(1 + exp(eta));  
 model y ~ binary(p1); 
 estimate 'phi' 1-1/(1 + exp(-b_o)); 
run; 
/****************************************/ 
/* fit Hurdle - Truncated Poisson       */ 
/****************************************/ 
proc nlmixed data=claims3(where=(clm_freq>0)); 
  * parms b_0=0.52; 
   eta_lam = b_0; 
    lambda = exp(eta_lam); 
 y = clm_freq; 
 prob = ((exp(-lambda)*(lambda**y))/fact(y))/(1 - exp(-lambda)); 
 loglike = log(prob); 
 model y ~ general(loglike); 
 estimate 'lambda' lambda; 
 estimate 'conditional mean' lambda/(1 - exp(-lambda)); 
 estimate 'conditional var' (lambda/(1 - exp(-lambda)))* 
                      (1 - (lambda*exp(-lambda))/(1 - exp(-lambda))); 
 predict (lambda/(1 - exp(-lambda))) out=tpois_pred; 
 title 'Count model for non-Zero Outcomes (Poisson)'; 
run; 
title; 
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Appendix E 

Code for Fitting Models 

Poisson, negative binomial, ZIP, ZINB, and hurdle GLM regression models are fit with SAS.   
Below a Poisson regression model is fit to the data with Proc GENMOD.  Main effects regressors 
are added to same setup as above: car use, marital status, area, and sex.  
 
/*******************************************************/ 
/* fit Poisson regression model (including covariates) */ 
/*******************************************************/ 
proc genmod data=claims2; 
 class car_use mstatus area sex; 
 model clm_freq = car_use mstatus area lincome sex  

         / link=log dist=Poisson; 
run; 
 

                        The GENMOD Procedure 

 

Model Information 

Data Set WORK.CLAIMS2  

Distribution Poisson  

Link Function Log  

Dependent Variable CLM_FREQ #Claims(Past 5 Years) 
 
 

Number of Observations Read 2812

Number of Observations Used 2812
 
 

Criteria For Assessing Goodness Of Fit 

Criterion DF Value Value/DF

Deviance 2811 4736.2388 1.6849

Scaled Deviance 2811 4736.2388 1.6849

Pearson Chi-Square 2811 4706.1012 1.6742

Scaled Pearson X2 2811 4706.1012 1.6742

Log Likelihood -2760.6479
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Analysis Of Parameter Estimates 

Parameter DF Estimate 
Standard 

Error

Wald 95% 
Confidence 

Limits Chi-Square Pr > ChiSq 

Intercept 1 -0.2045 0.0209 -0.2454 -0.1635 95.82 <.0001 

Scale 0 1.0000 0.0000 1.0000 1.0000  
 
 
Note: The scale parameter was held fixed. 

Model Information 

Data Set WORK.CLAIMS2  

Distribution Poisson  

Link Function Log  

Dependent Variable CLM_FREQ #Claims(Past 5 Years) 
 
 

Number of Observations Read 2812

Number of Observations Used 2812
 
 

Class Level Information 

Class Levels Values 

CAR_USE 2 Commercial Private 

mstatus 2 1. Yes 2. No 

area 2 1. Highly Urban/ urban area 2. Highly Rural/ rural area 

sex 2 1. M 2. F 
 
 

Criteria For Assessing Goodness Of Fit 

Criterion DF Value Value/DF

Deviance 2806 4312.6656 1.5369

Scaled Deviance 2806 4312.6656 1.5369

Pearson Chi-Square 2806 4636.5810 1.6524

Scaled Pearson X2 2806 4636.5810 1.6524

Log Likelihood -2548.8614
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Analysis Of Parameter Estimates 

Parameter  DF Estimate
Standard 

Error

Wald 95% 
Confidence 

Limits Chi-Square Pr > ChiSq

Intercept  1 -1.1801 0.1013 -1.3787 -0.9815 135.66 <.0001

CAR_USE Commercial 1 0.2831 0.0449 0.1951 0.3711 39.73 <.0001

CAR_USE Private 0 0.0000 0.0000 0.0000 0.0000 . .

mstatus 1. Yes 1 -0.0961 0.0425 -0.1794 -0.0127 5.10 0.0239

mstatus 2. No 0 0.0000 0.0000 0.0000 0.0000 . .

area 1. Highly Urban/ urban area 1 1.3631 0.0835 1.1994 1.5268 266.28 <.0001

area 2. Highly Rural/ rural area 0 0.0000 0.0000 0.0000 0.0000 . .

lincome  1 -0.0206 0.0061 -0.0327 -0.0086 11.32 0.0008

sex 1. M 1 -0.1206 0.0441 -0.2070 -0.0343 7.49 0.0062

sex 2. F 0 0.0000 0.0000 0.0000 0.0000 . .

Scale  0 1.0000 0.0000 1.0000 1.0000  
 
 
Note: The scale parameter was held fixed. 
 

It is also fairly simple to add regressors to the linear predictor, eta, in Proc NLMIXED.  One 
small complication is that Proc NLMIXED does not offer a class statement, therefore one has to 
either create desired indicator or dummy variables ahead of time, or as in the example below, use 
programming statements to create them “on-the-fly,”  The phrase inside each set of parentheses 
resolves to either true or false, zero, or one. 
 
data claims3; 
 set claims2; 
 car_usen=0; if car_use='Commercial' then car_usen=1; 
 mstatusn=0; if mstatus='1. Yes' then mstatusn=1; 
 arean=0;    if area ='1. Highly Urban/ urban area' then arean=1; 
 sexn=0;     if sex='1. M' then sexn=1; 
run; 
 
proc nlmixed data=claims3; 
 eta = b_0 + b_car_use*car_usen + b_mstatus*mstatusn +  
                      b_area*arean + b_lincome*lincome + b_sex*sexn; 
   lambda = exp(eta); 
 loglike = - lambda + clm_freq*log(lambda) - log(fact(clm_freq)) ;  
   model clm_freq ~ general(loglike);       
 * same results if ll is hardcoded; 
/* model clm_freq ~ poisson(lambda); */ 
run; 
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or; 
  
proc nlmixed data=claims2; 
 eta = b_0   + b_car_use*(car_use='Commercial')  

+ b_mstatus*(mstatus='1. Yes')  
+ b_area*(area ='1. Highly Urban/ urban area') 
+ b_lincome*lincome  
+ b_sex*(sex='1. M'); 

 lambda = exp(eta); 
 model clm_freq ~ poisson(lambda); 
run; 
 
 
 
 

                                      The NLMIXED Procedure 
 
 

Specifications 

Data Set WORK.CLAIMS3 

Dependent Variable CLM_FREQ 

Distribution for Dependent Variable General 

Optimization Technique Dual Quasi-Newton 

Integration Method None 
 
 

Dimensions 

Observations Used 2812

Observations Not Used 0

Total Observations 2812

Parameters 12
 
 

Fit Statistics 

-2 Log Likelihood 6404.0

AIC (smaller is better) 6428.0

AICC (smaller is better) 6428.1

BIC (smaller is better) 6499.3
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Parameter Estimates 

Parameter Estimate 
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper Gradient

bll_0 0.4709 0.1302 2812 3.62 0.0003 0.05 0.2156 0.7262 0.267506

bll_1 0.03851 0.05742 2812 0.67 0.5025 0.05 -0.07408 0.1511 0.084439

bll_2 -0.02516 0.05479 2812 -0.46 0.6461 0.05 -0.1326 0.08227 0.034717

bll_3 0.08448 0.1098 2812 0.77 0.4418 0.05 -0.1309 0.2998 0.089421

bll_4 -0.00321 0.008304 2812 -0.39 0.6994 0.05 -0.01949 0.01308 -0.41592

bll_5 0.01517 0.05627 2812 0.27 0.7874 0.05 -0.09517 0.1255 -0.14471

bp_0 1.2705 0.2256 2812 5.63 <.0001 0.05 0.8282 1.7128 -0.20101

bp_1 -0.5539 0.1235 2812 -4.49 <.0001 0.05 -0.7961 -0.3118 0.240928

bp_2 0.1607 0.1125 2812 1.43 0.1532 0.05 -0.05987 0.3813 0.000136

bp_3 -2.0319 0.1554 2812 -13.07 <.0001 0.05 -2.3367 -1.7272 -0.00329

bp_4 0.04199 0.01865 2812 2.25 0.0245 0.05 0.005415 0.07857 -0.41593

bp_5 0.3006 0.1144 2812 2.63 0.0086 0.05 0.07639 0.5248 -0.07819
 
 

Contrasts 

Label 
Num 

DF
Den 
DF F Value Pr > F

TEST p_0=0.4468 1 2812 0.02 0.8836
 
 

Additional Estimates 

Label Estimate
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper

Estimated proportion of 'extra' zeros 
(theta) 

0.4435 0.02280 2812 19.45 <.0001 0.05 0.3988 0.4882

Estimated Conditional Poisson Mean 
(lambda) 

1.6515 0.07387 2812 22.36 <.0001 0.05 1.5067 1.7963

Estimated Unconditional ZIP Mean ((1-
p_0)*lambda) 

0.9191 0.04280 2812 21.47 <.0001 0.05 0.8352 1.0031

Estimated Unconditional ZIP Variance 
((1-p_0)*lambda*(1+p_0*lambda)) 

1.5923 0.09299 2812 17.12 <.0001 0.05 1.4099 1.7746

 
 

Zero-inflated Poisson regression models can also be easily fitted using Proc NLMIXED.  The 
Zero-inflation parameter can be left as a constant, or a second regression equation can be fitted with 
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Parameter Error DF t
bll_0 (0.495)       0.119 2,812 (4.170)  
bll_1 0.142        0.052 2,812 2.750   
bll_2 (0.010)       0.049 2,812 (2.040)  
bll_3 1.211        0.097 2,812 12.460 
bll_4 0.015        0.007 2,812 (2.100)  
bll_5 0.053        0.051 2,812 (1.040)  
bp_0 (0.198)       0.058 2,812 (3.390)  

the same or different regressors as for the mean parameter, allowing that ZI parameter to vary by 
group, or even by observation.  The mean parameter has a log link, ensuring positivity of the mean, 
while the ZI parameter has a logit link, ensuring that it remains between zero and one. 
                                               
 
                                      Parameter Estimates 
 

                        
 
 
 
 
 
 
 
 
 
 
 

             
 
Adding regressors as for the ZI parameter. 

 
proc nlmixed data=claims3;  
  parameters  bll_0=0 bll_1=0 bll_2=0 bll_3=0 bll_4=0 bll_5=0 
    bp_0=0  bp_1=0 bp_2=0 bp_3=0 bp_4=0 bp_5=0; 
 
  eta_prob = bp_0 + bp_1*car_usen + bp_2*mstatusn + bp_3*arean  

+ bp_4*lincome + bp_5*sexn; 
  p_0 = exp(eta_prob)/(1 + exp(eta_prob)); 
 eta_lambda = bll_0 + bll_1*car_usen + bll_2*mstatusn + bll_3*arean  

+ bll_4*lincome + bll_5*sexn; 
  lambda = exp(eta_lambda); 
 if clm_freq=0 then loglike = log(p_0 + (1-p_0)*exp(-lambda)); 
            else loglike = log(1-p_0) + clm_freq*log(lambda)  

      -lambda - lgamma(clm_freq+1); 
  model clm_freq ~ general(loglike); 
  estimate "Estimated proportion of 'extra' zeros (theta)" p_0; 
  estimate 'Estimated Conditional Poisson Mean (lambda)' lambda; 
  estimate 'Estimated Unconditional ZIP Mean ((1-p_0)*lambda)'  

(1-p_0)*lambda; 
  estimate 'Estimated Unconditional ZIP Variance  

((1-p_0)*lambda*(1+p_0*lambda))' (1-p_0)*lambda*(1+p_0*lambda); 
 
  predict (1-p_0)*lambda out = lambda_hat ; 
  title 'ZIP regression model'; 
run; 

                                            ZIP regression model                                          
 

                                      The NLMIXED Procedure 
                                         Specifications 
                Dependent Variable                          CLM_FREQ 
                Distribution for Dependent Variable         General 
                Optimization Technique                      Dual Quasi-Newton 
                                                 Dimensions 
                                               Fit Statistics 
                            -2 Log Likelihood                 6404.0 
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                            AIC (smaller is better)           6428.0 
                            AICC (smaller is better)          6428.1 
                            BIC (smaller is better)           6499.3 
 
                                      Parameter Estimates 

Parameter Estimate Error DF t Pr Lower Upper Gradient 
bll_0 0.469 0.130 2812 3.6 0.0003 0.2136 0.7241 0.0525 
bll_1 0.037 0.057 2812 0.65 0.5172 -0.0754 0.1498 -0.0033 
bll_2 -0.024 0.055 2812 -0.43 0.6661 -0.1311 0.0838 0.1584 
bll_3 0.085 0.110 2812 0.78 0.4371 -0.1300 0.3007 0.0884 
bll_4 -0.003 0.008 2812 -0.38 0.7062 -0.0194 0.0132 0.5054 
bll_5 0.015 0.056 2812 0.27 0.7863 -0.0951 0.1256 -0.0293 

    
bp_0 1.277 0.226 2812 5.66 <.0001 0.8351 1.7197 0.0822 
bp_1 -0.559 0.124 2812 -4.52 <.0001 -0.8018 -0.3169 -0.0772 
bp_2 0.165 0.113 2812 1.46 0.1434 -0.0560 0.3855 0.4239 
bp_3 -2.035 0.156 2812 -13.08 <.0001 -2.3400 -1.7299 0.0725 
bp_4 0.042 0.019 2812 2.24 0.0254 0.0051 0.0782 0.1624 
bp_5 0.298 0.114 2812 2.61 0.0092 0.0740 0.5225 -0.3611 

Prop Extra 0's 0.445 0.023 19.52 0.0001   
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ID Class # Class Merit Exposure Earned Claims Frequency/
1 1 NoYoungMale A   2,757,520  159,108,000   217,151            0.079 
2 5 MarriedYoungMale A        64,130      5,349,000       6,560            0.102 
3 1 NoYoungMale X      130,706      7,910,000     13,792            0.106 
4 2 NonPrincipYoungMale A      130,535    11,840,000     14,506            0.111 
5 1 NoYoungMale Y      163,544      9,862,000     19,346            0.118 
6 5 MarriedYoungMale x          4,039          345,000          487            0.121 
7 5 MarriedYoungMale Y          4,869          413,000          613            0.126 
8 3 Business A      247,424    25,846,000     31,964            0.129 
9 1 NoYoungMale B      273,944    17,226,000     37,730            0.138 

10 2 NonPrincipYoungMale X          7,233          712,000       1,001            0.138 
11 4 YoungMale A      156,871    18,450,000     22,884            0.146 
12 2 NonPrincipYoungMale Y          9,726          944,000       1,430            0.147 
13 5 MarriedYoungMale B          8,601          761,000       1,291            0.150 
14 2 NonPrincipYoungMale B        21,504      1,992,000       3,421            0.159 
15 3 Business X        15,868      1,783,000       2,695            0.170 
16 4 YoungMale y        21,089      2,523,000       3,618            0.172 
17 4 YoungMale X        17,707      2,130,000       3,054            0.172 
18 3 Business Y        20,369      2,281,000       3,546            0.174 
19 4 YoungMale B        56,730      6,608,000     11,345            0.200 
20 3 Business B       37,666     4,129,000      7,565            0.201 

Appendix F 

Other Count Datasets 

Table F.1 Bailey and Simon Data 

  

 
 

 

 

 

 

 

Table F.1.a Chi-Square Test Based on Bailey and Simon Data 

Poisson/ZIP 7.8E+16 

Negative Binomial 
     
6,672,651  

ZINB 
     
6,107,153  
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     Table F.2 Wang, Cockburn and Puterman (1998) Patents data 

Obs Company Patents RDS lgRD 
1 ABBOTT LABORATORIES 42 0.0549 4.0869

2 AFFILIATED HOSPITAL PRDS 1 0.0032 -2.0794

3 ALBERTO-CULVER CO 3 0.0078 0.1187

4 ALCON LABORATORIES 2 0.0803 1.8796

5 ALLERGAN PHARMACEUTICALS INC 3 0.0686 1.1033

6 ALZA CORP-CL A 40 3.3319 2.0794

7 AMERICAN HOME PRODUCTS CORP 60 0.0243 4.0953

8 AMERICAN HOSPITAL SUPPLY 30 0.0128 2.8333

9 AMERICAN STERILIZER CO 7 0.0252 1.3915

10 AVON PRODUCTS 3 0.0094 2.6048

11 BARD(C.R.) INC 5 0.0146 0.7957

12 BAXTER TRAVENOL LABORATORIES 59 0.0496 3.5207

13 BECTON, DICKINSON & CO 26 0.0395 3.0001

14 BENTLEY LABORATORIES 3 0.0780 0.5371

15 BOCK DRUG-CL A 0 0.0171 0.7761

16 BRISTOL-MYERS CO 66 0.0347 4.2338

17 CARTER-WALLACE INC 0 0.0569 2.2178

18 CAVITRON CORP 8 0.1095 0.8510

19 CHATTEM INC 2 0.0190 -0.1567

20 CHESEBROUGH-POND'S INC 4 0.0084 1.8358

21 CLINICAL SCIENCES INC 0 0.1003 -1.6045

22 CODE LABORATORIES INC 0 0.0623 0.7071

23 CONCEPT INC 3 0.0707 -0.9916

24 COOPER LABORATORIES 6 0.0359 1.2296

25 DATASCOPE CORP 3 0.0596 -0.5310

26 DEL LABORATORIES INC 0 0.0076 -1.2310

27 DENTSPLY INTERNATIONAL INC 6 0.0185 0.9270

28 DESERET PHARMACEUTICAL 2 0.0080 -1.1332

29 DYNATECH CORP 3 0.0640 -0.0419

30 ELECTRO CATHETER CORP 0 0.0780 -1.8326

31 EVEREST & JENNINGS INTL 1 0.0025 -1.8264
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Obs Company Patents RDS lgRD 
32 FABERGE INC 1 0.0040 -0.1985

33 FOREST LABORATORIES INC 0 0.0329 -1.7838

34 GILLETTE CO 25 0.0234 3.5525

35 GUARDIAN CHEMICAL CORP 2 0.0387 -2.5639

36 HELENE CURTIS INDUSTRIES 4 0.0133 0.4523

37 ICN PHARMACEUTICALS INC 1 0.0324 1.0529

38 INSTRUMENTATION LABS INC 1 0.0882 1.4873

39 INTL FLAVORS & FRAGRANCES 51 0.0587 2.7793

40 JOHNSON & JOHNSON 105 0.0446 4.7233

41 JOHNSON PRODUCTS 1 0.0131 -0.6444

42 KEY PHARAMACEUTICALS INC 0 0.0160 -2.9565

43 LA MAUR INC 0 0.0143 -0.9545

44 LILLY (ELI) & CO 166 0.0843 4.7278

45 MALLINCKRODT INC 8 0.0320 2.1831

46 MARION LABORATORIES 6 0.0599 1.5773

47 MERCK & CO 173 0.0821 4.9152

48 ???? 25 0.0535 3.1807

49 MINE SAFETY APPLIANCES CO 14 0.0226 1.4036

50 NARCO SCIENTIFIC INC 3 0.0397 1.0043

51 NESTLE-LEMUR CO 0 0.0103 -2.3330

52 NEWPORT PHARMACEUTICALS INTL 0 0.7159 -0.1815

53 NOXELL CORP 2 0.0107 0.2670

54 PFIZER INC 93 0.0467 4.4785

55 PURITAN-BENNETT CORP 3 0.0369 0.7105

56 REDKEN LABORATORIES 2 0.0316 0.2979

57 RESEARCH INDUSTRIES CORP 0 0.0355 -2.8647

58 REVLON INC 5 0.0166 2.7622

59 RICHARDSON-MERRELL INC 23 0.0417 3.4383

60 ROBINS (A.H.) CO 11 0.0447 2.5439

61 RORER GROUP 13 0.0401 2.4436

62 SCHERER (R.P.) 0 0.0050 -0.4125

63 SCHERING-PLOUGH 90 0.0618 3.9865
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Obs Company Patents RDS lgRD 
64 SEARLE (G.D.) & CO 63 0.0690 3.9620

65 SMITHKLINE CORP 112 0.0813 4.0029

66 SQUIBB CORP 115 0.0409 3.9051

67 STERLING DRUG INC 48 0.0331 3.5909

68 SYBRON CORP 15 0.0323 2.9242

69 SYNTEX CORP 69 0.0859 3.1707

70 TECHNICARE CORP 4 0.0591 1.8089
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Table F.2.a Chi-Square Test Based on Patent Data 

Distribution Chi Square 
Poisson 7.10E+84
Negative Binomial         584,069 
ZIP  6.70E+71
ZINB               249  

 

Table F.3 Deb and Trivedi Hospital Stay Counts 

dsn=dt, yvar=hosp, dist=poisson 
poisson distribution with mean(xbar)=sample mean= 0.29596 

      
Test Cumulative Cumulative y Frequency Percent 

Percent Frequency Percent 
0 3541 80.370 74.380 3541 80.37 
1 599 13.600 22.010 4140 93.96 
2 176 3.990 3.260 4316 97.96 
3 48 1.090 0.320 4364 99.05 
4 20 0.450 0.020 4384 99.5 
5 12 0.270 0.000 4396 99.77 
6 5 0.110 0.000 4401 99.89 
7 1 0.020 0.000 4402 99.91 
8 4 0.090 0.000 4406 100 
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Table F.3.a Chi-Square Test Based on Hospital Visit Data 

Distribution Chi Square 
Poisson 3.40E+06
Negative Binomial            19,302
ZIP 2.,925
ZINB                   25 

 
 
 

Table F.4 Deb and Trivedi Office Visit Data 

Test Cumulative Cumulative y Frequency Percent 

Percent Frequency Percent 

0 683 15.5 0.31 683 15.5 
1 481 10.92 1.79 1164 26.42 
2 428 9.71 5.18 1592 36.13 
3 420 9.53 9.97 2012 45.67 
4 383 8.69 14.39 2395 54.36 
5 338 7.67 16.62 2733 62.03 
6 268 6.08 15.99 3001 68.11 
7 217 4.93 13.19 3218 73.04 
8 188 4.27 9.52 3406 77.3 
9 171 3.88 6.11 3577 81.18 

10 128 2.91 3.53 3705 84.09 
11 115 2.61 1.85 3820 86.7 
12 86 1.95 0.89 3906 88.65 
13 73 1.66 0.4 3979 90.31 
14 76 1.72 0.16 4055 92.03 
15 53 1.2 0.06 4108 93.24 
16 47 1.07 0.02 4155 94.3 
17 48 1.09 0.01 4203 95.39 
18 30 0.68 0 4233 96.07 
19 24 0.54 0 4257 96.62 
20 16 0.36 0 4273 96.98 
21 18 0.41 0 4291 97.39 
22 16 0.36 0 4307 97.75 
23 10 0.23 0 4317 97.98 
24 12 0.27 0 4329 98.25 
25 3 0.07 0 4332 98.32 
26 9 0.2 0 4341 98.52 
27 7 0.16 0 4348 98.68 
28 4 0.09 0 4352 98.77 
29 3 0.07 0 4355 98.84 
30 4 0.09 0 4359 98.93 

>30 47 1.04 0 4406 100 
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2 4 9 18 2 4 9 18

3 0 0 0 0 2 3 2 10
2 3 1 0 2 1 2 2 13
3 0 2 2 2 1 1 4 15
6 1 4 2 1 2 2 3 21
3 0 4 5 2 1 2 1 18
2 3 4 5 1 2 3 4 24
2 7 4 4 0 0 1 3 21
3 3 7 8 1 1 0 0 23
1 5 5 3 3 0 2 2 21
2 3 4 4 1 3 0 0 17
1 4 1 4 1 0 1 0 12
0 0 2 0 1 1 1 0 5
1 1 . . . . . . 2
. . 2 1 . . . . 3
1 . . . . . . . 1
30 30 40 40 30 30 30 40 270

Frequency distributions of the number of roots
by 270 shoots of the apple cultivar Trajan

BAP (muM) Photoperiod All
8 16

No. of roots 0 0 0 2 15 16 12 19 64
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
17
All

 

Table F.4.a Chi-Square Test Based on Office Visit Data 

 
Distribution Chi Square 
Poisson 2.02E+67
Negative Binomal            2,856  
ZIP 2.33E+01
ZINB            4,224  

 

Table F.5 Ridout and Demetrio Apple Shoot Counts 
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Table F.5.a Chi-Square Test Based on Ridout and Demetrio Apple Shoot Data 

   

Distribution Chi Square 
Poisson            2,694  
NB               131  
ZIP                 76  
ZINB                 19  

                                                      

Table F.6 Long Biochemists Data 
The FREQ Procedure 

y Frequency Percent
Test

Percent
Cumulative
Frequency

Cumulative 
Percent 

0 275 30.05 19.28 275 30.05 
1 246 26.89 31.74 521 56.94 
2 178 19.45 26.12 699 76.39 
3 84 9.18 14.33 783 85.57 
4 67 7.32 5.90 850 92.90 
5 27 2.95 1.94 877 95.85 
6 17 1.86 0.53 894 97.70 
7 21 2.30 0.13 915 100.00 

 

Table F.6.a Chi-Square Test Based on Biochemists Data 

Chi-Square Test 
for Specified Proportions 

Chi-Square 476.5913 
DF 7 
Pr > ChiSq <.0001 

WARNING: 25% of the cells have expected counts less 
than 5. Chi-Square may not be a valid test. 

Sample Size = 915 

 

Appendix G 

A Simple Procedure for Fitting the ZIP Model  
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A procedure to solve for the ZIP parameters can be set up in Microsoft Excel.  The illustration 
used in this paper optimizes the minimum distance procedure as set forth in Hogg and Klugman 
(1984), but other statistics can be optimized. 

 

(G.1) 

 

Hogg and Klugman suggest using a weight of: 

Table 2.2 displays the spreadsheet setup for the parameter estimation.  The parameters phi and 
lambda have been initialized to those of the Poisson distribution, i.e., no structural zeros, so phi is 
zero.  The sum of column (7) is to be minimized. 

Table G.1 

Calculation of Zero-Inflated Poisson Parameters: Initialization 
Phi 0      
Lambda 0.82     Wt 

     Squared Squared
No Actual P(X=x) Theoretical Weight Deviation Deviation

Claims Count (2)/SUM(2) P(X=x) (1)/((2)(1-(2)) ((3)-(4))^2 (5)*(6) 
(1) (2) (3) (4) (5) (6) (7) 

0 1,706       0.607 0.44043 7,149 0.02764 197.6
1 351       0.125 0.36115 3,213 0.05585 179.5
2 408       0.145 0.14807 3,289 0.00001 0.0
3 268       0.095 0.04047 3,108 0.00301 9.3
4 74       0.026 0.00830 2,888 0.00032 0.9
5 5       0.002 0.00136 2,817 0.00000 0.0

Sum      2,812    0.08683 387.4
 

Excel provides the solver function to solve12 nonlinear optimization problems such as this one.   
Solver uses a numerical algorithm, such as gradient descent, to solve nonlinear problems.  Figure 2.2 
displays the pop-up menu that is used with Solver.  The menu requires the user to identify a target 
cell to optimize (here the sum of the weighted squared deviations), the input cells containing the 
parameters to be estimated and whether the optimization is a minimization or maximization.   

                                                           
12 Please note you must load the solver add-in to use solver.  This can be done from the tools menu, but requires the 
Microsoft Office disk. 
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Optionally, the user can specify constraints on the parameters (i.e., for instance phi must be greater 
than or equal to zero and less than or equal to 1.  
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Figure G.1 
Pop-up Menu for Solver 

 
 

The Poisson parameters fit with Excel solver are displayed in Table 2.3.  The table indicates that 
on average, 54% of the records have structural zeros.  For the remaining policyholders, the mean 
claim frequency over a five-year period is approximately 1.9.  Figure 2.3 compares the negative 
binomial to the zero-inflated Poisson.  The ZIP model appears to provide a better fit to the data.  
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Table G.2 
Fitted Zero-Inflated Poisson 

Phi 0.5359      
Lambda 1.9194     Wt 

No Actual  Theoretical  Squared Squared
Claims Count P(X=x) P(X=x) Weight Deviation Deviation

  (2)/SUM(2)  (1)/((3)(1-(3)) ((3)-(4))^2 (5)*(6) 
(1) (2) (3) (4) (5) (6) (7) 

0 1706      0.607 0.60402 7149 0.00001 0.1
1 351      0.125 0.13066 3213 0.00003 0.1
2 408      0.145 0.12540 3289 0.00039 1.3
3 268      0.095 0.08023 3108 0.00023 0.7
4 74      0.026 0.03850 2888 0.00015 0.4
5 5      0.002 0.01478 2817 0.00017 0.5

Sum    2,812     0.00097 3.0
 

 
Table G.3 

Fitted Zero-Inflated Negative Binomial Model 
phi 0      
r 1      
p 0.4561     Wt 

No Actual  Theoretical  Squared Squared
Claims Count P(X=x) P(X=x) Weight Deviation Deviation

  (2)/SUM(2)  (1)/((3)(1-(3)) ((3)-(4))^2 (5)*(6) 
(1) (2) (3) (4) (5) (3290) (3291) 
0 1706 0.607 0.4561 7149 0.00048 1.5 
1 351 0.125 0.2481 3213 0.00018 0.5 
2 408 0.145 0.1349 3289 0.00040 1.1 
3 268 0.095 0.0734 3108 0.00000 0.0 
4 74 0.026 0.0399 2888 0.00000 0.0 
5 5 0.002 0.0217 2817 0.00000 0.0 

Sum     0.00106 3.1 
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Table G.4 
Fitted Hurdle Poisson Model 

phi 0.599      
lambda 1.9286     Wt 

No Actual  Theoretical  Squared Squared
Claims Count P(X=x) P(X=x) Weight Deviation Deviation

  (2)/SUM(2)  (1)/((3)(1-(3)) ((3)-(4))^2 (5)*(6) 
(1) (2) (3) (4) (5) (6) (7) 

0 1706    0.607  0.5990 7149 0.00006 0.4
1 351    0.125  0.1124 3213 0.00015 0.5
2 408    0.145  0.1084 3289 0.00135 4.4
3 268    0.095  0.0697 3108 0.00066 2.0
4 74    0.026  0.0336 2888 0.00005 0.2
5 5    0.002  0.0130 2817 0.00013 0.4

Sum    2,812     0.00239 7.9
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Profit Margins Using Co-Measures of  Risk 

Mark J. Homan, FCAS, MAAA, CPCU 
 
________________________________________________________________________ 

Abstract:. Insurance policies cover multiple loss components.  Lately, there is a move to determining 
the premium for a policy by combining the components.  This has led to the desire to have profit 
margins that can be combined.  This paper demonstrates that profit margins by component are not 
additive.  Those wishing to introduce rating by peril will need to consider how they will determine 
profit margins as they combine the underlying loss costs.  The Excel worksheet used in the examples 
will be available on the CAS website. 
 
Keywords. Profit Loads; capital allocation; risk loads 

             

1. INTRODUCTION 

There is a trend towards rating multi-peril products (i.e., Homeowners and Business Owners) by 
peril, or splitting rates between catastrophe and noncatastrophe.  So the issue of determining the 
required profit loads naturally arises.   The desire is to have profit loads by component so premiums 
can be determined by component and added together to get the final rate.   

For example, the Florida legislature, recognizing the need for an appropriate return on 
catastrophe risk, required the Office of Insurance Regulation to determine an appropriate profit 
margin for the catastrophe portion of the Homeowners rate.  While it is important for the industry 
that the legislature recognizes that catastrophe exposed business requires an appropriate return for 
the risk, they also took the erroneous view that profit margins can be determined by component.   

Clearly, the administration of rates, for both companies and state regulators, would be simpler if 
profit margins could be determined in an additive manner.  However, reality once again is not as 
simple as we would like. 

Unfortunately, additive profit margins by component cannot be developed.  One may accept the 
compromise required to treat profit margins as additive.  However, this involves significant 
compromise in some cases, creating significant differences in prices.   

Loss costs, which are based on means, are additive.  Profit loads are based on risk, reflecting 
additional moments of the distribution, and higher moments of distributions are not simply additive.  
Diversification and correlation impact the profit load for the aggregate risk.  

The examples in this paper are based on splits between catastrophe and noncatastrophe portions 
of the risk.  The two loss components are treated as independent.  This is reasonable in the author’s 
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experience, but the methodology can be applied to loss distributions that are correlated.  All 
expenses are treated as variable with no volatility.  This is a simplifying assumption to isolate and 
highlight the interplay of the two loss components.  The analysis can be extended to reflect expense 
variability and the risk that expenses represent.    

1.1 Research Context 

This paper deals primarily with the required profit margins.  It also addresses related issues of 
capital allocation and ROE.   

There are a number of papers in the CAS literature on setting required profit margins, or profit 
loads.  These papers identify that catastrophe exposure is a key consideration in determining the 
required profit margin.  These papers deal with how to determine the profit margin for an aggregate 
exposure, with all risks combined.  No papers or presentations were found that addressed the issue 
of determining profit margins based on risk component.   

1.2 Objective 

The paper will evaluate two different approaches for determining profit margins by component.  
Both approaches will show that profit margins by component are not linear, and as a result, they 
cannot be added together.  The expectation is that the paper can refute the concept of additive 
component profit margins.   

1.3 Outline 

The first part of the paper will demonstrate why profit loads cannot be determined by peril or 
component.  Then it will demonstrate how to determine the overall required profit margin using a 
Risk Coverage Ratio (RCR) approach, and then how to allocate the required profit to component 
based on risk using an approach algorithm named after the developers Ruhm-Mango-Kreps 
(RMK).  It will also demonstrate the limitations or compromises required in this approach. 

2. BACKGROUND AND METHODS 

The two methods evaluated are RCR and the RMK algorithm.  A brief overview of each method 
will be provided before using the method to evaluate profit margins for the components.  Further 
information on each method is included in the Appendix.. 
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2.1 Profit Margins using RCR 

The initial concept used in this paper to determine a profit margin is the RCR.  RCR was 
introduced to the actuarial community in a paper by David Ruhm [1].  Although RCR does not 
require surplus, as implied by the title of the paper, it is easy to translate the required price into 
implied surplus to attribute capital.  (More information is provided in the Appendix.) 

As a reward-to-risk ratio, RCR balances the required return to the risk.  In its basic application, 
RCR is calculated from the distribution of returns on operating cash flows.  In this situation, a 
common adverse event, or minimum threshold is zero.  This means that any scenario where the 
premium and investment income are insufficient to cover all expenses and losses is considered an 
adverse event.  In other words, any operating loss is bad.   

RCR has strong appeal for use in pricing as it includes all adverse events in its determination.  
The risk metric used in the denominator is related to TVAR (Tail Value at Risk), also known as CTE 
(Conditional Tail Expectation).  The key difference is that TVAR is usually demined at a pre-
determined percentile level.  For RCR, that percentile is dynamic and will vary based on the shape of 
the distribution for the line.   

Since the RCR is a ratio of reward to risk, each line will have the same cost per unit of risk.  In 
other words, the dollars of return required for each dollar of risk will be uniform across all lines of 
business. 

2.2 Using RMK to Allocate Profit Margin 

In Section 3.5 that follows, the RMK (Ruhm-Mango-Kreps) algorithm is used to allocate surplus 
and thus the profit margin to risk component.  RMK is an approach that attributes surplus to risk 
component in proportion to the component’s contribution to aggregate risk.  It is solely a 
methodology to allocate surplus, it does not determine the amount of surplus that is required. 

The derivation of this algorithm and its properties are covered in papers available through the 
CAS.  An initial paper by Ruhm and Mango [2] provides the foundation and formulas.  Another 
paper by David Clark [3] provides a practical application of the RMK algorithm.  Neither paper will 
be covered in detail here. 

RMK requires setting an initial vector outlining risk appetite.  In this paper, all scenarios that 
generate a net loss are assigned the same weight.  Depending on a company’s risk appetite, there 
may be events that cause a more extreme loss that should get higher weight.  For example, the 
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weight may be increased in situations where a company is forced to access the capital markets for 
additional funds. The simpler approach used in this paper works well in practice and adequately 
outlines the desired concepts.  The initial weights then are normalized to average to 1.0, and this 
becomes the Z-vector discussed in the Mango-Ruhm paper [2].   

For the first two examples, since there is only a single loss component, these calculations are 
uninteresting, but are included to demonstrate that they work in this situation 

3. RESULTS AND DISCUSSION 

In this section, the required profit load is determined for various combinations of catastrophe 
and noncatastrophe losses using the Risk Coverage Ratio.  Then for the same examples the 
surplus and profit loads are split to risk component using the RMK algorithm.   

3.1 Profit Loads 

This section provides a general overview of splitting profit margins into catastrophe loss and 
noncatastrophe loss components.  The examples shown are simplified calculations.  Only the 
volatility in the level of the catastrophe and noncatastrophe loss ratio is reflected.  Additional 
sources of volatility (payment date, interest rate, expense ratio, etc.) are ignored.  This allows for 
illustration of the concepts, without requiring too complex an Excel spreadsheet for the examples. 
The exhibits show the summary and first 20 scenarios for each simulation.  The full Excel 
spreadsheet is available on the CAS website. 

The assumptions used in all examples are shown below: 

Expenses   30% (treated as all variable) 
Loss Payment 1 year (for both catastrophe and noncatastrophe) 
Yield  5.04% before-tax 
Tax Rate  35% (ignore tax loss discount) 
RCR Target  20 

3.2 Separate Profit loads by Component 

As a first step, let’s look at the profit loads by component for catastrophe separate from 
noncatastrophe.  Exhibit 1A shows the derivation of the required premium for $35 catastrophe loss 
only with the base assumptions.  The catastrophe loss distribution is a sample of 10,000 scenarios 
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from a vendor catastrophe model using a countrywide distribution.  The required premium is 
$90.85.  The target combined ratio is 68.5%, or an underwriting profit margin of 31.5% 

Exhibit 1B shows the derivation of the required premium for $60 of noncatastrophe loss with the 
base assumptions.  The noncatastrophe loss distribution is based on a lognormal distribution and 
also uses 10,000 scenarios.  The required premium is $97.32.  The target combined ratio is 91.7%, or 
an underwriting profit margin of 8.3%.  Adding the noncatastrophe premium to the catastrophe 
premium yields a total premium of $188.18.  (There is an additional cent from rounding in the Excel 
spreadsheets.) 

Comparing the two combined ratios, or profit margins, it is clear that the higher risk represented 
by catastrophe losses requires a much higher price per dollar of loss.  Since expenses are all variable, 
the required premium is scaleable with losses.  So to more directly compare the two premiums, we 
can scale the noncatastrophe premium to $35 of noncatastrophe loss.  That premium would be 
$56.77, or $34.08 less than what is required for catastrophe losses.   

3.3 Profit Load for Combined Components 

Now, let’s combine the catastrophe and noncatastrophe distributions and create a single loss 
distribution and an aggregate return distribution.  Exhibit 2 shows the resulting required premium 
($174.12) and combined ratio (84.6%) for $35 of catastrophe loss and $60 of noncatastrophe loss.  
Comparing this premium to the total premium of $188.18 from Exhibits 1A and 1B, one can see 
that the required premium is less on an aggregate basis than the sum of the premiums from each risk 
separately.  The difference in premium of $14.05 is the diversification benefit.  The diversification 
comes from the fact that a bad year on one distribution can be offset, completely or partially, by a 
lower than expected year on the other distribution.  It should be noted that a low catastrophe year 
will more often offset a bad noncatastrophe result in the same year than the other way around.  This 
is because the catastrophe distribution has a more extreme tail. 

3.3.1 Profit Load with a Different Mix 

To further illustrate the effect of looking at combined distributions to develop profit margins 
versus combining the components, let’s look at some different splits between catastrophe and 
noncatastrophe losses.   

Exhibit 3A shows the required premium if there is twice as much in catastrophe loss, or $70.  
The required premium is $264.07.  Comparing this to twice the catastrophe premium plus the 
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noncatastrophe premium, which is $279.03, we can see the diversification benefit is $14.96.  The 
diversification benefit is better than Exhibit 2, but only by a small amount.  In addition, the target 
combined ratio is 79.2%, lower than in Exhibit 2. 

Exhibit 3B shows the required premium if there is half the amount of catastrophe loss, or $17.50.  
The required premium is now $130.92.  Comparing this to half the catastrophe premium plus the 
noncatastrophe premium, which is $142.75, we can see the diversification benefit drop to $11.83.  
Now the target combined ratio is 89.2%, up from Exhibit 2. 

I will leave it to the curious reader to download the Excel file from the CAS website and verify 
the following statements.  Clearly, as the catastrophe loss goes to zero, the diversification benefit will 
go to zero as we will only have the noncatastrophe premium as shown in Exhibit 1A.  As the 
catastrophe loss increases, the diversification increases at a decreasing rate.   

3.4 Diversification Benefit 

The key difference between separate profit margins and a combined profit margin is reflecting 
the diversification benefit between the components.  From Exhibits 2, 3A and 3B, we can see 
that the diversification benefit is a nonlinear relationship between the two loss distributions.  
Since this is a nonlinear relationship, it is clear that one cannot determine separate profit margins 
for catastrophe and noncatastrophe components and then add them together.  The diversification 
benefit must be considered, and it is not a single factor adjustment in all cases.   

3.4.1 Special Case – Complete Correlation 

There is a special case where component profit margins would be additive.  If the two 
distributions are completely correlated, there is no diversification benefit from combining them.   
With no diversification benefit, then the profit margins are the sum of the parts. 

3.5 Using RMK to allocate Surplus (and profit margin) 

The RMK algorithm is an alternate method for attributing surplus based on contribution to risk.  
From another perspective, it can be viewed as a method for allocating the diversification benefit.   

3.5.1 RMK – Still not a Solution to Component Profit Margins 

In Exhibit 2-2, the surplus allocation for the example in Exhibit 2 is derived.  This shows that 
within this example, the surplus is needed predominately for the catastrophe risk.  The 
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noncatastrophe risk contributes very little to the operating losses.  So the diversification benefit that 
we discussed above is primarily seen in the noncatastrophe risk.  Similar derivations of surplus 
attribution are shown in Exhibits 3A-2 and 3B-2. 

Another way to look at the allocation of diversification benefit is to compare the surplus by 
component.  The surplus indicated for the catastrophe risk only starts at $168.02 (Exhibit 1A), 
which is reduced only to $160.24 (Exhibit 2-2) in the combined example.  In contrast, the required 
surplus for the noncatastrophe component starts at $61.29 (Exhibit 1B), and this is reduced to 
$14.53 in the combined example (Exhibit 2-2).  This shows that the primary impact of 
diversification is to reduce the amount of surplus required to support the noncatastrophe risk. 

Starting with the allocation of surplus and profit from Example 2, we can try to predict the 
required profit margins for Examples 3A and 3B.  We do this by applying the leverage ratios from 
Exhibit 2-2 to the liabilities generated in Examples 3A and 3B.  This is shown in Exhibit 4.  This 
example shows we would come up short on our estimate of required surplus, and thus profit margin, 
for both cases.  

It is interesting to understand why we are not predicting the correct answer.  In both cases, it is 
because the level of diversification has changed.  In Example 3A, we are not getting as much 
diversification from the noncatastrophe portion of the exposure.  Since there is little surplus 
required for noncatastrophe, the difference in required surplus is moderate.  In Example 3B, we 
have half the catastrophe loss level.  Now, the noncatastrophe loss cannot be diversified away as 
much as in Example 2.  In other words, the noncatastrophe risk has more impact on the bottom 
line, so we need to attribute more surplus to it.   

RMK is considered one of the most sophisticated methods of attributing surplus and determining 
required profit, yet it still cannot provide correct answers for component profit margins that can be 
used as the mix of risk component changes.   

3.5.2 Materiality 

Let’s shift from the theoretical to the practical.  The RCR analysis was sufficient to demonstrate 
that component profit margins are not additive as risk varies, so why explore the application of 
RMK?  It is because RMK can be used to flex profit margins within a reasonable range of changes in 
mix by component.  The size of the range will depend on one’s definition of materiality.  Clearly, if 
there is a theoretical difference that does not translate to a difference in what a policyholder will 
actually pay (i.e. one that rounds away), then the difference would not be considered material.  
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For Example 3A, the shortfall is moderate, only $0.78 on the true premium of $264.07.  This 
could very well be determined not to be material.  And this is an example where we doubled the 
catastrophe losses, which is a fairly extreme change.  If the increase in catastrophe losses was more 
moderate, like 10%, the difference would be even smaller and would be more likely to be considered 
immaterial by many companies. 

 The examples used in this paper were based on a split between catastrophe and noncatastrophe 
components.  Also, the size of the differences in the split is extreme to more easily demonstrate the 
points in the paper.  While the theoretical conclusions apply equally to more moderate splits, like 
Homeowners rating by peril, the differences in results are not as great.  When the distributions are 
not as different in shape, then RMK can be used in a broader range without material bias.  Or, if the 
range of changes anticipated in the mix of component is moderate, RMK can be reasonably used. 

So, in the end, one may determine that the RMK algorithm creates a practical approach for 
addressing the component profit margins in certain situations.   

4. CONCLUSIONS 

Profit margins are based on risk.  Risk cannot be evaluated by component in isolation.  Risk must 
be evaluated in the context of the whole, and how the various risks contribute diversification to each 
other.  It is not theoretically possible to create additive component profit margins.  However, it is 
possible using RMK to create profit margins that can be combined within reasonable ranges of mix 
change.   
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6. APPENDIX 

More information on the two approaches used in this paper is provided in this appendix.  
Recognizing that most readers will not be familiar with RCR or RMK, more information is 
provided here.  This is not intended to replace reading the original papers, but should provide 
enough information to put this paper in context.   

6.1 Risk Coverage Ratio (RCR) 

RCR was introduced to the actuarial community in a paper by David Ruhm [1].  As stated in the 
title of Mr. Ruhm’s article, RCR does not require leverage or surplus.  The required price, and 
associated profit margin, is calculated to meet the target RCR.  In addition, once the RCR and price 
are determined, you can use this information to attribute capital.   

As a reward-to-risk ratio, RCR balances the required return to the risk.  To calculate the RCR, 
one must first determine an adverse event threshold.  This will define both the reward and the risk.  
The reward is the average return minus the adverse event.  The risk is the probability of being below 
the adverse event threshold times the average amount below the threshold when it is below.   

The basic formula is: 

RCR = (R-m) / (Pr(x<m)*(m-T)) (6.1)
where: 

 R is average return  
 m is the adverse event threshold, or minimum return 
 T is the average of all events below the adverse threshold, or the tail 

RCR can be used to attribute capital.  After solving for the required price to achieve the target 
RCR, the expected income from operating flows (O) is known.  Given a target return on surplus 
(ROS) and the yield on surplus (y), it is merely algebra to solve for the surplus. 

Surplus = O / (ROS – y) (6.2)

 

The yield that is used in this case should be a risk-free or low-risk yield.  There is additional 
investment risk in the actual investment portfolio for most companies, so the actual portfolio yield is 
usually higher, but also requires additional surplus to support that risk.  The actual portfolio yield 
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can be reflected, but that will require additional modeling to solve for the RCR including portfolio 
yields and risk.  The author recommends the use of LIBOR as a near risk-free yield in determining 
RCR.  LIBOR is the standard rate used in the investment community for modeling, and is available 
at more durations and time points than Treasury yields. 

One of the issues of working with RCR is determining the proper target value.  There is no 
intuitive value that makes sense, nor are there any industry standards that can be used.  A 
recommended approach is to use RCR to attribute surplus for all lines of business and solve for the 
RCR that attributes all of the company’s carried surplus.  This becomes the Target RCR value for 
use in pricing.  Using this approach, the total surplus for the company will be attributed, and if all 
lines are at the target price determined by the RCR, the required return on surplus will be achieved.   

6.2 Ruhm-Mango-Kreps (RMK) Algorithm 

RMK is a methodology designed to allocate risk charge, and thus capital.   

There are some key issues in allocating risk charges, and attributing capital, that the RMK 
algorithm was created to address.  As stated in the paper, “Accounting for aggregate portfolio effects 
in property-casualty insurance prices has historically created some difficult problems, including: 

1) Additivity or sub-additivity of prices; 
2) Measuring how much diversification efficiency actually exists; 
3) Allocating the diversification benefits back to the individual risks; and 
4) Order-dependence.” 

The authors of the paper go on to state, “The method begins at the aggregate level for evaluating 
risk, and ends by producing prices for individual risks, effectively allocating the total portfolio risk 
charge.  The result is an internally consistent allocation of diversification benefits, avoiding the 
difficulties listed above. The method effectively extends any risk-valuation theory used at the 
aggregate portfolio level to the individual risks comprising the portfolio. The resulting prices are 
additive, with each risk’s price reflecting the degree to which it contributes to total portfolio risk” 
[2]. 

  RMK starts with an aggregate risk charge, or surplus, determined by some other methodology.  
RMK is used to distribute the risk charge to component in a consistent manner.  Some of the key 
points from the paper are: 

1) The aggregate risk charge is split to the individual risks based on the conditional 
relationship between the risks’ outcomes and the aggregate results for the portfolio. 
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2) All prices are determined solely by the portfolio-level and the probability structure, so 
that no other information is required. 

3) Correlations between risks (and between each risk and the portfolio) are included in the 
prices in full detail, via the conditional probabilities. Since diversification is related to 
these correlations, it is also reflected in the risks through this calculation. 

4) Prices produced by this method are additive.  The price for each component is made up 
of its contribution to expected costs and its risk load, or profit margin.   

The RMK algorithm requires that you assign a weight to each scenario based on the outcome 
that reflects the company’s risk appetite.  In this paper, any loss outcome gets the same weight.  The 
RMK algorithm can handle more complex views on risk, such as assigning higher weights based on 
the size of the loss.  Details on the calculations that are associated with this paper are provided in 
the Notes to Exhibits section 7.2. 
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7. NOTES TO EXHIBITS 

This section provides more detailed information on the calculations of the various exhibits 
included in this paper.  The Excel file used to develop the exhibits is available from the CAS 
website. 

7.1 RCR Exhibits 

The format and formulas in Exhibits 1A, 1B, 2, 3A and 3B are the same.  It is just the inputs that 
vary.  So they will be discussed together. 

Items 

• Premium (solved) – This is the premium required to meet the RCR target (below).  It is 
solved for via iteration. 

• Combined (formula) – Combined ratio determined from average loss and LAE dollars 
for catastrophe and noncatastrophe in total divided by premium plus the expense ratio. 

• Exp (assumption) – Expense ratio.  All expenses are treated as variable in these 
examples. 

• Loss (assumption) – the expected loss and LAE dollars are shown as the average.  For 
each scenario, a lognormal distribution was used to create a loss and LAE figure.  The 
parameters for the lognormal are hypothetical used for these examples.  The same 
distribution is used for all examples, with varying means. 

• Cat Loss (assumption) – the expected catastrophe loss and LAE dollars are shown as 
the average.  The scenarios for cat loss came from the output of a cat model, 
manipulated to not reveal any real information.  Again, the distribution of cat losses is 
the same in all examples, just the mean has changed. 

• Loss Lag and Cat Lag (assumption) – represent the average payment date for the two 
loss components.  A common value of 1.0 years is used for both loss components in 
these examples.   

• Yield (assumption) – The yield is the average LIBOR yield for the period of time and 
duration assumed for investing the flows.  A complete discussion of interest rates to use 
in modeling is beyond the scope of this paper.  Suffice it to say that the use of LIBOR to 
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represent risk-free rates of return is common in the investment and finance community.  
And that practice has been adopted here.  This model can be expanded to look at 
portfolio yields, but additional capital would be needed to address the increased risk in 
such a portfolio. 

• Loss Liab and Cat Liab (formula) – These are the present value of the balance sheet 
liabilities for noncat loss and LAE and catastrophe loss and LAE, respectively.  The 
formula is shown below: 

Liabilities = Loss * [1 / (1 + Yield(after-tax)) ^ Lag ] / (Yield (after-tax)) (7.1)

• Tax Rate – Not shown on the exhibits.  A 35% tax rate is used in these examples. 

• Net Liab (formula) – the sum of the loss and cat liabilities.  This is the present value of 
the total balance sheet liabilities.  Since both components are on a present value basis, 
they can be added even if the lags are different. 

• UW Inc (formula) – The underwriting profit which is the premium minus the sum of 
expenses, noncatastrophe losses and catastrophe losses, adjusted for taxes. 

• UW Inv Inc (formula) – this is the investment income on the operating cash flows.   

UW Inv Inc = Net Liab * Yield (After-tax) (7.2)

• Tot Inc (Formula) – Total income, the sum of UW Inc and UW Inv Inc 

• ESD (formula) – expected surplus drawdown.  If the total income is negative, this is the 
complement of the income.  It is zero if the income is positive.  In other words, it is the 
amount of the loss when there is a loss.  The average ESD is the risk metric used in 
calculating RCR.  It can also be determined as follows: 

Risk = E(ESD) = - Pr(Tot Inc < 0)* E(Tot Inc | Tot Inc < 0) (7.3)

• RCR (formula) – Risk Coverage Ratio.  Ratio of Total Income to risk, or: 

RCR = Tot Inc / E(ESD) (7.4)

 

• Target ROS (assumption) – this is the return on surplus that the company is targeting. 

• Surplus (formula) – This is the surplus required by the line to translate the operating 
return (Tot Inc) to the target ROS.  It is determined using formula 6.2, restated below 
using the variable names from these exhibits. 
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Surplus = Tot Inc / (Target ROS – Yield(after-tax)) (7.5)

7.2 RMK Exhibits 

The exhibits that demonstrate the application of the RMK algorithm use a common format and 
set of formulas.  They build on information in the corresponding RCR exhibit and are numbered as 
such.  The three exhibits included are 2-2, 3A-2, and 3B-2. 

RMK requires a set of weights that can be based on any underlying view of risk.  The weights are 
normalized to sum to 1.0, termed the Z-vector in the paper.  There is no requirement as to what sort 
of risk preference is used to determine the initial weights.  In this paper, a simple set of weights is 
used so all operating losses get the same weight of 1 + (1/RCR), and the positive results are assigned 
a small weight of (1/RCR).   

To start, the premium is apportioned to the components of expense, catastrophe loss and 
noncatastrophe loss.  Then the underwriting gain/loss from each component for each scenario is 
determined.  (Note that since there is no expense volatility in these examples, the expense 
component drops out and is not shown.)  Next the deviation of the investment income for the 
scenario from the expected is determined.  These two pieces are combined to determine the 
operating gain contribution for the scenario from each component.  These figures are used to 
allocate the risk charge and then the surplus to the components.   

Items 

• Ave ROE (assumption) – This is the target ROS from the RCR exhibit. 

• Surplus II (assumption) – Investment Income (II) on Surplus.  This is the yield adjusted to 
after-tax.. 

• Avg Op Rtn (formula) – Average Operating Return.  Viewed as either the Avg ROE minus the 
Surplus II, or can be calculated from the RCR exhibit as the average Tot Inc divided by the 
average Net Liab. 

• Surplus (assumption) – this is the figure determined in the RCR exhibit. 

• Risk Chg (assumption) – Risk Charge. This is average Tot Inc from the RCR exhibit.   

Here it is being viewed as the amount of return required to cover the risk, or as the risk charge. 

• Total Op Gain (assumption) – This is the Tot Inc from the RCR exhibit, reproduced 
here. 
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• Crude Weights (formula) – This is the initial set of weights, before normalization, used 
in the RMK formula.  In these examples, the weights are 1/RCR if the income is 
positive, and (1 + 1/RCR) if the income is negative.  This puts more weight on the loss 
scenarios.  This represents a simple utility function. 

• Z (formula) – this is the Z-vector referred to in the Ruhm-Mango paper.  It is a 
normalized set of weights calculated as the Crude Weight / E(Crude Weight). 

• Prem Split (formula) – In order to determine the contribution to the underwriting gain 
or loss, the premium needs to be split into component.  The split here is based on the 
average cost for each item.  Since expenses do not vary, they are not relevant and the 
portion of premium for expense is not shown.  The calculation is very insensitive to the 
premium split.  However, it is easier to interpret the calculations if a reasonable split of 
the premium is used initially. 

The formula for loss, with cat loss being similar, is: 

Prem Split = Premium * E(Loss) / (E(exp) + E(loss) + E(cat loss) ) (7.6)

The next items are the six columns.  Then the formulas used to calculate across each column will 
be covered. 

• Loss xCat UW Gain (formula) – This the contribution of the noncatastrophe loss 
portion to the UW gain or loss.  It is calculated as the difference between the premium 
split for loss and the loss for the scenario, adjusted for taxes. 

• Cat Loss UW Gain (formula) – Similar to the above, this is the contribution of the cat 
loss to the UW gain or loss.  It is calculated in the difference between the premium split 
for loss and the loss for the scenario, adjusted for taxes. 

• Loss xCat Inv Gain/Cat Loss Inv Gain (formula) – This is the contribution to 
investment income from the scenario.  It is the liability times the yield adjusted for taxes.  
When there is an underwriting loss, this serves as an offset. 

• Loss xCat Op Gain/Cat Loss Op Gain (formula) – This is the sum of the UW gain or loss 
plus the investment income for the component.   

The following items are calculated for each column, or component.  There are two risk factors, 
noncatastrophe loss and catastrophe loss, in three different levels – underwriting gain/loss, 
investment gain and total gain/loss. 
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• E(R) (formula) – Average value for the column, or the risk contribution for the component. 

• E(ZR) (formula) – Average value of the product of the weight (Z) times the risk contribution, 
or contribution, for each component. 

• Risk Chg (formula) – the risk charge for the component, which is E(R) minus E (ZR).  This is 
also the contribution to the average operating return from the component, so the sum across all 
components will equal the average operating return.   

• Surplus (formula) – The surplus required for that component.  This is calculated using the 
following formula: 

Surplus = Risk Chg / Avg Op Return (total) (7.6)

• Avg Op Rtn (formula) – Average Operating Return, is calculated for each item as the risk 
charge, divided by surplus.  Given the formula used to get surplus, it will be equal to the average 
operating return for the total.  So, the average operating return for each component should be 
the same as the overall average operating return, and this acts as a cross check. 

• Surplus II (assumption) – the investment income on surplus.  This is the same as the yield that 
was used in the total. 

• Avg ROE (formula) – average ROE is the sum of the Avg Op Rtn and Surplus II. 

• Tot Und/Tot Inv (formula) – The sum of the surplus for the risk components, 
noncatastrophe loss and catastrophe loss, at the underwriting and investment level respectively.  
Note that investment surplus is negative, as it acts to offset the positive surplus for underwriting. 

• Leverage Ratios (formula) – The two leverage ratios are shown, which are ratios of 
liabilities to surplus.  The liabilities from the underlying RCR exhibit for the component 
are divided by the total surplus for that component.  These leverage ratios are then used 
in other models as the expected catastrophe and noncatastrophe losses vary. 

The final section in these exhibits is a summary, and shows how the underwriting profit for the 
component would be derived.   

• Surplus, Yield and Op Income – are repeats of the items from earlier columns, shown 
here to see what is used in the following calculations. 

• Op Inv Inc (formula) – investment income on operating cash flows.  This is the 
liabilities for the component times the yield.   
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• UW Income (formula) – underwriting income, it is the operating income minus the 
operating investment income.  This split shows the composition of the underwriting 
profit margin. 

 



Premium 174.12

Ratio to
Dollars Premium

Loss 57.65 33.1%
Cat Loss 19.62 11.3%
Expense 30.0%

Combined Ratio 74.4%

Pre-Tax Post-Tax
Yield 5.04% 3.28%

Loss Liabilities 55.83     Loss * (1 - 1/(1+ post-tax-yield))/post-tax-yield
Cat Loss Liabilities 19.00     Cat Loss * (1 - 1/(1+ post-tax-yield))/post-tax-yield

Net Liabilities 74.82     Sum of Loss Liabilities and Cat Loss Liabilities

Underwriting Income 29.00     [Premium - (Loss + Cat Loss + Expense)] * (1 - tax rate)

UW Investment Income 2.45     Net Liabilities * post-tax-yield

Total Income 31.45     Sum of UW Income and UW Investment Income

Sample Calculations 

For Row 1 on Exhibit 2
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Exhibit 1A

Premium 90.85 Loss Lag 1.000 RCR 20.00
Combined 68.5% Cat Lag 1.000

Yield 5.04% Target ROS 15.0%
Surplus 168.02

Exp Loss Cat Loss Loss Liab Cat Liab Net Liab UW Inc UW Inv Inc Tot Inc ESD
Averages 0.30 0.00 35.00 0.0 33.9 33.9 18.59 1.11 19.70 0.98

1 0.30 0.00 19.62 0.0 19.0 19.0 28.59 0.62 29.21 0.00
2 0.30 0.00 90.84 0.0 88.0 88.0 -17.70 2.88 -14.82 14.82
3 0.30 0.00 32.87 0.0 31.8 31.8 19.97 1.04 21.02 0.00
4 0.30 0.00 25.02 0.0 24.2 24.2 25.08 0.79 25.87 0.00
5 0.30 0.00 38.92 0.0 37.7 37.7 16.04 1.23 17.28 0.00
6 0.30 0.00 24.34 0.0 23.6 23.6 25.52 0.77 26.29 0.00
7 0.30 0.00 25.60 0.0 24.8 24.8 24.70 0.81 25.51 0.00
8 0.30 0.00 35.69 0.0 34.6 34.6 18.14 1.13 19.27 0.00
9 0.30 0.00 59.80 0.0 57.9 57.9 2.47 1.90 4.37 0.00

10 0.30 0.00 10.41 0.0 10.1 10.1 34.57 0.33 34.90 0.00
11 0.30 0.00 17.18 0.0 16.6 16.6 30.17 0.54 30.72 0.00
12 0.30 0.00 43.38 0.0 42.0 42.0 13.14 1.38 14.52 0.00
13 0.30 0.00 28.26 0.0 27.4 27.4 22.97 0.90 23.87 0.00
14 0.30 0.00 29.70 0.0 28.8 28.8 22.03 0.94 22.98 0.00
15 0.30 0.00 67.40 0.0 65.3 65.3 -2.47 2.14 -0.34 0.34
16 0.30 0.00 25.96 0.0 25.1 25.1 24.47 0.82 25.29 0.00
17 0.30 0.00 23.56 0.0 22.8 22.8 26.02 0.75 26.77 0.00
18 0.30 0.00 94.33 0.0 91.3 91.3 -19.98 2.99 -16.98 16.98
19 0.30 0.00 15.15 0.0 14.7 14.7 31.49 0.48 31.97 0.00
20 0.30 0.00 55.90 0.0 54.1 54.1 5.01 1.77 6.78 0.00
21 0.30 0.00 20.10 0.0 19.5 19.5 28.27 0.64 28.91 0.00
22 0.30 0.00 46.00 0.0 44.5 44.5 11.44 1.46 12.90 0.00
23 0.30 0.00 36.39 0.0 35.2 35.2 17.69 1.15 18.84 0.00
24 0.30 0.00 34.91 0.0 33.8 33.8 18.65 1.11 19.76 0.00
25 0.30 0.00 19.65 0.0 19.0 19.0 28.56 0.62 29.19 0.00
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Exhibit 1B

Premium 97.32 Loss Lag 1.000 RCR 20.00
Combined 91.7% Cat Lag 1.000

Yield 5.04% Target ROS 15.0%
Cat Premiu 90.85 Surplus 61.29
  (From Exh. 1A)

Total Premium 188.18

Exp Loss Cat Loss Loss Liab Cat Liab Net Liab UW Inc UW Inv Inc Tot Inc ESD
Averages 0.30 60.00 0.00 58.1 0.0 58.1 5.28 1.90 7.19 0.36

1 0.30 57.65 0.00 55.8 0.0 55.8 6.81 1.83 8.64 0.00
2 0.30 56.99 0.00 55.2 0.0 55.2 7.24 1.81 9.04 0.00
3 0.30 58.41 0.00 56.6 0.0 56.6 6.32 1.85 8.17 0.00
4 0.30 49.37 0.00 47.8 0.0 47.8 12.19 1.57 13.76 0.00
5 0.30 46.47 0.00 45.0 0.0 45.0 14.08 1.47 15.55 0.00
6 0.30 69.27 0.00 67.1 0.0 67.1 -0.74 2.20 1.45 0.00
7 0.30 54.62 0.00 52.9 0.0 52.9 8.78 1.73 10.51 0.00
8 0.30 54.38 0.00 52.7 0.0 52.7 8.94 1.72 10.66 0.00
9 0.30 71.10 0.00 68.8 0.0 68.8 -1.94 2.26 0.32 0.00

10 0.30 57.52 0.00 55.7 0.0 55.7 6.89 1.82 8.72 0.00
11 0.30 75.92 0.00 73.5 0.0 73.5 -5.06 2.41 -2.66 2.66
12 0.30 64.95 0.00 62.9 0.0 62.9 2.07 2.06 4.13 0.00
13 0.30 58.29 0.00 56.4 0.0 56.4 6.40 1.85 8.25 0.00
14 0.30 63.31 0.00 61.3 0.0 61.3 3.13 2.01 5.14 0.00
15 0.30 68.40 0.00 66.2 0.0 66.2 -0.18 2.17 1.99 0.00
16 0.30 64.73 0.00 62.7 0.0 62.7 2.21 2.05 4.26 0.00
17 0.30 63.56 0.00 61.5 0.0 61.5 2.97 2.02 4.99 0.00
18 0.30 50.21 0.00 48.6 0.0 48.6 11.65 1.59 13.24 0.00
19 0.30 46.21 0.00 44.7 0.0 44.7 14.25 1.47 15.71 0.00
20 0.30 68.67 0.00 66.5 0.0 66.5 -0.36 2.18 1.82 0.00
21 0.30 38.50 0.00 37.3 0.0 37.3 19.26 1.22 20.48 0.00
22 0.30 71.73 0.00 69.5 0.0 69.5 -2.34 2.28 -0.06 0.06
23 0.30 56.71 0.00 54.9 0.0 54.9 7.42 1.80 9.22 0.00
24 0.30 57.03 0.00 55.2 0.0 55.2 7.21 1.81 9.02 0.00
25 0.30 79.04 0.00 76.5 0.0 76.5 -7.10 2.51 -4.59 4.59
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Exhibit 2

Premium 174.12 Loss Lag 1.000 RCR 20.00
Combined 84.6% Cat Lag 1.000

Yield 5.04% Target ROS 15.0%
Prior Premium 188.18 Surplus 174.77

Diversification Benefit 14.05

Exp Loss Cat Loss Loss Liab Cat Liab Net Liab UW Inc UW Inv Inc Tot Inc ESD
Averages 0.30 60.00 35.00 58.1 33.9 92.0 17.48 3.01 20.49 1.02

1 0.30 57.65 19.62 55.8 19.0 74.8 29.00 2.45 31.45 0.00
2 0.30 56.99 90.84 55.2 88.0 143.1 -16.86 4.69 -12.17 12.17
3 0.30 58.41 32.87 56.6 31.8 88.4 19.90 2.90 22.79 0.00
4 0.30 49.37 25.02 47.8 24.2 72.0 30.88 2.36 33.24 0.00
5 0.30 46.47 38.92 45.0 37.7 82.7 23.73 2.71 26.44 0.00
6 0.30 69.27 24.34 67.1 23.6 90.6 18.38 2.97 21.35 0.00
7 0.30 54.62 25.60 52.9 24.8 77.7 27.08 2.54 29.63 0.00
8 0.30 54.38 35.69 52.7 34.6 87.2 20.68 2.86 23.54 0.00
9 0.30 71.10 59.80 68.8 57.9 126.8 -5.86 4.15 -1.71 1.71

10 0.30 57.52 10.41 55.7 10.1 65.8 35.07 2.15 37.23 0.00
11 0.30 75.92 17.18 73.5 16.6 90.1 18.72 2.95 21.67 0.00
12 0.30 64.95 43.38 62.9 42.0 104.9 8.81 3.44 12.25 0.00
13 0.30 58.29 28.26 56.4 27.4 83.8 22.97 2.75 25.72 0.00
14 0.30 63.31 29.70 61.3 28.8 90.1 18.77 2.95 21.72 0.00
15 0.30 68.40 67.40 66.2 65.3 131.5 -9.05 4.31 -4.74 4.74
16 0.30 64.73 25.96 62.7 25.1 87.8 20.28 2.88 23.16 0.00
17 0.30 63.56 23.56 61.5 22.8 84.4 22.60 2.76 25.36 0.00
18 0.30 50.21 94.33 48.6 91.3 140.0 -14.72 4.58 -10.14 10.14
19 0.30 46.21 15.15 44.7 14.7 59.4 39.34 1.95 41.29 0.00
20 0.30 68.67 55.90 66.5 54.1 120.6 -1.74 3.95 2.21 0.00
21 0.30 38.50 20.10 37.3 19.5 56.7 41.14 1.86 42.99 0.00
22 0.30 71.73 46.00 69.5 44.5 114.0 2.71 3.73 6.44 0.00
23 0.30 56.71 36.39 54.9 35.2 90.1 18.72 2.95 21.67 0.00
24 0.30 57.03 34.91 55.2 33.8 89.0 19.47 2.92 22.38 0.00
25 0.30 79.04 19.65 76.5 19.0 95.6 15.07 3.13 18.20 0.00
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Exhibit 3A

Premium 264.07 Loss Lag 1.000 RCR 20.00
Combined 79.2% Cat Lag 1.000

Yield 5.04% Target ROS 15.0%
Prior Premium 279.03 Surplus 339.27
Diversification 14.96

Exp Loss Cat Loss Loss Liab Cat Liab Net Liab UW Inc UW Inv Inc Tot Inc ESD
Averages 0.30 60.00 70.00 58.1 67.8 125.9 35.65 4.12 39.78 1.99

1 0.30 57.65 39.24 55.8 38.0 93.8 57.17 3.07 60.24 0.00
2 0.30 56.99 181.67 55.2 175.9 231.1 -34.98 7.57 -27.41 27.41
3 0.30 58.41 65.74 56.6 63.7 120.2 39.46 3.94 43.40 0.00
4 0.30 49.37 50.03 47.8 48.4 96.2 55.54 3.15 58.69 0.00
5 0.30 46.47 77.83 45.0 75.4 120.4 39.36 3.94 43.30 0.00
6 0.30 69.27 48.67 67.1 47.1 114.2 43.49 3.74 47.23 0.00
7 0.30 54.62 51.20 52.9 49.6 102.5 51.37 3.36 54.73 0.00
8 0.30 54.38 71.38 52.7 69.1 121.8 38.41 3.99 42.40 0.00
9 0.30 71.10 119.60 68.8 115.8 184.7 -3.81 6.05 2.24 0.00

10 0.30 57.52 20.82 55.7 20.2 75.9 69.23 2.48 71.72 0.00
11 0.30 75.92 34.35 73.5 33.3 106.8 48.48 3.50 51.97 0.00
12 0.30 64.95 86.76 62.9 84.0 146.9 21.54 4.81 26.35 0.00
13 0.30 58.29 56.51 56.4 54.7 111.2 45.53 3.64 49.17 0.00
14 0.30 63.31 59.40 61.3 57.5 118.8 40.39 3.89 44.29 0.00
15 0.30 68.40 134.81 66.2 130.5 196.8 -11.94 6.45 -5.49 5.49
16 0.30 64.73 51.91 62.7 50.3 112.9 44.33 3.70 48.03 0.00
17 0.30 63.56 47.13 61.5 45.6 107.2 48.21 3.51 51.72 0.00
18 0.30 50.21 188.66 48.6 182.7 231.3 -35.11 7.58 -27.54 27.54
19 0.30 46.21 30.30 44.7 29.3 74.1 70.42 2.43 72.85 0.00
20 0.30 68.67 111.79 66.5 108.2 174.7 2.85 5.72 8.57 0.00
21 0.30 38.50 40.20 37.3 38.9 76.2 69.00 2.50 71.49 0.00
22 0.30 71.73 91.99 69.5 89.1 158.5 13.73 5.19 18.93 0.00
23 0.30 56.71 72.78 54.9 70.5 125.4 35.99 4.11 40.10 0.00
24 0.30 57.03 69.81 55.2 67.6 122.8 37.70 4.02 41.73 0.00
25 0.30 79.04 39.31 76.5 38.1 114.6 43.22 3.75 46.98 0.00

Profit Margins Using Co-Measures of Risk
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Exhibit 3B

Premium 130.92 Loss Lag 1.000 RCR 20.00
Combined 89.2% Cat Lag 1.000

Yield 5.04% Target ROS 15.0%
Prior Premium 142.75 Surplus 99.39
Diversification 11.83

Exp Loss Cat Loss Loss Liab Cat Liab Net Liab UW Inc UW Inv Inc Tot Inc ESD
Averages 0.30 60.00 17.50 58.1 16.9 75.0 9.19 2.46 11.65 0.58

1 0.30 57.65 9.81 55.8 9.5 65.3 15.72 2.14 17.86 0.00
2 0.30 56.99 45.42 55.2 44.0 99.2 -7.00 3.25 -3.75 3.75
3 0.30 58.41 16.43 56.6 15.9 72.5 10.92 2.37 13.30 0.00
4 0.30 49.37 12.51 47.8 12.1 59.9 19.35 1.96 21.31 0.00
5 0.30 46.47 19.46 45.0 18.8 63.8 16.72 2.09 18.81 0.00
6 0.30 69.27 12.17 67.1 11.8 78.9 6.63 2.58 9.22 0.00
7 0.30 54.62 12.80 52.9 12.4 65.3 15.74 2.14 17.88 0.00
8 0.30 54.38 17.85 52.7 17.3 69.9 12.62 2.29 14.91 0.00
9 0.30 71.10 29.90 68.8 29.0 97.8 -6.08 3.20 -2.88 2.88

10 0.30 57.52 5.20 55.7 5.0 60.7 18.80 1.99 20.79 0.00
11 0.30 75.92 8.59 73.5 8.3 81.8 4.64 2.68 7.32 0.00
12 0.30 64.95 21.69 62.9 21.0 83.9 3.25 2.75 6.00 0.00
13 0.30 58.29 14.13 56.4 13.7 70.1 12.50 2.30 14.80 0.00
14 0.30 63.31 14.85 61.3 14.4 75.7 8.77 2.48 11.25 0.00
15 0.30 68.40 33.70 66.2 32.6 98.9 -6.80 3.24 -3.56 3.56
16 0.30 64.73 12.98 62.7 12.6 75.2 9.06 2.47 11.52 0.00
17 0.30 63.56 11.78 61.5 11.4 73.0 10.60 2.39 12.99 0.00
18 0.30 50.21 47.17 48.6 45.7 94.3 -3.72 3.09 -0.63 0.63
19 0.30 46.21 7.58 44.7 7.3 52.1 24.61 1.71 26.32 0.00
20 0.30 68.67 27.95 66.5 27.1 93.6 -3.24 3.06 -0.17 0.17
21 0.30 38.50 10.05 37.3 9.7 47.0 28.01 1.54 29.55 0.00
22 0.30 71.73 23.00 69.5 22.3 91.7 -2.00 3.00 1.00 0.00
23 0.30 56.71 18.19 54.9 17.6 72.5 10.88 2.38 13.26 0.00
24 0.30 57.03 17.45 55.2 16.9 72.1 11.15 2.36 13.51 0.00
25 0.30 79.04 9.83 76.5 9.5 86.1 1.80 2.82 4.62 0.00

Profit Margins Using Co-Measures of Risk
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Exhibit 2-2
Tot Und 183.74      Tot Inv (8.97)        4.00      0.2115  

Avg ROE 15.00% Avg ROE 15.00% 15.00% 15.00% 15.00% 15.00% 15.00% Non-Cat Cat
Surplus II 3.28% Surplus II 3.28% 3.28% 3.28% 3.28% 3.28% 3.28% Surplus 14.53      160.24    
Avg Op Rtn 11.72% Avg Op Rtn 11.72% 11.72% 11.72% 11.72% 11.72% 11.72% Yield 3.28% 3.28%
Surplus 174.77 Surplus 15.28     168.46    (0.75)      (8.22)      14.53       160.24    Op Income 1.70        18.79      
Risk Chg 20.49 Risk Chg 1.791 19.750 -0.087 -0.964 1.70 18.79 Op Inv Inc 1.90 1.11

E(ZR) 5.331 -15.596 1.991 2.074 7.322 -13.522 UW Income (0.20)       17.68      
E(R) 7.122 4.154 1.903 1.110 9.025 5.265 Pre-tax Margin (0.31)       27.19      

Prem Split 70.957 41.391
0.12280

Total Crude Loss xCat Cat Loss Loss xCat Cat Loss Loss xCat Cat Loss
Op Gain Weights Z UW Gain UW Gain Inv Gain Inv Gain Op Gain Op Gain

1 31.4 0.050 0.407 8.647 14.152 1.829 0.622 10.475 14.774
2 -12.2 1.050 8.550 9.075 -32.139 1.808 2.881 10.883 -29.258
3 22.8 0.050 0.407 8.159 5.540 1.853 1.043 10.011 6.583
4 33.2 0.050 0.407 14.034 10.643 1.566 0.794 15.600 11.437
5 26.4 0.050 0.407 15.917 1.609 1.474 1.234 17.391 2.843
6 21.4 0.050 0.407 1.095 11.085 2.197 0.772 3.292 11.857
7 29.6 0.050 0.407 10.616 10.266 1.733 0.812 12.349 11.078
8 23.5 0.050 0.407 10.776 3.705 1.725 1.132 12.501 4.837
9 -1.7 1.050 8.550 -0.096 -11.966 2.255 1.897 2.160 -10.069

10 37.2 0.050 0.407 8.733 20.139 1.825 0.330 10.558 20.469
11 21.7 0.050 0.407 -3.225 15.740 2.408 0.545 -0.817 16.285
12 12.2 0.050 0.407 3.905 -1.292 2.060 1.376 5.965 0.084
13 25.7 0.050 0.407 8.236 8.537 1.849 0.896 10.085 9.434
14 21.7 0.050 0.407 4.972 7.600 2.008 0.942 6.981 8.542
15 -4.7 1.050 8.550 1.659 -16.908 2.170 2.138 3.829 -14.770
16 23.2 0.050 0.407 4.045 10.033 2.053 0.823 6.099 10.857
17 25.4 0.050 0.407 4.809 11.588 2.016 0.747 6.825 12.335
18 -10.1 1.050 8.550 13.488 -34.412 1.593 2.992 15.080 -31.419
19 41.3 0.050 0.407 16.087 17.056 1.466 0.481 17.553 17.536
20 2.2 0.050 0.407 1.483 -9.427 2.178 1.773 3.662 -7.654
21 43.0 0.050 0.407 21.096 13.839 1.221 0.638 22.317 14.477
22 6.4 0.050 0.407 -0.500 -2.994 2.275 1.459 1.775 -1.535
23 21.7 0.050 0.407 9.263 3.252 1.799 1.154 11.062 4.407

Leverage Ratios
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Exhibit 3A-2
Tot Und 356.67      Tot Inv (17.41)       9.24      0.2036  

Avg ROE 15.00% Avg ROE 15.00% 15.00% 15.00% 15.00% 15.00% 15.00% Non-Cat Cat
Surplus II 3.28% Surplus II 3.28% 3.28% 3.28% 3.28% 3.28% 3.28% Surplus 6.28        332.98    
Avg Op Rtn 11.72% Avg Op Rtn 11.72% 11.72% 11.72% 11.72% 11.72% 11.72% Yield 3.28% 3.28%
Surplus 339.27 Surplus 6.61          350.07      (0.32)         (17.08)       6.28          332.98      Op Income 0.74        39.04      
Risk Chg 39.78 Risk Chg 0.775 41.042 -0.038 -2.003 0.74 39.04 Op Inv Inc 1.90 2.22

E(ZR) 9.450 -29.113 1.941 4.223 11.391 -24.890 UW Income (1.17)       36.82      
E(R) 10.224 11.928 1.903 2.220 12.127 14.149 Pre-tax Margin (1.79)       56.64      

Prem Split 75.729 88.351
0.12190

Total Crude LxC Cat Loss Loss xCat Cat Loss Loss xCat Cat Loss
Op Gain Weights Z UW Gain UW Gain Inv Gain Inv Gain Op Gain Op Gain

1 60.2 0.050 0.410 11.749 31.923 1.829 1.245 13.578 33.167
2 -27.4 1.050 8.614 12.178 -60.659 1.808 5.763 13.986 -54.896
3 43.4 0.050 0.410 11.261 14.700 1.853 2.085 13.114 16.785
4 58.7 0.050 0.410 17.136 24.906 1.566 1.587 18.702 26.493
5 43.3 0.050 0.410 19.020 6.837 1.474 2.469 20.494 9.306
6 47.2 0.050 0.410 4.197 25.790 2.197 1.544 6.395 27.334
7 54.7 0.050 0.410 13.719 24.151 1.733 1.624 15.451 25.775
8 42.4 0.050 0.410 13.879 11.029 1.725 2.264 15.603 13.293
9 2.2 0.050 0.410 3.007 -20.312 2.255 3.794 5.262 -16.518

10 71.7 0.050 0.410 11.835 43.897 1.825 0.660 13.660 44.557
11 52.0 0.050 0.410 -0.122 35.100 2.408 1.090 2.286 36.189
12 26.4 0.050 0.410 7.007 1.034 2.060 2.752 9.068 3.787
13 49.2 0.050 0.410 11.339 20.694 1.849 1.793 13.188 22.487
14 44.3 0.050 0.410 8.075 18.820 2.008 1.884 10.083 20.704
15 -5.5 1.050 8.614 4.761 -30.197 2.170 4.276 6.931 -25.920
16 48.0 0.050 0.410 7.148 23.686 2.053 1.647 9.201 25.333
17 51.7 0.050 0.410 7.911 26.795 2.016 1.495 9.928 28.290
18 -27.5 1.050 8.614 16.590 -65.204 1.593 5.985 18.183 -59.219
19 72.8 0.050 0.410 19.190 37.731 1.466 0.961 20.656 38.692
20 8.6 0.050 0.410 4.585 -15.235 2.178 3.546 6.764 -11.689
21 71.5 0.050 0.410 24.198 31.298 1.221 1.275 25.420 32.573
22 18.9 0.050 0.410 2.603 -2.368 2.275 2.918 4.878 0.550
23 40.1 0.050 0.410 12.365 10.124 1.799 2.309 14.164 12.433

Leverage Ratios

Profit Margins Using Co-Measures of Risk
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Exhibit 3B-2
Tot Und 104.49      Tot Inv (5.10)        1.72      0.2586  

Avg ROE 15.00% Avg ROE 15.00% 15.00% 15.00% 15.00% 15.00% 15.00% Non-Cat Cat
Surplus II 3.28% Surplus II 3.28% 3.28% 3.28% 3.28% 3.28% 3.28% Surplus 33.87      65.51      
Avg Op Rtn 11.72% Avg Op Rtn 11.72% 11.72% 11.72% 11.72% 11.72% 11.72% Yield 3.28% 3.28%
Surplus 99.39 Surplus 35.61     68.87     (1.74)      (3.36)      33.87       65.51     Op Income 3.97        7.68        
Risk Chg 11.65 Risk Chg 4.175 8.075 -0.204 -0.394 3.97 7.68 Op Inv Inc 1.90 0.56

E(ZR) 0.549 -6.697 2.107 0.949 2.656 -5.748 UW Income 2.07        7.13        
E(R) 4.724 1.378 1.903 0.555 6.627 1.933 Pre-tax Margin 3.18        10.96      

Prem Split 67.267 19.620
0.13420

Total Crude LxC Cat Loss Loss xCat Cat Loss Loss xCat Cat Loss
Op Gain Weights Z UW Gain UW Gain Inv Gain Inv Gain Op Gain Op Gain

1 17.9 0.050 0.373 6.249 6.376 1.829 0.311 8.077 6.688
2 -3.8 1.050 7.824 6.677 -16.769 1.808 1.441 8.485 -15.328
3 13.3 0.050 0.373 5.761 2.071 1.853 0.521 7.613 2.592
4 21.3 0.050 0.373 11.636 4.622 1.566 0.397 13.202 5.019
5 18.8 0.050 0.373 13.519 0.105 1.474 0.617 14.993 0.722
6 9.2 0.050 0.373 -1.303 4.843 2.197 0.386 0.894 5.229
7 17.9 0.050 0.373 8.218 4.434 1.733 0.406 9.951 4.840
8 14.9 0.050 0.373 8.378 1.153 1.725 0.566 10.103 1.719
9 -2.9 1.050 7.824 -2.494 -6.682 2.255 0.948 -0.238 -5.734

10 20.8 0.050 0.373 6.335 9.370 1.825 0.165 8.160 9.535
11 7.3 0.050 0.373 -5.623 7.171 2.408 0.272 -3.215 7.443
12 6.0 0.050 0.373 1.507 -1.346 2.060 0.688 3.567 -0.658
13 14.8 0.050 0.373 5.838 3.569 1.849 0.448 7.687 4.017
14 11.2 0.050 0.373 2.574 3.101 2.008 0.471 4.583 3.572
15 -3.6 1.050 7.824 -0.739 -9.153 2.170 1.069 1.431 -8.084
16 11.5 0.050 0.373 1.647 4.317 2.053 0.412 3.701 4.729
17 13.0 0.050 0.373 2.411 5.094 2.016 0.374 4.427 5.468
18 -0.6 1.050 7.824 11.090 -17.905 1.593 1.496 12.682 -16.409
19 26.3 0.050 0.373 13.689 7.828 1.466 0.240 15.155 8.069
20 -0.2 1.050 7.824 -0.915 -5.413 2.178 0.887 1.264 -4.527
21 29.6 0.050 0.373 18.698 6.220 1.221 0.319 19.919 6.539
22 1.0 0.050 0.373 -2.898 -2.196 2.275 0.730 -0.623 -1.467
23 13.3 0.050 0.373 6.865 0.927 1.799 0.577 8.664 1.504

Leverage Ratios

Profit Margins Using Co-Measures of Risk
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Exhibit 4

Exh. 2
Base Estimate Actual Difference Estimate Actual Difference

Surplus 174.77    335.01  339.27 -1.3% 94.65      99.39 -4.8%
Yield 3.28% 3.28% 3.28% 3.28% 3.28%
Op Income 20.49      39.28    39.78      -1.3% 11.10      11.65      -4.8%
OP Inv Inc 3.01 4.12      4.12 0.0% 2.46        2.46 0.0%
UW Income 17.48      35.15    35.65 -1.4% 8.64        9.19 -6.0%
Pre-tax Margin 26.89      54.08    54.85      13.29      14.14      
ROE w/estimate 14.85% 14.44%

Exhibit 3A Exhibit 3B

Profit Margins Using Co-Measures of Risk
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Claim Severity 
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Abstract 
The objective of this study is to compare the methods of minimum bias and maximum likelihood by using a 
weighted equation on claim severity data. The advantage of using the weighted equation is that the fitting 
procedure provides a faster convergence compared to the classical procedure introduced by Bailey and Simon 
[1] and Bailey [2]. Furthermore, the fitting procedure may be extended to other models in addition to the 
multiplicative and additive models, as long as the function of the fitted value is written in a specified linear 
form. In this study, the minimum bias and maximum likelihood methods will be compared and fitted on three 
types of claim severity data; the Malaysian data, the U.K. data from McCullagh and Nelder [3] and the Canadian 
data from Bailey and Simon [1]. 
 
Keywords: Minimum bias; maximum likelihood; claim severity; multiplicative; additive. 
 

 
1. INTRODUCTION 

The process of establishing premium rates for insuring uncertain events requires estimates which are 
made of two important elements; the probabilities or frequencies associated with the occurrence of 
insured event, and the magnitude or severities of such event. The process of grouping risks of 
similar risk characteristics for frequencies or severities is known as risk classification where its goal is 
to group homogeneous risks and charge each group a premium commensurate with the expected 
average loss. Failure to achieve this goal may lead to adverse selection to insureds and economic 
losses to insurers. The risks may be categorized according to risk or rating factors; in motor 
insurance for instance, driver’s gender and claim experience, or vehicle’s make and capacity, may be 
considered as rating factors. 

 In the last forty years, actuarial researchers suggested various statistical procedures for risk 
classification. For instance, Bailey and Simon [1] suggested the minimum chi-squares, Bailey [2] 
proposed the zero bias, Jung [4] produced a heuristic method for minimum modified chi-squares, 
Ajne [5] applied the method of moments also for minimum modified chi-squares, Chamberlain [6] 
used  the  weighted  least squares, Coutts [7] produced the method of orthogonal weighted least 
squares with logit transformation, Harrington [8] suggested the maximum likelihood procedure for 
models with functional form, and Brown [9] proposed the bias and likelihood functions. 

In the recent actuarial literature, research on risk classification methods is still continuing and 
developing. For example, Mildenhall [10] studied the relationship between the minimum bias and 
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the Generalized Linear Models (GLMs), Feldblum and Brosius [11] provided the minimum bias 
procedures for practicing actuaries, Anderson et al. [12] provided practical insights for the GLMs 
analysis also for practicing actuaries, Fu and Wu [13] developed and generalized the minimum bias 
models, Ismail and Jemain [14] bridged the minimum bias and maximum likelihood methods for 
claim frequency data, and Ismail and Jemain [15] suggested the Negative Binomial and the 
Generalized Poisson regressions as alternatives to handle over-dispersion in claim frequency or 
count data. 

  The objective of this study is to compare the methods of minimum bias and maximum 
likelihood by using a weighted equation on claim severity data. Although the weighted equation was 
previously suggested by Ismail and Jemain [14], the application was implemented on claim frequency 
data. Therefore, this study differs such that the weighted equation will be applied to estimate claim 
severity or average claim cost which is equivalent to the total claim costs divided by the number of 
claims. Since the nature of claim frequency and severity is different, the approach taken is also 
slightly modified. In fact, with a few modifications, the same weighted equation may also be used for 
loss cost or pure premium which is equal to the total claim costs divided by the exposures, and for 
loss ratio which is equal to the total claim costs divided by the premiums. However, the weight 
generally used for fitting loss cost and loss ratio is the exposures. 

  Several studies have been carried out on claim severity data in the actuarial literature. Since it 
is well established that the claim cost distributions generally have positive support and are positively 
skewed, the distributions of Gamma and Lognormal have been used by practitioners for modeling 
claim severities. As a comparison, several actuarial studies also reported severity results from the 
Normal distribution. For example, Baxter et al. [16] fit the U.K. own damage costs for privately 
owned and comprehensively insured vehicles to the weighted linear regression (additive model) by 
assuming that the variance is constant within classes, McCullagh and Nelder [3] reanalyzed the same 
data by fitting the Gamma regression model and assuming that the coefficient of variation is 
constant within classes and the mean is linear on reciprocal scale (inverse model), Brockman and 
Wright [17] fit the U.K. own damage costs for comprehensive policies also to the Gamma model by 
using a log-linear regression (multiplicative model), Renshaw [18] fit the U.K. motor insurance claim 
severity also to the Gamma log-linear regression model, and Fu and Moncher [19] applied several 
Monte Carlo simulation techniques to examine the unbiasedness and stability of the Gamma, 
Lognormal and Normal distributions which were fitted on the severity data obtained from 
Mildenhall [10]. 

  The advantage of using the weighted equation suggested in this study is that the fitting 
procedure provides a faster convergence compared to the classical procedure introduced by Bailey 
and Simon [1] and Bailey [2]. Furthermore, the fitting procedure may be extended to other models in 
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addition to the multiplicative and additive models, as long as the function of the fitted value is 
written in a specified linear form. 

  In this study, the minimum bias and maximum likelihood methods will be compared and 
fitted on three types of claim severity data; the Malaysian data, the U.K. data from McCullagh and 
Nelder [3] and the Canadian data from Bailey and Simon [1]. 

 
2. REGRESSION MODEL 

In the actuarial literature, various methods have been studied and implemented by actuarial 
researchers and practitioners for classifying risks. Most of these methods, which also include the 
minimum bias and maximum likelihood, may be written as a regression model where the explanatory 
variables are the risk or rating factors. In this study, the regression methods of minimum bias and 
maximum likelihood will be compared and fitted on claim severity data. 

  The related data sets for claim severity regression model are ),( ii yc , where ic  and iy  
denotes the average claim cost already adjusted for inflation and the claim count for the i th rating 
class, ni ,...,2,1= , so that the total claim cost is equal to the product of claim count and average 
claim cost, ii cy . The response variable and weight for the regression model is the average claim 
cost, ic , and the claim count, iy , respectively. 

  Consider a regression model with n  observations of average claim cost and p  explanatory 
variables inclusive of an intercept and dummy variables. Next, consider a data of average claim costs 
involving three rating factors, each respectively with three, two, and three rating classes. Thus, the 
data has a total of 18=n  observed average claim costs with 6=p  explanatory variables.  

  Let c  denotes the vector of average claim cost vector, y  the vector of claim count, X  the 
matrix of explanatory variables where the ith row is equivalent to vector T

ix , and β  the vector of 
regression parameters. If ijx , 18,...,2,1=i , 6,...,2,1=j , is the ijth element of matrix X , the value 
for ijx  is either one or zero. Table 1 summarizes the regression model for the claim severity data. 

Table 1. Data summary 
 

i ci yi xi1 xi2 xi3 xi4 xi5 xi6 
 
1 
2 
3 
4 
5 
6 

 
c1 
c2  
M  
 
 
 

 
y1  
y2  
M  
 
 
 

 
1 
1 
1 
1 
1 
1 

 
0 
0 
0 
0 
0 
0 

 
0 
0 
0 
0 
0 
0 

 
0 
0 
0 
1 
1 
1 

 
0 
1 
0 
0 
1 
0 

 
0 
0 
1 
0 
0 
1 
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7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
 

 
 
 
 
 
 
 
 
 
 
 

c18  

 
 
 
 
 
 
 
 
 
 
 

y18  

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
 

0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
 

0 
0 
0 
1 
1 
1 
0 
0 
0 
1 
1 
1 
 

0 
1 
0 
0 
1 
0 
0 
1 
0 
0 
1 
0 
 

0 
0 
1 
0 
0 
1 
0 
0 
1 
0 
0 
1 

 

  Moreover, let f , a function of X  and β , denote the vector of fitted average claim costs. If 
the function of the fitted average claim cost is log-linear (multiplicative model), the fitted value in 
the i th rating class is equivalent to 

      )exp( βxT
i=if ,            (1) 

if the function is linear (additive model), the fitted average claim cost in the i th rating class is equal 
to 

          βxT
i=if ,             (2) 

and if the function is inverse (inverse model), the fitted average claim cost in the i th rating class is  

         ( ) 1

if
−

= T
ix β .            (3) 

  In fact, a variety of regression models may be created and fitted, as long as the function of 
the fitted value is written as 

    
1

, 1 0,  0 1
bp

i j ij
j

f x b bβ
=

⎛ ⎞
= − ≤ < < ≤⎜ ⎟
⎝ ⎠
∑ .          (4) 

Thus, the objective of risk classification is to have the fitted average claim cost, if , be as close as 
possible to the observed average claim cost, ic , for all i . 

3. MINIMUM BIAS 

Bailey and Simon [1] were among the pioneer researchers that consider bias in risk classification. 
They introduced the minimum bias method and proposed a famous list of four criteria for an 
acceptable set of classification rates: 
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• The rates should reproduce experience for each class and overall, i.e., they should be 
balanced for each class and overall. 

• The rates should reflect the relative credibility of various classes. 

• The rates should provide minimum amount of departure from the raw data. 

• The rates should produce a rate for each class close enough to the experience so that the 
differences could reasonably be caused by chance. 

3.1 Zero Bias 

Bailey and Simon [1] proposed a suitable test for the first criteria by calculating, 

           
∑
∑

i
ii

i
ii

cy

fy
,            (5) 

for each j and total. Thus, a set of rates is balanced, i.e., zero bias, if Equation (5) equals 1.00 and 
automatically, zero bias for each class implies zero bias for all classes. 

  From this test, Bailey [2] derived a minimum bias model by setting the average difference 
between the observed and the fitted rates to be equal to zero. In the case of claim severity regression 
model, the zero bias equation for each j can be written in the form of a weighted difference between 
the observed and the fitted average claim cost, 

              pjfcw
i

iii ,...,2,1,0)( ==−∑ ,           (6) 

where iw  is equal to iji xy . 

 

 

3.2 Minimum Chi-squares 

Bailey and Simon [1] also suggested the chi-squares statistics, 2χ , as an appropriate test for the 
fourth criteria,  

2 2( )i
i i

i i

yK c f
f

χ = −∑ , 

where K  is a constant dependent on the data. The same test is also suitable for the second and third 
criteria as well. 
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  By minimizing the chi-squares, another minimum bias model was derived. For each j, the 
minimum chi-squares equation could be written in the form of a weighted difference between the 
observed and the fitted average claim cost, 

             
2

( ) 0, 1,2,...,i i i
ij

w c f j pχ
β
∂

= − = =
∂ ∑ ,          (7) 

where iw  is 2

( )i i i i

i j

y c f f
f β
+ ∂

∂
. 

  If the function is log-linear (multiplicative model), the first derivative of the fitted value is 
equal to 

                                      iji
j

i xf
f

=
∂
∂
β

,                  (8) 

if the function is linear (additive model), the first derivative is                     

                                          ij
j

i x
f

=
∂
∂
β

,                              (9) 

and if the function is inverse (inverse model), the first derivative is 

         2i
i ij

j

f f x
β
∂

= −
∂

 .         (10) 

 

4. MAXIMUM LIKELIHOOD 

Let iii CyT =  be the random variable for total claim costs and assume that the ith total claim cost, 

i iy c , comes from a distribution whose probability density function is ( ; )i ig c f . A maximum 
likelihood method maximizes the likelihood function, 

( ; )i i
i

L g c f=∏ , 

or equivalently, the log likelihood function, 

( )log log ( ; )i i
i

L g c f= =∑l . 

Thus, the regression parameters can be obtained by setting 0
jβ

∂
=

∂
l  for each j , 1,2,...,j p= . 

4.1 Normal 
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If iii CyT =  is assumed to follow Normal distribution with mean iii fyTE =)(  and variance 
2)( σ=iTVar , the probability density function is (Brown [9]) 

( )2
22

1 1( ; ) exp
22

i i i i i ig c f y c y f
σπσ

⎧ ⎫= − −⎨ ⎬
⎩ ⎭

. 

The regression parameters may be solved by using the likelihood equation 

    pjfcw
i

iii
j

,...,2,1,0)( ==−=
∂
∂ ∑β
l ,                   (11) 

where iw  is 
j

i
i

fy
β∂
∂2 . The first derivative of the fitted value is equal to equation (8) for a log-linear 

function (multiplicative), equation (9) for a linear function (additive), and equation (10) for an 
inverse function.   

4.2 Poisson 

If iii CyT =  is Poisson distributed with mean iii fyTE =)( , the probability density function is 

)!(
))(exp(

);(
ii

cy
iiii

ii cy
fyfy

fcg
ii−

= . 

As a result, the likelihood equation for each j  is equal to 

    pjfcw
i

iii
j

,...,2,1,0)( ==−=
∂
∂ ∑β
l ,                                (12) 

 but iw  is now equivalent to 
j

i

i

i f
f
y

β∂
∂ . 

  The same weighted equation could also be used to show that the Poisson is actually 
equivalent to the zero bias if the function of the fitted value is in a log-linear form (multiplicative 
model). By substituting Equation (8) into Equation (12), the likelihood equation for the Poisson is 
now equal to 

pjfcw
i

iii
j

,...,2,1,0)( ==−=
∂
∂ ∑β
l , 

where iw  is iji xy , and this likelihood equation is equivalent to the zero bias. 

4.3 Exponential 

Let iii CyT =  be exponential distributed with mean iii fyTE =)( . The probability density function is 
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⎟⎟
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fcg exp1);( , 

and the regression parameters may be solved by using the likelihood equation 

    pjfcw
i

iii
j

,...,2,1,0)( ==−=
∂
∂ ∑β
l ,                   (13) 

where iw  is 
j

i

i

f
f β∂

∂
2

1 . 

4.4 Gamma 

If iii CyT =  is Gamma distributed with mean iii fyTE =)(  and variance 1 2 2( )i i iVar T v y f−= , the 
probability density function is 

1( ; ) exp
( )

v

i i
i i

i i i i

vc vcg c f
y c v f f

⎛ ⎞ ⎛ ⎞
= −⎜ ⎟ ⎜ ⎟Γ ⎝ ⎠ ⎝ ⎠

, 

where v  denotes the index parameter. Assuming that v  is allowed to vary within classes and written 
as ii yv 2−= σ , the likelihood equation is 

    pjfcw
i

iii
j

,...,2,1,0)( ==−=
∂
∂ ∑β
l ,                   (14) 

where iw  is 
j

i

i

i f
f
y

β∂
∂

2 . 

4.5 Inverse Gaussian 

The derivation of the weighted equation for an Inverse Gaussian distribution is slightly different. 
Instead of using the random variable for total claim cost, iii CyT = , the random variable for average 
claim cost, iC , is used. Let the random variable for average claim cost, iC , be distributed as Inverse 
Gaussian with mean ii fCE =)(  and variance τ3)( ii fCVar = . The probability distribution function 
is (see Mildenhall [10] and Renshaw [18]) 

( )
⎭
⎬
⎫

⎩
⎨
⎧

−−= 2
23 2

1exp
2

1);( ii
iii

ii fc
fcc

fcg
ττπ

, 

where τ  denotes the scale parameter. If τ  is allowed to vary within classes and written as 
12 −= ii yστ , the likelihood equation is 

    pjfcw
i

iii
j

,...,2,1,0)( ==−=
∂
∂ ∑β
l ,                   (15) 
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where iw  is 
j

i

i

i f
f
y

β∂
∂

3 . 

4.6 Lognormal 

The derivation of the weighted equation for a Lognormal distribution is also slightly different. Let 
the average claim cost, iC , be distributed as Lognormal with parameters if  and 12 −

iyσ . Thus, the 
logarithm of the average claim cost, iClog , is Normal distributed with mean if  and variance 

12 −
iyσ  and the probability density function is now equivalent to  

  
⎭
⎬
⎫

⎩
⎨
⎧ −
−=

− 2

2

12 2
)(log

exp
2

1);(log
σπσ

iii
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fcg . 

The likelihood equation can be written as, 

              pjfcw
i

iii
j

,...2,1            ,0)(log ==−=
∂
∂ ∑β
l .                  (16) 

where iw  is 
j

i
i

f
y

β∂
∂

. Compared to the likelihood equation for other distributions shown by 

Equations (6), (7), (11), (12), (13), (14) and (15), the Lognormal likelihood equation is slightly 
different. 

 

5. OTHER MODELS  

5.1 Least Squares 

The weighted equation may also be extended to other error functions as well. For example, if the 
sum squares error is defined as (Brown [9]) 

∑ −=
i

iii fcyS 2)( , 

the regression parameters may be solved by using the least squares equation        

      pjfcwS

i
iii

j
,...,2,1,0)( ==−=

∂
∂ ∑β

,                   (17) 

where iw  is 
j

i
i

fy
β∂
∂ . 

  The same weighted equation could also be used to show that the least squares is actually 
equivalent to the zero bias if the function of the fitted value is in a linear form (additive model). By 
substituting Equation (9) into Equation (17), the likelihood equation for the least squares is 
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pjfcw
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,...,2,1,0)( ==−=
∂
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l , 

where iw  is equal to iji xy , and this likelihood equation is equivalent to the zero bias. 

5.2 Modified Chi-squares 

If the function of error is a modified chi-squares which is defined as  

∑ −=
i

ii
i

i fc
c
y 22

mod )(χ , 

the weighted equation is equal to 

pjfcw
i
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,...,2,1,0)(
2
mod ==−=

∂
∂ ∑β
χ  ,       (18) 

where iw  is 
j

i

i

i f
c
y

β∂
∂ . 

  Table 2 summarizes the weighted equations for all of the models discussed above.  
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Table 2: Weighted equations 

Models 
iw  for weighted equation, 0)( =−∑

i
iii fcw  

 

Zero bias 
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Normal 
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Exponential 
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Models 
iw  for weighted equation, 0)(log =−∑

i
iii fcw  

 

Lognormal 

 

j

i
i
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y

β∂
∂

 

 

From Table 2, the following conclusions can be drawn: 

• If the function of fitted value is in a linear form (additive), the zero bias and the least squares 
are equivalent. 
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• If the function of fitted value is in a log-linear form (multiplicative), the zero bias and the 
Poisson are equivalent. 

• The weighted equation, which is in the form of a weighted difference between the observed 
and the fitted average claim cost, shows that all models are similar and can be distinguished 
by its weight. 

• Since the weighted equation for all models are similar, the regression parameters for all 
models are expected to be similar. However, the Lognormal regression parameters are 
expected to be different from the rest of other models because its weighted equation is in 
the form of a weighted difference between the logarithm of the observed value and the fitted 
value. 

 
6. FITTING PROCEDURE 

The regression fitting procedure suggested in this study provides a faster convergence compared to 
the classical procedure introduced by Bailey and Simon [1] and Bailey [2]. In the classical procedure, 
each regression parameter, pjj ,...,2,1 , =β , is calculated individually in each iteration whereas in 
the regression procedure, all of the regression parameters are calculated simultaneously in each 
iteration.  

  In the regression fitting procedure, the parameters, jβ , are solved by minimizing, 

                2( )i i i
i

w c f−∑ ,               (19) 

or by equating, 

       ( ) 0i
i i i

i j

fw c f
β
∂

− =
∂∑ ,            pj ,...,2,1= .             (20) 

It can be seen that Equation (20) is equivalent to the weighted equation for the minimum bias and 
maximum likelihood methods shown by Equations (6), (7), (11), (12), (13), (14), (15), (17) and (18). 
As for Equation (16), the equation is equivalent to the same weighted equation if the value of ic  is 
replaced by log ic . 

  By using Taylor series approximation, it can be shown that the value of vector β  in the first 
iteration is  

    ( ) ( )-1T T
(1) (0) (0) (0) (0) (0) (0)β = Z W Z Z W c - s ,                                         (21) 
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where (0)β  is the initial value of vector β , (0)Z  the pn×  matrix whose ij th element is equal to the 
first derivative of the fitted value evaluated at (0)β , 

(0)
( )i

ij
j

fz
β

∂
=

∂
(0)β=β

β , 

(0)W  the n n×  diagonal weight matrix evaluated at (0)β , and (0)s  the 1n×  vector whose i th row is 
equal to 

(0) (0)
1

( )
p

i i j ij
j

s f zβ
=

= −∑(0)β . 

  In the first iteration, the vector of initial values, (0)β , are required to calculate (1)β . The 
process of iteration is then repeated until the solution converges. Since the regression parameters are 
represented by vector β , the regression model solves them simultaneously and thus, providing a 
faster convergence compared to the classical approach. 

As an example, the fitting procedure for the least squares additive whereby the weighted 
equation is equivalent to 

     ( ) 0,      1, 2,...,i
i i i

i j

fy c f j p
β
∂

− = =
∂∑ ,        (22) 

will be discussed here. By comparing the least squares weighted equation, i.e., Equation (22), with 
the regression fitting equation, i.e., Equation (20), the i th diagonal element of the weight matrix, 

(0)W , is equal to iy  and this value is free of (0)β . 

For an additive model, the ij th element of matrix (0)Z  is 

(0)
( )i

ij ij
j

fz x
β

=

∂
= =

∂
(0)β β

β , 

and this value is also free of (0)β . 

Therefore, 

XZ(0) = , 

and 

0=−= (0)(0)(0) Xβ)f(βs , 

and Equation (21) for the least squares additive may now be simplified into 

    WcXWXXββ TT
(1)

1)( −== .        (23) 
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It can be seen that Equation (23) is equivalent to the Normal equation in standard linear regression 
and the equation also indicates that the regression parameters for the least squares additive may be 
solved without any iteration. 

However, for a multiplicative model, the ij th element of matrix (0)Z  is equivalent to  

iji
j

i
ij xf

f
z )(

)(
)0( (0)

ββ

β
β

(0)

=
∂
∂

=
=

β
. 

Therefore, matrix (0)Z  may be written as 

             XFZ (0)(0) = ,                     (24) 

where (0)F  is the nn×  diagonal matrix whose i th diagonal element is )( (0)βif . Vector (0)s  may 
now be written as 

(0)(0)(0)(0) XβF)f(βs −= . 

Besides multiplicative and additive models, the fitting procedure suggested in this study can 
also be extended to other regression models and thus, allowing a variety of regression model to be 
created and applied as long as the function of the fitted value is written as 

10   ,01        ,
1

≤<<≤−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

=

bbxf
bp

j
ijji β . 

As an example, if the fitted average claim cost is assumed to follow an inverse function, i.e., 
1−=b , the ij th element of matrix (0)Z  is equal to 

{ } iji
j

i
ij xf

f
z 2

)0( )(
)(

(0)

ββ

β
β

(0)

−=
∂
∂

=
=

β
. 

Therefore, the equation for matrix (0)Z  may also be written as Equation (24), but the i th diagonal 
element of matrix (0)F  is equal to 2{ ( )}if− (0)β . 

An example of S-PLUS programming for the least squares multiplicative is given in 
Appendix A. Similar programming can also be used for all of the multiplicative, additive and inverse 
models proposed in this study. Each programming should be differentiated only by the following 
three elements: 

• The vector of fitted average claim cost is equal to )exp(Xβf =  for a multiplicative model, 
Xβf =  for an additive model, and 1)( −= Xβf  for an inverse model. 
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• The equation for (0)Z is XZ(0) =  for an additive model, and XFZ (0)(0) =  for both 
multiplicative and inverse models. However, the i th diagonal element of matrix (0)F  is equal 
to )( (0)βif  for a multiplicative model, and 2{ ( )}if− (0)β  for an inverse model. 

• Each model has its own weight matrix. 

 
7. EXAMPLES 

7.1 Malaysian Data 

In this study, the methods of minimum bias and maximum likelihood will be compared and fitted 
on three types of claim severity data; the Malaysian data, the U.K. data from McCullagh and Nelder 
[3] and the Canadian data from Bailey and Simon [1]. For the Malaysian data, the weighted equation 
will be applied on a set of private car Third Party Property Damage (TPPD) claim costs obtained 
from an insurer in Malaysia which covers the legal liability of third party property loss or damage 
caused by or arising out of the use of an insured motor vehicle. The Malaysian data was based on 
170,000 private car policies (1998-2000). The claims, which include both paid and outstanding, were 
already adjusted for inflation and were provided in Ringgit Malaysia (RM) currency. 

  The risks for the Malaysian claims were associated with five rating factors namely scope of 
coverage, vehicle make, vehicle use and gender of driver, vehicle year, and location. Altogether, there 
were 24054322 =××××  cross-classified rating classes of claim severities to be estimated. Appendix 
B shows the rating factors, claim counts and average claim costs for the Malaysian data. 

The fitting procedure involves only 108 data points because 132 of the rating classes have 
zero claim count (or weight). In addition, the models were evaluated using two different tests; the 
chi-squares and the average absolute difference. The average absolute difference, 

∑
∑ −

i
ii

i
iii

cy

fcy
, 

was suggested by Bailey and Simon [1] as a suitable test for the third criteria whereas the chi-squares,  

2 2( )i
i i

i i

yK c f
f

χ = −∑ , 

was proposed by Bailey and Simon [1] as a suitable test for the fourth criteria. 



Comparison of Minimum Bias and Maximum Likelihood Methods for Claim Severity 

Casualty Actuarial Society E-Forum, Winter 20009 258 

Table 3 and Table 4 give the results of the regression parameters, chi-square values and 
average absolute difference for the multiplicative and additive models of the Malaysian data. Based 
on the results, the following conclusions can be made: 

• For multiplicative models, the regression parameters for the Poisson are equivalent to the zero 
bias. 

• For additive models, the regression parameters for the least squares are equal to the zero bias. 

• Except for Lognormal, the regression parameters for multiplicative and additive models are 
similar. The reason is that the observed average claim costs, ic , in the Lognormal were 
replaced by the logarithm of the average claims costs, log ic . 

• Except for Lognormal, the smallest chi-square value is given by the minimum chi-squares for 
both additive and multiplicative models. 

• Except for Lognormal, the smallest absolute difference is given by the least squares for both 
additive and multiplicative models. 
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Table 3: Multiplicative models for Malaysian data 
 
Regression parameters Zero 

bias 
Minimum 

2χ  
Normal Exponential Poisson Gamma Inverse 

Gaussian
Least 

squares
Minimum 

modified 2χ
Lognormal

           
)exp( 1β  Intercept 9242.10 9233.24 9278.99 8938.08 9242.10 9257.87 9281.65 9233.38 9267.88 9.14

  
)exp( 2β  Non-comp 1.16 1.18 1.14 1.17 1.16 1.16 1.16 1.16 1.11 1.01

  
)exp( 3β  Foreign 1.08 1.08 1.07 1.21 1.08 1.09 1.09 1.08 1.08 1.01

  
)exp( 4β  Female 0.90 0.90 0.93 0.80 0.90 0.89 0.88 0.90 0.88 0.99
)exp( 5β  Business 0.19 0.19 0.20 0.21 0.19 0.19 0.19 0.19 0.19 0.81

  
)exp( 6β  2-3 years 0.78 0.78 0.78 0.73 0.78 0.77 0.77 0.78 0.77 0.97
)exp( 7β  4-5 years 0.69 0.69 0.68 0.65 0.69 0.68 0.68 0.69 0.68 0.96
)exp( 8β  6+ years 0.72 0.72 0.71 0.71 0.72 0.72 0.72 0.71 0.72 0.96

  
)exp( 9β   North 0.94 0.94 0.93 0.92 0.94 0.94 0.94 0.94 0.93 0.99
)exp( 10β  East 0.86 0.88 0.84 0.88 0.86 0.87 0.88 0.85 0.83 0.98
)exp( 11β  South 0.94 0.94 0.94 1.04 0.94 0.94 0.93 0.94 0.93 0.99
)exp( 12β  East M’sia 0.94 0.97 0.94 1.06 0.94 0.94 0.93 0.95 0.89 0.99

  
  

2χ   476,081 471,147 492,026 844,318 476,081 477,160 480,147 477,541 517,605 8.16
65.62 66.12 66.60 115.76 65.62 66.15 66.63 65.19 66.58 7.83Absolute difference 3( 10 )×  
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Table 4: Additive models for Malaysian data 
 

Parameters  Zero 
bias 

Minimum 
2χ  

Normal Poisson Exponential Gamma Inverse 
Gaussian

Least 
Squares 

Minimum 
modified 2χ

Lognormal

           
1β  Intercept 9167 9165 9254 9165 9006 9166 9171 9167 9170 9.13

   
2β  Non-comp  1038 1201 931 1034 712 1031 1026 1038 684 0.13

   
3β  Foreign 557 597 523 582 1274 606 628 557 555 0.08

   
4β  Female -765 -775 -592 -805 -1537 -838 -863 -765 -884 -0.12

5β  Business -4988 -4981 -4908 -4992 -4858 -4997 -5002 -4988 -5024 -1.64
   

6β  2-3 years -1976 -1983 -1968 -1987 -2315 -2000 -2013 -1976 -2009 -0.26

7β  4-5 years -2793 -2793 -2896 -2810 -2937 -2832 -2855 -2793 -2850 -0.39

8β  6+ years -2505 -2532 -2615 -2508 -2458 -2511 -2515 -2505 -2458 -0.33
   

9β  North -467 -446 -525 -459 -484 -451 -447 -467 -481 -0.07

10β  East -1046 -833 -1084 -946 -782 -869 -815 -1046 -1193 -0.16

11β  South -479 -452 -471 -467 314 -457 -449 -479 -496 -0.07

12β  East M’sia -431 -257 -439 -452 269 -477 -504 -431 817 -0.09
   
   

2χ   468,589 462,541 482,320 467,208 780,662 467,624 469,012 468,589 507,891 8.14

Absolute difference 3( 10 )×  64.65 65.42 65.42 64.97 109.19 65.50 66.02 64.65 66.48 7.81
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7.2 U.K. Data 

The U.K. data provides information on the Own Damage claim counts and average claim costs for 
privately owned and comprehensively insured vehicles (McCullagh and Nelder [3]). The average 
claim costs (in Pound Sterling) were already adjusted for inflation and the risks were associated with 
three rating factors: policyholder’s age, car group, and vehicle age. Altogether, there were 

128448 =××  cross-classified rating classes of claim severities to be estimated. However, the fitting 
procedure involved only 123 data points because five of the rating classes have zero claim count. In 
addition to multiplicative and additive models, the severities were also fitted to the inverse models. 
The results of inverse models were compared to those of McCullagh and Nelder [3], who have 
applied Gamma regression model on the same severity data by assuming that the regression effects 
were linear on reciprocal scale.  

  Table 5, Table 6 and Table 7 give the results of the regression parameters, chi-square values, 
and average absolute difference for the U.K. data. As expected, except for Lognormal, the 
regression parameters for each of the multiplicative, additive, and inverse models are similar. In 
addition, the regression parameters for the Gamma whose fitted value is in the form of an inverse 
function are equal to the regression parameters produced by the McCullagh and Nelder [3]. The 
smallest chi-square value for additive, multiplicative and inverse models is provided by the minimum 
chi-square, whereas the smallest absolute difference for additive, multiplicative and inverse models is 
given by the Gamma. 

7.3 Canadian Data 

The Canadian data was obtained from Bailey and Simon [1] and it provides information on the 
liability claim counts and average claim costs for private passenger automobile insurance. The data 
involves two rating factors, namely merit and class, and altogether there were 2054 =×  cross-
classified rating classes of claim severities to be estimated. In this study, the claim severities were 
fitted to the multiplicative and additive models. 

Table 8 and Table 9 give the results of the regression parameters, chi-square values, and 
average absolute difference for the Canadian data. As expected, each of the multiplicative and 
additive models gives similar estimates for the regression parameters. The smallest chi-square value 
is provided by the minimum chi-squares for both additive and multiplicative models, whereas the 
smallest absolute difference is given by the Normal for both additive and multiplicative models. 
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Table 5: Multiplicative models for UK data 
 

Parameters Zero bias Minimum 
2χ  

Normal Poisson Exponential Gamma Inverse 
Gaussian

Least 
squares

Minimum 
modified 2χ

Lognormal

           
1exp( )β  Intercept 297.57 313.59 279.34 297.57 302.38 286.75 276.52 309.81 257.91 5.61

 
2exp( )β  21-24 years 0.98 0.95 1.05 0.98 0.90 1.00 1.02 0.94 1.08 1.01

3exp( )β  25-29 years 0.91 0.87 0.97 0.91 1.01 0.94 0.97 0.88 1.04 1.00

4exp( )β  30-34 years 0.88 0.84 0.96 0.88 0.75 0.89 0.90 0.86 1.01 0.99

5exp( )β  35-39 years 0.70 0.67 0.75 0.70 0.72 0.73 0.76 0.67 0.79 0.95

6exp( )β  40-49 years 0.77 0.73 0.81 0.77 0.76 0.79 0.80 0.75 0.89 0.97

7exp( )β  50-59 years 0.78 0.75 0.83 0.78 0.79 0.80 0.82 0.76 0.89 0.97

8exp( )β  60+ years 0.78 0.74 0.82 0.78 0.75 0.80 0.81 0.77 0.90 0.97
 

9exp( )β   B 0.99 0.99 0.96 0.99 1.06 1.00 1.01 0.98 0.99 1.00

10exp( )β  C 1.16 1.16 1.14 1.16 1.17 1.17 1.18 1.15 1.16 1.03

11exp( )β  D 1.48 1.50 1.53 1.48 1.60 1.49 1.50 1.48 1.45 1.07
 

12exp( )β  4-7 years 0.91 0.91 0.95 0.91 0.89 0.92 0.92 0.90 0.91 0.98

13exp( )β  8-9 years 0.70 0.70 0.74 0.70 0.66 0.71 0.72 0.69 0.69 0.94

14exp( )β  10+ years 0.49 0.51 0.50 0.49 0.48 0.50 0.50 0.48 0.46 0.87
 
 

2χ   31,410 30,722 32,685 31,410 45,003 31,250 31,948 31,344 34,046 24.03

Absolute difference 3( 10 )×  81.30 82.05 83.06 81.30 106.90 80.74 81.24 83.46 82.73 14.56
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Table 6: Additive models for UK data 
 

Parameters Zero 
bias 

Minimum 
2χ  

Normal Poisson Exponential Gamma Inverse 
Gaussian

Least 
squares 

Minimum 
modified 2χ

Lognormal

           
1β  Intercept 298.67 303.94 273.49 288.34 291.89 278.98 270.03 298.67 241.88 5.60

 
2β  21-24 years  -5.60 -7.53 17.58 0.31 -10.84 4.96 9.08 -5.60 34.01 0.04

3β  25-29 years -24.64 -30.52 -2.01 -16.95 15.31 -9.91 -2.61 -24.64 26.37 -0.01

4β  30-34 years -33.22 -43.39 -7.76 -29.34 -47.35 -26.59 -24.37 -33.22 14.17 -0.06

5β  35-39 years -87.89 -89.26 -64.78 -75.74 -44.23 -64.82 -53.72 -87.89 -33.45 -0.27

6β  40-49 years -66.99 -75.55 -50.51 -60.27 -45.84 -54.15 -47.87 -66.99 -13.68 -0.18

7β  50-59 years -63.35 -70.12 -45.49 -55.64 -36.19 -48.60 -41.39 -63.35 -10.87 -0.17

8β  60+ years -63.15 -72.15 -47.39 -56.91 -44.32 -51.10 -44.79 -63.15 -10.32 -0.17
 

9β  B -2.46 -0.50 -7.03 -0.21 8.19 2.04 4.11 -2.46 -0.30 0.00

10β  C 34.18 35.05 33.89 35.45 25.86 36.41 36.83 34.18 35.84 0.16

11β  D 108.66 113.74 123.07 108.76 97.83 108.90 108.62 108.66 96.09 0.39
 

12β  4-7 years -24.21 -21.98 -10.57 -21.54 -30.60 -19.62 -18.39 -24.21 -20.39 -0.08

13β  8-9 years -76.75 -71.63 -59.08 -72.26 -96.51 -69.12 -67.12 -76.75 -74.38 -0.35

14β  10+ years -126.63 -118.78 -111.15 -121.21 -147.85 -117.94 -116.35 -126.63 -128.54 -0.72
 
 

2χ   34,060 33,200 35,487 33,547 48,796 33,954 35,059 34,060 37,670 24.34

Absolute difference 3( 10 )×  87.22 85.47 86.61 85.33 114.54 85.07 86.26 87.22 88.42 14.66
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Table 7: Inverse models for UK data 
 

Parameters (104) Minimum 
2χ  

Normal Poisson Exponential Gamma Inverse 
Gaussian

Least 
squares 

Minimum 
modified 2χ

Lognormal

          
1β  Intercept 31.23 35.10 32.79 33.24 34.11 35.37 31.30 37.44 1782.06

  
2β  21-24 years  3.12 -0.28 2.41 6.04 1.01 -0.11 4.16 -0.74 -7.66

3β  25-29 years 6.11 2.25 4.75 3.53 3.50 2.30 6.26 0.46 8.40

4β  30-34 years 6.81 2.50 5.30 11.78 4.62 4.23 6.39 0.83 20.99

5β  35-39 years 16.11 12.41 14.97 16.36 13.70 12.64 16.61 11.36 93.71

6β  40-49 years 11.73 8.41 10.28 12.04 9.69 9.25 11.12 5.97 63.00

7β  50-59 years 11.30 7.78 9.96 11.00 9.16 8.47 10.98 5.89 58.45

8β  60+ years 11.26 7.88 9.75 12.39 9.20 8.81 10.58 5.32 58.59
  

9β  B 0.68 2.06 0.70 -2.82 0.38 -0.08 0.93 0.65 0.34

10β  C -5.60 -5.11 -5.68 -6.51 -6.14 -6.70 -5.29 -5.95 -52.43

11β  D -13.90 -14.27 -13.77 -18.24 -14.21 -14.83 -13.55 -13.60 -123.83
  

12β  4-7 years 3.99 2.65 3.95 3.39 3.66 3.38 4.21 3.88 28.61

13β  8-9 years 16.33 15.45 16.83 17.42 16.51 16.21 17.14 17.95 123.20

14β  10+ years 38.52 43.50 41.74 33.78 41.54 41.38 41.97 47.09 275.82
  
  

2χ   30,699 32,744 31,032 42,866 31,166 31,731 31,304 33,693 23.80

Absolute difference 3( 10 )×  81.29 81.93 80.18 99.61 79.23 79.33 81.46 80.30 14.45
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Table 8: Multiplicative models for Canadian data 
 

Parameters Zero bias Minimum 
2χ  

Normal Poisson Exponential Gamma Inverse 
Gaussian

Least 
squares

Minimum 
modified 2χ

Lognormal

           
1exp( )β  Intercept 292.00 291.97 291.08 292.00 294.57 291.92 291.84 292.10 292.07 5.68

  
2exp( )β  Merit X 0.99 0.99 1.00 0.99 0.97 0.99 0.99 0.99 0.98 1.00

3exp( )β  Merit Y 0.99 0.99 0.99 0.99 1.00 0.99 0.99 0.99 0.99 1.00

4exp( )β  Merit B 1.06 1.06 1.07 1.06 1.05 1.06 1.06 1.05 1.06 1.01
  

5exp( )β  Class 2 1.09 1.09 1.09 1.09 1.12 1.09 1.09 1.08 1.08 1.01

6exp( )β  Class 3 1.02 1.02 1.03 1.02 0.98 1.02 1.02 1.02 1.02 1.00

7exp( )β  Class 4 1.17 1.17 1.18 1.17 1.16 1.17 1.17 1.17 1.17 1.03

8exp( )β  Class 5 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.99
  
  

2χ   49,520 49,470 54,461 49,520 80,313 49,542 49,657 49,609 49,895 27.51

Absolute difference 3( 10 )×  10.66 10.59 7.84 10.66 20.38 10.42 10.20 10.94 10.94 1.81
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Table 9: Additive models for Canadian data 
 
Parameters  Zero 

bias 
Minimum 

2χ  
Normal Poisson Exponential Gamma Inverse 

Gaussian
least 

squares
Minimum 

modified 2χ
Lognormal

           
1β  Intercept 291.95 291.83 291.06 291.87 294.77 291.80 291.74 291.95 291.94 5.68

 
2β  Merit X  -4.24 -3.38 0.59 -4.05 -10.11 -3.92 -3.82 -4.24 -5.37 -0.02

3β  Merit Y -3.45 -3.51 -3.95 -3.58 1.00 -3.68 -3.74 -3.45 -3.71 -0.01

4β  Merit B 17.11 17.58 20.28 17.53 15.49 17.92 18.28 17.11 17.44 0.06
 

5β  Class 2 25.16 25.75 25.13 25.35 35.64 25.54 25.73 25.16 24.63 0.08

6β  Class 3 4.71 4.80 8.26 4.68 -6.92 4.65 4.62 4.71 4.43 0.02

7β  Class 4 51.08 51.28 53.30 51.18 47.12 51.30 51.42 51.08 51.01 0.16

8β  Class 5 -22.92 -22.79 -23.60 -22.99 -25.33 -23.05 -23.11 -22.92 -23.38 -0.08
 
 

2χ   46,776 46,665 51,049 46,713 82,024 46,722 46,790 46,776 47,074 27.22

Absolute difference 3( 10 )×  10.08 9.79 7.17 9.86 20.51 9.66 9.49 10.08 10.10 1.79
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8. CONCLUSION 

This study compares several minimum bias and maximum likelihood methods by using a weighted 
equation which is written as a weighted difference between the observed and the fitted values. The 
weighted equation was applied to estimate claim severity or average claim cost which is equivalent to 
the total claim costs divided by the number of claims.  

  The weighted equations are summarized in Table 2. Based on the weighted equations, it can 
be concluded that the equations for zero bias and least squares are equal if the function of fitted value is 
linear (additive model) and the equations for zero bias and Poisson are equal if the function of fitted 
value is log-linear (multiplicative model). It can also be shown from the weighted equations that all 
models are similar and can be distinguished by its own weight, except for Lognormal where the 
observed average claim costs, ic , were replaced by the logarithm of the average claim costs, log ic . 

  The fitting procedure was suggested to be carried out using a regression approach. The 
advantage of using the regression fitting procedure is that it provides a faster convergence compared 
to the classical procedure introduced by Bailey and Simon [1] and Bailey [2]. Furthermore, the fitting 
procedure may also be extended to other models in addition to the multiplicative and additive 
models, as long as the function of fitted value is written in a specified linear form. A similar 
programming for the fitting procedure may also be used for all of the multiplicative, additive and 
inverse models proposed in this study. Each model should be differentiated only by three elements: 
the vector of fitted average claim cost, f ;  the equation for matrix Z ; and the equation for weight 
matrix, W . 

  In this study, the minimum bias and maximum likelihood methods were applied to fit three 
types of severity data: the Malaysian data, the U.K. data from McCullagh and Nelder [3], and the 
Canadian data from Bailey and Simon [1]. The models were tested based on the average absolute 
difference and the chi-square value. Based on the results, except for Lognormal, the smallest chi-
square value is given by the minimum chi-squares. As for the absolute difference, the smallest value for 
the Malaysian, U.K., and Canadian data is provided by the least squares, Gamma and Normal, 
respectively. The U.K. data also showed that the regression parameters for Gamma with an inverse 
fitted function are equivalent to those produced by the McCullagh and Nelder [3]. 

 When this study was carried out, two main targets were outlined: to provide strong basic 
statistical justification for the available models, and to search for a match point that is able to merge 
the available parametric and nonparametric models into a more generalized form. It is hoped that a 
more friendly and efficient computation approach can be created through both of these targets. As a 
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result, this study managed to not only offer more models which include both parametric and 
nonparametric approaches, but also a friendlier computation method.  

Even though the approach taken in this study was based on statistical parametric theory, the 
theory can be matched with nonparametric theory as well. For the proposed models, the actuary 
does not really have to determine the statistical distribution appropriate for the available data; all he 
needs to do is just determine the weight. Therefore, the main principle which is applied in this 
approach is the selection of an appropriate weight suitable for the available data. The proposed 
models may be more flexible and at the same time able to attend both streams of thought in 
statistics; nonparametric and parametric. 

Besides modeling aspects, the suggested regression approach may build a base for efficient 
computation as well as analysis. The reason is that the regression approach allows the data to be 
analyzed, interpreted, and predicted with a similar manner to the data analysis, interpretation, and 
prediction of the regression analysis.  

  Finally, rewriting the equations of minimum bias and maximum likelihood as a weighted 
equation has several advantages: 

• The mathematical concept of the weighted equation is simpler and hence, providing an 
easier understanding particularly for insurance practitioners. 

• The weighted equation allows the usage of a regression model as an alternative programming 
algorithm to calculate the regression parameters. 

• The weighted equation provides a basic step to further understand the more complex 
distributions such as Gamma, Inverse Gaussian, and Lognormal. 

• The weights of each of the multiplicative, additive and inverse models show that the models 
have similar regression parameters. 
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Appendix A: S-PLUS programming for least squares multiplicative 
 
leastsquares.multi <- function(data) 
{ 
# To identify matrix X, vector cost and vector count from the data 
 X <- as.matrix(data[,-(1:2)]) 
 cost <- as.vector(data[,1]) 
 count <- as.vector(data[,2]) 
#  To set initial values for vector beta 
 new.beta <- c(10, rep(c(0.01), dim(X)[2])) 
#  To start iteration 
 for (i in 1:20) 
 { 
  beta <- new.beta 
  fitted <- as.vector(exp(X%*%beta)) 
  Z <- diag(fitted)%*%X 
  W <- diag(count) 
  r.s <- cost-fitted+as.vector(Z%*%beta) 
  new.beta <- as.vector(solve(t(Z)%*%W%*%Z)%*%t(Z)%*%W%*%r.s) 
 } 
#  To calculate fitted values, chi-square and absolute difference 
 fitted <- as.vector(exp(X%*%new.beta)) 
 chi.square <- sum((count*(cost-fitted)^2)/fitted) 
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 abs.difference <- sum(count*abs(cost-fitted))/sum(count*cost) 
#  To list programming output 
 list  (expbeta= exp(new.beta), chi.square= chi.square,  
   abs.difference= abs.difference) 
} 
 
 
Appendix B: Malaysian data 
 

Rating factors 
Scope of coverage Vehicle 

make 
Vehicle use & 
gender of driver

Vehicle 
year 

Location 
Claim 
count 

Average 
claim cost 

(RM) 
 
Comprehensive 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Local 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Private-male 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Private-female 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
0-1 year 
 
 
 
 
 
2-3 year 
 
 
 
 
 
4-5 year 
 
 
 
 
 
6+ year 
 
 
 
 
 
0-1 year 
 
 
 
 
 
2-3 year 
 
 
 
 
 
4-5 year 
 
 
 
 
 
6+ year 

 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 

 
381 
146 
44 

161 
8 
 

422 
203 
41 

164 
19 

 
276 
145 
29 

115 
17 

 
223 
150 
39 
89 
33 

 
165 
55 
12 
23 
6 
 

147 
72 
12 
39 
8 
 

56 
36 
7 

23 
2 
 

51 

 
9290 
8775 
6447 
8484 
7785 

 
7220 
6713 
6461 
7298 
4037 

 
6558 
5220 
6415 
5554 
6937 

 
6678 
6230 
5372 
5915 
5005 

 
9136 
7876 
7536 
6789 

10306 
 

6642 
5731 
5038 
6023 
3977 

 
5545 
4642 
4565 
5038 
3818 

 
5709 
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Foreign 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Business 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Private-male 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Private-female 
 
 
 

 
 
 
 
 
0-1 year 
 
 
 
 
 
2-3 year 
 
 
 
 
 
4-5 year 
 
 
 
 
 
6+ year 
 
 
 
 
 
0-1 year 
 
 
 
 
 
2-3 year 
 
 
 
 
 
4-5 year 
 
 
 
 
 
6+ year 
 
 
 
 
 
0-1 year 
 
 
 

North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 

38 
5 

23 
9 
 

0 
0 
0 
0 
0 
 

0 
0 
0 
0 
0 
 

0 
0 
0 
0 
0 
 

0 
1 
0 
0 
0 
 

          94 
47 
21 
38 
6 
 

202 
85 
21 
65 
23 

 
157 
85 
15 
73 
24 

 
245 
151 
44 

113 
64 

 
29 
11 
2 

17 

6272 
2869 
6243 
3765 

 
0 
0 
0 
0 
0 
 

0 
0 
0 
0 
0 
 

0 
0 
0 
0 
0 
 

0 
1206 

0 
0 
0 
 

8986 
9402 
7321 
9170 

11507 
 

8251 
6772 
5332 
5821 
9503 

 
6498 
8235 
8758 
6391 
7047 

 
6923 
6777 
7563 
7266 
7047 

 
10442 
7599 
9492 
9003 
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Non-
comprehensive 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Local 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Business 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Private-male 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
2-3 year 
 
 
 
 
 
4-5 year 
 
 
 
 
 
6+ year 
 
 
 
 
 
0-1 year 
 
 
 
 
 
2-3 year 
 
 
 
 
 
4-5 year 
 
 
 
 
 
6+ year 
 
 
 
 
 
0-1 year 
 
 
 
 
 
2-3 year 
 
 
 
 
 
4-5 year 

East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 

6 
 

46 
41 
5 

13 
10 

 
39 
15 
0 

16 
11 

 
47 
35 
6 
9 

10 
 

0 
0 
0 
0 
0 
 

0 
0 
0 
0 
0 
 

0 
0 
0 
0 
0 
 

0 
0 
0 
0 
0 
 

0 
0 
0 
0 
0 
 

3 
0 
0 
1 
0 
 

1 

5867 
 

6460 
5966 
3463 
7329 
5222 

 
4798 
4921 

0 
4384 
6792 

 
5197 
7131 
6480 
5152 
7718 

 
0 
0 
0 
0 
0 
 

0 
0 
0 
0 
0 
 

0 
0 
0 
0 
0 
 

0 
0 
0 
0 
0 
 

0 
0 
0 
0 
0 
 

10225 
0 
0 

14265 
0 
 

3619 
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Private-female 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Business 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
6+ year 
 
 
 
 
 
0-1 year 
 
 
 
 
 
2-3 year 
 
 
 
 
 
4-5 year 
 
 
 
 
 
6+ year 
 
 
 
 
 
0-1 year 
 
 
 
 
 
2-3 year 
 
 
 
 
 
4-5 year 
 
 
 
 
 
6+ year 
 
 
 

North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 

5 
0 
1 
0 
 

9 
5 
2 
4 
2 
 

0 
0 
0 
0 
0 
 

0 
1 
0 
0 
0 
 

0 
1 
0 
0 
0 
 

1 
0 
0 
0 
1 
 

0 
0 
0 
0 
0 
 

0 
0 
0 
0 
0 
 

0 
0 
0 
0 
0 
 

0 
0 
0 
0 

5003 
0 

3375 
0 
 

8736 
5142 
3598 
8673 

17210 
 

0 
0 
0 
0 
0 
 

0 
1563 

0 
0 
0 
 

0 
3619 

0 
0 
0 
 

2003 
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__________________________________________________________________________________________ 

Abstract. 
Historic actuarial literature, general insurance literature, and legislative histories reveal “unfairly 
discriminatory rates” to be a cost-based concept.  A rate structure is unfairly discriminatory if the 
insurance premium differences between insureds do not reasonably correspond to differences in expected 
insurance costs.  More recently a new rate concept has arisen in some court cases which is referred to as 
“disparate impact” (or “adverse impact”).   Disparate impact has nothing to do with underlying insurance 
costs and is solely based on the disproportionate impact of the insurance rate structure on the insurance 
premiums paid by protected minority classes defined by race, color, religion, sex, or national origin.  It 
would likely be a rare instance where the rate standard of unfairly discriminatory and the concept of 
disparate impact could be applied simultaneously to a risk classification plan without conflict.  It is the 
author’s opinion that if the standard of disparate impact eventually prevails over the historical rate 
standard of unfairly discriminatory, then accurate risk assessment will be destroyed, adverse selection 
will be widespread in the insurance marketplace, and coverage availability will suffer. 
 
Keywords.  Risk classification plans; risk assessment; credit scoring; insurance law; rate regulation; 
adverse selection; disparate impact; adverse impact. 

__________________________________________________________________________________________ 

1. INTRODUCTION 

In today’s society, the terms discrimination and disparate impact connote unfairness.  Without 
any historical context as background, it would not be surprising for the average person to 
mistakenly conclude that the term unfairly discriminatory is redundant, and that the term 
disparate impact is just another form of unfair rate discrimination.  However, a review of 
insurance literature, legislative histories, and court cases reveal that the terms disparate impact 
and unfair rate discrimination are fundamentally different.  In insurance ratemaking there has 
always existed a form of rate discrimination which is considered to be fair if the rates are based 
on underlying insurance costs.  On the other hand, disparate impact is defined without any 
reference to underlying insurance costs. 

The origins of the common rate standards applied by actuaries (i.e., reasonable, adequate, not 
excessive, and not unfairly discriminatory) are discussed in this paper, with special emphasis on 
the rate standard of unfairly discriminatory.  The insurance literature and legislative histories 
show the four common rate standards to have meanings based entirely on the underlying 
anticipated insurance costs.  It is precisely because these rate standards are cost-based that 
actuaries have adopted these standards as terms of art, as set forth in Principle 4 of the Casualty 
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Actuarial Society’s Statement of Principles Regarding Property and Casualty Insurance 
Ratemaking (i.e., CAS Statement of Ratemaking Principles). 

More recently, some courts have considered the application of a new standard of disparate 
impact (or adverse impact) to insurance rate structures.  Thus far no court has actually applied 
the disparate impact standard to insurance rates, but it is only a matter of time before some court 
does so.  The standard of disparate impact has its origins in federal civil rights laws and has been 
applied by the courts in a range of issues including employment, educational testing, housing, and 
age discrimination.  Unlike unfairly discriminatory rates, disparate impact is not a cost-based 
concept.  If applied to insurance, a risk/rate factor will potentially be said to have a disparate 
impact if it more adversely impacts a protected minority class than it does the majority class, 
regardless of its relationship to underlying costs. 

It is reasonable to assume a priori that no protected minority class (i.e., race, religion, sex, etc.) 
will be uniformly distributed throughout any given insurance risk classification plan.  This 
assumption implies that all risk factors used to measure and assess risk are potentially in violation 
of a disparate impact rate standard, even though each risk factor accurately reflects expected 
losses and expenses. 

If a risk classification plan were changed to eliminate one or more risk factors found to have a 
disparate impact, the resulting rates would likely be unfairly discriminatory because the rate 
differences would no longer be based on the underlying insurance costs.  Therein lies the 
inevitable and irreconcilable conflict between the two standards. 

This paper concludes with a brief discussion of the potential role of an actuary with the 
various issues related to disparate impact.  Even though disparate impact is not cost-based, and 
therefore not an actuarial term of art, actuaries do have expertise in measuring the statistical 
significance of any differences in rate impact between the majority class and a protected minority 
class.  Actuaries could also provide expertise in defining the data needed to measure disparate 
impact and in establishing the business necessity of any risk factor in question. 

2. THE DAWNING OF U.S. RATE REGULATION AND RATE 
STANDARDS 

The origin of property/casualty insurance rate regulation in the U.S. is rooted primarily in the 
history of fire insurance.  It was solvency concerns and destructive price competition in the fire 
insurance business in the 1800’s that spurred the need for cost-based actuarial ratemaking 
procedures and the need for rate regulation by the states. 
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In the early to mid-1800’s local boards (i.e., voluntary associations of insurers) were organized 
to provide a means of sharing loss data and to enforce uniform rates among the insurers.  
Uniform rates were desired so that rates were adequate to protect against insolvencies and were 
not unfairly discriminatory.  The primary concern with unfairly discriminatory rates, often stated 
at the time, was that rich and powerful insureds could unfairly negotiate lower rates than were 
being charged to less influential insureds, even though their degree of risk and underlying 
insurance costs did not warrant a lower rate. 

In 1866 a national association of insurers, the National Board of Fire Underwriters (i.e., 
NBFU), was formed to gather industrywide data and to develop a uniform rate schedule.  The 
NBFU decreased the need for local boards.  During the ensuing profitable years the insurers 
regularly violated their NBFU membership agreements by engaging in destructive rate-cutting.  
On the verge of disbanding just prior to the 1871 Chicago fire, the insurer insolvencies which 
followed the Chicago fire gave new life to the need for rate discipline and new life to the NBFU.  
But profitability soon returned to fire insurers and destructive rate-cutting returned to the market.  
Rampant rate-cutting caused the NBFU to finally disband in 1887, thereby shifting “control” of 
fire insurance rates back to local boards and associations. 

Federal legislation in the 1880’s, which outlawed combinations of insurers in restraint of trade, 
led about half the states to adopt anti-compact laws between 1885 and 1907.  The anti-compact 
laws sharply reduced the ability of local boards to maintain uniform, adequate, and fairly 
discriminatory rates.  The pressing need for insurers to associate so as to create a combined, 
credible fire insurance database and the existing lack of discipline in fire insurance rating practices 
in the late 1800’s led to many proposals for state regulation of rates. 

3. UNFAIRLY DISCRIMINATORY RATES 

3.1 Early Rate Regulatory Laws 

The first modern-style rate regulation statute was enacted in Kansas in 1909.  The Kansas law 
required fire insurance rates to be filed with the Insurance Commissioner and required the rates 
to be reasonable, not excessive, adequate to the safety and soundness of the insurer, and not 
unjustly discriminatory.  Unjust discrimination was defined as charging different rates to persons 
with “risks of a like kind and hazard”. 

Soon after enactment of the Kansas law, although largely as the result of the insolvencies and 
the subsequent sharp fire insurance rate increases ensuing from the fires following the great San 
Francisco Earthquake of 1906, the New York legislature appointed the Merritt Committee and 
launched an investigation of fire insurance rates.  The Merritt Committee Report led to New 
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York’s first rate regulatory law in 1911.  This law permitted insurers to gather data and act in 
concert to set rates through rate bureaus.  The New York law also required fire insurance rates to 
be filed with the Superintendent of Insurance and prohibited unfairly discriminatory rates.  The 
law and the Merritt Committee Report made it clear that rates were considered to be unfairly 
discriminatory if different rates were charged to risks in the same class or of essentially the same 
hazard.  Class rate differentials based on differences in risk and loss experience were expressly 
permitted by the New York legislation. 

New York, working through the National Convention of Insurance Commissioners (i.e., 
NCIC), offered its new fire insurance rate law as a prototype for other states.  Many states (e.g., 
New Jersey in 1913) did adopt similar rate regulatory laws which permitted collusive rate setting 
through rate bureaus and prohibited unfairly discriminatory rates.  Consistently, the clear 
purposes of these early laws were to permit collusion in regard to data gathering and rate setting, 
and to ensure that rates were established commensurate with the degree of risk and hazard being 
insured.  In a speech before the NCIC in 1915, the New Jersey Insurance Commissioner spoke 
about the need to base insurance rates on the degree of risk being insured and the unfair 
discrimination that arose when “some people were getting insurance for less than it was worth 
and others were paying for it.” 

3.2 McCarran-Ferguson and Modern Rate Regulation 

The enactment of Public Law No. 15 (i.e., McCarran-Ferguson) on March 9, 1945 reaffirmed 
the right of the states to regulate insurance by providing an antitrust exemption for insurance to 
the extent that insurance was regulated by state laws.  McCarran-Ferguson spurred a new and 
modern round of state rate regulatory laws throughout the United States.  As a result of 
McCarran-Ferguson, the National Association of Insurance Commissioners (i.e., NAIC) 
immediately turned its attention to drafting model rate regulatory laws that could be considered 
for adoption by the majority of state legislatures which were scheduled to begin to meet next in 
1947.  The 1945 NAIC proceedings indicate that the model laws and the rate standards were 
based largely on existing state rate regulatory statutes, as witnessed by the following quote from 
the May 12, 1945 Report of the Subcommittee on Federal Legislation: 

“On the subject of rate regulation the Committee felt that there were well-defined 
patterns available based upon the actual experience of a number of states which 
could be used as a foundation for the drafting of rate regulatory statutes at this 
time.  This fact was recognized by certain segments of the insurance industry 
which prepared so-called model rating bills based largely upon existing statutes 
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and which were used as guides for the enactment of rate regulatory laws recently 
in several states.” 

The NAIC’s model fire/marine and casualty/surety rate regulatory bills of 1946 utilized the 
rate standards of not excessive, inadequate or unfairly discriminatory and required that rates be 
based on consideration of past and prospective loss and expense experience.  These model bills 
specifically allowed for the grouping of risks by classifications for the establishment of rates.  
Classification rates could be modified for individual risks if, and only if, the modification was 
based on “variations in hazards or expense provisions, or both.” 

The NAIC model bills were a pervasive influence on individual state legislatures.  It is not at 
all surprising that the rate regulatory laws throughout the U.S. today contain similar, if not the 
same, language as the 1946 NAIC model bills.  As an example, the influence of the 1946 NAIC 
model bills on individual state rate regulatory laws can be found in the California McBride-
Grunsky Act of 1947 (S.B.1572).  This California statute prohibited rates that were unfairly 
discriminatory and specifically allowed for differences in rates between risk classifications, if the 
rate differences were based on the differences in the underlying hazard or expenses.  

A new rate regulatory statute was established in California in 1988 with the passage of 
Proposition 103.  Proposition 103 reestablished the unfairly discriminatory rate standard, as well 
as placed certain restrictions on some rate factors used in rating personal auto insurance.  
Subsequent to the passage of Proposition 103 new rate regulations were adopted and some lower 
courts addressed the definition of unfairly discriminatory rates in California.  In this author’s 
opinion thus far there have been no changes in California to the traditional concept that rates 
should be based on expected costs and not be arbitrary. 

4. DISPARATE IMPACT ON INSURANCE RATES 

4.1 History 

The concept of disparate impact1 has its roots in certain federal civil rights laws, including the 
Civil Rights Acts of 1866, 1964, and 1991 and the Fair Housing Act (42 U.S.C. Sec. 3604) (i.e., 
FHA).   Broadly speaking, this category of federal laws prohibits discrimination based on race, 
                                                 
1 Note:  As in this paper, the terms disparate impact and adverse impact are generally used interchangeably to mean 
that a protected minority class is being adversely and disproportionately impacted as compared to the impact on the 
majority class.  Disparate impact and adverse impact are both distinguished from disparate treatment, which involves 
intent to discriminate in a way that is prohibited by federal civil rights law. 
In this paper the terms disparate impact and adverse impact are used with the recognition that the impact may occur 
in neutral processes without the specific intent to violate any civil rights prohibitions.  Disparate treatment, based on 
the intent to violate discrimination prohibitions, is not related to actuarial considerations, is a mutually exclusive 
theory from disparate impact, and is not addressed in this paper. 
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color, religion, sex, or national origin.  The seminal disparate impact case was decided by the U.S. 
Supreme Court in Griggs v. Duke Power 401 U.S. 424, 430-32; 1971.  The Civil Rights Act of 
1991 codified the disparate impact findings in Griggs.2 

Disparate impact has been defined by various courts as an unintentional discrimination against 
the protected minority class and its existence is not necessarily illegal.  If a plaintiff is able to 
establish that a specific practice leads to a significantly higher adverse impact on the protected 
minority class than on the majority class, the defendant then has the burden and opportunity to 
prove that the practice in question has “legitimate business reasons” or “business necessity” (see 
Watson v. Forth Worth Bank & Trust, 487 U.S. 977, 978; 1988).  Even if the defendant is 
successful in showing the practice in question is of a business necessity, the plaintiff still has the 
opportunity to show that other practices would serve the defendant’s business purposes without 
disparate impact against the protected minority class (see Albermarle Paper Co. v. Moody, 422 
U.S. 405, 425; 1975). 

In summary, past court decisions seem to suggest that a business practice with disparate 
impact on a protected minority class will be considered illegal by the courts if: 

a. there is a significantly higher adverse impact on a protected minority class than on the 
majority class, and 

b. either the practice in question cannot be shown to have a legitimate business necessity, 
or an alternate practice is shown to achieve the business purpose without the 
disproportionate adverse impact on the protected minority class. 

4.2 Measurement of Significance 

  The Uniform Guidelines on Employee Selection Procedures (adopted in 1978 by the EEOC, 
U.S. Civil Service Commission, Department of Labor, and the Department of Justice) provided 
the so-called “4/5’s Rule” as a guideline for employment selection practices.  This guideline 
allows for some disproportionate adverse impact against the protected minority class as long as 
the impact is not considered to be significant by the court. The adverse impact is considered to 
be significant only when the “4/5’s Rule” is failed.  For example, if 60% of the job applicants in 
the majority class are hired and only 50% of the job applicants in the minority class are hired, the 
difference in impact is considered not significant and not discriminatory.  This is because the 
hiring rate of the minority class is more than 80% of that of the majority class. 

                                                 
2 Employment Discrimination Law, American Bar Association, Barbara Lindemann and Paul Grossman, Volume I; 
Chapter 3, 2007. 
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The “4/5’s Rule” to determine significance is not the only test of significance that has been 
used by the courts.  In some cases, statistical tests of significance or a showing of a disparity of 
two or more standard deviations have also been applied to determine if the adverse impact is 
significant enough to be a problem.  To guard against a relatively small difference being 
considered statistically significant because of a large sample size, some courts have required that a 
statistically significant disparity also have a practical significance.  

Although anything is possible in terms of future lawsuits, it is the author’s opinion that the 
“4/5’s Rule” may not be accepted as a test of significance for insurance ratemaking.  It is more 
likely that the determination of significance of any disparate impact of insurance rates will be 
based on statistical tests of significance. 

4.3 Application to Insurance Practices 

There is a strong legal argument that federal civil rights laws, including the FHA, should not 
be applied to the pricing and underwriting of insurance because of the McCarran-Ferguson 
exemption.  Thus far the courts have rejected this McCarran-Ferguson argument.  However, 
most of the insurance cases in which the courts have rejected the McCarran-Ferguson defense 
have involved claims of either fraud or intentional discrimination (i.e., disparate treatment). 

One such “disparate treatment” case was NAACP v. American Family Mutual Insurance 
Company (978 F.2d 287, Seventh Circuit, 1992).  The complaint in the American Family case 
involved an alleged violation of the FHA due to charging higher rates for residential property 
insurance in racial minority neighborhoods.  The Court observed that there was an important 
distinction between disparate treatment and disparate impact because the nature of insurance 
inherently requires risk classification and discrimination by degree of risk.  As the Court said in 
the American Family case, “risk discrimination is not race discrimination.” 

In a more recent insurance case (DeHoyos, et al. v. Allstate, et al., 345 F.3d 290, Fifth Circuit, 
2003), it was charged that Allstate’s residential property insurance rates had a racially disparate 
impact because of the use of credit-based insurance scores in its rate structure.  This was a true 
disparate impact case, rather than a disparate treatment case, because intent to racially 
discriminate was not at issue.  The Fifth Circuit ruled that McCarran-Ferguson did not preempt 
the application of the FHA in this case.  Allstate appealed the preemption decision to the U.S. 
Supreme Court, which refused to take the case.  After the Supreme Court declined to review the 
preemption decision of the Fifth Circuit, Allstate settled the case.  Even though the Court never 
had the opportunity to address the issues of disparate impact (i.e., the existence and significance 
of the difference, the business purpose, or the potential substitutes for credit data) in the Allstate 
case, it is only a matter of time before some court does. 
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5. DEFINITIONS 

5.1 Unfairly Discriminatory 

As previously discussed, the definition of unfairly discriminatory insurance rates has 
historically and consistently been related to the underlying costs of providing insurance.  Prior to 
the first rate regulatory law in Kansas, insurance literature consistently refers to the unfairness of 
charging different rates to risks with similar risks of loss and similar hazards.  The literature 
surrounding the adoption of the first rate regulatory laws in Kansas, New York, New Jersey and 
the 1946 NAIC model rate regulatory bills are consistent on this point. 

Professor C. Arthur Williams, Jr.3 has put forward what is probably the most commonly used, 
and the most succinct, definition of unfairly discriminatory insurance rates as follows: 

“An insurance rate structure will be considered to be unfairly discriminatory. . . ., 
if allowing for practical limitations, there are premium differences that do not 
correspond to expected losses and average expenses or if there are expected 
average cost differences that are not reflected in premium differences” 

5.2 Actuarial Term of Art 

It is precisely because the concept of unfairly discriminatory insurance rates has historically 
been a cost-based concept, that actuaries adopted that rate standard as a term of art.  Although 
this term of art was embodied in much of the early actuarial literature, it was not until 1988 that 
the CAS Statement of Ratemaking Principles was formally adopted, which declared in Principle 4: 

“A rate is reasonable and not excessive, inadequate, or unfairly discriminatory if it 
is an actuarially sound estimate of the expected value of all future costs associated 
with an individual risk transfer.” 

5.3 Disparate Impact 

Court cases reveal that the term disparate impact is not a cost-based concept and, therefore, it 
is not currently considered to be an actuarial term of art.  Disparate impact is strictly a standard 
based on a significantly disproportionate and adverse impact on a protected minority class 
defined by race, color, religion, sex, or national origin.  In an insurance context disparate impact 
has nothing to do with the underlying costs of providing insurance. 

5.4 Conflict in Definitions 

                                                 
3 Insurance, Government, and Social Policy, The S.S. Huebner Foundation for Insurance Education, C. Arthur Williams, 
Jr., Chapter 11, Price Discrimination in Property and Liability Insurance, 209-242. 
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It is likely that the rate standard of unfairly discriminatory will be in direct conflict with the 
application of a disparate impact standard to insurance rates.  This conflict will potentially exist 
for nearly every risk factor used to develop property/casualty insurance rates because protected 
classes, most if not all of the time, will not be evenly distributed throughout the various risk 
classifications.  If a court or legislature were to order that all disparate impacts be eliminated from 
insurance premiums, it is likely that accurate risk assessment would be destroyed, resulting in 
unfairly discriminatory rates.  Paraphrasing a 1915 NAIC speech by the New Jersey Insurance 
Commissioner, unfairly discriminatory rates mean that some people would pay less than the 
insurance was worth, at the expense of other people who would be required to pay more than the 
insurance is worth in order to subsidize the under-payers.  It is possible that the only rate 
structure which could survive a strict disparate impact standard is “one-rate-for-all.”  If such a 
scenario materializes, adverse selection would be rampant in the insurance market and coverage 
availability would suffer. 

6. ROLE OF THE ACTUARY 

6.1 Determination of Unfair Discrimination 

The role of the actuary in determining underlying insurance costs and verifying that the rate 
structure is not unfairly discriminatory is well-established and uniquely actuarial in nature.  The 
costs which an actuary considers in a review of any rate structure are prospective losses, 
prospective expenses, and an appropriate provision for risk commensurate with the cost of 
capital necessary to support the insurance mechanism. 

6.2 Determination of Disparate Impact 

The role of the actuary with disparate impact issues has not yet been fully established.  
Certainly actuaries are not trained to opine on social policies or to determine which minority 
classes deserve the protection of the law.  Society’s definition of overall fairness needs to be left 
to the legislatures and courts. 

However, actuaries do possess the unique expertise to measure the impact on insurance rates 
of any risk factor and to determine the degree and statistical significance of any apparent 
disparate impact on any protected minority group defined by law.  If a court were to find that a 
particular risk factor had a disparate impact on the insurance premiums of a protected minority 
group and the disparate impact was statistically significant enough to be of concern to the court, 
actuaries would be uniquely qualified to opine on the predictive power and business necessity of 
the risk factor in question, as well as opine on any risk factors that might replace the risk factor in 
question. 
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6.2.1 An example 

When disparate impact arises in the context of insurance rates, it will likely be an issue with 
personal auto or residential dwelling insurance.  The risk factor in question could be territory rate 
factors, because racial groups likely differ in their geographical distributions.  Or in the case of 
auto insurance, the risk factor in question could be age of driver, gender of driver, credit-based 
insurance scores, or etc.  In the case of homeowners insurance, rates based on the age of the 
home have already been challenged as having a disparate impact.  Since the distribution across 
the various rate classes of racial groups is likely to vary somewhat for every risk factor, there is a 
potential for “disparate impact” with every risk factor. 

For purposes of this example, assume the risk factor in question is credit-based insurance 
scores as applied to personal auto insurance.  In its July 2007 report in the U.S. Congress, the 
Federal Trade Commission (i.e., “FTC Study”) found that credit-based insurance scores “are 
effective predictors of risk” for auto insurance.  The FTC also found that credit-based insurance 
scores “are distributed differently among racial and ethnic groups, and this difference is likely to 
have an effect on the insurance premiums that these groups pay, on average”.  While the FTC did 
not attempt to actually measure the effect on auto insurance premiums, or opine on the statistical 
significance of any premium impact, the mere suggestion of a “likely” unequal impact on average 
premiums raises the spectre of disparate impact for this risk factor. 

The following sections discuss the role of an actuary in a hypothetical lawsuit where the 
charge is that credit-based insurance scores have a disparate impact on the auto insurance 
premiums for a protected racial minority. 

6.2.2 Data to determine disparate impact 

However a court or legislature might define disparate impact as applied to insurance practices, 
it is highly likely that the determination of its existence will involve sophisticated analyses of data.  
Unlike employment/hiring cases, it will be difficult, if not impossible, to accurately apply any 
racial disparate impact definition to insurance rates in an objective, statistical way because the 
racial data needed are simply not available. 

The FTC Study was based on racial information for each policyholder obtained from the 
Social Security Administration.  Due to limitations in this data prior to 1981, the FTC also relied 
on a Hispanic surname match and Census tract data to identify some Hispanics, Asians, and 
Native Americans.  The reliance on a surname match and Census tract data to identify Hispanics, 
Asians, and Native Americans for policyholder records prior to 1981 raises concerns about the 
accuracy of those racial identifications.  Plaintiffs in disparate impact cases will likely have access 
to databases that are even less perfect than the database available to the FTC. 
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In our hypothetical lawsuit, there will be no racial information in the insurer’s policyholder 
records that can be produced through the discovery process.  Neither the plaintiff nor the 
defendant will have access to the Social Security Administration’s database, as did the FTC.  In 
order to carry the burden of showing disparate impact on any racial group, the plaintiff will 
necessarily be restricted to a conjecture and inference of each policyholder’s race based on 
surname matches, Census tract data, or other potentially inaccurate indicia of race. 

Since actuaries routinely use data to analyze insurance rates, actuaries will be able to offer this 
hypothetical court a great deal of expertise with regard to the reliability and credibility of any 
demographic data used to measure the extent of disparate impact on insurance rates. 

6.2.3 Statistical significance of disparate impact 

Assume the plaintiff is able to convince the court that its data are of sufficient accuracy and 
that some adverse disparate impact actually exists on the average premiums paid by a protected 
minority group.  The next question before this hypothetical court is whether the disparate impact 
is significant enough to be of concern. 

Since historically the “4/5’s Rule” relied on by some courts in employment/hiring cases has 
been applied to binary decisions, (i.e., the decision to hire or not hire), it is not obvious how it 
would be applied to insurance rates.   Perhaps as long as the impact on the average insurance 
premiums for a protected minority group is no greater than 20% of the impact on the premiums 
for the majority, then the disparate impact is deemed acceptable.  However, this is only one of 
many possible tests that might be applied in disparate impact litigation.  It is likely the plaintiff in 
this hypothetical lawsuit will argue for a narrower range of acceptability. 

Actuaries are well-qualified to opine on the statistical and practical significance of any 
disparate impact found by the court, whether the degree of significance is based on some 
variation of the “4/5’s Rule” or on the application of other common statistical tests of 
significance. 

6.2.4 Business necessity and potential replacements 

If our hypothetical court finds that credit-based insurance scores disparately, and significantly, 
impact the insurance premiums of a protected minority group, and if this hypothetical case then 
proceeds in the same way that similar employment/hiring cases have proceeded, the burden 
would then shift to the defendant insurer to show the business necessity of credit-based 
insurance scores. 

Actuaries are uniquely qualified to conduct a multi-variate analysis of the defendant insurer’s 
loss data to statistically prove the degree to which credit-based insurance scores add value and 
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precision to the risk assessment process.  The FTC’s finding that credit-based insurance scores 
are effective predictors of auto insurance risk would likely be corroborating evidence. 

It is important to note that the actuarial analysis supporting the business necessity of credit-
based insurance scores (i.e., predictive power) will rely on obtainable, objective claim loss data, 
just as did the FTC Study.  The analysis of predictive power does not rely on any inaccurate racial 
data, thereby avoiding the data problems associated with determining the existence of a disparate 
impact on any protected minority group. 

Finally, an actuary would be uniquely qualified to opine on the effectiveness of any proposed 
alternative rate factors; how the elimination of the risk factor in question would create a rate 
structure that is unfairly discriminatory in violation of the state’s rate regulatory standards; and be 
able to explain how the resulting adverse selection would lead to coverage availability problems in 
the market. 

7. CONCLUSION 

The concept of unfairly discriminatory rates has traditionally been cost-based, meaning that 
rates reflect the underlying risk and hazard.  The concept of disparate impact has no relationship 
to the underlying insurance costs and refers solely to the adverse, significant disproportionate 
impact of one or more rate factors on a protected minority class. 

The standards of unfair discrimination and disparate impact will potentially be in conflict 
because of the likelihood that protected minority classes will not be proportionately distributed 
throughout the various risk classifications.  If the standard of disparate impact prevails over the 
standard of unfairly discriminatory rates, important risk factors will likely be banned from 
insurance rating plans. The elimination of even one proven risk factor will result in a rate 
structure that is unfairly discriminatory. Accurate risk assessment will be destroyed; adverse 
selection will be rampant; and coverage availability problems will likely arise.   
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Monitoring Renewal Rate Change on Cat-Exposed Excess 
Property Business  

Ira Robbin, Ph.D. 
 
________________________________________________________________________ 
Abstract 

This paper explains why a commonly-used metric of pricing performance, the Renewal Rate Change statistic, 
might not give true indications of the real rate change on Catastrophe (Cat)-Exposed Excess Property business. 
At the account level, false readings may arise when the renewal and expiring policies cover different layers or 
different sets of locations. When that happens, premium changes stemming from such differences are 
confounded with real changes in rate level. The paper presents a proposal to appropriately reflect coverage layer 
and location schedule differences. The proposal involves use of Cat Loss Simulation models to estimate the 
percentage by which the premium for an account should change in response to such differences. Once individual 
policy rate changes are correctly calculated, there is a potential problem in aggregating the individual results to a 
correct portfolio total. Concrete examples are presented to demonstrate that weighting with Renewal Premiums 
is incorrect and will lead to an overly optimistic answer. The paper then proposes alternative weights that lead to 
an unbiased result.  
Keywords Rate Monitor, Renewal Rate Change, Excess Property, Catastrophe Models  

             

1. INTRODUCTION 

The Renewal Rate Change is a popular pricing metric, but it can give misleading indications when 
used to measure the rate change on Catastrophe-Exposed Excess Property business. There are 
potential problems both at the account level, in defining rate change for an account, and at the 
portfolio level, in weighting together the individual account rate changes to get a portfolio total.  

For an individual account, the nominal change in rates between the renewal and expiring policies 
will not necessarily provide a valid rate change comparison when those policies cover different 
excess layers or cover different sets of locations. We will estimate the relative effect such differences 
should have on rate level by calculating how they impact Technical Premium1 rates. This will allow 
us to offset the Nominal Renewal Rate Change for the effect of these differences and thus arrive at a 
better measure of the real rate change. The necessary Technical Premiums will be computed using 
results from a Catastrophe (Cat) Loss Simulation model.2 

At the portfolio level, an optimistic bias is introduced if individual account rate changes are 
aggregated into a portfolio total using Renewal Premium weights. We will show what is wrong with 

                                                           
1 Technical Premium is here used to denote an indicated risk-loaded premium that is calculated directly from a set 
pricing algorithm without influence of schedule rating or other judgment modification.  
2 A cat loss simulation model runs thousands of modeled events against input locations and insurance coverages to 
arrive the estimated distribution of insurance losses from specified catastrophe perils. See Burger, Fitzgerald, White, and 
Woods [2] for a description of this type of model. 
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Renewal Premium weights and then propose better ones.  

1.1 The Lack of Actuarial Literature on the Subject 

There are many articles on rates and rate changes, but we have not found any that directly 
address the concerns we have identified regarding coverage layer changes, location schedule changes, 
and aggregation averaging. The one paper that is focused on rate monitors notes that “renewal rate 
change reports often provide misleading indications of rate changes due to changes in the underlying 
mix of business on each policy,”3 but does not present a solution to that problem. Price monitors 
have also been the subject of discussion at several actuarial professional meetings,4 but those 
discussions have not yet found their way into the actuarial literature. There also may be internal 
corporate memos documenting computations similar to those we will present. Unfortunately, those 
articles are not part of the public domain. Our belief is that this will be the first paper in the 
literature to directly address the key questions we have identified about renewal rate change 
computations for excess property business.  

1.2 Industry Reported Rate Increases 

In the aftermath of the Katrina, Rita, and Wilma hurricanes of 2005, many industry pricing 
surveys reported significant rate increases on hurricane-exposed property business.5 Since we do not 
know how insurance companies computed renewal rate change figures by account or how they 
aggregated them into portfolio totals, we do not know if there were any distortions in those reported 
rate change figures. However, if we succeed in our objective, so that our methods, or improved 
variations, are adopted as industry standard practices, it may help to dispel questions about the 
computational validity or comparability of reported rate increases following the next major cat event.  

1.3 Uses of the Renewal Rate Change Statistic  

The Renewal Rate Change statistic is one of the most popular pricing metrics. It is used in two 
major ways. First, it is used by actuaries as one of several inputs needed to compute on-level 
premiums and to project rate adequacy. Second, it is used by managers as a gauge of pricing 
performance.  
                                                           
3 Vaughn [8], p. 506.  
4 See the presentations by Kundrot [4], Nyce [5], and Palisi [6].  
5 For example, the May, 2006 Expert Commentary on the First Quarter Market Survey from The Council of Insurance 
Agents and Brokers (CIAB) [3] had the quote “Overall, rates are down, except for property cat exposures (which are) up 
more than 25 percent…” (Italics in original). 
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1.3.1 On-Level Factors, New and Nonrenewed Business 

In this paper, we will focus on measuring the Renewal Rate Change and only the Renewal Rate 
Change. So our discussion will only briefly touch on two other important pieces in the measurement 
of the overall rate: the contribution due to newly written business and the impact resulting from 
nonrenewed business.  

Since the calculation of Renewal Rate Change omits consideration of new business, it provides at 
best an incomplete picture of the overall rate level.6 We hypothesize that relative price adequacy 
between new and renewal business varies with the insurance cycle. When the market is tight and 
nonrenewed accounts go searching for a new carrier, they are in a weak bargaining position and may 
pay a large premium. Then a new business account may be more adequately priced than a renewal.7 
On the flip side, when the market softens and companies are flush with capacity, underwriters will 
agree to cut price to gain new accounts and meet volume targets. Then a new account may be 
relatively underpriced.  

The Renewal Rate Change statistic also neglects any consideration of nonrenewed business. In 
general, the nonrenewed book is a mix of adequately priced accounts which departed for better deals 
elsewhere and poorly priced accounts which were cancelled or nonrenewed by company 
underwriters. The mix between the two likely varies over the insurance cycle and should change 
when the insurance company revises its pricing and underwriting policies.  

A detailed computation of on-level factors would require going beyond looking at rate change on 
renewal accounts to also consider rate adequacy levels on new and nonrenewed accounts. However, 
in practice this is seldom done. Most on-level factors are derived solely from rate change statistics on 
renewal business. This is technically an incomplete treatment that might lead to inaccuracy in 
computed on-level factors.  

 1.3.2 Management Uses of Rate Monitors  

The Renewal Rate Change statistic is one of several rate change statistics that may be used by 
company executives to monitor pricing. It is conceptually easy to understand, treats each 
underwriter fairly, and fosters clear lines of responsibility. These are some of the reasons the 

                                                           
6 Vaughn [8] p. 506 states “there are several drawbacks associated with renewal rate change reports. For instance, the 
renewal rate change report does not monitor the price level changes associated with new-business policies.”  
7 Boor [1] describes a scenario that supports our hypothesis. He states “accounts may be ‘orphaned’ and unable to find 
coverage. This produces a situation where accounts are willing to accept higher prices for the benefit of having insurance 
coverage when it is hard to obtain.” p. 3. 
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Renewal Rate Change statistic is generally accepted by both business line managers and 
underwriters.  

Rate monitors are used in different ways by executives in managing insurance companies. Some 
executives set monitor targets and explicitly look at price monitor performance when evaluating 
underwriters and business units. These executives believe a connection between monitor 
performance and compensation will act as a powerful incentive for underwriters to push the line on 
price as far as it can go. Other executives disagree. They feel that too much emphasis on a statistic 
may distract underwriters from sound underwriting and may even spur them to find ways to “game” 
the system. We will not argue one way or the other about how rate change statistics should be used 
in managing a company. Our intent is to make actuaries aware that there may be widely divergent 
philosophies in different companies. Further, our discussion of the Renewal Rate Change statistic 
should not be construed as an endorsement or criticism for using that statistic, or any pricing 
statistic, as a measure of underwriter performance.  

1.4 Loss Ratios Instead of Rate Monitors?  

Since what really matters are results, one might play devil’s advocate and question whether rate 
monitors have any use at all in managing the business. Why not just look at loss ratios? Isn’t the 
proof of price performance ultimately in the results? Why supplement the loss ratio perspective with 
anything else? There are several general answers to this line of questioning. First, there is the matter 
of timing. Rate monitors are a leading indicator that can help us predict what loss ratio to expect on 
the business we are writing.8 Loss ratios are a backward look at results on what has been written. So 
rate monitors give management a more timely indication of possible problems ahead. Second, there 
is the point that loss development introduces a lag before loss ratios results can be estimated with 
reasonable accuracy. When the lag runs into years, there may be some legitimate question about who 
is responsible for current results. Consider any long-tailed casualty line, where an underwriter can 
switch companies every few years and, with any luck, will stay one step ahead of the loss tail. Why 
should current underwriters be held to account for the shipwreck caused by a prior crew? In 
contrast, a price monitor would typically show the pricing achieved by current underwriters over the 
most recent prior month or quarter, with perhaps a lag of a month or two.9  

                                                           
8 Wang and Faber [9] support this view stating, “What the insurance industry needs is leading indicators…” and that “… 
companies need to diligently track rate level changes” (p. 59).  
9 Price monitor values can also age over time due to late bookings, premium audits, endorsements, and retro 
adjustments. In most cases, price monitor development is essentially complete after a few months.  
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The final problem with focusing solely on the loss ratio is that it can be too volatile. On this 
point, Cat-Exposed Excess Property is a good example. The loss ratio is usually quite low for every 
insurance company and underwriter, except when a catastrophe occurs. Then everyone’s loss ratio is 
in the stratosphere. With so many underwriters doing poorly that year, it is hard to legitimately single 
out a specific underwriter for having had a poor showing. Of course, this is an oversimplification: a 
good underwriter will carefully control exposure aggregation, will write a geographically diversified 
mix of business, and utilize other underwriting practices which should translate into better results in 
any particular year and over the cycle. Nonetheless, the point still stands: a good cat underwriter will 
often lose money in a bad year and a poor cat underwriter will often make money in a good year.  

1.5 Organization of the Paper 

In Chapter 2, we will define the Renewal Rate Change statistic at the account level and show how 
to make the necessary adjustments. Then, in Chapter 3 we will examine how to aggregate the 
individual account rate changes into a portfolio average. All key formulas are documented in 
Appendix A, while Appendix B contains a discussion of data issues.  

 

2. RENEWAL RATE CHANGE BY ACCOUNT 

In this chapter we will first explain why it is necessary to go beyond the Nominal Renewal Rate 
Change on Cat-Exposed Excess Property business. Then we will walk through a hypothetical Excess 
Property example and show how to make account level adjustments for coverage layer and location 
schedule differences between the renewal and expiring policies. To avoid complications, we will 
assume all accounts have Specified Peril catastrophe coverage.10 

 2.1 Coverage Layer and Location Schedule Changes  

For Cat-Exposed Excess Property business, it is not at all unusual for accounts to have renewal 
and expiring policies that provide different layers of coverage or that have different schedules of 
insured locations. For many other types of insurance business, the vast majority of accounts renew 
policies with coverage layers that are the same as the expiring ones and that have minimal or 

                                                           
10 Accounts often have policies that cover Flood, Fire, Terrorism and other perils. Some polices may provide All-Risk 
Coverage or they may provide Difference in Conditions (DIC) Coverage.  
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predictable changes in exposure. Why is the Cat-Exposed Excess Property business different? Our 
answer is that Property Cat market has inherent characteristics which push the insured and the 
insurance company to initiate changes more frequently than for many other lines. In addition, much 
of this business is placed through Surplus Lines brokers. It is possible that accounts in the 
Nonadmitted market are subject to more frequent program changes than Admitted market accounts.  

2.1.1 Changes Initiated by the Insured  

The insured typically decides to revise its insurance program11 in response to market price swings 
or capacity fluctuations. These are endemic to the Cat-Exposed Property market. In the aftermath of 
a significant cat, capacity gets tight, and the rate on Cat-Exposed Property skyrockets. The insured, 
who may be strapped for cash following a cat, is in no position to pay the huge premium increase 
needed to renew its expiring program. The insured may thus feel forced to retain more risk, either by 
changing the layer of insurance it purchases or, less frequently, by removing some locations from its 
insurance program. After a few years, prices will drop as naive capacity floods the market, and the 
process will reverse itself.  

2.1.2 Changes Initiated By the Insurance Company 

There are several situations in which an insurance company might initiate changes. A company 
faced with a downgrade by a rating agency, for instance, may need to reduce its exposed limits. To 
do this, it might reduce its percentage shares of layers with large limits or write different layers with 
lower limits. In another scenario, changes on individual accounts flow from a deliberate change 
made in the company’s underwriting strategy. For example, the company might have been writing 
large shares of high excess layers that kept it above the “working layer.” When the account is up for 
renewal, the company may have adopted a “ventilation” strategy under which it aims to write 
modest percentages of several disconnected layers, including some working layers.  

2.1.3 Changes Initiated By the Surplus Lines Broker  

A broker may sometimes be the driving force behind changes in an account’s insurance program. 
It is possible that splitting a large layer in two or combining two small layers into one can result in an 
overall price reduction to the insured. As well, a broker may want to introduce new carriers to help 

                                                           
11 Beyond changing coverage layers and location schedules, changes are also made with respect to per location 
deductibles, per occurrence deductibles, occurrence hour range definitions (contiguous 96 hours versus 128 hours, etc.), 
location or peril sublimits, Business Interruption (BI) waiting periods and limits, and so forth.  



Monitoring Renewal Rate Change on Cat-Exposed Excess Property Business 
 

Casualty Actuarial Society E-Forum, Winter 2009  295 

spur competition for the account. This might necessitate cutting back on the shares of the 
incumbent writers or splitting layers to make room for the new carriers. A broker also may feel the 
need to make such changes in order to stave off competition from another Surplus Lines broker. 
Note that some program structure revisions can be made without altering the customer’s overall 
layer of insurance coverage, even though they will alter the specific layers written by particular 
insurance companies.  

2.2 Defining Real Rate Change  

Before making adjustments to a nominal rate change figure in order to obtain the real rate 
change, we should first discuss the concept of a “real” rate change. When the expiring and renewal 
policies have identical coverages and location schedules, the real rate change is the same as the 
nominal rate change: both equal the change in the charged rate.12 When they are not identical, we 
need to eliminate the portion of the nominal rate change which stems from differences in the layer 
of coverage or differences in the schedule of locations. What remains is the “real” rate change.  

To introduce some theoretical precision about what portion of a rate change should be attributed 
to changes in the coverage layer and the location schedule, suppose we had a single manual showing 
perfectly adequate rates for both the expiring and renewal coverage layers and location schedules. By 
the phrase, “perfectly adequate rates,” we mean a set of actuarially sound indicated rates that satisfy 
all rules of mathematical consistency and which within those rules faithfully reflect the risk-return 
preferences of the company.13 In principle, the company should be equally willing to write any 
coverage layer and location schedule combination at the perfectly adequate rates listed in the 
theoretical manual. In this sense, all the rates in the manual are at the same rate level.  

Our proposed conceptual approach is to use rate relativities from this hypothetical manual of 
perfectly adequate rates in order to ascertain the effect of coverage and location schedule differences 
between the renewal and expiring policies. For instance, if the manual says there is a 10% rate 
difference between the renewal and expiring layers, then we will back out that 10% rate difference 
when computing the real rate change.  

We should note that perfectly adequate manual pricing does not imply the manual rates are 

                                                           
12 A rate in this context is the premium per unit of exposure.  
13 In defining perfect adequacy, we make reasonable assumptions as needed to avoid complications due to minimum 
premium rules, commission differences, and other similar factors.  
  



Monitoring Renewal Rate Change on Cat-Exposed Excess Property Business 
 

Casualty Actuarial Society E-Forum, Winter 2009  296 

calibrated to produce the same expected loss ratio for all coverages. Depending on how we price 
risk, we might reasonably have lower expected loss ratios for high excess layers than for ground-up 
limited layers.  

Also, it should be emphasized we are using only one manual, the current one, in evaluating 
perfectly adequate premiums and in deriving the impact of coverage layer and location schedule 
changes. To be specific, we will assume the current manual is perfectly adequate as of the effective 
date of the renewal policy, even though it contains rates for layers and locations from the expiring 
policy. Note the manual of adequate rates could change from year to year -- for instance, due to the 
effect of trend. An account with no real rate change might thus end up with a renewal policy less 
adequately priced than the expiring policy.  

To implement this framework, we have to clear a major hurdle: the lack of a manual of perfectly 
adequate rates for a Cat-Exposed Excess Property account. The proposal we will later present entails 
using Cat Loss Simulation models to generate Technical Premium rates that will serve as the best 
available estimates of perfectly adequate rates.  

2.3 A Hypothetical Example Account  

We will now look at an example in which there are both coverage layer and location schedule 
differences. To begin our example, suppose Wayne’s Widgets is a major widget manufacturer and 
vendor. Assume it has a factory, a warehouse, and several retail stores in two hurricane-exposed 
states. Suppose our insurance company has written cat coverage on Wayne’s Widgets for two years 
running. Table 2.3.1 summarizes the premiums, coverages, and exposures for the expiring and 
renewal policies.  

Table 2.3.1 
 

Wayne's Widgets

Expiring Renewal
Premium $50,000 $40,000
Coverage $5m p/o $25m x $5m $2.5m p/o $10m x $15m

Company Limit $5,000,000 $2,500,000
Layer 100% Limit $25,000,000 $10,000,000
Attachment $5,000,000 $15,000,000

Exposure (TIV) $30,000,000 $25,000,000

Premium, Coverage, and Exposure Summary
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The coverage for the expiring policy is $5 million part of $25 million excess of $5m and is written 
as “$5m p/o $25m x $5m,” This means the insurance company has a 20% share of the $25m x $5m 
layer. The exposure is the Total Insured Value (TIV) of locations covered under the policy. This 
value is gross of deductibles.  

Based on this data, we calculate the Nominal Rate, where the Nominal Rate equals the 100% 
Layer Premium Per $100 of TIV. The 100% Layer Premium is the premium for the full layer. To 
calculate it, we take the company premium and divide by the share. The reason the rate change is 
calculated with rates on a 100% basis is that this prevents changes in share from being incorrectly 
counted as rate changes. The Nominal Rate Change for our sample account is shown in Table 2.3.2. 

2.3.1 Coverage Layer Differences 

Our initial conclusion, based on the negative Nominal Rate Change, is that pricing has slipped. 
Yet this initial conclusion does not seem right. While the rate has dropped 23%, the 100% layer limit 
has dropped by 60%, from $25 million to $10 million. This suggests the charged rate could also fall 
by 60% without reducing rate level.  

The beneficial effect of limit reduction is directly incorporated in another pricing statistic, the 
Rate on Line (ROL).14 For the expiring policy, the 100% premium is $250,000 and the 100% limit is 

                                                           
14 ROL is defined as the 100% Layer Premium divided by 100% of the limit of the layer to be insured. 

Table 2.3.2 

Wayne's Widgets

Expiring Renewal
Premium $50,000 $40,000
Coverage $5m p/o $25m x $5m $2.5m p/o $10m x $15m

Company Limit $5,000,000 $2,500,000
Layer 100% Limit $25,000,000 $10,000,000
Attachment $5,000,000 $15,000,000

Exposure (TIV) $30,000,000 $25,000,000
Company Share 20% 25%
Layer 100% Premium $250,000 $160,000
Rate per $100 TIV $0.8333 $0.6400
Nominal Rate Change -23%

Nominal Rate Change
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$25,000,000. So, the ROL is $10,000 per million. Similarly we can derive an ROL of $16,000 per 
million for the renewal policy. The ROL statistic thus indicates an improvement of 60%.  

Raising the attachment reduces loss in many scenarios and this also points towards an 
improvement in the real rate level. Taken together, the reduction in the limit and the increase in the 
attachment would lead us to conclude the real rate change is positive, not negative.  

2.3.2 Location Schedule Differences  

A location schedule shows the location and Total Insured Value (TIV) of covered structures. 
Separate TIVs are shown for Structures, Contents, Business Interruption (BI), Extra Expense, and 
possibly other coverages. The location schedule should also have age of structure, construction type, 
occupancy class, protection rating, and other information about each location. The location 

schedules for our fictitious account are shown in Table 2.3.2.1.  

Table 2.3.2.1 

Location Schedule Expiring Policy

Loc
Number Description

Year 
Built Street Address City State ZIP TIV

1 Co HQ 2005 12 Shady Lane Pleasantville AA 12345 $3,000,000
2 Warehouse 1977 Industrial Park Center East Town AA 12222 $8,000,000
3 Factory 1995 22 Fast Lane Grime AA 12288 $7,000,000
4 Retail Store A 2001 Harbor St Marina ShoreHarbor AA 10225 $3,000,000
5 Retail Store B 1998 Pier 7 Lighthouse AA 10245 $3,000,000
6 Retail Store C 1982 Beach Lane Landing Cape Shark AA 10255 $3,000,000
7 Retail Store D 1999 Dock 15 Fishtown BB 31288 $3,000,000
7 Total $30,000,000

Location Schedule Renewal Policy

Loc
Number Description

Year 
Built Street Address City State ZIP TIV

1 Co HQ 2005 12 Shady Lane Pleasantville AA 12345 $3,000,000
3 Factory 1995 22 Fast Lane Grime AA 12288 $7,000,000
4 Retail Store C 1982 Beach Lane Landing Cape Shark AA 10255 $3,000,000
5 Retail Store D 1999 Dock 15 Fishtown BB 31288 $3,000,000
8 Retail Store E 1993 13 Canal Street SandyShore AA 12255 $3,000,000
9 Retail Store F 2003 81 Peninsula Drive WaveCrest BB 31224 $3,000,000
10 Retail Store G 1992 Seashore Mall Seashore BB 31288 $3,000,000
7 Total $25,000,000

Location Schedules
Wayne's Widgets
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For convenience and simplicity, we have summarized the TIVs to a single number and omitted 
the construction code, occupancy class, and other such information. For any real application, such 
information could have a material effect on the answer and should not be omitted. In comparing 
renewal and expiring schedules in our example, we note the insured removed the warehouse and two 
of its retail stores from the program, and replaced them with three other stores. We also observe 
that more of the TIV is concentrated in state BB for the renewal than it was for the expiring policy. 
The impact of these mix changes is not knowable in advance. However, the Nominal Rate Change 
will misconstrue as real rate change any rate movement that might arise from such location schedule 
differences.  

2.4 Technical Premium Based on Cat Loss Simulation Model Statistics 

As previously outlined, our proposed solution entails quantifying the impact that coverage layer 
and location schedule differences have on Technical Premium rates. In our application, a Technical 
Premium denotes an indicated premium computed by machine algorithm without schedule rating or 
other judgment modification. We will assume the Technical Premium includes provision for risk-
loaded loss. We will also suppose that it does not reflect any minimum premium or minimum rate 
on line constraints.  

Our proposal is to compute Technical Premiums using results from a cat loss simulation model. 
The pure loss provision in the premium will be equal to the Average Annual Loss (AAL) from the 
model and the risk load could be based on any of a variety of risk metrics generated by the model. 
These risk metrics include the Variance, Standard Deviation, Probable Maximum Loss, and Tail 
Conditional Expectation. We will neither define all these metrics nor discuss their particular 
advantages or disadvantages here.15 Instead, in order to demonstrate our proposal, we will focus on 
one widely accepted risk metric, the Probable Maximum Loss (PML),16 and compute our risk load as 
5% of the PML. Including a loading factor of 1.50 for expenses, we arrive at the following 
illustrative Technical Premium formula:  

 

( )PMLAAL •+•= 05.5.1Premium Technical  (2.4.1)

                                                           
15 See Robbin and DeCouto [8] for one discussion of various risk metrics. 
16 In the sense that we are using it, the PML is associated with a return period. For example, the 100-year PML is the size 
of cat loss that on average occurs no more frequently than 100 years.  
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2.5 Cat Loss Simulation Model Runs 

As previously outlined, our proposed solution entails quantifying the impact that coverage layer 
and location schedule differences have on Technical Premium rates. To avoid confusing a change in 
share with a change in the 100% coverage layer, we will refer to a difference in the 100% layer of 
coverage as a difference in Coverage Structure. In our example, there is a Coverage Structure change 
from the 25m x 5m layer to the 10m x 15m layer.  

We will also decompose location schedule differences into Exposure Magnitude and Location 
Mix components. In our example, there is an Exposure Magnitude movement in the TIV reduction 
from $30m to $25m. There are also Location Mix changes in the types of structures covered and in 
the distribution of the structures between states and within states.17  

We will separately quantify the effects of Coverage Structure and Location Mix differences. One 
could estimate the combined impact of changes in Coverage Structure and Location Mix with one 
overall factor. However, it is useful to have a breakdown of their separate effects. Especially when 
these adjustments point in different directions, it may be somewhat unconvincing to provide a single 
number summary without showing the offsetting contributions made by Coverage Structure and 
Location Mix differences.  

To implement this “separate effects” approach, we will make a series of runs with our Cat Loss 
Simulation model. We will start with the Expiring Location Schedule and Expiring Coverage 
Structure, then change the location schedule and finally change the 100% coverage layer. Thus, the 
sequence of cat runs we are proposing is as shown in Table 2.5.1.  

It is important to emphasize we are using only one version of a cat loss simulation model in 
evaluating the impact of these changes. Typically we would employ the most recent version of the 
model as it incorporates the latest knowledge and advances in methodology. To switch models 
would be analogous to switching measuring sticks between two measurements: we would be unsure 
how much of any difference was due to a real difference and how much was due to the switch in our 
measuring stick.  

 

                                                           
17 For a limited excess layer, a uniform change in the values of all locations does not necessarily lead to the same 
proportionate change in the 100% layer loss.  
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2.6 Adjustment Factor Formulas 

To translate the 100% Layer Technical Premiums from the three cat runs listed in Table 2.5.1 
into Technical Rates, we divide by the appropriate TIVs. We will then define Location Mix and 
Coverage Structure Adjustment Factors (MXAF and CSAF respectively) by taking the following 
ratios of Technical Rates:  

 

 
Rate based on Renewal Location Schedule and Expiring 100% Coverage Layer
Rate based on Expiring Location Schedule and Expiring 100% Coverage Layer

MXAF =  

 

(2.6.1)

Rate based on Renewal Location Schedule and 100% Renewal Coverage Layer
Rate based on Renewal Location Schedule and 100% Expiring Coverage Layer

CSAF =  
(2.6.2)

 

The derivation of adjustment factors for our sample account is shown in Table 2.6.1. Note under 
our definitions the Location Mix Adjustment Factor will be unity if there is no change in the 
location schedule and the Coverage Structure Adjustment Factor will be unity if there is no change 
in the 100% layer of coverage. An adjustment factor value above unity means that some of the 
Nominal Renewal Rate increase is absorbed in covering the impact of the associated location 
schedule or coverage layer change. See Appendix A for more compact versions of these formulas.  

 

Table 2.5.1 

Cat Runs for Renewal Rate Change Monitoring 
 

Number Location 
Schedule 

100% Coverage 
Layer 

Cat Model 

1. Expiring Expiring Current 

2. Renewal Expiring Current 

3. Renewal Renewal Current 
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2.7 Renewal Rate Change Formula 

We are now finally ready to calculate the Renewal Rate Change (ΔR) by netting the impacts of the 
Location Mix and Coverage Structure changes from the Nominal Renewal Rate Change (ΔN).18 The 
formula is: 

 

(1 ) 1NR
MXAF CSAF

+ Δ
Δ = −

⋅
 

(2.7.1)

 

Here ΔN is the Nominal Rate Change, MXAF is the Location Mix Adjustment Factor, and CSAF 
is the Coverage Structure Adjustment Factor.  

In Table 2.7.1, we apply this formula to Wayne’s Widgets. Table 2.7.1 shows how the Nominal 
Renewal Rate decrease in our example has been transformed into a sizeable (adjusted) Renewal Rate 
increase. We think this more accurately represents the real rate change. 

                                                           
18 An alternative terminology is to call ΔR the Effective Renewal Rate Change and refer to ΔN as the Renewal Rate 
Change. We choose to call ΔR the Renewal Rate Change and refer to ΔN as the Nominal Renewal Rate Change.  

Table 2.6.1 

Expiring Exposure
Expiring Layer

Renewal Exposure
Expiring Layer

Renewal Exposure
Renewal Layer

Coverage $5m p/o $25m x $5m $5m p/o $25m x $5m $2.5m p/o $10m x $15m
Exposure (TIV) $30,000,000 $25,000,000 $25,000,000
Company Share 20% 20% 25%
100% AAL $50,000 $40,000 $15,000
100% PML $15,000,000 $11,000,000 $5,000,000
Technical Premium $300,000 $225,000 $97,500
Technical Rate $10.00 $9.00 $3.90
Adjustment Factor 0.900 0.433

Technical Premiums, Technical Rates and Adjustment Factors 
Wayne's Widgets
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2.8 Premium Reconciliation 

It is useful to reconcile the Expiring and Renewal Premiums. The reconciliation proceeds 
mathematically as follows: 

= ⋅ ⋅ ⋅ ⋅ ⋅ + Δ(1 )REN REN
REN EXP

EXP EXP

s TIVP P MXAF CSAF R
s TIV

 
(2.8.1)

In words, to go from the Expiring Premium to the Renewal Premium, we need to adjust for 
changes in Share, Exposure Magnitude, Exposure (location) Mix, Coverage Structure (100% layer), 
and then reflect the true Renewal Rate Change.  

For our example account we get: 

.25 2540,000 50, 000 .90 .433 (1.97)

.20 30
= ⋅ ⋅ ⋅ ⋅ ⋅  

(2.8.2)

From this perspective, we see the overall premium change has been split between a real rate level 
change component and other components that are not counted as real rate change contributors. 
These non-rate change factors include volume scaling factors such as change in Share and change in 
Exposure Magnitude. They also include rate movement factors due to Location Mix and Coverage 
Structure changes.  

Table 2.7.1 

Wayne's Widgets
Expiring Renewal

Premium $50,000 $40,000
Coverage $5m p/o $25m x $5m $2.5m p/o $10m x $15m
Exposure (TIV) $30,000,000 $25,000,000
Company Share 20% 25%
Layer 100% Premium $250,000 $160,000
Rate per $1000 TIV $8.33 $6.40
Nominal Rate Change -23%
Location Mix Adjustment Factor (MXAF) 0.9000
Coverage Structure Adjustment Factor (CSAF) 0.4333
Renewal Rate Change 97%

Renewal Rate Change
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2.9 Notional Expiring Premium  

We can also infer what the Expiring Premium would have been if it were based on the same 
location schedule and layer of coverage as the Renewal policy. We will call this the Notional 
Expiring Premium and denote it as PNXP.

19 Following the definition, it is derived by starting with the 
Expiring Premium and adjusting for Share, Exposure Magnitude, Location Mix, and Coverage 
Structure changes. It is not hard to see this is equivalent to the Renewal Premium net of the Renewal 
Rate Change.  

 

(1 )
REN REN REN

NXP EXP
EXP EXP

TIV s PP P MXAF CSAF
TIV s R

= ⋅ ⋅ ⋅ ⋅ =
+ Δ

 
(2.9.1)

For our Wayne’s Widgets example, we find that PNXP =40,000/ (1.97) = $20,312. This is far less 
than the actual Expiring Premium of $50,000.  

2.10 Account Renewal Rate Change Summary 

To summarize our derivation of Renewal Rate Change for an account, we first put the rates on a 
100% basis to eliminate any distortion due to change in share. Then we adjusted the Nominal Rate 
Change for Location Mix and Coverage Structure changes. The adjustments were derived by using a 
Cat Loss simulation model to compute, in sequence, the impact such changes would have on 
Technical Premium rates. We assumed the relationship between Technical Premiums rates should 
apply to the charged premium rates. So, for example, if changing the 100% coverage layer moved 
the Technical Premium Rate by 10%, then we assumed 10 points of any Nominal Rate Increase 
would be attributable to the difference in Coverage Structure. The final Renewal Rate Change is the 
Nominal Rate Change net of these Location Mix and Coverage Structure adjustment factors. We 
have also seen how the Renewal Rate Change thus defined can be reconciled with the absolute 
change in premium.  

2.11 Alternative Renewal Rate Change Estimates 

Once we go beyond the simple calculation of Nominal Renewal Rate Change and attempt to 
reflect the impact of differences between the Renewal and Expiring policies, we introduce questions 
about how to evaluate the rate impact of such differences. So, while all actuaries should arrive at the 

                                                           
19 Another name for what we call the Notional Expiring Premium is the Renewal Premium at Expiring Rates. 
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same Nominal Rate Change for an account, they might arrive at alternative estimates of the Renewal 
Rate Change. Such divergent estimates could arise from the use of alternative Cat Simulation Models 
and Technical Premium formulas.20  

On working excess layers, we have found that most models and formulas produce percentage 
adjustments often within a few points of one another, and seldom more than five to ten points 
apart. In contrast, on very high excess layers, we may see significantly different results when 
different models and formulas are used. As Cat Simulation Models improve over time, we would 
expect the range of differences to become narrower and we would also expect major differences to 
be found on smaller sets of accounts.21 A key point is that all actuarially sound models and formulas 
should produce consistent results, even for high excess layers. For example, if the 100% layer limit is 
reduced and all else remains unchanged, the Coverage Structure Adjustment Factor will always be 
less than unity since the reduced coverage and reduced risk imply a reduced rate.  

 While it is disheartening not to have an indisputable exact answer, the use of estimates is 
common in many aspects of current actuarial practice. Part of the art inherent in actuarial science is 
in selecting appropriate parameters, formulas, and models in order to derive a reasonable range of 
estimates and then in selecting a final pick within that range. Such is the case in the procedure we are 
proposing for estimating the real rate change. 

 

3. PORTFOLIO AVERAGE RATE CHANGE 

Once we have the Renewal Rate Change for each policy, the question then is how to aggregate 
results to get the portfolio average Renewal Rate Change. It is a common practice to simply take a 
weighted average of the rate changes, where Renewal Premiums are used as weights. However, as we 
will demonstrate, this practice leads to an overly optimistic estimate of rate change. The bias goes 
one way: rate level improvements are not as substantial as indicated and rate level decreases are 
worse than indicated. Weights based on Expiring Premiums are better, but they give an out-of date 
and potentially distorted picture. We will present an alternative in which the weights are based on 
the Notional Expiring Premiums defined in Chapter 2. We will walk through a series of hypothetical 
                                                           
20 This problem is not unique to Cat-Exposed Property insurance. Using increased limits factors, one could derive 
coverage structure adjustments for casualty accounts and different sets of factors would lead to different rate change 
estimates.  
21 Other implementation and data issues are discussed in Appendix B. 
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scenarios comparing the weighted average rate changes that result from these weights.  

 3.1 Renewal Premium Weighting Bias  

 Suppose we have a portfolio of four risks. Assume for the base case that the Exposure 

Magnitude stays constant, as does the Share, Location Mix, and Coverage Structure. Only the rates 
change as shown in Table 3.1.1.  

 In the Base Case we have rate changes by account that end up generating the same overall 
premium for the expiring and renewal portfolios. Despite the fact that we are getting the same exact 
money to cover the same exact exposures overall, the weighting of rate changes on Renewal 
Premiums incorrectly indicates there is a sizeable overall rate increase. This happens because the 
Renewal Premium weighting algorithm inherently gives undue emphasis to those policies that had 
rate increases while deemphasizing those that had decreases. In other words, it overcounts rate 
increases and undercounts rate decreases. As a consequence, the result from weighting with Renewal 
Premium is biased. It paints an overly optimistic picture of any actual portfolio level increase and 
masks the true extent of any portfolio level decrease.  

 

Table 3.1.1 

Expiring Renewal

Risk
Prem
(000) Share

TIV
mill

Prem
(000) Share

TIV
mill

Nominal 
Rate 

Change
Rate 

Change

NXP
Prem
(000)

A $200 25% 100 $280 25% 100 40% 40% $200
B $200 25% 100 $120 25% 100 -40% -40% $200
C $50 25% 200 $70 25% 200 40% 40% $50
D $50 25% 50 $30 25% 50 -40% -40% $50

Total $500 25% $500 25% $500

Weights
Renewal Prem 16% 16%
Expiring Prem 0% 0%
NXP Prem 0% 0%

Portfolio Weighted Average Rate Change
Base Case 
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3.2 Expiring Premium Weighting Inaccuracy  

In the Base Case, there was no difference between the actual Expiring Premium and the Notional 
Expiring Premium. Now we will modify our example by increasing our share on the accounts that 
had rate increases. These share increases boost Renewal Premiums, but they do not impact the 
individual account rate increases. This “Shares Up on Accounts with Rate Increases” scenario is 
shown in Table 3.2.1. 

Since more business is from accounts that had increases, we should expect to see a rate increase 
for the overall portfolio. However, because changing shares has no impact on the Expiring 
Premium, a weighting on Expiring Premium is the same as in the Base Case and yields no portfolio 
rate increase.  

Table 3.2.1 

Expiring Renewal

Risk
Prem
(000) Share

TIV
mill

Prem
(000) Share

TIV
mill

Nominal
Rate 

Change
Rate 

Change

NXP
Prem
(000)

A $200 25% 100 $560 50% 100 40% 40% $400
B $200 25% 100 $120 25% 100 -40% -40% $200
C $50 25% 200 $140 50% 200 40% 40% $100
D $50 25% 50 $30 25% 50 -40% -40% $50
Total $500 25% $850 43% $750

Weights
Renewal Prem 26% 26%
Expiring Prem 0% 0%
NXP Prem 13% 13%

Portfolio Weighted Average Rate Change
Shares Up on Accounts with Rate Increases
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Next, in Table 3.2.2, we look at an example in which the TIVs increase only for the accounts that 
had rate increases.  

In Table 3.2.2, we assume the TIV changes only impact the Exposure Magnitudes. Therefore 
these exposure differences do not alter the rate change for any account, yet they do change the 
relative weight of an account within the portfolio. With more weight now given to accounts that had 
rate increases, we should now expect to see an overall rate increase. This overall rate increase does 
appear when Notional Expiring Premium weights are used. In contrast, the weighted average as 
computed with Expiring Premium weights incorrectly shows no overall rate increase. This is not 
surprising. By definition, the Expiring Premium weights cannot respond to this TIV-driven change 
in portfolio mix.  

Finally, in Table 3.2.3 we look at a scenario where accounts have Renewal Rate Changes that 
offset one another in such a way that the total Notional Expiring Premium equals the total Renewal 
Premium. This means there has been no overall rate change.  

Table 3.2.2 

Expiring Renewal

Risk
Prem
(000) Share

TIV
mill

Prem
(000) Share

TIV
mill

Nominal
Rate 

Change
Rate 

Change

NXP
Prem
(000)

A $200 25% 100 $504 25% 180 40% 40% $360
B $200 25% 100 $120 25% 100 -40% -40% $200
C $50 25% 200 $126 25% 360 40% 40% $90
D $50 25% 50 $30 25% 50 -40% -40% $50
Total $500 25% $780 25% $700

Weights
Renewal Prem 25% 25%
Expiring Prem 0% 0%
NXP Prem 11% 11%

Portfolio Weighted Average Rate Change
TIVs Up on Accounts with Rate Increases
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When we weight on Notional Expiring Premiums, we correctly end up with that 0% overall 
portfolio rate change. Weighting with either Expiring or Renewal Premium incorrectly overstates the 
rate increase. Further, this scenario demonstrates that a weighted average taken with Notional 
Expiring Premiums does not have to fall between the corresponding weighted averages computed 
with Renewal Premiums and Expiring Premiums respectively.  

 

3.3 Notional Expiring Premium Weighting  

We have seen through concrete examples that Notional Expiring Premium weights are 
demonstrably superior to either Renewal Premium or actual Expiring Premium weights. They do not 
overcount rate increases and undercount rate decreases like Renewal Premiums do. They do not 
ignore changes in the weight of an account within the portfolio as actual Expiring Premiums do. 
There is an intuitive appeal to derive weights by taking the Renewal Premiums and backing out the 
Renewal Rate Changes. The resulting weights will be appropriately sensitive to relative importance 
of an account within the current portfolio. As noted in Equation (2.9.1), the resulting premiums are 
algebraically equivalent to the Notional Expiring Premiums. To summarize, our proposal is to 
compute the overall portfolio rate change (ΔR(TOT)) using Equation (3.3.1). 

 

Table 3.2.3 

Expiring Renewal

Risk
Prem
(000) Share

TIV
mill

Prem
(000) Share

TIV
mill

Nominal
Rate 

Change
Rate 

Change

NXP
Prem
(000)

A $200 25% 100 $280 25% 100 40% 75% $160
B $200 25% 100 $120 25% 100 -40% -50% $240
C $50 25% 200 $70 25% 200 40% 17% $60
D $50 25% 50 $30 25% 50 -40% -25% $40
Total $500 25% $500 25% $500

Weights
Renewal Prem 16% 31%
Expiring Prem 0% 9%
NXP Prem -5% 0%

Portfolio Weighted Average Rate Change
Offsetting Coverage Strucuture Changes
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( )
( ) ( ) 1 ( )( ) ( )( )

1 ( )

REN

NXP

RENNXP

P R iP i R i R iR TOT P iP i
R i

⋅Δ
⋅Δ + Δ

Δ = =

+ Δ

∑∑
∑ ∑

 

(3.3.1)

 

 3.4 Weighted Harmonic Average Interpretation  

We have felt it intuitively appealing to present our procedure as the computation of an arithmetic 
weighted average of rate changes and to focus our attention on arriving at the proper weights. This 
allowed us to directly demonstrate the error in using Renewal Premium weights when computing the 
arithmetic weighted average rate change and to further argue that Notional Expiring Weights should 
be used instead. Another approach is to retain the Renewal Premium Weights, but to use a different 
type of average, called the harmonic average. This interpretation is mathematically presented in the 
derivation shown in Equation (3.4.1).  

 

( )
1 ( )( ) ( )

1 ( )

(1 ( )) ( )1 ( ) 1 1( ) ( )
1 ( ) 1 ( )

REN

REN

REN

REN

REN REN

P R i
R iR TOT P i

R i
P R i P iR i

P i P i
R i R i

⋅Δ
+ Δ

Δ =

+ Δ

⋅ + Δ
+ Δ

= − = −

+ Δ + Δ

∑

∑

∑ ∑
∑ ∑

 

(3.4.1)

 

The latter ratio of sums in Equation (3.4.1) is the Weighted Harmonic Average of the Renewal 
Rate Change Factors with weights based on Renewal Premiums. Some actuaries may be more 
comfortable with this interpretation.  

We may also use a mathematical argument based on harmonic averages to buttresses our intuitive 
reasoning about why the Renewal Premium Weighted Average of Rate Changes is biased upward. It 
can be easily shown that the Weighted Harmonic Average is always less than or equal to the 
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Weighted Arithmetic Average. The inequality in Equation (3.4.2) holds.  

 

( )
( ) 1( )

1 ( )

( ) (1 ( )) ( ) ( )
1

( ) ( )

REN

REN

REN REN

REN REN

P i
R TOT P i

R i
P i R i P i R i

P i P i

Δ = −

+ Δ

⋅ + Δ ⋅Δ
≤ − =

∑
∑

∑ ∑
∑ ∑

 

(3.4.2)

 

 It follows from Equation (3.4.2) that weighting Renewal Rate Changes with Renewal Premium 
weights produces an overly optimistic result.  

4. CONCLUSION  

We have presented solutions to the two major actuarial problems that can cause the Renewal 
Rate Change metric to be misleading on Cat-Exposed Excess Property business. Our first problem 
was to figure out how to adjust the nominal rate changes so as to properly account for differences in 
the layer structure and location mix of the renewal and expiring policies. Our solution was to derive 
Technical Premiums with the latest cat loss simulation model, first changing the locations and then 
changing the coverage layer. From these we computed Technical Premium rates and then derived 
adjustment factors by taking appropriate ratios between these rates.  

Our second major problem was to find which weights to use when computing the overall 
portfolio rate change as a weighted average of the individual account rate changes. We found there is 
an optimistic bias in the results when Renewal Premium weights are used. We also demonstrated 
that weighting on Expiring Premiums is flawed, as it is insensitive to changes in Share and to 
portfolio level TIV mix changes. Our solution was to weight on premiums adjusted to be at the 
expiring rate level, but based on the renewal location schedule, share, and layer structure. We called 
these the Notional Expiring Premiums. We have seen these are equivalent to Renewal Premiums 
Net of Rate Change. We have also shown our approach is equivalent to taking the Weighted 
Harmonic Average of Rate Changes while using the Renewal Premiums as weights.  

We hope some practical benefit will come from our efforts to resolve actuarial questions about 
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how to calculate Renewal Rate change statistics on Cat-Exposed Excess Property business. 
Accounts in this business have been subject to large rate swings, the magnitude of which may have 
been obscured by changes in location schedules and coverage layers and by actuarially incorrect ways 
of aggregating individual account rate changes. It is our intent to foster development of a uniform 
and actuarially valid approach to computing the Renewal Rate change on this business so as to 
increase the accuracy and public credibility of reported rate change statistics. While the use of 
different Cat Simulation models may lead to different Renewal Rate Change estimates, a reasonable 
range of estimated effects due to changes in Coverage Structure and Location Mix is better than 
ignoring the effects of such changes altogether. We would encourage others to write on these and 
other actuarial issues inherent in rate monitoring statistics so that a more extensive literature on price 
monitors develops over time.  
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Appendix A – Notation and Formulas  

 
In Table A.1, we define our basic notation: 

 
Table A.1 

 
Basic Notation 

P Premium at Company Share 
P100 Premium at 100%  
K Company Limit 
K100 100% Layer Limit 
T Total Insured Value 
S Company Share 
N Nominal Rate 
 

For the ith policy, Equations (A.1), )A.2), (A.3), and (A.4) hold:  

 s(i) = K(i)/K100(i) 
 

(A.1)

 P(i) =  s(i) ⋅P100(i) 
 

(A.2)

 N(i)= P100(i)/T(i) 
 

(A.3)

 P(i) = N(i)⋅s(i)⋅T(i) 
 

(A.4)

Use subscripts EXP and REN to denote whether a variable is for the expiration or renewal policy 
respectively. Define the Nominal Renewal Rate Change for the ith policy as: 

( )( )
( )

( )
REN EXP i

EXP

N i N
N i

N i
−

Δ =  
(A.5)

We will suppress the policy “(i)” notation to simplify the formulas and derivations that follow 
unless it is needed for clarity.  

To make mix and coverage change adjustments, we define the following 100% Technical 
Premium Rates: 
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Table A.2 

Technical Premium Rate 100% Layer Exposures 
QREN,REN Renewal Renewal 
QREN,EXP Renewal Expiring 
QEXP,EXP Expiring Expiring 

 
The Location Mix and Coverage Structure adjustment factors are defined as follows: 

R ,

,

EN EXP

EXP EXP

Q
MXAF

Q
=  

(A.6)

R ,

,

EN REN

REN EXP

Q
CSAF

Q
=  

(A.7)

The Renewal Rate Change, ΔR, is given as: 

( ) 11
−

•
Δ+

=Δ
CSAFMXAF
NR  

(A.8)

In words, to get the Renewal Rate Change we start with the Nominal Rate Change and net out 
the Mix Change and Coverage Structure Change adjustments. Next we define the Notional Expiring 
Premium by taking the Expiring Premium and adjusting for changes in Exposure Magnitude, Share, 
Location Mix, and Coverage Structure.  

REN REN
NXP EXP

EXP EXP

TIV sP P MXAF CSAF
TIV s

= ⋅ ⋅ ⋅ ⋅  
(A.9)

It follows from these definitions that:  

(1 )
REN

NXP
PP

R
=

+ Δ
 

(A.10)

Weighting with the Notional Expiring Premium, we define the overall portfolio Renewal Rate 
Change as:  

( ) ( )
( )

( )
NXP

NXP

P i R i
R TOT

P i
⋅Δ

Δ = ∑
∑

 
(A.11)

The overall portfolio Renewal Rate Change can be equivalently express as the Weighted 
Harmonic Average of the Renewal Rate Change Factors using Renewal Premium weights:  
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To see this consider that 
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APPENDIX B - DATA AND MODELING ISSUES  

The reliability of the Renewal Rate Change statistic depends heavily on having accurate data. The 
database fields for the calculations we have outlined include premium, coverage layer (attachment, 
company limit, and layer limit) parameters, and location schedule information for “matched” 
renewal and expiring policies. Most experienced actuaries will have their own ways of checking the 
data for reasonability and flagging questionable data items. Our purpose here is to point out a few 
data issues beyond the usual ones. We also want to mention a few of issues that might arise is using 
Cat Loss simulation models in the rate monitoring process.  

B.1 Matching  

The matching is often more difficult than it might first appear. Sometime an account will have a 
check mark in a renewal status field, yet its expiring policy may be missing. The account name and 
number may have changed, and there may be no easy automated way to pair up wayward accounts. 
Coverages must also be matched, as a renewal and expiring account may sometimes have different 
coverages. For example, Business Interruption (BI) may be covered on the expiring policy but not 
the renewal. In that case, the premium allocated for BI on the expiring policy should be removed.  

B.2 Annualized Premium 

Another issue is that the expiring and renewal policy may have different durations. One way to 
handle this is to compute rates with annualized premiums and exposures. Though it is an 
unnecessary duplication for many accounts, it is worth having a separate annualized premium field. 
This field can also be used to adjust for midterm endorsements. While annualized premiums are 
recommended for use in computing rates and rate changes, the actual and not the annualized 
premiums should be used when weighting rate changes to obtain the portfolio average rate change.  

B.3 Aging of Statistics 

The actuary may also find it instructive to look at how the monitor statistics “age” over time. In a 
rush to get the latest pricing statistics, management may insist on getting monitor statistics produced 
as quickly as possible after a period closes. Yet this may miss many pricing changes, new business 
bookings, and nonrenewals that come in later. There may also be a spate of endorsements, 
extensions, cancellations, or back-outs of endorsements. Producing refreshed versions of monitor 
statistics may reveal a characteristic pattern where, for example, a 10% increase on first look declines 
to 2% over the next two months as booking is “trued up” in the system. Studying a series of 
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refreshed monitors may also turn up specific offices, lines of business, or underwriters with stellar 
initial statistics that evaporate over time.  

B.4 Quality of Location Schedule Data 

The data on location schedules is usually checked by cat modelers during the cat modeling 
process. However, as with any data from whatever source, the actuary would be well advised to 
check it. The cat modeler will typically do statistical data checks to tell, for example, that 90% of the 
locations are geo-coded to the zip code level or better. With large location schedules, having another 
set of human eyes review the data can often turn up potential anomalies the machine may miss. For 
example, duplicate entry errors may be masked by street addresses with names or numbers that 
differ slightly. The actuary should also check the TIV data. Locations with small TIVs should not be 
ignored. The TIVs for some of those locations may have been incorrectly entered in units of 
thousands. A comparison should also be done of the new schedule against the prior one. If both 
schedules have identical location addresses and values, the actuary should request an update. If some 
locations in the new schedule are missing street addresses, the actuary may find them in the prior 
schedule. Data fields on Construction, Occupancy, and other characteristics are also shown on the 
location schedule. Having accurate entries will usually have a material impact on the quality of 
answers coming out of any cat loss simulation model. It is thus worthwhile to ask the underwriter to 
contact the broker for more definitive information if for example half the construction types are 
listed as “unknown.” Overall, the key to achieving better data quality is to work cooperatively with 
underwriters and cat modelers.  

 

B.5 Implementation Issues 

Before attempting to implement the procedures suggested in this paper, the actuary would be 
well advised to run sensitivity tests and sample computations for a large set of renewal accounts. 
When evaluated on actual accounts, a Technical Premium formula that is superior to another in 
theory may turn out to be inferior in practice. A robust formula that always yields sensible results 
that move in the right direction may be preferable to one that for unknown reasons produces bizarre 
results on a small percentage of accounts even while performing in stellar fashion on the others. 

Part of the problem is that current cat loss simulation models are not quite up to the task we have 
set for them. They were designed for portfolio analysis and they do a reasonably credible job costing 
reinsurance treaties. However, anomalous results can sometimes crop up for individual insureds, 
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especially for those with a small number of locations. With currently available models, portfolio 
impact statistics22 on individual accounts also tend to misbehave more than comparable stand-alone 
statistics. Advances in cat loss simulation modeling should mitigate problems of this sort over time. 

                                                           
22 The portfolio impact version of a statistic is the difference between its value on the portfolio after adding the 
additional insured and its value on the initial portfolio.  
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Statistical Trend Estimation with Application to Workers 
Compensation Ratemaking 

Frank Schmid 

 
________________________________________________________________________ 
Abstract 

Motivation. Estimating the trend of the severity, frequency, and loss ratio rates of growth is an integral part of 
NCCI ratemaking. The time series from which such trend estimation has to be derived are typically short and 
volatile, comprising only 19 observations or, equivalently, 18 rates of growth. Thus, separating signal (i.e., trend) 
from (white) noise is particularly challenging. 
Method. NCCI has developed a Bayesian Statistical Trend model that is geared toward extracting the trend in 
short and high-volatility time series. This model has been optimized by minimizing the root mean squared 
prediction error across NCCI states using three-year hold-out periods (as the applicable forecasting horizon is 
typically around three years). 
Results. We present trend estimates for severity, frequency, and loss ratio rates of growth for an unidentified 
state. The model is robust to outliers and delivers stable, yet time-varying trend estimates. 
Conclusions. The statistical properties of the model are conducive to rate stability and, at the same time, allow 
the practicing actuary to recognize changes in trend. 
Availability. The model runs in WinBUGS 1.4.3 (www.mrc-bsu.cam.ac.uk/bugs) within the R (www.r-
project.org) package R2WinBUGS (http://cran.r-project.org). WinBUGS is administered by the MRC 
Biostatistics Unit, University of Cambridge, UK; R is administered by the Technical University of Vienna, 
Austria. WinBUGS and R are GNU projects of the Free Software Foundation and hence available free of charge. 
 
Keywords. Trend and loss development; Bayesian methods; time series; Workers Compensation. 

             

1. INTRODUCTION 

Estimating the trend of the frequency, severity, and loss ratio rates of growth is an integral part of 
NCCI ratemaking. The time series on which such trend estimation rests are typically short, 
comprising only 19 observations or, equivalently, 18 rates of growth. Further, these time series may 
display high degrees of volatility. Thus, separating signal (i.e., trend) from (white) noise is critical for 
discerning the trend. To achieve this objective, NCCI has developed and implemented a Bayesian 
state-space model that is designed to elicit the trend in short and volatile time series. This model has 
been optimized by minimizing the root mean squared prediction error (RMSPE) across NCCI states 
using three-year hold-out periods (as the applicable forecasting horizon typically amounts to about 
three years). 

The Statistical Trend model runs in WinBUGS 1.4.3 (www.mrc-bsu.cam.ac.uk/bugs) within the 
R (www.r-project.org) package R2WinBUGS (http://cran.r-project.org). WinBUGS is administered 
by the MRC Biostatistics Unit, University of Cambridge, UK; R is administered by the Technical 
University of Vienna, Austria. WinBUGS and R are GNU projects of the Free Software Foundation 
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and hence available free of charge. 

1.1 Research Context 

Forecasting is a signal extraction and signal extrapolation problem. Measurement errors cause the 
quantities of interest (such as the rates of growth of indemnity severity, medical severity, and 
frequency) to be observed with (presumably Gaussian) noise, thus obscuring the signal. In 
forecasting, the signal is the quantity of interest, because it is the signal on which future observations 
center. Specifically, it is the objective of a forecasting model to educe from historical observations 
the process that generates the unobservable signal. Because a forecasting model replicates the data-
generating process of the signal (as opposed to replicating the observations themselves), its quality 
cannot be judged by the (in-sample) fit to the observed data, as gauged, for instance, by the 2R  or 
similar measures of goodness of fit. In fact, good fit to heretofore observed data harbors the risk of 
overfitting. Such overfitting may imply that the forecasts do not center on the signal, thus giving rise 
to potentially large forecasting errors. The risk of overfitting affords parsimony a critical role in time 
series modeling. 

As an example, consider a game of dice. In any roll of a pair of dice, the expected value of the 
outcome is 7. This expected value is the signal, which manifests itself as the mean outcome as the 
number of rolls goes to infinity. The signal offers an unbiased forecast for any future toss; the 
difference between the observations and the signal is noise. Thus, among all possible forecasting 
models, the one that simply produces the time-invariant signal of 7 as its forecast has the lowest 
expected root mean squared prediction error. Yet, this forecasting algorithm offers the worst in-
sample fit possible, as the model has no explanatory power with regards to the variation of the 
outcome around the expected value. Not surprisingly, a least-squares regression of the 36 possible 
outcomes on the time-invariant signal reveals an 2R  equal to zero. 

Two common properties in time series are nonstationarity and mean reversion. In the example 
above, nonstationary is equivalent to a time-varying mean; instead of invariably equaling 7, this mean 
would change in time. As will be argued below, in workers compensation, the frequency rate of 
growth (and, as a result, the loss ratio rate of growth) should be treated as nonstationary. 

Mean reversion, on the other hand, implies that the outcomes of the mentioned rolls of dice are 
not independent draws, thus causing serial correlation. In games of chance, such mean reversion is 
associated with the gambler’s fallacy, which rests on the (erroneous) belief that below-average 
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outcomes of past rolls of dice are to be corrected by above-average outcomes in the future (instead 
of simply being diluted). Although the business cycle may introduce mean reversion in the severities 
and frequency rates of growth, such mean reversion is likely to be weak and, more importantly, 
cannot be expected to improve the quality of the forecasts in short non-stationary time series due to 
lack of precision in estimating such mean reversion. 

Traditionally, NCCI estimates trends using the exponential trend approach, which is a linear 
regression of logarithmic levels on a sequence of integers that indicate time. 

1.2 Objective 

Recent advances in statistical modeling offer ways of dealing with the problem of estimating 
trend rates of growth from times series that are short, volatile, and potentially nonstationary. The 
state-space modeling framework, along with the Metropolis-Hastings algorithm for estimating 
Bayesian models by means of Markov-Chain Monte Carlo (MCMC) simulation, makes such 
sophisticated statistical modeling available to the practicing actuary. 

1.3 Outline 

What follows is the presentation of a multiequation model for forecasting the trend in the rates 
of growth of the indemnity and medical severities, frequency, and the respective loss ratios. This 
model is then applied to a “paid” data set of an unidentified U.S. state for the time period 1987–
2005. The last section offers conclusions and guidance for implementation of this model in actuarial 
practice. 

2. BACKGROUND AND METHODS 

In the context of NCCI ratemaking, frequency is defined as the ratio of the developed (to the 5th 
report) number of claims to the developed (to the 5th report), on-leveled (to the current loss-cost or 
rate level, depending on the case), and wage-adjusted premium. Severity is defined as the ratio of the 
developed, on-leveled, and wage-adjusted loss to the developed (to the 5th report) number of claims. 
When defined in such way, the product of indemnity (medical) severity and frequency equals the 
indemnity (medical) loss ratio. In consequence, the logarithmic rate of growth of the loss ratio equals 
the sum of the logarithmic rates of growth of frequency and the applicable severity; in what follows, 
this property is referred to as the add-up constraint. 
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The model estimates the five rates of growth (the two severities, frequency, and the two loss 
ratios) simultaneously. Covariances among these variables account for common shocks. For 
instance, the severities and frequency are subject to common shocks because they share the wage 
adjustment; further, the severities and frequency share components of the on-leveling for changes in 
benefits levels. The joint estimation of the growth rates also allows for implementing the mentioned 
add-up constraint. This constraint ensures that, at any point in time, the estimated rates of growth of 
the indemnity (medical) severity and frequency are consistent with the estimated rate of growth of 
the indemnity (medical) loss ratio. 

The model uses logarithmic rates of growth, because conventional rates of growth have a lower 
bound at minus 1 and, hence, violate the assumption of normality. These logarithmic rates of growth 
are then transformed into conventional rates of growth to obtain the forecast rates of growth and, 
after adding 1, the NCCI trend factors. Further, the (conventional) rates of growth are compounded 
over the multiyear forecasting horizon or, equivalently, the NCCI trend period; the number of years 
of this trend period is typically not an integer. Adding 1 to the compounded rates of growth delivers 
the NCCI adjustment factors. The purpose of the adjustment factor is to scale up the levels of the 
variables of interest (the severities, frequency, and the loss ratios) from the end of the experience 
period (i.e., the time period for which there are observations available) to the end of the trend period 
(i.e., the end of the forecasting horizon). 

Note that transforming logarithmic rates of growth into conventional rates of growth necessitates 
a bias-adjustment when such transformation is done on the expected value; this is because, for a 
normally distributed variable x , 

2E[ ] / 2E[ ]x xe e σ+= . Because the model is estimated by means of 
Monte Carlo simulation, such transformation happens “draw by draw” (instead of on the expected 
value) and, thus, no bias-adjustment is necessary. 

For the time period 1988-2005, Chart 1 shows for an unidentified state the (conventional) rates 
of growth of the indemnity and medical severities. Chart 2 displays the growth rate for frequency. 
Finally, Chart 3 presents the growth rates of the corresponding loss ratios. 

Although Charts 1 through 3 are not necessarily representative of NCCI states, they are typical in 
that they are indicative of nonstationarity (i.e., time-variation in the mean) in the growth rate of 
frequency, but less so in the severities. Note that because the sum of two time series is nonstationary 
if at least one of the individual series is nonstationary, a time-varying mean in the growth rate of 
frequency implies time-varying means in the growth rates of both loss ratios. For instance, as Chart 
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2 shows, the growth rate of frequency was higher at around the year 1990 than it was ten years later; 
and because the variation in the mean growth rate of frequency was not offset by a change (in 
opposite direction) of the growth rates of the severities, such variation is mirrored in the means of 
the growth rates of the loss ratios (see Chart 3). 

Time series can be checked for nonstationarity, but such unit root tests have little power for 
short time series; as a consequence, these tests favor the null hypothesis of a (pure) random walk 
(see, for instance, Hamilton [4]). As will be argued below, stationarity and nonstationarity are 
limiting cases of a smoothed random walk. Frequently, neither stationarity (a time-invariant mean) 
nor a (pure) random walk is an appropriate assumption for forecasting models that rely on short and 
volatile time series. 

Chart 1: Growth Rates of Indemnity and Medical Severities, Policy Years 1988–2005 
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Another property frequently present in time series is serial correlation. Such serial correlation may 
originate in mean reversion, as caused by the business cycle. First, the rate of frequency growth may 
be hypothesized to vary with economic activity as the least productive workers are the last to be 
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hired in an economic upturn and the first to be laid off in a downturn. Second, wage growth is a 
(lagging) indicator of economic activity; hence, the wage-adjusting of losses (severities) and premium 
(frequency) may introduce mean reversion into the severities and frequency series. On the other 
hand, the business cycle in the United States has been fairly shallow over the past 20 years; there 
were only two official recessions (1990/91 and 2001) according to the NBER Business Cycle Dating 
Committee (http://www.nber.org/cycles/cyclesmain.html) and, according to the Federal Reserve 
Bank of Saint Louis Fred2 database (https://research.stlouisfed.org/fred2), only one-quarter of 
negative GDP growth. In conclusion, discerning a shallow mean-reverting process in time series as 
short and volatile as those depicted in Charts 1 through 3 harbors the risk of overfitting and is likely 
to add little predictive power to the forecasts. 

Chart 2: Growth Rate of Frequency, Policy Years 1988–2005 
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As mentioned, the forecasting model makes use of the concept of the smoothed random walk. 
For illustration, a simple model of a smoothed random walk may be written as follows: 

2~ N( , ) ,  1,...,t t yy x t Tσ =  (1.1)
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2

1~ N( , ) ,  2,...,t t xx x t Tσ− =  (1.2)
 

where 2N( , )μ σ  indicates a normal distribution with mean μ  and finite variance 2σ . Equation (1.1) 
states that the variable ty  is observed with measurement noise 2

yσ  around the unobservable mean 

tx ; in state-space format, this equation is called the measurement equation. Equation (1.2) states that 
the mean tx  is time-varying as described by a random walk with innovation variance 2

xσ ; in state-
space format, this equation is called the transition equation. 

Chart 3: Growth Rates of Indemnity and Medical Loss Ratios, Policy Years 1988–2005 
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There are two limiting cases to model (1.1–1.2), one of which is the case of stationarity, and the 
other one is the (pure) random walk. We obtain stationarity by setting the innovation variance 2

xσ  in 
the transition equation to zero: 
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2~ N( , ) ,  1,...,t t yy x t Tσ =  (2.1)

 

1 ,  2,...,−= =t tx x t T  (2.2)
 

Alternatively, we obtain the limiting case of a pure random walk by setting the measurement 
noise 2

yσ  to zero: 

 

,  1,...,t ty x t T= =  (3.1)
 

2
1~ N( , ) ,  2,...,t t xx x t Tσ− =  (3.2)

 

In the general case where neither time-variation in the mean (nonstationarity) nor measurement 
noise can be excluded, model (1.1-1.2) applies. In such a general model, it is necessary to determine 
how much of the time-variation in the dependent variable ty  should be assigned to noise ( 2

yσ ); the 
remainder represents innovation ( 2

xσ ). This allocation decision, which determines the degree of 
smoothing of the dependent variable, may be assigned to an algorithm such as the Kalman filter (as 
discussed in Evans and Schmid [2]; for a general discussion of the Kalman filter, see, for instance, 
Hamilton [4]). Note that for any given set of observations ,  1,...,ty t T= , there is only one degree of 
freedom in determining the optimal degree of smoothing, as choosing 2

yσ  determines 2
xσ , and vice 

versa. 

Unfortunately, the Kalman filter does not necessarily deliver the optimal degree of smoothing; in 
short and volatile time series in particular, the Kalman filter assigns more time variation to 
innovations in the mean than is conducive to minimizing the forecasting error. 

2.1 The Model 

The model to be introduced in this section is Bayesian. Such Bayesian models have a number of 
advantages over frequentist approaches, among which is the ease at which even very complex 
models can be estimated. For instance, if there were missing values in the severity, frequency, or loss 
ratio series, the model shown below would interpolate of its own accord, based on the estimated 
random walk properties. 
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The model is estimated using the Metropolis–Hastings algorithm, which computes the (posterior) 
distributions of the model parameters by means of Markov–Chain Monte Carlo simulation. For an 
introduction to Bayesian modeling see Gelman et al. [3]. 

Equation (4) below represents a system of transition equations for the rates of severity and 
frequency growth, which describe (smoothed) random walks; the innovations to these variables (i.e., 
the changes to their means) follow a multivariate normal distribution. Equation (5) states that the 
initial values for the three mentioned growth rates are also draws from a multivariate normal; the 
expected values of this normal are zero, but the covariance matrix imposes little restrictions on the 
means of their posterior distributions. Equation (6) describes the measurement equations, inclusive 
of the add-up constraint; in the measurement equations, the model fits to the observed values the 
process that is stated in Equation (4). Equations (7) through (10) describe the prior distributions for 
the covariance matrices of the initial states, the innovations, and the measurement noise; these 
covariance matrices are modeled on Wishart distributions. 
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~ W( ,1000) , 1,3=Ω Ri i i  (7) 
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~ W( ,10) , 2=Ω Ri i i  (8) 
 

1 2 3 30.01 ×= = ×R R I  (9) 
 

3 5 50.2 ×= ×R I  (10)

 

where N  and W  indicate normal and Wishart distributions, respectively. The variables ,ind ts  and 

,med ts  are the logarithmic rates of growth of indemnity and medical severities, respectively. The 
variable tfr  is the logarithmic rate of growth of frequency, and the variables ,ind tlr  and ,med tlr  are 
the logarithmic rates of growth of the indemnity and medical loss ratios, respectively. 3 3I ×  and 5 5I ×  
symbolize identity matrices. The larger the diagonal elements of 3R  are, the greater the degree of 
smoothing is. The matrix ( 1,...,3)i i =R  is a scale matrix that “represents an assessment of the order 
of magnitude of the covariance matrix” 1( 1,...,3)i i− =Ω  (WinBUGS [5]). (Note that the WinBUGS 
notation for the normal distribution makes use of the precision matrix, which is the inverse of the 
covariance matrix.) 

If (and only if) there is a predictable upswing in future economic activity, the model employs a 
covariate (explanatory variable). In this case then, the rate of frequency growth is modeled as the 
sum of a (smoothed) random walk and a standard regression component; this standard regression 
component hosts the covariate. The covariate of choice is the change in the rate of unemployment. 
As argued, in an economic upswing, the growth rate of frequency can be expected to rise as 
currently employed labor is utilized more intensively and currently unemployed labor is put back to 
work. Predictable upswings in economic activity typically happen in the wake of natural disasters; an 
example of such an event is Hurricane Katrina in 2005. 

When including a covariate, equations 
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substitute for Equations (4) and (5), and the following two equations are added to the model: 

 

~ N(0, )λλ τ  (13)
 

, , ,  1,...,fr t fr t tz z t Tλ δ= − ⋅ =  (14)

 

where the variable tδ  is the t  to 1t −  (accident year; policy year: 1t +  to 1t − ) difference in the rate 
of unemployment. The prior for the parameter λ  is a normal distribution with an expected value of 
zero and a variance ( 1

λτ
− ) that must be chosen sufficiently small to prevent λ  from picking up noise. 

The model generates forecasts by moving the (logarithmic) rates of growth of frequency and the 
severities forward according to the innovation variances of the random walks described in Equation 
(4) (or Equation (11), if applicable), based on the estimated innovation covariance matrix 1

1
ˆ −Ω . As is 

the case with all estimated parameters of the models, the forecasts come as posterior distributions, 
the means of which serve as the point estimates. The posterior distributions of the forecast trend 
and adjustment factors offer credible intervals, based on the chosen probability level (e.g., 95 
percent). These credible intervals differ in important ways from traditional, frequentist confidence 
intervals. Whereas in frequentist statistics the true value either lies within a given confidence interval 
or not, the (Bayesian) credible interval is indeed a probabilistic statement about its location; see 
Carlin and Louis [1]. Note that the credible intervals are statements about the trend rates of growth, 
rather than the realized rates of growth (which are the sum of trend and noise). 

3. RESULTS AND DISCUSSION 

In what follows we apply the model (without a covariate, that is, Equations 4 through 10) to an 
unidentified U.S. state. The observations for the severities, frequency, and the loss ratios run from 
policy years 1987 through 2005, which renders 18 rates of growth (1988–2005). 
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As mentioned, the objective of the model is to generate trend factors, which are estimates of the 
trend rates of growth. By means of scaling up these trend factors to the trend period (i.e., the 
forecasting horizon), we obtain the adjustment factors. 

NCCI typically computes adjustment factors not just for the final year, but also for the 
penultimate and antepenultimate years of the experience period. For instance, if the experience 
period ends with policy year 2005, then these alternative adjustment factors attach to the policy years 
2004 and 2003, respectively; the corresponding alternative trend periods end on the same point on 
the calendar year axis as does the trend period that attaches to policy year 2005. (Note that the 
model is estimated only once; in the example above, this means that the trend factors that attach to 
policy years 2004 and 2003 are based on the same estimation as the trend factor that attaches to 
policy year 2005, thus utilizing all observations of the experience period.) 

For a given policy year, the trend period runs from the midpoint of the policy year to the 
midpoint of what is known at NCCI as the effective period. The effective period is defined as the 
period in which the filed rate or loss cost (depending on the case) is going to be in effect. The 
midpoint of a policy year or an effective period is based on the assumed monthly premium 
distribution; such premium distribution may vary across states. As mentioned, the trend period 
attaches to the final year of the experience period, with alternative trend periods attaching to the 
penultimate and antepenultimate policy years. For the case at hand, this final year of the experience 
period is policy year 2005, and the trend period equals 3.001 years, rounded to the third decimal. 
Correspondingly, the trend period that attaches to the penultimate (antepenultimate) policy year of 
the experience period is 4.001 (5.001) years of length. 

When the change in the rate of unemployment is used as a covariate for frequency growth, 
then this variable is measured by the two-year difference of the rate of unemployment for policy 
years and by the first (i.e., one-year) difference of the rate of unemployment for accident years. For 
instance, for policy year 2005, the pertinent two-year difference is the change in level between the 
end-of-calendar-year 2006 and the end-of-calendar-year 2004 values. For accident year 2005, the first 
difference is the change in level between the end-of-calendar-year 2005 and the end-of-calendar-year 
2004 values. These end-of-calendar-year numbers of the unemployment rate refer to the final 
quarter of the year and are averaged over the three months in the quarter. (We average the rate of 
unemployment because only quarterly forecasts for the rate of unemployment are available.) In 
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determining the trend estimates for the unidentified state discussed below, no covariate was 
employed. 

As mentioned, the model presented above must be calibrated such that it minimizes the 
prediction error. This calibration is done by choosing the optimal degree of smoothing, as it 
manifests itself in the diagonal elements of the scale matrix 3R ; the prediction error is gauged by the 
RMSPE. To determine the optimal degree of smoothing, we ran the model with a holdout period of 
3 years for all NCCI states with an array of smoothing parameters; the diagonal elements of 3R  
(which determine the degree of smoothing) were varied equidistantly on a logarithmic scale. The 3-
year holdout period corresponds (approximately) to the applicable trend periods (of typically little 
more, but sometimes little less than 3 years). As shown in Chart 4, the RMSPE, aggregated across all 
NCCI states varies systematically with the degree of smoothing (which is represented by an index, 
not the actual magnitude of the diagonal elements of 3R ); the prediction error is large for little 
smoothing (low index values), because little smoothing entails a great deal of fitting to noise; also, 
the prediction error is large for extensive smoothing (high index values), because a high degree of 
smoothing insufficiently accommodates the nonstationarity of the underlying growth series. 

Based on data from an unidentified state, the model is estimated using WinBUGS 1.4.3 within 
the R package R2WinBUGS. We sample 50,000 times, following a burn-in of 50,000 iterations. 

The results for the severities, the frequency and the loss ratios are displayed in Charts 5 through 
7. The dashed vertical lines in these charts indicate the beginning of the trend period, which attaches 
to the final year of the experience period (policy year 2005). 

Chart 5 displays the actual, fitted, and forecast trend growth rates for indemnity and medical 
severities. The mean rates of severity growth show little time variation, although the indemnity 
growth rate is slightly trending up. The chart demonstrates that, for both series, the forecasts are not 
sensitive to the respective final observed value, which is desirable as any observed value contains 
potentially a great deal of noise. 

Chart 6 depicts the actual, fitted, and forecast trend growth rates for frequency. Here, there 
is clearly evident a downtrend in the mean rate of growth. Also, note the insensitivity of the model 
to the outlier in the year 1997. 

Chart 7 exhibits the actual, fitted, and forecast trend growth rates for the indemnity and 
medical loss ratios. The medical loss ratio trend rate of growth clearly follows the trend in frequency 
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growth, while the indemnity loss ratio trend rate of growth is also influenced by the uptrend in the 
trend growth rate of indemnity severity. 

Charts 8 and 9 present the posterior distributions for the estimated trend factors and 
adjustment factors for frequency, the indemnity and medical severities, and the indemnity and 
medical loss ratios. 

Chart 4: Root Mean Squared Prediction Error (RMSPE) as a Function of the Degree of Smoothing 
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Chart 5: Growth Rates of Indemnity and Medical Severities (Actual, Fitted, and Forecast), Policy 
Years 1988–2005 (Forecasts: 2006–2009) 
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Chart 6: Growth Rate of Frequency (Actual, Fitted, and Forecast), Policy Years 1988–2005 
(Forecasts: 2006–2009) 
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Chart 7: Growth Rates of Indemnity and Medical Loss Ratios (Actual, Fitted, and Forecast) Policy 
Years 1988–2005 (Forecasts: 2006–2009) 
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Chart 8: Posterior Densities for Trend Factors 
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Note: The first index in brackets refers to the policy year of the experience period at which the trend 
factor attaches (1: final; 2: penultimate; 3: antepenultimate). The second index represents the series 
(1: indemnity severity; 2: medical severity; 3: frequency; 4: indemnity loss ratio; 5: medical loss ratio). 
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Chart 9: Posterior Densities for Adjustment Factors 
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Note: The first index in brackets refers to the policy year of the experience period at which the 
adjustment factor attaches (1: final; 2: penultimate; 3: antepenultimate). The second index represents 
the series (1: indemnity severity; 2: medical severity; 3: frequency; 4: indemnity loss ratio; 5: medical 
loss ratio). 
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Table 1 exhibits the trend and adjustment factors, along with 95 percent credible intervals. Note 
that these intervals are not necessarily symmetric around the forecast values. 

Table 1: Trend Factors and Adjustment Factors 

Policy Year Paid

Frequency

Indemnity Severity

Medical Severity

Indemnity Loss Ratio

Medical Loss Ratio

2005

2004

2003

Year

3.001

4.001

5.001

Trend
Period

2005

2004

2003

Year

3.001

4.001

5.001

Trend
Period

2005

2004

2003

Year

3.001

4.001

5.001

Trend
Period

2005

2004

2003

Year

3.001

4.001

5.001

Trend
Period

2005

2004

2003

Year

3.001

4.001

5.001

Trend
Period

0.9919

0.9945

0.9954

TF Low er
 Bound

0.9243

0.9268

0.9282

TF Low er
 Bound

1.0430

1.0450

1.0460

TF Low er
 Bound

0.9713

0.9735

0.9751

TF Low er
 Bound

0.9334

0.9357

0.9370

TF Low er
 Bound

1.0166

1.0166

1.0153

Mean Trend
 Factor(TF)

0.9475

0.9474

0.9468

Mean Trend
 Factor(TF)

1.0660

1.0660

1.0651

Mean Trend
 Factor(TF)

0.9935

0.9934

0.9932

Mean Trend
 Factor(TF)

0.9537

0.9537

0.9533

Mean Trend
 Factor(TF)

1.0420

1.0390

1.0350

TF Upper
Bound

0.9709

0.9683

0.9656

TF Upper
Bound

1.0890

1.0870

1.0840

TF Upper
Bound

1.0160

1.0140

1.0120

TF Upper
Bound

0.9745

0.9721

0.9698

TF Upper
Bound

0.9759

0.9783

0.9772

AF Low er
Bound

0.7897

0.7378

0.6888

AF Low er
Bound

1.1340

1.1930

1.2530

AF Low er
Bound

0.9164

0.8980

0.8817

AF Low er
Bound

0.8131

0.7664

0.7223

AF Low er
Bound

1.0512

1.0689

1.0800

Mean Adjustment
 Factor(AF)

0.8509

0.8063

0.7617

Mean Adjustment
 Factor(AF)

1.2118

1.2921

1.3718

Mean Adjustment
 Factor(AF)

0.9809

0.9746

0.9674

Mean Adjustment
 Factor(AF)

0.8677

0.8276

0.7878

Mean Adjustment
 Factor(AF)

1.1310

1.1650

1.1900

AF Upper
Bound

0.9151

0.8792

0.8395

AF Upper
Bound

1.2930

1.3960

1.4970

AF Upper
Bound

1.0490

1.0560

1.0600

AF Upper
Bound

0.9253

0.8929

0.8579

AF Upper
Bound

 

Note: The trend period is measured in years. The interval between upper and lower bounds covers 
95 percent of the probability mass of the distribution of the forecast. 
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4. CONCLUSIONS 

NCCI has developed a Bayesian statistical model for estimating the trend rates of growth of the 
indemnity and medical severities, frequency, and the indemnity and medical loss ratios in the context 
of ratemaking. The model is purpose-built for short, volatile and potentially nonstationary time 
series and calibrated to minimize the prediction error. Further, the model accounts for common 
shocks, is robust to outliers, and is capable of interpolating where observations for the mentioned 
rates of growth are missing. Finally, by means of incorporating an add-up constraint, the model 
ensures consistent forecasts for the five time series in question. 

 

Acknowledgment 
Thanks to Harry Shuford for comments and to Chris Laws, Jose Ramos, and Manuel de la Guardia for research 

assistance. 
 

5. REFERENCE S 

[1] Carlin, Bradley P., and Thomas A. Louis, Bayes and Empirical Bayes Methods for Data Analysis, 2nd ed., 2000, Boca 
Raton (FL): Chapman & Hall/CRC. 

[2] Evans, Jonathan P., and Frank Schmid, Forecasting Workers Compensation Severities and Frequency Using the Kalman Filter, 
Casualty Actuarial Society Forum, 2007: Winter, 43–660. 

[3] Gelman, Andrew, John B. Carlin, Hal S. Stern, and Donald B. Rubin, Bayesian Data Analysis, 2nd ed., 2004, Boca 
Raton (FL): Chapman & Hall/CRC. 

[4] Hamilton, James D., Time Series Analysis, 1994, Princeton (NJ): Princeton University Press. 
[5] WinBUGS, User Manual: WinBUGS 1.4.3, 2007, http://www.mrc-bsu.cam.ac.uk/bugs/. 
 
 
Abbreviations and notations 

MCMC, Markov-Chain Monte Carlo 
NCCI, National Council on Compensation Insurance 
RMSPE, Root Mean Squared Prediction Error 
 
 
 
Biographies of the Author 
Frank Schmid, Dr. habil., is a Director and Senior Economist at the National Council on Compensation Insurance. 



Casualty Actuarial Society E-Forum, Winter 2009  341 
© Copyright 2009 National Council on Compensation Insurance, Inc. All Rights Reserved. 

Cost of  Capital Estimation with Application to Workers 
Compensation Ratemaking 

Frank Schmid and Martin Wolf 
 
________________________________________________________________________ 

Motivation.  This paper discusses how NCCI estimates the cost of capital in its ratemaking 
framework.  The implementation of this actuarial concept in ratemaking is challenging because 
financial economics offers more than one model for estimating the cost of capital.  Even where there 
is agreement on the model, there may be questions about how to arrive at its input components. 
Method.  NCCI computes the cost of equity capital using the Discounted Cash Flow (DCF) and the 
Capital Asset Pricing Model (CAPM) approaches. The DCF method employs forecasts for the rate of 
dividend growth from Value Line Publishing, Inc.  The CAPM model utilizes betas from Value Line 
Publishing, Inc., and historical returns on T-bills and the stock market from Morningstar, Inc. 
Results.  The two approaches to estimating the cost of capital are conceptually different and their 
estimates are similar, yet not identical. 
Conclusions.  In ratemaking, NCCI relies on two concepts of estimating the cost of equity capital in 
workers compensation.  Important inputs to these approaches rest on long-term averages, thus making 
these methods robust to short-term economic fluctuations. 
Availability.  Historical returns on T-bills and the stock market are available from Morningstar, Inc.  
Dividend growth rates and CAPM betas are available from Value Line Publishing, Inc. 
Keywords.  Dividend Growth Model, Equity Valuation, Workers Compensation 

             

1. INTRODUCTION 

Central to developing the underwriting profit provision in actuarial ratemaking is the total financial 
needs model, which states that “the sum of underwriting profit, miscellaneous (non-investment) 
income, investment income from insurance operations, and investment income on capital, after 
income taxes, will equal the cost of capital” (see Actuarial Standards Board [1], p. 8).  From this 
perspective, the cost of capital is an integral part of ratemaking at NCCI.  What follows is a 
discussion of how NCCI estimates the cost of capital in its ratemaking framework. 

Estimating the cost of capital is challenging, and the academic discussion surrounding this 
concept shows little signs of abating (see, for instance, Dimson, Marsh, and Phillips [6], Goetzmann 
and Ibbotson [8], and McGrattan and Prescott [17]).  In actuarial practice, it is critical to follow a 
parsimonious, transparent, and robust approach for arriving at cost of capital estimates.  At the same 
time, the approach should periodically be scrutinized and possibly updated in the light of new 
academic research findings. 
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1.1 Research Context 

NCCI employs two concepts for estimating the cost of capital in the context of ratemaking in 
workers compensation; these two approaches and their implementation are periodically reviewed.  
What follows is a discussion of the two methods for estimating the cost of equity capital, along with 
a detailed description of how NCCI implements these approaches. 

1.2 Objective 

NCCI estimates of the cost of equity capital rest on both the discounted cash flow (DCF) and the 
capital asset pricing model (CAPM) concepts.  The DCF approach employs estimates of the current 
dividend yield and forecasts for the rate of dividend growth from Value Line Publishing, Inc.  The 
CAPM model utilizes betas from Value Line Publishing, Inc., and historical returns on T-bills and the 
stock market from Morningstar, Inc.  Important inputs to these models rest on long-term averages, 
thus affording these methods robustness to short-term economic fluctuations. 

The computed cost of capital is used within NCCI’s internal rate of return (IRR) model to 
calculate an underwriting contingency provision (UCP, which is a profit factor) in those states where 
NCCI files rates (as opposed to loss costs). 

NCCI’s IRR model calculates the internal rate of return (based on changes in shareholder equity) 
of a $1 million workers compensation insurance policy written at proposed rates.  The model 
incorporates all cash flows related to the policy, including factors such as premium inflows, losses, 
underwriting expenses, policyholder dividends, federal income taxes, and investment income earned 
on reserves and surplus.  The model incorporates quarterly cash flows for the first five years and 
annual flows thereafter (through year 24 or 35, depending on the version of the model).  

Once the IRR model has been estimated, the model is then backsolved to the cost to capital to 
calculate the UCP.  The calculated UCP is used by state actuaries as an advisory input in their 
ultimate rate filing.  The actual value of the UCP included in the filing (if any) depends on state 
regulatory practices as well as actuarial judgment.  (The UCP is included as part of the expense 
provision that underlies the rate filing.) 

1.3 Outline 

In what follows we describe the two most widely used approaches in the estimation of the cost of 
capital and demonstrate how NCCI implements these methods to compute the cost of capital in 
workers compensation for ratemaking purposes.  Further, we provide cost of capital estimates based 
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on data available as of May 25, 2007. 

2. BACKGROUND AND METHODS 

The implementation of the actuarial concept of the total financial needs model in ratemaking is 
challenging because financial economics offers more than one approach to estimating the cost of 
capital.  And even where there is agreement on the choice of the model, there often is no consensus 
on how to estimate the values of the parameters to be fed to this model. 

Myers and Borucki [19] describe the DCF model as the “most widely used approach to estimate 
the cost of equity capital to regulated firms in the United States.”  The other commonly applied 
approach is the CAPM, which may be implemented as a one-factor model (which is our preferred 
approach) or a three-factor model (which is an approach that we do not pursue).  NCCI employs 
both concepts in estimating the cost of equity capital for the property and casualty (P&C) insurance 
industry with application to ratemaking in workers compensation. 

The cost of equity capital in the insurance industry has been studied by Fama and French [8] and, 
more recently, by Cummins and Phillips [5]—both studies implement the CAPM as one-factor and 
three-factor models.  We will compare our methodology and results to theirs in Section 2.2.3. 

2.1 The Discounted Cash Flow Model 

Generally, the price of a financial asset is the present value of its (future) cash flow.  When it 
comes to a share of stock, the cash flow consists of dividend payments.  On a more aggregate level, 
such as the entire stock of a corporation, an industry or a country, cash returned to shareholders also 
includes cash dispensed in share repurchase programs, so long as these shares are retired (instead of 
being handed out to executives and employees, in which case the shares change hands but no cash is 
paid out on net). 

A widely used model for the valuation of corporate stock, which is described in many corporate 
finance textbooks, is the Gordon dividend growth model (see Gordon [10]). 

The Gordon model is suitable only for mature industries (such as the P&C industry) because this 
model assumes that (1) the industry in question returns cash to shareholders and that (2) the amount 
of cash paid to shareholders grows at a steady rate.  As mentioned, cash returned to shareholders 
includes cash dispensed by means of repurchasing shares for the purpose of retiring them. 
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The Gordon model requires only two inputs for determining the cost of capital of an industry, 
which are the effective dividend yield of the stock (i.e., cash paid out by means of dividends and share 
repurchases, divided by the stock market valuation) and the rate at which the amount of so 
dispensed cash grows.  Prospective dividend growth rates are available on company-level and 
industry-level bases from disinterested third parties, which is a key factor in a regulatory proceeding. 

The following sections provide a summary of the NCCI methodology for estimating the effective 
dividend yield, the prospective rate of growth of dividends, and how these estimates are combined 
to generate a measure for the cost of capital within a DCF context. 

2.1.1 The Present Value of Future Dividend Payments 

Conceptually, a share of stock has an infinite lifetime.  This assumption is not invalidated by the 

fact that stock may be repurchased and retired, because the value of the share when repurchased is 

again the present value of all future dividends, which are paid out lump sum to those that sell shares 

back to the corporation. 

In a generalized, two-stage Gordon dividend growth model, there are n  periods during which the 
dividend payments grow at a forecast rate fctg , followed by an infinite number of periods during 
which the dividend grows at its long-term sustainable rate avgg .  

In general, the present value of a stock, 0V , that pays a dividend for n  periods, equals 

( )
( )

0 0
1

1

1=

+
= ⋅

+
∑
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t
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g
V D

k
, (2.1)

where 0D  is the dividend paid at the present time (the end of period 0), g  is the rate of growth of 
this dividend, and k  is the cost of capital.  This formula can be simplified to 
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For an infinite number of periods, the present value reads 

0 0
1∞ +

= ⋅
−

gV D
k g

. (2.3)

Hence, the present value of a stock the dividend payment of which grows at the rate fctg  for n  
periods, followed by an infinite number of periods at which the dividend grows at the rate avgg , 
equals 
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As a consequence, we obtain the marginal cost of capital by means of solving the following equation 
for k : 
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where 0 0/D V  is the current (end of period 0) dividend yield.  If it is assumed that the dividend 
payments occur in the middle of the fiscal year, then the equation above still offers the correct 
answer for the cost of capital, assuming that the dividend yield 0 0/D V  has been observed in the 
middle of fiscal year 0. 

The solver module in Microsoft Excel provides a means of iteratively solving for k , given inputs 
for the dividend yield and the forecast and long-term average rates of dividend growth. 

2.1.2 The Effective Dividend Yield 

The NCCI estimate of the dividend yield of the P&C industry for NCCI ratemaking rests on 
dividend yield data of individual insurers as published by Value Line Publishing, Inc. [23].  Value 
Line Publishing, Inc. data are developed in a consistent manner and are generally viewed as reliable.  
Analyses based on Value Line Publishing, Inc. information are used in many regulatory settings, 
especially in the insurance industry and the utilities sector (see, for instance, Cummins and Phillips 
[5], and Morin [18]). 

NCCI defines the domain of P&C companies pertinent to determining the cost of capital in 
workers compensation as consisting of 32 corporations, 29 of which are selected from the Value 
Line P&C Industry Grouping (PMI was omitted due to its specialization on residential mortgages) 
and another three (AIG, Hartford Financial Services, and Unitrin) are taken from the Diversified 
Financial Services Grouping.  (AIG, Hartford Financial Services, and Unitrin have significant P&C 
business as a percent of total; moreover, AIG and Hartford are major writers of workers 
compensation insurance.)  Of these 32 corporations, which are detailed in Table 1, 29 companies 
currently pay dividends. 
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The dividend yield is estimated by the (unweighted) average of the dividend yields of these 29 
dividend-paying corporations; this average amounts to 1.84 percent.  The use of an unweighted 
average (as opposed to an average weighted by the corporations’ stock market valuations) rests on 
the premise that any company is as a good a representative of the industry as any other.  Further, 
such an unweighted industry average is robust to possible discontinuities in the dividend payments 
over time of any single corporation; otherwise, the industry average may be affected by the 
idiosyncrasies of a few large companies.  For the record, weighting individual company dividend 
yields by market capitalization reduces the average dividend yield (prior to adjustment for share 
repurchases) to 1.56 percent from 1.84 percent.  The reduction largely reflects the 33 percent weight 
on the 0.98 percent dividend yield of AIG.  (The market capitalization of AIG at the time this study 
was prepared was about one-third of the total market cap of all dividend-paying companies in the 
Value Line sample of companies used in this study.) 

The list of companies in Table 1 includes insurers that pursue more than the P&C line of 
business (but may also have some life insurance business, for instance)—these companies may be 
labeled as diversified.  Similar to calculating a so-called pure play beta, a pure play approach to 
calculating the dividend yield would necessitate exclusion of diversified companies.  But whereas the 
CAPM beta is systematically affected by diversification (as diversification moves the beta closer to the 
unit value), there is no similar well-established theory regarding the relation between diversification 
and the dividend yield. 
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 Table 1: Current Dividend Yield, Percent 

Company Current Div. Yield 
21st Century Insurance Group 2.90 
ACE Limited 1.82 
Alleghany Corporation n/a 
The Allstate Corporation 2.52 
American Financial Group, Inc. 1.15 
American International Group, Inc. 0.98 
Assured Guaranty Ltd. 0.55 
W.R. Berkley Corporation 0.58 
Berkshire Hathaway Inc. n/a 
The Chubb Corporation 2.18 
Cincinnati Financial Corporation 3.22 
CNA Financial Corporation 0.83 
Erie Indemnity Co. 3.08 
Everest Re Group, Ltd. 1.89 
The Hanover Insurance Group, Inc. 0.65 
The Hartford Financial Services Group, Inc. 2.05 
HCC Insurance Holdings, Inc. 1.28 
Markel Corporation n/a 
Max Capital Group Ltd. 1.00 
Mercury General Corporation 3.85 
Ohio Casualty Corporation 1.68 
Old Republic International Corporation 2.89 
PartnerRe Ltd. 2.44 
The Progressive Corporation 0.20 
RenaissanceRe Holdings Ltd. 1.60 
RLI Corp. 1.44 
Safeco 1.91 
Selective Insurance Group, Inc. 1.89 
Transatlantic Holdings, Inc. 0.89 
The Travelers Companies, Inc. 2.00 
Unitrin, Inc. 3.88 
XL Capital Ltd 2.10 
Average 1.84 

Source: Value Line Publishing, Inc. [23].  Note: “n/a” signifies non-dividend paying companies. 

2.1.2.1 Adjustment for Share Repurchases 

Dividends are not the only means by which companies return cash to shareholders.  Chart 1 
shows that share repurchases have become an important factor since the mid-1980s, and currently 
account for about 30 percent of all cash returned to shareholders.  As argued above, to the extent 
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that such share buybacks return cash to shareholders, the repurchases have to be added to the 
dividend payments when computing the effective dividend yield. 

Chart 1: Fractions of Dividends and Share Repurchases in Total Cash Paid out to 

Shareholders 
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Source: Weston and Siu [26]; Mauboussin [16]. 

Quantifying the amount of cash that is returned to shareholders in stock repurchases is not 
straightforward.  Compared to dividends, where management tends to maintain a steady payment 
pattern over time, share buybacks are “lumpy” and vary with overall stock market conditions.  For 
instance, as shown in Chart 1, stock repurchases increased greatly during the stock market run-up of 
the mid-to-late 1990s.  Another complicating factor is that such buybacks tend to be concentrated in 
a relatively small number of companies.  Finally, not all shares that are repurchased are also retired; 
instead, repurchased shares may be handed out to employees or executives as part of their 
compensation.  When repurchased shares are passed on to employees or executives, then there is no 
cash returned to shareholders in the aggregate; see Liang and Sharpe [14]. 

Table 2 provides data on share repurchases and cash dividends for the chosen set of 32 
companies.  The data, which were obtained from 10K reports filed with the U.S. Securities and 
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Exchange Commission (SEC; http://www.sec.gov), cover the period 2004-2006.  As shown in the 
table, share buy-backs equaled $5.53 billion in the period 2004-2006, thus exceeding the cash 
dividends of $5.05 billion for the same period by 9.6 percent.  Based on these numbers, one could 
argue that the effective dividend yield is about two percentage points above the reported 1.84 percent 
dividend yield.  However, in light of the variable and skewed nature of share buy-backs in the P&C 
industry, and the possibility that some of the repurchased shares may fund share-based 
compensation and stock option grants, NCCI takes a conservative stance and estimates that the 
effective dividend yield exceeds the reported dividend yield by half a percentage point.  (22 of 32 
companies in the NCCI P&C company data set engaged in share repurchases in the period 
2004-2006; of those 22 companies that repurchased shares, only one reported a reissuance of shares 
in its 10K statement; this reissuance amounted to about $250 million or, equivalently, 4 percent of 
the average annual share repurchases of all 22 companies taken together.) 

2.1.3 The Prospective Rate of Growth in Dividends 

Forecasting dividend growth is subject to the same principles as economic forecasting in general.  
Whereas in the short run, the path of future economic activity may be discernable in a fairly accurate 
way, in the long run, the growth of economic activity mean-reverts to a long-term average. 
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Table 2: Dividends and Common Stock Repurchases, 2004-2006 

Company Dividends Common Stock Repurchases Dividends Repurchases 
 2006 2005 2004 2006 2005 2004 2004-2006 Average 2004-2006 Average 
21st Century Insurance Group 27.6 13.7 8.5 - - - 16.6 - 
ACE Limited 312.0 253.0 226.0 - - - 263.7 - 
Alleghany Corporation - - - 39.2 - - - 13.1 
The Allstate Corporation 873.0 830.0 756.0 1,770.0 2,484.0 1,373.0 819.7 1,875.7 
American Financial Group, Inc. 38.2 33.1 35.1 - - - 35.5 - 
American International Group, Inc. 1,638.0 1,421.0 730.0 20.0 176.0 1,083.0 1,263.0 426.3 
Assured Guaranty Ltd. 10.5 9.0 4.6 171.1 19.0 6.0 8.0 65.4 
W.R. Berkley Corporation 29.4 19.1 23.5 45.1 0.6 0.3 24.0 15.3 
Berkshire Hathaway Inc. - - - - - - - - 
The Chubb Corporation 403.0 330.0 291.0 1,228.0 135.0 - 341.3 454.3 
Cincinnati Financial Corporation 228.0 204.0 177.0 120.0 61.0 59.0 203.0 80.0 
CNA Financial Corporation - - - - - - - - 
Erie Indemnity Co. 86.1 83.9 55.1 217.4 99.0 54.1 75.0 123.5 
Everest Re Group, Ltd. 39.0 25.4 22.4 - - - 28.9 - 
The Hanover Insurance Group, Inc. 15.4 13.4 - 200.2 - - 9.6 66.7 
The Hartford Financial Services Group, Inc. 460.0 345.0 325.0 - - - 376.7 - 
HCC Insurance Holdings, Inc. 38.9 27.6 20.0 - - - 28.9 - 
Markel Corporation - - - 45.9 15.9 3.4 - 21.7 
Max Capital Group Ltd. 14.3 9.0 5.5 0.0 7.4 4.9 9.6 4.1 
Mercury General Corporation 105.0 93.9 80.6 - - - 93.2 - 
Ohio Casualty Corporation 22.3 11.5 - 98.7 38.9 - 11.3 45.9 
Old Republic International Corporation 135.8 300.7 91.6 - - - 176.0 - 
PartnerRe Ltd. 125.4 118.9 92.3 (17.2.0) (102.4) 152.5 112.2 10.9 
The Progressive Corporation 25.0 23.7 23.3 1,214.5 482.8 1,628.5 24.0 1,108.6 
RenaissanceRe Holdings Ltd. 60.4 57.0 53.8 - 0.7 38.8 57.1 13.2 
RLI Corp. 19.0 15.9 12.6 37.6 - 0.0 15.9 12.5 
Safeco 130.2 118.9 104.8 1,165.2 255.9 663.0 118.0 694.7 
Selective Insurance Group, Inc. 22.8 19.9 17.3 116.4 22.9 8.7 20.0 49.3 
Transatlantic Holdings, Inc. 33.6 29.0 24.7 - 6.3 1.2 29.1 2.5 
The Travelers Companies, Inc . 702.0 628.0 642.0 1,120.0 33.0 23.0 657.3 392.0 
Unitrin, Inc. 119.8 117.4 113.5 89.9 48.9 - 116.9 46.3 
XL Capital Ltd 277.7 276.7 270.5 5.6 5.5 4.6 274.9 5.3 
Total 5,992.4 5,428.7 4,206.8 7,687.4 3,790.4 5,103.9 4,934.3 5,522.0 

Source: 10K reports, U.S. Securities and Exchange Commission, http://www.sec.gov.   Note: Numbers are stated in millions of U.S. 

dollars.  The Travelers Companies, Inc. were formerly known as The St. Paul Travelers Companies. 
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In a similar vein, the NCCI discounted cash flow approach draws on forecasts for the immediate 

future before reverting to a long-term average.  Specifically, NCCI uses Value Line Publishing, Inc. 

forecasts for the dividend growth of the P&C industry for a five-year horizon before transitioning to 

a long-term average rate of growth of the industry; the long-term average rate of industry growth is 

gauged by the long-term average rate of growth of total financial assets of property-casualty 

insurance companies as stated in the Flow of Funds accounts of the Federal Reserve 

(http://www.federalreserve.gov/RELEASES/z1).  This approach, which relies on professional 

forecasts for the near term and on a long-term average for the time thereafter, recognizes the benefit 

of near-term growth rates in accounting for short-term cyclical factors but, at the same time, 

restrains any potential optimism bias on the part of the analyst (see Easterwood and Nutt [7]). 

To be specific, for the first five years of the forecasting period, we calculate the rate of dividend 
growth of the industry as an (unweighted) average across 28 (of the currently 29 dividend-paying) 
corporations based on company-level Value Line Publishing, Inc. [23] “five-year-ahead” forecasts, 
which are displayed in Table 3 below.  (Value Line Publishing, Inc. did not offer a forecast for Ohio 
Casualty, which declared dividends in the years 2005 and 2006 but, prior to that, had not declared 
dividends four years running.)  As of May 25, 2007, the estimated rate of dividend growth equals 
11.19 percent. 

The rate of growth that applies in perpetuity after the initial five-year period is calculated in two 
steps.  First, we estimate for the period 1952-2005 the long-term real (that is, inflation-adjusted) rate 
of growth of the P&C industry based on its total financial assets; to this end, we deflate (that is, 
inflation-adjust) this measure of industry size, using the implicit price deflator of the Gross 
Domestic Product.  (The Gross Domestic Product Deflator is published by the Department of 
Commerce, Bureau of Economic Analysis, as part of the National Income and Product Accounts; 
http://www.bea.gov.)  Second, we multiply this long-term real rate of growth of the industry by the 
rate of expected inflation, which we gauge by the spread between the yields on 10-Year Treasury 
notes and 10-year Treasury Inflation-Indexed Securities.  The resultant long-term rate of dividend 
growth equals 7.68 percent, based on data available as of May 25, 2007. 
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Table 3: Dividend Growth 

Company Forecast 2011 
21st Century Insurance Group 30.0 
ACE Limited 7.5 
Alleghany Corporation n/a 
The Allstate Corporation 9.0 
American Financial Group, Inc. 2.5 
American International Group, Inc. 21.0 
Assured Guaranty Ltd. 15.0 
W.R. Berkley Corporation 13.0 
Berkshire Hathaway Inc. n/a 
The Chubb Corporation 7.0 
Cincinnati Financial Corporation 7.0 
CNA Financial Corporation n/a 
Erie Indemnity Co. 10.0 
Everest Re Group, Ltd. 28.0 
The Hanover Insurance Group, Inc. 23.0 
The Hartford Financial Services Group, Inc. 14.5 
HCC Insurance Holdings, Inc. 15.5 
Markel Corporation n/a 
Max Capital Group Ltd. 12.0 
Mercury General Corporation 5.5 
Ohio Casualty Corporation -- * 
Old Republic International Corporation 12.0 
PartnerRe Ltd. 6.0 
The Progressive Corporation 20.5 
RenaissanceRe Holdings Ltd. 3.0 
RLI Corp. 12.0 
Safeco 8.0 
Selective Insurance Group, Inc. 6.0 
Transatlantic Holdings, Inc. 12.0 
The Travelers Companies, Inc. 3.0 
Unitrin, Inc. 1.0 
XL Capital Ltd -2.0 
Average 11.19 

Source: Value Line Publishing, Inc. [23].  Note: * indicates value labeled “not meaningful” by Value 

Line Publishing, Inc. 

2.1.3.1 The TIIS Spread 

The spread between the yields of conventional and Treasury Inflation-Indexed Securities (TIIS) 
offers an objective, market-based estimate of future inflation.  The advantage of such an inflation 
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gauge over opinion surveys is that it reflects actions taken by investors in the market place (see 
Kwan [13]). 

TIIS, which are also known as TIPS (Treasury Inflation-Protected Securities), were introduced by 
the Treasury Department in 1997 as a new class of government debt.  Although the coupon yield 
(ratio of interest payment to principal) of TIIS is fixed for the time to maturity, the actual coupon 
payments rise according to the rate of inflation as the principal adjusts to the CPI (Consumer Price 
Index).  The average future rate of inflation for which an investor is indifferent between holding a 
conventional Treasury note and holding a TIIS, is known as the break-even rate of inflation.  This 
break-even rate of inflation may serve as a gauge of the rate of inflation that investors expect on 
average for the time to maturity (see Kwan [13]).  To smooth out noise, we measure such inflation 
expectations by the average of the past 12 monthly observed TIIS spreads. 

For the time period ending in April 2007, the trailing average of 12 monthly TIIS spreads equals 
2.44 percent, with relatively small variations on a month-to-month basis.  As Chart 2 shows, 
inflation expectations as gauged by a rolling trailing 12-month TIIS spread have changed only little 
since 2004. 

2.1.4 The DCF Estimate 

The DCF approach delivers an estimate for the cost of capital of 10.62 percent, based on data 
available as of May 25, 2007.  When using a dividend yield average weighted by market capitalization 
(of 1.56 percent, instead of an equally weighted dividend yield average of 1.84 percent), the cost of 
capital amounts to 10.26 percent. 
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Chart 2: Spread between Rate on Conventional and TIIS 10-Year Government Securities 
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Source: U.S. Department of the Treasury, Office of Debt Management; daily observations, not 

seasonally adjusted.  Note: Observations are charted on a monthly basis; horizontal bars indicate 

calendar year averages. 

2.2 The CAPM 

The Sharpe-Lintner (one-factor) CAPM rests on the fundamental insight that the total risk of an 
equity investment can be broken down into a component that can be eliminated by means of 
diversification, and a residual component known as systematic risk; see Sharpe [22] and Lintner [15].  
Because diversification is brought about by holding (a representative slice of) the entire market, the 
risk that cannot be eliminated is the one that correlates with the market.  The degree of such 
correlation with the market of an individual stock is known as beta ( )β .  Further, only systematic 
risk generates a risk premium in the marketplace, because this is the risk component that has to be 
born by the investor.  From this it follows that the return an investor demands for holding a given 
stock equals 

  ( )f m fk r r rβ= + ⋅ − ,  (2.6)

where fr  is the return on the risk-free asset (commonly referred to as the risk-free rate of return) 
and mr  is the expected return on the market portfolio.  The difference between the expected return 
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on the equity market and the return on the risk-free asset, m fr r− , is known as the equity risk 
premium.  The return k  defines the marginal cost of equity capital. 

According to the cost of capital equation stated above, differences in the cost of capital across 
companies are due to differences in the degree to which their returns co-vary with the return on the 
stock market as a whole.  A beta equal to one indicates that the company in question offers the same 
expected return as the market as a whole ( mk r= ).  For companies with betas greater than one, the 
cost of capital exceeds the expected return on the market portfolio. 

2.2.1 Inputs to the CAPM 

Employing the CAPM for the purpose of estimating the cost of capital of the P&C industry 
necessitates estimating the risk-free rate of return, fr , the beta of the industry, β , and the expected 
market return, mr .  Below follows a description of the NCCI estimates of these three variables. 

2.2.1.1 Risk-Free Yield 

Only short-term rates are free from both default and inflation risks.  Thus, we gauge the risk-free 
rate of return, fr , by a short-term Treasury yield; see Bodie and Merton[4].  Because short-term 
interest rates mean-revert as they follow the monetary tightening and easing cycle of the Federal 
Reserve, NCCI uses a long-term average as measured by the arithmetic return on U.S. Treasury bills 
with about 30 days to maturity for the period 1926-2006; this value equals 3.8 percent (see 
Morningstar, Inc. [20]). 

Note that the choice of the risk-free rate has only a minor impact on the NCCI CAPM cost of 
capital estimate because the beta of the P&C industry is close to unity, as shown below; for a beta of 
unity, the risk-free rate of return drops out of the cost-of-capital equation. 

2.2.1.2 The Beta 

NCCI obtains company-level estimates for the betas of the mentioned set of 32 P&C companies 
from the Value Line Publishing, Inc. [23].  These betas, which are displayed in Table 4, have been 
adjusted (by Value Line) for their tendency to mean-revert to unity, as suggested by Blume [3].  
Specifically, a Blume-adjusted beta is the sum of a constant (0.35) and the weighted original estimated 
CAPM beta (weight: 0.67). 

We use two alternative ways of aggregating the company-level betas to an industry beta.  The first 
approach is to calculate the industry beta as an unweighted average of the Blume-adjusted 
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(one-factor) CAPM betas displayed in Table 4; this is our favored approach.  The reason for using an 
unweighted average in computing the pertinent industry statistic was stated above in connection 
with the industry dividend yield.  Again, using an unweighted average views any corporation 
operating in the P&C industry as good a representative of the industry as any other.  Further, an 
unweighted average is robust to mean reversion, although the Blume-adjustment already diminishes 
this problem.  Using the unweighted average of Blume-adjusted company-level betas, we arrive at a 
P&C industry beta of 0.95, based on data available as of May 25, 2007. 

The second approach that we pursue in aggregating company-level betas into an industry beta is 
the (stock market capitalization-weighted) full-information beta concept detailed in Kaplan and 
Peterson [12].  For this purpose, we collect the stock market capitalization of the P&C companies 
listed in Table 4, the (one-factor) CAPM betas and the stock market capitalizations of the Value Line 
Life Insurance companies (see Table 5), as well as the business volume of the these Value Line P&C 
and Life companies, broken by line of insurance.  We distinguish only between P&C and life 
business, thus ignoring any residual (of which there was only one, which originated in the 
two-percent banking business of Aegon); the weights were scaled such that P&C and life add up to 
100 percent.  Business volume is measured (in lexicographic order) either by earned premium, net 
earned premium, revenue or gross written premium, whichever allowed us to break down the 
business by line of insurance.  (When calculating the full-information industry beta, we exclude 
Berkshire Hathaway from the list of P&C companies for the purpose of estimating the industry beta, 
as this company is a conglomerate with many lines of business outside the insurance industry.  
Further, the betas of the life companies and the values for the stock market capitalization of the P&C 
companies are of more recent vintage than the betas of the P&C companies.)  Using the 
full-information industry beta approach, we arrive at a P&C industry beta of 1.097, based on data 
available as of May 25, 2007. 

2.2.1.3 The Prospective Return on the Market Portfolio 

The expected rate of return on the equity market is a heavily debated issue in financial 
economics; mostly, this debate is stated in terms of the equity risk premium.  Remember that the 
equity risk premium is the expected return on the market in excess of the risk-free rate. 

A measure of the equity risk premium that suggests itself is the realized return on the stock market 
in excess of the return on short-term Treasury bills.  Based on such realized returns, the equity risk 
premium for the period 1926-2006 equals 8.6 percent; this calculation rests on the difference 
between the arithmetic mean returns on the S&P 500 and on T-bills, as published by Morningstar, 
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Inc. [21].  However, it has been argued that gauging the equity risk premium by past returns 
overstates its value; this is because the 20th century stock market return came in part at the expense 
of a secular decline in the dividend yield, which may not repeat itself in the future (see Arnott and 
Bernstein [2]). 

In a comprehensive study of market expectations and realized equity returns over more than 200 
years, Goetzmann and Ibbotson [9] find that the realized equity risk premium of the 20th century, 
although much higher than what finance scholars had expected at the time, was not out of line with 
historical experience.  At the same time, these authors confirm that, indeed, there has been a secular 
decline in the dividend yield in the history of the U.S. stock market. 
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Table 4: CAPM Betas P&C 

Company 
Beta 

(Blume-adjusted)

Market 
Capitalization 
(Billons of U.S. 

dollars) 
21st Century Insurance Group 0.90 1.9 
ACE Limited 1.35 19.7 
Alleghany Corporation 0.60 3.4 
The Allstate Corporation 0.90 30.0 
American Financial Group, Inc. 1.00 3.4 
American International Group, Inc. 1.25 118.0 
Assured Guaranty Ltd. 0.60 1.2 
W.R. Berkley Corporation 0.90 5.7 
Berkshire Hathaway Inc. 0.65 168.0 
The Chubb Corporation 1.05 20.6 
Cincinnati Financial Corporation 0.90 6.5 
CNA Financial Corporation 1.00 9.5 
Erie Indemnity Co. 0.70 2.7 
Everest Re Group, Ltd. 1.05 6.0 
The Hanover Insurance Group, Inc. 1.65 2.4 
The Hartford Financial Services Group, Inc. 1.30 22.7 
HCC Insurance Holdings, Inc. 0.90 3.4 
Markel Corporation 0.80 4.6 
Max Capital Group Ltd. 0.90 1.7 
Mercury General Corporation 0.85 2.8 
Ohio Casualty Corporation 0.95 2.6 
Old Republic International Corporation 1.05 3.6 
PartnerRe Ltd. 0.95 4.3 
The Progressive Corporation 0.90 13 
RenaissanceRe Holdings Ltd. 0.70 3.9 
RLI Corp. 0.80 1.4 
Safeco 0.85 5.3 
Selective Insurance Group, Inc. 0.85 1.2 
Transatlantic Holdings, Inc. 0.80 4.2 
The Travelers Companies, Inc. 1.25 34.0 
Unitrin, Inc. 1.05 2.4 
XL Capital Ltd 1.05 10.3 
Unweighted Average 0.95 --- 

Source: Value Line Publishing, Inc. [23] (betas) and [24] (market capitalization). 
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Table 5: CAPM Betas Life 

Company 
Beta 

(Blume-adjusted)
Market Capitalization (Billons 

of U.S. dollars) 
Aflac, Inc. 0.80 31.5 
Aegon 1.55 26.6 
Delphi Financial Group 0.95 1.4 
Genworth Financial 1.15 10.3 
Lincoln National 1.30 14.3 
Manulife Financial 0.95 58.0 
Metlife, Inc. 1.05 44.0 
Nationwide Financial 1.10 6.6 
The Phoenix Companies 1.35 1.4 
Protective Life Corp 0.95 2.9 
Prudential Financial 1.15 36.0 
Reinsurance Group 0.95 3.4 
Torchmark Corp 0.90 5.7 
Unum Group 1.50 8.0 
Unweighted Average 1.12 --- 

Source: Value Line Publishing, Inc. [25]. 

Specifically, Goetzmann and Ibbotson [9] show that over the period 1792-1925, the difference 
between the arithmetic mean return on stocks and the arithmetic mean rate of inflation was 7.08 
percentage points (7.93 percent minus 0.85 percent); this compares to a 8.63 percentage point 
difference between the arithmetic mean returns on the U.S. stock market (12.39 percent) and on 
Treasury bills (3.76 percent) for the period 1926-2004 (see Goetzmann and Ibbotson).  Assuming a 
stable difference between the risk-free rate of return and the rate of inflation, the findings by 
Goetzmann and Ibbotson suggest that the realized equity risk premium over the period 1792-1925 
was 2.19 percentage points ([12.39 minus 3.12] minus [7.93 minus 0.85] percent) lower than over the 
period 1926-2004 (see Goetzmann and Ibbotson). 

We now detail how to calculate the arithmetic mean return on the S&P 500 stock market index 
for the period 1926 through 2006, adjusted for the secular decline in the dividend yield.  First, the 
pertinent 2006 total return index value, 2006TRI , is adjusted such that the implied dividend yield 
equals the dividend yield observed in the year 1926 (as advocated in section 2.2.1.3): 

 2006  2006
1926

 2006
 dividend  

 
TRI yield dividend yield

adjusted TRI
×

= . (2.7)

Second, we calculate the geometric mean annual return as the arithmetic mean annual return in 
logarithmic space: 
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2006  1926log( . ) log( )
80

geometric adj TRI TRIreturn −
= . (2.8)

Third, we obtain the desired arithmetic mean return by exponentiating and bias-adjusting: 
2ˆexp( / 2)arithmetic geometricreturn return σ= + , (2.9)

where 2σ̂  is an estimate of the variance of the actual annual logarithmic returns (which equal the 
first differences in the annual logarithmic TRI values). 

The numerical values associated with these calculations are displayed in Table 5.  As this table 
shows, the historical arithmetic average annual return on the S&P 500 index equals 11.39 percent 
when adjusted for the secular decline in the dividend yield, down from the actually observed 12.3 
percent (per calculation of Morningstar, Inc. [21]).  The implied equity risk premium equals 7.59 
percent (11.39 percent minus 3.8 percent), which compares to an unadjusted risk premium of 8.6 
percent (using data before rounding; see Morningstar, Inc. [21]). 

2.2.2 Bottom-Line CAPM Estimate 

Taken together, we arrive at a CAPM-based cost of capital estimate of 11.02 percent, based on 
data available as of May 25, 2007; the implied estimate of the equity risk premium equals 7.59 
percent. 

Table 6: Total Return Calculation 

Total Return Index in 1926 (TRI 1926) (1) 1,334.79
Dividend Yield in 1926 (2) 5.41%
Total Return Index in 2006 (TRI 2006) (3) 3,679,817.89
Dividend Yield in 2006 (4) 2.01%
Adjustment for Share Repurchases 0.50%
Estimated Effective Dividend Yield 2.51%
Adjusted Total Return Index (Adj. TRI 2006) 1,707,272.26
Arithmetic Mean Using Adjusted Total Return Index 11.39%
Arithmetic Mean Using Actual Total Return Index 12.3%

Source: Own calculations; Morningstar, Inc. [20]: (1) p. 204, (2) p. 228, (3) p. 205, and (4) p. 229. 

According to Equation (2.7), Adj. TRI 2006 equals the product of (1) TRI 1926 (3,679,817.89) and (2) 
the ratio of the 2006 and 1926 dividend yields (inclusive of share repurchases) (2.51/5.41), thus 
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resulting in Adj. TRI 2006 of 1,707,272.26.  The computation of the arithmetic and geometric mean 
returns is based on Equations (2.8) and (2.9). 

2.2.3 Discussion 

As mentioned, our betas were obtained from the (one-factor) CAPM; we aggregate these betas in 
two alternative ways to a beta for the P&C industry.  In one aggregation approach, we Blume-adjust 
the company-level betas and then calculate an unweighted average.  In the other approach, we 
estimate a full-information industry beta as suggested by Kaplan and Peterson [12] and implemented 
for the insurance industry by Cummins and Phillips [5]; here, the (one-factor) CAPM company-level 
betas are not Blume-adjusted. 

Alternative to using (one-factor) CAPM betas, three-factor betas may be used—the Fama French 
three-factor model may be viewed as a generalization of the (one-factor) CAPM.  In their 1997 study 
of the (one-factor) CAPM and three-factor betas of major U.S. industries, Fama and French [8] find 
little difference between these two betas (as mentioned above) and little difference between the 
implied risk premiums—the risk premium obtained with the three-factor model exceeds the 5.14 
percent risk premium of the (one-factor) CAPM by only 0.58 percentage points.  On the other hand, 
Cummins and Phillips [5] in their 2005 paper, find that the three-factor betas greatly exceed the 
(one-factor) CAPM betas, thus resulting in large differences in the estimated costs of equity capital 
between these two approaches.  Based on market-value weighted estimates for the P&C industry, 
these authors come up with a (one-factor) CAPM beta of 0.843 (their Table 4, Panel B) and the 
Three-Factor beta of 1.099 (their Table 5, Panel B); the corresponding implied cost of equity capital 
equal 12.0 percent (one-factor CAPM; Table 4, Panel D) and 19.1 percent (three-factor model; Table 
5, Panel D). 

We are skeptical of the three-factor model because of its lacking theoretical foundation and, with 
regard to the Cummins and Phillips [5] study, we are unconvinced of (1) the seven percentage-point 
difference in the implied cost of equity capital between the two approaches (remember that Fama 
and French [8] found only a small difference in risk premiums between the two models) and (2) of 
the high cost of equity capital of 19.1 percent.  Note that the arithmetic mean stock market return of 
large (small) capitalization stocks from 1926 to 2000 ran at only 12.3 (17.4) percent, which casts 
doubt on the proposed 19.1 percent cost of equity capital for the P&C industry, whose beta was 
estimated in the neighborhood of unity by Fama and French [8].  In fact, the Cummins and Phillips 
estimate of the cost of equity capital of 12.0 percent (as obtained with the one-factor CAPM, 
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market-value weighted; their Table 4, Panel D) agrees more with the U.S. long-term average large 
cap stock return and with our estimate of the cost of capital. 

It is worthy of note that our implementation of the CAPM generates a risk premium that is fairly 
stable over time; this is because our model rests on long-term averages.  An alternative approach to 
estimating the cost of capital is to choose a level for the equity risk premium and then deduce the 
cost of capital by adding this risk premium to the short-term or long-term Treasury yield (depending 
on whether the risk premium is measured over short-term or long-term Treasuries).  A major 
drawback of such an approach is the high degree of cross-sectional variation in opinions regarding 
the appropriate level of risk premium, as well as high degree of time-variation of such opinions, as 
documented by Graham and Harvey [11].  For a discussion of this subject matter in relation to 
NCCI ratemaking, see Wolf [27]. 

3 THE OVERALL COST OF CAPITAL 

The DCF and CAPM are market-based approaches to estimating the cost of capital.  That is, they 
both use financial market data to develop estimates for the expected return demanded by the 
marginal investor.  The DCF method uses current stock prices and dividend yields as key inputs, but 
is sensitive to the projected growth in dividends.  In contrast, the CAPM is sensitive to the choice of 
the industry beta and, perhaps more critically, to the projected return on the market portfolio and the 
implied equity risk premium. 

Given the uncertainty surrounding the projected dividend growth and the ongoing debate among 
financial economists regarding the equity risk premium, it seems appropriate not to rely on one 
method alone.  For this reason, the NCCI estimate of the cost of capital of the P&C industry is 
computed as an average of the estimates delivered by the DCF and CAPM approaches.  Such 
averaging is likely to lead to less variation in the cost of capital estimate over time, which is a 
desirable feature in a regulatory setting. 

Table 6 summarizes the DCF and CAPM results based on the NCCI cost of capital 
methodology; this table displays an overall cost of capital of 10.82 percent. 

Note that NCCI updates its cost of capital estimates throughout the year as (1) Value Line 
Publishing, Inc., releases quarterly updates for the DCF inputs and the CAPM beta coefficients and 
(2) Morningstar, Inc. publishes annual updates of the historical returns on T-bills and the S&P 500 
stock price index, which enter the CAPM. 
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Table 7: Cost of Equity (CE) Estimates Using Data as of May 25, 2007 

CE Discounted Cash Flow (DCF) Model 10.62 % 
Current Dividend Yield 2.34% 
Forecast Avg. Ann. Growth in Dividends 11.19% 
Long-term Avg. Ann. Growth in Dividends 7.68% 
CE Capital Asset Pricing Model (CAPM) 11.02 (12.12)% 
Risk-Free Rate 3.8% 
beta 0.95 (1.097)%
Market Return 11.39% 
Equity Risk Premium 7.59% 
Overall Cost of Capital 10.82 (11.37)% 

Note: CE indicates the cost of equity capital; in parentheses are the results using full-information 

betas.  Some of the data used in the full-information beta approach is of more recent vintage 

(December 2007 and February 2008), as documented in the footnotes to Tables 4 and 5. 

4. CONCLUSIONS 

The cost of capital is an integral part of ratemaking at NCCI, as its value is a key element used in 
the specification of the profit factor.  NCCI uses both the DCF and CAPM approaches in 
estimating of the cost of capital of the P&C industry.  The data that feed into these estimates are 
from publicly available sources that are frequently cited in similar analyses prepared for regulatory 
proceedings; these sources include governmental institutions (U.S. Treasury Department and the 
Board of Governors of the Federal Reserve System) and private organizations (Value Line 
Publishing, Inc. and Morningstar, Inc.).  In addition, NCCI uses long-term averages where 
appropriate, for instance when estimating the prospective dividend growth in the DCF analysis, and 
the risk-free rate and market return in the CAPM.  The use of such long-term averages makes the 
cost of capital estimates robust to short-term economic fluctuations.  The practice of averaging the 
DCF and CAPM estimates in determining the ultimate cost of capital acknowledges model 
uncertainty and uncertainty in the employed data inputs.  Further, such averaging reduces the time 
variation of the cost of capital estimates, which is a desirable attribute from a regulatory perspective. 
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Abstract: Generalized Linear Model [GLM] theory is a commonly accepted framework for building 
insurance pricing and scoring models.  A helpful feature of the GLM framework is the “offset” option.  
An offset is a model variable with a known or pre-specified coefficient.  This paper presents several 
sample applications of offsets in property-casualty modeling applications.  In addition, we will connect the 
offset option with more traditional actuarial techniques such as exposure and premium adjustments.  A 
recurring theme of the discussion is that actuarial modelers have at their disposal several conceptually 
related techniques that can be used to eliminate the impact of variables that (for whatever reason) are not 
intended for inclusion in a model, despite the fact that they might be correlated with both the target 
variable and other predictive variables.  Examples discussed in this paper include a class plan analysis as 
well as a tier scoring application.  Sample SAS code for fitting GLMs will be provided in the body of the 
paper.    
 

Key Words:  Offset, Residual, Generalized Linear Models, GLM, Predictive Modeling, Ratemaking, SAS 
________________________________________________________________________ 

 
Introduction  
In recent years, property-casualty insurance companies have widely embraced predictive modeling as 
a strategic tool for competing in the insurance marketplace.  Predictive modeling – and in particular 
the use of Generalized Linear Models – was originally introduced as a method for improving the 
precision of personal auto insurance pricing.  The use of predictive modeling was subsequently 
extended to homeowners and commercial lines as well.  Today, predictive modeling is a core 
strategic capability of many top insurers and is applied in such key operations as marketing, 
underwriting, pricing, and claims management. 
 
Property-casualty insurance is a complex and dynamic business.  As is often observed, it is unique in 
that the ultimate cost of its basic product is unknown at the time of sale.  A plethora of risk factors 
affects the cost of providing insurance.  Many of these are well understood and are reflected in the 
price of insurance.   For example, a typical automobile insurance rating plan contains more than 20 
variables, including a wide range of driver, vehicle, and territorial characteristics [1].  However, the 
cost of providing insurance is also greatly influenced by such dynamic and exogenous factors as the 
underwriting cycle, medical inflation, variations in the size of jury awards, and poorly understood 
exposures such as asbestos and mold.  
 
It is therefore practically impossible for actuarial models to be “comprehensive” in the sense of 
including all relevant variables that affect the number and size of claims.  The non-ideal nature of 
actuarial models is compounded by the real-world fact that insurance data is often incomplete, 
inconsistently coded, and generally “dirty”.    In addition, many relevant variables (such as vehicle 
symbol, rating territory, or Workers Comp industry classifications) are “massively categorical”, 
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leaving individual insurers with insufficiently credible data to estimate their own rating factors as 
part of a rating plan optimization exercise.  
 
For these and other reasons, actuarial modelers face a generic problem:  in many, if not most, 
modeling situations, they are forced to exclude variables that are relevant to predicting frequency 
and size of loss.  If these “omitted variables” are correlated with both the target variables and one or 
more of the other modeling variables, they will bias the estimates of the corresponding model 
parameters [2].  This phenomenon is commonly known as “omitted variable bias” [OVB].    
 
In short, it will never be possible to build a single actuarial “super model” that accounts for every 
single determinant of loss.  To avoid the peril of OVB, actuaries therefore must often “adjust for” 
or otherwise accommodate the effects of omitted variables as part of their model design and model 
construction process.   Commonly known factors which potentially bias property-casualty predictive 
modeling results include the underwriting cycle and external environmental changes (i.e., time), 
variation in loss maturity, distribution channel, variation in rate adequacy across states and through 
time, and a changing competitive landscape, to name a few.    
 
A traditional actuarial response to the problem of OVB is to adjust the model’s target variable (more 
precisely, the exposure or premium component of the target variable).  A conceptually similar 
technique that has long been in the arsenal of actuarial modelers is running a “preliminary” 
regression model on the variables to be omitted (such as policy year or state) and then using the 
residuals of this model as the target variable going forward.  More recently, actuaries have embraced 
the offset option from Generalized Linear Model theory [3-7].  Each of these techniques offers a 
way of avoiding OVB.  That is, each technique offers a way of accounting for the effect of omitted 
variables in a way that avoids biasing the model’s parameters. 
 
This paper will review the basics of GLM theory and the GLM offset option, provide various 
sample applications of the offset, and draw connections between the offset option and traditional 
actuarial techniques. 
 
 
Background:  GLM Theory and the Offset 
Recall that a Generalized Linear Model [GLM] relates the expected value of the target variable 
(µ≡E[Y]) to a linear combination of predictive variables (β·X) via a “link function” g(·): 
 

XXXXg pp ⋅≡++++= βββββμ ...)( 22110  
 
In addition to the linearity assumption implicit in the above equation, GLM theory assumes that the 
target variable is distributed by the 2-parameter family of distributions known as the exponential 
family.  The exponential family encompasses a wide range of distributional forms including Normal, 
Gamma, Binomial, Poisson, Negative Binomial, and many others.  The exponential family density 
function is expressed as: 
 

( ){ }),()(/)(exp),;( ϕϕθθϕθ ycabyyfY +−=  
 
The two parameters in this family, θ and φ, are known as the canonical parameter and dispersion 
parameter, respectively.  As we will see, these are related to the mean and variance, respectively, of Y.   



Applications of the Offset in Property-Casualty Predictive Modeling 

Casualty Actuarial Society E-Forum, Winter 2009 368  

 
Two mathematical facts are helpful in interpreting this seemingly complicated expression: 
 

)(][ θμ bYE ′==  
and: 
 

)()()( ϕθ abYVar ′′=  
  
It is common to denote b”(θ) as V(µ) and call it the “variance function”.  (N.B.:  the “variance 
function”, V(µ), is not the same thing as the variance of Y.)  Furthermore, the function a(φ) is often 
specified to be φ/ω, where ω is a prior weight (such as exposure or premium).  Therefore, we have 
the following expression that relates the variance of Y to the mean of Y: 
 

)()( μ
ω
ϕ VYVar =  

 
In the special case of un-weighted, ordinary least squares [OLS] regression, we have:  g(µ)=1 
(identity link), ω≡1 (each observation is given equal weight), a(φ)=σ2 (merely a different naming 
convention), b(θ)=θ2/2, and c(y,φ) = -½{y2/σ2 + log(2πσ)}.  The reader can verify that these 
substitutions result in the familiar expressions for the Normal distribution N(µ,σ2) and 
homoskedasticity (constant variance): 
: 
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In OLS regression, the modeler selects the target variable, the appropriate set of predictive variables, 
as well as the prior weights ω, and must verify that the assumptions of normality (in particular 
homoskedasticity) and the linearity on the additive scale (i.e., identity link) are satisfied.  In the 
broader GLM framework, the normality and linearity assumptions are each relaxed.  The normality 
assumption is replaced with the much weaker assumption that the distribution of Y is from the 
exponential family; and linearity is replaced with linearity on the scale determined by the link 
function.  Commonly used distribution/link function combinations are displayed below: 
  

Distribution  V(µ)  Link  Sample Application   
Normal  1  identity             General applications 
Poisson  µ  log  Frequency modeling  
Binomial  µ(1- µ)  logit  Retention, cross-sell 
Gamma  µ2  log  Severity modeling 
Tweedie  µp, pє(1,2) log  Pure Premium modeling 

 
Note that what is often called “choosing a distribution” for a GLM is tantamount to choosing the 
variance function V(µ) that relates the variance of Y to the mean. 
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With the basic GLM framework in hand, we can turn to the offset feature.  An offset is simply an 
additional model variable, ξ, whose coefficient is constrained to be 1: 
 

ξβμ +⋅= Xg )(  
 
In the case of OLS regression, this amounts to subtracting ξ from the target variable prior to 
running the regression.  Therefore, offsets are not typically discussed in the context of OLS 
regression.  Suppose that ξ is the predicted value of Y from a “preliminary” regression model.  Then, 
specifying ξ as an offset is equivalent to using the residual from the preliminary regression as the 
target variable of the regression of interest.  As mentioned above, this is a well known method of 
removing the effects of a group of nuisance variables from the target variable prior to running the 
model in order to avoid omitted variable bias.   
 
In the remainder of this paper, we will discuss offsets in the context of multiplicative models, i.e., 
models constructed using the log link function. 
 
As an aside, it is interesting to note that the offset was originally an afterthought in the development 
of Generalized Linear Models theory by Nelder and Wedderburn in 1972 [3].  Quoting from the 
book by Hilbe [8, page 130]: 
 

“Offsets were first conceived by John Nelder as an afterthought to the [Iteratively Reweighed 
Least Squares] algorithm he and Wedderburn designed in 1972.  The idea began as a 
method to put a constant term directly into the linear predictor without that term being 
estimated.  It affects the algorithm only directly before and after regression estimation.  
Nelder only later discovered that the notion of an offset could be useful for modeling rate 
data.”  

 
 
Offsets as a Measure of Exposure 
As the above quote suggests, the offset is most commonly discussed as a measure of exposure in the 
context of Poisson regression.  For example, it shows up in essentially the same way in both actuarial 
and epidemiological work.  In both cases, offsets are often interpreted as a measure of exposure.  In 
the latter setting, the exposure might be the number of people exposed to a pathogen; and the 
response would be the number of people who contract the disease.  In the former setting, the 
exposure might be the number of car-years insured; and the response would be the number of 
claims incurred.  In both settings, the value of the response is assumed to be roughly proportional to 
the value of the exposure.   
 
As the final equation in the previous suggestion indicates, the offset must be on the same scale as 
the linear predictor β·X.  Therefore, in the auto example above, log(exposure) would be used as an 
offset.  That is:  ξ=log(u) where u (“units”) denotes exposure: 
 

)log(])[log( uXCE +⋅= β  
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In the Poisson case, this is mathematically equivalent to replacing claim count with claim frequency 
(claims divided by exposures:  F=C/u) as the target variable; using exposure as the weight; and 
dispensing with the offset:   
 

XFE ⋅= β])[log(  
 
These two models’ specifications are summarized in the table below: 
 

   Option 1  Option 2 
GLM family:  Poisson  Poisson 
Target:   C   F 
Weight:            (none)   u 
Offset:   log(u)   (none) 

 
Option 2 is the more commonly adopted model specification.  The equivalence of these two 
specifications is demonstrated in Appendix A. 
 
 
Exposure Adjustments and the Offset 
To avoid omitted variable bias, actuaries commonly perform as a preliminary step various exposure 
or premium adjustments to remove the effects of variables not included in the model.  Such 
adjustments are commonly used in pricing plan analyses for reasons including pricing structure 
complexity, data availability, data credibility, business or regulatory considerations, competitive 
considerations, and the desire to mitigate policyholder impacts. 
 
For example, suppose we wish to model claim frequency in terms of the following variables: 
 

• Multi-car indicator  
• Driver age  
• Vehicle use  
• Symbol  
• Territory  

 
Because of the large number of Territory and Symbol categories, the analyst might wish to estimate 
Symbol and Territory factors in a separate analysis.  Merely dropping these variables from the model 
with no further action would raise the problem of OVB.   
 
Suppose, for example, that a certain territory has a disproportionately large number of young drivers.  
If Territory were simply excluded from the model with no further adjustment, the Driver Age 
variable would act partly as a proxy for territory.  The final rating plan, including both Territory and 
Driver Age, would overcharge young drivers in this hypothetical territory. 
 
This problem is sometimes dealt with by adjusting the exposure field.  Assuming a completely 
multiplicative rating plan, adjusting the exposures means simply multiplying exposures either by the 
existing territory and symbol relativities, or by a set of relativities that have been estimated in a 
separate modeling exercise.  As above, let u denote the exposure measure and let τiσj denote the 
product of the Territory and Symbol relativities for Territory i and Symbol j.  We compute fadj = 
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c/(u*τiσj).  We use this adjusted frequency (claims divided by adjusted exposure) quantity rather than 
unadjusted frequency (f=c/u) as the target variable.   
 
Given the above discussion and the result of Appendix A, it should be clear that one could 
equivalently use the un-adjusted frequency field f as the target variable and also include log(τiσj) as an 
offset term in the model:   
 

( ) )log(][log τσβββ +++= vehicleUsedriverAgemultiFE  
 
In other words, the traditional actuarial response to the OVB problem is equivalent to using a 
strategically selected offset term, that is, adjusting exposures is equivalent to including the pre-
specified rating factors as an offset in the model and allowing the remaining factors to conform to 
this offset. 
 
 
Loss Ratio Modeling and the Offset 
The discussion in the previous section is analogous to the distinction between Loss Ratio and Pure 
Premium models.  Suppose we wish to construct a credit scoring model, for eventual use in target 
marketing, company placement, and pricing refinement.  Suppose also that the current rating plan is 
up-to-date, with no base rate or rating relativity changes needed.  Examples of the variables used to 
construct the credit scoring model might be number of late payments in the past x days, balance-to-
limit ratio, and number of derogatory public records in the past y years.   
 
Using Pure Premium as the target variable in such a model would obviously introduce the possibility 
of omitted variable bias. It is possible that some of the parameters in the resulting credit scoring 
model would “double count” a penalty or credit given in one of the existing rating factors [9]. The 
traditional actuarial response to this problem is to use Loss Ratio rather than Pure Premium as the 
target variable [10].  This is analogous to the above discussion of adjusted exposures in Pure 
Premium modeling:  we replace loss/u (Pure Premium) with loss/(u*τσ··· υ)=loss/prem (Loss Ratio) as 
the target variable. 
 
This is conceptually equivalent to using dollars of loss as the target variable, and including log(prem) 
as the offset term in the model: 
 

( ) )log(...][log premlossE derogbalToLimlatePay ++++= βββ  
 
In this way, Loss Ratio modeling as an alternative to Pure Premium modeling can be viewed as yet 
another instance of strategically using the offset feature to avoid the problem of omitted variable 
bias.   
 
Please note that our point is not to recommend that actuaries abandon the use of Loss Ratio as a 
target variable in favor of using Pure Premium or dollars of loss with an offset.  We only wish to 
make the point that modeling Loss Ratio rather than Pure Premium is conceptually yet another 
instance of using an offset to integrate prior constraint into one’s model.  In loss ratio modeling, the 
goal is to build a scoring model to be layered on top of the existing rating plan.  The prior constraint 
is therefore the current rating plan in its entirety, properly adjusted and on-leveled.   
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Using the Offset to Constrain Selected Rating Factors 
Another useful application of the offset is constraining certain rating factors to take on pre-specified 
values.  Constraints such as these are often motivated by regulatory and marketing considerations 
[7,11].  For example:   
 

• The insurance marketplace might demand that that the discount for multi-car or home-auto 
package policies be no greater than 15%, regardless of the indication of a statistical analysis.   

• California’s Proposition 103 requires that a good driver discount be at least 20% below the 
rate the insured would otherwise be charged.   

 
In both cases, we must constrain the values of certain rating factors in advance, and allow the 
remaining rating factors to optimally conform to these constraints.  The offset allows one to easily 
integrate constraints such as these into one’s model.  This is only a short step from the exposure 
adjustment example discussed above.  We will give an example with the added complexity that we 
wish to constrain some, but not all, of the levels of a certain rating variable.   
 
In passing, we should note that offsets should not be applied blindly or in a mechanical fashion.  
Werner and Guven [12] provide a helpful example of a case in which one would not want the other 
factors in a rating plan to help “make up for” a prior constraint to a rating factor.  In general, one 
should be mindful of the caveat that no modeling decisions (modeling technique, target variable 
design, choice of predictive variables and offsets, modeling dataset design, and so on) should be 
made without due regard for the business context of one’s work. 
 
Suppose we wish to optimize two factors of a multiplicative rating plan:  driver age group (with 
values {1,2,3,4}) and multi-car indicator.  We have already multiplied the exposures by all other 
rating variables as described in the exposure adjustment section above.  Our target variable is 
adjusted frequency:  claim count divided by adjusted exposure.  Details of the dataset used in this 
and the following examples can be found in Appendix B. 
 
Let us further assume that (either for competitive or regulatory reasons) the relativities for 
DRIVER_AGE_GROUP 3 and 4 must be constrained to take on the values 1.05 and 1.25, 
respectively.  The following SAS code shows how to build a model that incorporates this constraint. 
 
            Model 1 

data freq_data; set input; 
     FREQ_ADJ = CLAIM_COUNT / EXPOSURE_ADJ; 
     offset_factor = 1; 
      if DRIVER_AGE =3  then offset_factor=1.05; 
      if DRIVER_AGE =4  then offset_factor=1.25; 
     logoffset=log(offset_factor); 
 
     if DRIVER_AGE_NEW in (1,2)  

then DRIVER_AGE_NEW =  DRIVER_AGE; 
else DRIVER_AGE_NEW = 99;          

run; 
 
proc genmod data=freq_data; 
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 class DRIVER_AGE_NEW; 
 weight EXPOSURE_ADJ; 
     model FREQ_ADJ = DRIVER_AGE_NEW MULTICAR 
           / dist=poisson 
        link=log 
             offset= logoffset; 
run; 

 
Table 1 – Model 1 Output 
Variable variable value beta ebeta

DRIVER_AGE_NEW 1 0.75 2.11
DRIVER_AGE_NEW 2 0.65 1.91
DRIVER_AGE_NEW 99 0.00 1.00
MULTICAR 1 -0.27 0.77
MULTICAR 0 0.00 1.00

 
 
In this example, we constrain DRIVER_AGE by letting the offset take on the constrained values 
for age groups 3 and 4; and the 1.0 for the other age groups.  At the same time, we re-code the age 
group values 3 and 4 to the value 99 to ensure that the model parameters for these levels will be 0.  
(This is a SAS trick:  SAS treats the highest value of a categorical value as the base category.)  
Therefore, the model estimates “beta” parameters for age groups 1 and 2, as well as the multi-car 
indicator, subject to the constraint that age groups 3 and 4 must have relativities of 1.05 and 1.25, 
respectively.  The final relativity for each level of DRVER_AGE and MULTICAR will by exp(beta 
+ log_offset) = ebeta*offset.  The final rating relativities are displayed below. 
 
Table 2 – Combining Model 1 Parameters with Offset Values 
Variable variable value model beta ebeta offset final relativity 
DRIVER_AGE 1 0.75 2.11 1 2.11 
DRIVER_AGE 2 0.65 1.91 1 1.91 
DRIVER_AGE 3 0.00 1.00 1.05 1.05 
DRIVER_AGE 4 0.00 1.00 1.25 1.25 
MULTICAR 1 -0.27 0.77 1 0.77 
MULTICAR 0 0.00 1.00 1 1.00 

        
 
 
Construction of a Cross-coverage Tier Score 
In many insurance rating plans, a “tier” structure is a rating component that is layered on top of a 
class plan.  In most cases, tier pricing is applied on a policy level across coverages.  The purpose of 
rating tiers is to include in the pricing process further variables – such as personal credit score or 
not-at-fault accidents – which are not part of standard class plans.  Rating tiers can also be used to 
capture interaction effects between the class plan variables, such as the interaction between driving 
record and driver age, which are not fully reflected due to the limitation of pricing structures.  In the 
next example we illustrate how an offset technique can be used to create a cross-coverage tier 
structure.   
 
Suppose we wish to add a tier structure to an existing standard personal auto class plan with two 
coverages:  property damage liability (PD) and comprehensive (Comp).  The tiers are to be 
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comprised of two factors:  number of policy-level not-at-fault accidents in the past 3 years (NAF) 
and credit score (CREDIT).  The tier structure and the tier score are required to be the same across 
the two coverages.   
 
Suppose we start with two separate data files, one for PD liability and one for Comp.  Table 3 shows 
some sample records of the two data files on the exposure/vehicle level.  Note that the PD and 
Comp adjusted exposures were calculated using the logic described in the section of “Exposure 
Adjustments and Offset”.  Specifically, the PD liability adjusted exposure is the unadjusted exposure 
multiplied by the corresponding territory factors; and the Comp adjusted exposure is the unadjusted 
exposure multiplied by the corresponding factors for territory, vehicle symbol and deductible. 
 
Table 3 
Sample Records from PD Dataset      

Policy 
Number 

Vehicle 
Number 

Credit 
Score 
Group 

Policy 
Level NAF 

Count 

Current 
Plan 

Rating 
Factor 

Adjusted 
Exposure 

Incurred 
Loss 

Adjusted 
Pure 

Premium 
00003 1 2 1 0.41 0.73 0 0
00004 1 0 0 1.63 1.46 1664 1143
00005 1 0 0 0.58 1.25 0 0
00006 1 2 0 0.61 0.52 0 0
00007 1 1 0 1.12 1.25 1344 1077

 
Sample Records from Comp Dataset     

Policy 
Number 

Vehicle 
Number 

Credit 
Score 
Group 

Policy 
Level NAF 

Count 

Current 
Plan 

Rating 
Factor 

Adjusted 
Exposure 

Incurred 
Loss 

Adjusted 
Pure 

Premium 
00003 1 2 1 1.38 1.07 0 0
00004 1 0 0 0.79 1.60 495 309
00005 1 0 0 1.05 1.51 566 375

 
Our first step is to simply “stack” these two datasets together, adding a coverage indicator to identify 
whether the record is PD vs. Comp. 
 
Table 4 
PD and Comp Combined Dataset       

Policy 
Number 

Vehicle 
Number PD_IND 

Credit 
Score 
Group 

Policy 
Level 
NAF 

Count 

Current 
Plan 

Rating 
Factor 

Adjusted 
Exposure 

Incurred 
Loss 

Adjusted 
Pure 

Premium 
00003 1 1 2 1 0.41 0.73 0 0
00004 1 1 0 0 1.63 1.46 1664 1143
00005 1 1 0 0 0.58 1.25 0 0
00006 1 1 2 0 0.61 0.52 0 0
00007 1 1 1 0 1.12 1.25 1344 1077
00003 1 0 2 1 1.38 1.07 0 0
00004 1 0 0 0 0.79 1.60 495 309
00005 1 0 0 0 1.05 1.51 566 375
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The following GLM can be used to estimate the parameters for NAF and Credit:   
 
Model 2 
Input Dataset:   Stacked dataset 
Target Variable:  Pure Premium (loss / exposure_adj); 
Predictive Variables:  Credit, NAF 
Distribution:   Tweedie   
Link:    Log 
Offset:    PD_Relativity*β1β2··· βp   (product of existing rating plan factors) 
Weight:              exposure_adj; 
 
In the above model specification, we are using the offset to reflect the existing rating plan factors.  
We must also account for the variation in Pure Premium between the two coverages:  clearly we 
expect a higher Pure Premium for PD records than Comp records.  Not including a PD indicator in 
the model design would lead to a particularly egregious example of omitted variable bias.   
 
In the above model design, we choose to include the PD relativity as an offset factor along with the 
rating plan factors other than credit score and not-at-fault accident count.  Note that other model 
designs are possible.  For example, it would also be possible to include the PD relativity as part of 
the exposure adjustment step.  Either way, we must perform a preliminary analysis to estimate the 
Pure Premium relativity for PD vs. Comp, and include this relativity either as part of the offset or 
the exposure adjustment step. 
 
Because our target variable in this example is Pure Premium, the Tweedie is an appropriate choice of 
distributions.  This has been discussed extensively in the actuarial literature [4,6], so we will review 
this topic only briefly.  For claim count (or frequency) modeling, it is customary to assume that the 
variance of the target variable is proportional to the mean:  V(µ)=φµ.  This is the “Poisson” model 
design used in the previous examples.  For severity modeling, it is customary to assume that the 
variance is proportional to the square of the mean:  V(µ)=φµ2.  This is known as a “Gamma” model 
design.  Pure Premium is the sum of a (Poission distributed) random number of (Gamma 
distributed) sizes of loss.  It is a convenient mathematical fact that the variance of this target variable 
is proportional to the mean raised to a power between 1 and 2, pє(1,2):  V(µ)=φµp.  This model 
design is also exponential family, and is known as the “Tweedie”.    
 
Unfortunately, the commonly used SAS statistical package does not automatically support the 
Tweedie model in the GENMOD GLM modeling procedure.  One alternative to GENMOD is to 
fit Tweedie models using the NLMIXED procedure.  Details of this are given in Appendix C. 
 
Table 5 shows the parameter estimates from the above Tweedie model.  The PD relativity used in 
the offset is 3.44.   
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Table 5 – GLM Output and Pure Premium Relativities 
 

Parameter Estimate Pure Premium Relativity 
credit_grp_0 1.09 2.96
credit_grp_1 1.23 3.44
credit_grp_2 0.74 2.10
credit_grp_3 -0.14 1.15
credit_grp_4 0.00 1.00
naf_pol_0 -0.15 0.86
naf_pol_1 -0.03 0.97
naf_pol_2 0.00 1.00

 
 
Thus the tier score for a policy with NAF=1 and Credit=2, for example, is exp(0.74 - 0.03)=2.03.  
Please note that the PD indicator is not used to calculate the tier factor. 
 
 
Sequential Modeling 
The previous two examples, building a credit score and a tiering structure “on top of” an existing 
rating plan, may be thought of as exercises in “sequential modeling”.  By “sequential modeling” we 
mean building a model to account for variation not already explained by a pre-specified model.  The 
pre-specified model (the existing rating plan in the above examples) in other words serves an as 
“offset” when building the second model.  
 
Sequential modeling techniques have a wide range of applications.  As noted above, the first two 
examples – estimating rating plan factors after Territory and Symbol factors have been determined 
in a separate analysis; and building a credit scoring model on top of an existing rating plan – are 
examples of sequential modeling.  Sequential modeling can also be useful for regulatory compliance.   
For example, California’s Proposition 103 requires that safety/driving record and mileage be the 
greatest determinants of auto premiums.  Insurers typically use sequential methods when developing 
their rates in California. 
 
We will give one final example of sequential modeling before closing the paper.  In this example, we 
will estimate first the main effects of a rating plan and then an interaction term in sequential fashion.  
There can be many motivations for sequential modeling strategies such as the one exemplified here.  
For example, perhaps the interaction factors will be used only in certain states; but the main effect 
factors are desired to be common across all states.  Sequential modeling using an offset would be a 
practical way to approach such a situation.  Another motivation might be that one wishes to keep 
the main effects model simple, without the complication of estimating an interaction term in the 
same step.   
 
In this final example, we suppose we are modeling PD pure premium using the three rating 
variables:  driver age group, multicar indicator, and pleasure use indicator.  We will build an initial 
GLM model for these three main effects.  We will next build a second model – using the first model 
score as an offset – to estimate the factors for a driver age/pleasure use interaction term.  As 
discussed above, the “main effects” rating plan might be used nationally; the additional interaction 
factors might be implemented in selected states. 
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Model 3 
Target Variable:  PD Pure Premium (pd loss / pd exposure_adj); 
Predictive Variables:  DRIVER_AGE, MULTICAR, PLEASURE_USAGE  
Distribution:   Tweedie   
Link:    Log 
Offset:    (none) 
Weight:              exposure_adj; 
 
The rating factors resulting from this model are displayed in the table below. 
 
Table 6 – Model 3 Parameter Estimates and Pure Premium Relativities 
Variable Value Beta ebeta 
MULTICAR 1 -0.26 0.77 
MULTICAR 0 0.00 1.00 
DRIVER_AGE 1 0.37 1.45 
DRIVER_AGE 2 0.04 1.04 
DRIVER_AGE 3 -0.83 0.44 
DRIVER_AGE 4 0.00 1.00 
PLEASURE 1 -0.36 0.70 
PLEASURE 0 0.00 1.00 

 
Let η denote the linear component of the scoring formula corresponding to the table above:  
 η  = βDRIVER_AGE + βMULTICAR + βPLEASURE.  We will use η as the offset in the model for Step II of the 
sequence.   
 
Model 4 
Target Variable:  PD Pure Premium (pd loss / pd exposure_adj); 
Predictive Variables:  DRIVER_AGE *  PLEASURE  
Distribution:   Tweedie   
Link:    Log 
Offset:    η 
Weight:              exposure_adj; 
 
 
Model 4 differs from Model 3 only in the choice of predictive variables; and the fact that we’re using 
the linear component of the Model 3 scoring formula (ETA) as the offset.  Note although exp(η) is 
Model 3’s estimate of PD Pure Premium, we are using η, not exp(η), as the offset in Model 4 
(below).  This is because we are building a multiplicative model (using the log link function).  
Therefore the offset must be on the log scale. 
 
Table 7 displays the rating factors resulting from Model 4. 
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Table 7 – Model 4 Parameter Estimates and Pure Premium Relativities 
DRIVER_AGE PLEASURE Model 3 Estimates Pure Premium Relativity 
1 1 0.54 1.72 
1 0 0.63 1.88 
2 1 0.45 1.57 
2 0 0.78 2.18 
3 1 0.65 1.92 
3 0 0.75 2.12 
4 1 -0.05 0.95 
4 0 0.00 1.00 

 
In states for which Model 4’s interaction factors are not used, the factors in Table 6 constitute the 
rating plan.  In states for which the interaction is intended to be used, we must integrate the results 
of tables 6 and 7.  This is done in tables 8 and 9: 
 
Table 8 – Pure Premium Relativities for Type 
Variable Value Relativity 
MULTICAR 1 0.77 
MULTICAR 0 1.00 

 
Table 9 – Pure Premium Relativities for DRIVER_AGE and PLEASURE 
                                 PLEASURE 
DRIVER AGE PLEASURE=1 PLEASURE=0 

1 1.74 2.71 
2 1.63 2.26 
3 0.71 0.97 
4 0.90 1.00 

 
 
Conclusion 
 
The GLM offset feature is a practical and versatile tool for dealing with a variety of issues such as:  
data constraints, credibility issues (as in Symbol factor development), regulatory considerations (e.g. 
California’s Proposition 103), the desire to layer a further rating, scoring, or tier model on top of an 
existing rating plan (credit scoring, tier factor development), and the need to add state-specific 
variations to a basic countrywide rating plan (sequential modeling).   
 
Generally speaking, the offset option is helpful when omitted variable bias [OVB] threatens to 
distort one or more model parameters.  The classic use of an offset is to incorporate a measure of 
exposure when modeling rates.  For example if some records in a personal auto dataset correspond 
to 6-month policies while other records correspond to 12-month policies, then it is appropriate to 
use (log of) months of exposure as an offset.  Failure to do so would raise the specter of OVB:  
model variables correlated with months of exposure might possibly pick up some of the variation 
that should be explained by months of exposure.  This would result in biased parameter estimates. 
 
Beyond this classical use, the offset option is helpful in a number of actuarial applications.  For 
example, we have described how the offset option can be used to build GLM models subject to 



Applications of the Offset in Property-Casualty Predictive Modeling 

Casualty Actuarial Society E-Forum, Winter 2009 379  

certain rating factor constraints; to optimize the rating factors of some, but not all, of the variables 
in a rating plan; and to build predictive or rating models in sequential fashion.  We discussed credit 
scoring, tier variable creation, and state-exception sub-models as examples of actuarial pricing 
models built in sequential fashion. 
 
The offset option provides actuaries with a unifying framework – encompassing such traditional 
techniques as exposure adjustments and loss ratio modeling as an alternative to pure premium 
modeling – for avoiding omitted variable bias.  It is therefore appropriate to consider using an offset 
when performing a multivariate analysis subject to variable exclusions or other a priori constraints. 
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Appendix A:  Two Equivalent Ways of Modeling Frequency with Poisson Regression 
 
Suppose we wish to model claim frequency F as a generalized linear function of several covariates 
{X1, X2, …, XN}.  Let C denote the number of claims for a given policy, and u (for “units”) denote 
number of exposures.  Then:  F=C/u. 
 
We will demonstrate that the following two ways of modeling F are equivalent: 
 
   Option 1  Option 2 
GLM family:  Poisson  Poisson 
Target:   C   F 
Weight:            (none)   u 
Offset:   log(u)   (none) 
 
Let us start with Option 1 and demonstrate that it is equivalent to Option 2.  Let i denote the 
observation number.  The Poisson regression assumption is that: 
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Then we have the relationship:  λi=u*μi. 
  
The log-likelihood function for the Option 1 Poisson regression model is: 
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(For simplicity we are assuming that over-dispersion does not exist in the data.  That is, φ=1.)  We 
can recast the above expression in terms of F and μ: 
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In the above expressions, {κ, κ’, κ’’} denote constants that do not depend on the model parameters.  
This last expression is the log-likelihood function for the Poisson regression, cast in the terms 
Option 2. 
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Appendix B:   Details of the Dataset Used in Examples  
 
The data used in this paper was simulated by Deloitte Consulting using a typical private passenger 
auto (PPA) rating structure.  The data consists of 50,000 vehicle-level records corresponding to 
24,993 single-car policies and 11,038 multi-car policies. Two coverages, Property Damage liability 
(PD) and Comprehensive (Comp), were simulated for each vehicle.  By construction, 50% of the 
vehicles have exposures in both coverages, while the other 50% of the vehicles have PD exposure.  
 
The following rating variables were simulated for each vehicle record:  
 Multicar indicator   {0,1}                              “0” – single car  
                                                                                                               “1” – multi Car 
 Policy age    {0,1,2,…,15} 

Driver age group   {1,2,3,4} 
Pleasure use indicator   {0,1}                              “1” – Pleasure Use 
                                                                                                   “0” – Not Pleasure Use 
Credit score group    {0,1,2,3,4}  
Territory     {T1, T2, T3, T4} 
Vehicle symbol    {1,2,3,4,5}  
Policy-level at fault accidents  {0,1,2+} 
Policy-level not at fault accidents {0,1,2+} 

 
 
All of these variables are treated as categorical variables in the examples described in the body of this 
paper. 
 
The following target fields were also simulated for each vehicle record:  PD incurred loss, PD claim 
count (7,414 claims, or 14%), PD exposure, Comp incurred loss, Comp claim count (6,143 claims, 
or 12.2%) and Comp exposure.  



Applications of the Offset in Property-Casualty Predictive Modeling 

Casualty Actuarial Society E-Forum, Winter 2009 383  

Appendix C:   The Tweedie Compound Poisson Model and Corresponding SAS Code 
Matthew Flynn, Ph.D. 
 
Following Smyth & Jorgenson [14], section 4.1, page 11, the Tweedie Compound Poisson joint 
likelihood function as: 
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The SAS codes using “Proc NLMIXED” to fit the above likelihood function for the cross coverage 
tiering score example in the paper is given as follows:  

 
 
proc nlmixed data=the_appended_dataset; 
 parms p=1.5;   
 bounds 1<p<2;     

eta_mu = b0 + 
c1*(credit_grp=1)+c2*(credit_grp=2)+c3*(credit_grp=3)+c4*(credit_grp=4)  
+ naf1*(naf_pol=1)+naf2*(naf_pol=2) 
+ coverage_COMP*(coverage=’COMP’); 

 mu = exp(eta_mu + current_factor);     
 eta_phi = phi0 + 

 phi_c1*(credit_grp=1)+ phi_c2*(credit_grp=2)+ 
phi_c3*(credit_grp=3)+ phi_c4*(credit_grp=4)+ phi_naf1*(naf_pol=1)+ 
phi_naf2*(naf_pol=2) 
+ phi_coverage_COMP*(coverage=’COMP’); 
phi = exp(eta_phi);     
n = claims;      

 w = insured;     
 y = pp;      
    t = ((y*mu**(1 - p))/(1 - p)) - ((mu**(2 - p))/(2 - p)); 
    a = (2 - p)/(p - 1); 
    if (n = 0) then  

loglike = (w/phi)*t;  
    else  

loglike = n*((a + 1)*log(w/phi) + a*log(y) - a*log(p - 1) - log(2 - p)) 
                     - lgamma(n + 1) - lgamma(n*a) - log(y) + (w/phi)*t; 
 model y ~ general(loglike); 

replicate adjexp; 
 estimate 'p' p; 
run; 
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The above codes can be broken down into the following major sections:   
 

• First we call the Proc NlMIXED, addressing the desired input dataset: 
 

proc nlmixed data=the_appended_dataset; 
 

The PARMS statement provides a starting value for the algorithm’s parameter search.  
Multiple starting values are allowed, as well as input from datasets (from prior model runs, 
for example).  With some domain knowledge we anticipate this parameter to be in the 
neighborhood of 1.5. 

 
 parms p=1.5;   
 

Parameters can also be easily restricted to ranges, such as to be positive, and here we require 
the estimated Tweedie power parameter to fall between one and two.  

 
 bounds 1<p<2; 
 

• Next we specify the linear model/predictor for the mean response.  Proc NLMIXED does 
not have the convenient CLASS statement of some of the other regression routines, like 
Proc GENMOD or Proc LOGISTIC.  However, the design matrix can be created “on-the-
fly”, so to speak, by effectively including programming statements in the Proc NLMIXED 
code.  Here, we create dummy variables by coding the linear model with logical statements.  
For example, the phrase, (credit_grp=1) resolves to either true (1) or false (0) at runtime, 
creating our desired indicator variables to test discrete levels of right-hand side variables.  As 
a reminder, for a GLM, the linear predictor is required to be linear in the estimated parameters, so 
non-linear effects such as high powers of covariates or splines can be accommodated. 

   
eta_mu = b0 + 
c1*(credit_grp=1)+c2*(credit_grp=2)+c3*(credit_grp=3)+c4*(credit_grp=4)  
+ naf1*(naf_pol=1)+naf2*(naf_pol=2) 
+ coverage_COMP*(coverage=’COMP’); 

 
• Next we create a log link that maps the linear predictor to the mean response.  That log link 

on the left hand side, becomes an exponential as the inverse link (on the right-hand side).  
 
 mu = exp(eta_mu + current_factor);     
 

• A great feature of using Proc NLMIXED is its flexibility.  Here we are specifying what 
Smyth & Jorgenson [13] refer to as a double GLM.  Instead of a single constant dispersion 
constant, we can fit an entire second linear model with log link for the dispersion factor. 

 
 eta_phi = phi0 + 

phi_c1*(credit_grp=1)+ phi_c2*(credit_grp=2)+ phi_c3*(credit_grp=3)+ 
phi_c4*(credit_grp=4)+ phi_naf1*(naf_pol=1)+ phi_naf2*(naf_pol=2) 
+ phi_coverage_COMP*(coverage=’COMP’); 

 
phi = exp(eta_phi);     
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• Proc NLMIXED allows a number of datastep style programming statements.  Here we are 
assigning input dataset variables claims, insured, and pp as new variables (n, w and y) to be 
used subsequently in building out our likelihood equation.  That way, one can easily adapt 
pre-existing code to a particular input dataset, without requiring modifications to the “guts” 
of the log-likelihood equation (it is complicated enough already).   

 
n = claims;      

 w = insured;     
 y = pp;      
 

• Now one can begin to specify the loglikelihood.  Here, for clarity, we build it out in several 
steps.  Simply refer to the Tweedie Compound Poisson likelihood described above from 
Smyth & Jorgensen [13], and lay it out. 

 
     t = ((y*mu**(1 - p))/(1 - p)) - ((mu**(2 - p))/(2 - p)); 
 
     a = (2 - p)/(p - 1); 
 
     if (n = 0) then  

loglike = (w/phi)*t;  
     else  

loglike = n*((a + 1)*log(w/phi) + a*log(y) - a*log(p - 1) - log(2 
- p)) - lgamma(n + 1) - lgamma(n*a) - log(y) + (w/phi)*t; 

 
Proc NLMIXED includes several pre-specified likelihoods, for example, Poisson and 
Gamma, the GENERAL specification allows the great flexibility to specify one’s desired 
model specification. 

 
 model y ~ general(loglike); 
 

Weights can either be included directly in the loglikelihood above, or with the handy 
REPLICATE statement.  Each input record in the dataset represents an amount represented 
by the input variable “adjexp”. 

   
replicate adjexp; 
 
The ESTIMATE statement can easily calculate and report a variety of desired statistics from 
one’s model estimation.  Here, we are interested in the Tweedie Power parameter. 

 
 estimate 'p' p; 
 

Without using any of the additional “Mixed” modeling power, Proc NLMIXED performs as 
a great Maximum Likelihood Estimator using a variety of numeric integration techniques. 
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ERM and Actuaries 

David Ingram 

Enterprise Risk Management is both new and old.  Actuaries have always been highly involved in 
risk management and they have much to learn about the new field of Enterprise Risk Management.  
These seemingly contradictory statements are the subject of this paper.  This paper is an attempt to 
create a context for the understanding of ERM that can identify both the historic and new roles for 
actuaries and other risk professionals in managing risks for any type of firm.   

THREE TYPES OF ERM 

The activities of Enterprise Risk Management can be grouped into three broad areas.  Those are 
Risk Controlling, Risk Trading and Risk Steering.  Some discussions of these three types of risk 
management present them as a progression for less advanced to more advanced activity.   

 
This chart (adapted from Mark Puccia Standard & Poor’s presentation) shows a progression from 

risk management programs that are risk control oriented through programs that feature risk 
management and measurement to ultimately evolve to value creation and optimization activities.   

The three areas of risk management that are mentioned above can be seen as groupings of the six 
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boxes on this stairway.   

 
 

These three types of ERM activities have different objectives and different firms have applied 
these types of ERM with different degrees of emphasis.  

Risk Controlling is a fundamental activity that seeks to restrict exposure to potential losses or 
risks.  Almost all business activities include some amount of risk control activity.  In insurance 
companies, the major risk controlling activities included underwriting of insurance risks, 
underwriting of credit risks, authority limits and exposure limits for each of those areas.  It also 
included internal audit and other functions for controlling operational risks.  Eventually, some firms 
added in controls around other risks such as interest rate and equity risks using ALM and hedging as 
a risk control processes.  In banks, the same sorts of credit and operational risk controlling activities 
existed.  In non-financial firms, there was often a large added physical component to loss 
controlling.  Safety and industrial engineering programs worked on physical risks.  In addition, many 
non-financial firms have large exposure to physical property risks that are insurable.  So 
management of an insurance program became a major risk control process.  In addition, there are 
supply chain and raw materials risks.  These are managed by a variety of techniques, including but 
not limited to hedging.  And in all firms, managing foreign exchange and liquidity risks were 
practiced to varying degrees.   
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Most commonly, these risks were management completely in isolation by specialists in each 
particular risk element.  This is the most traditional picture of risk management.  The new part of 
risk controlling that ERM brings is the possibility of bringing all of these risks to the same table, 
looking at them on some comparable basis and determining the degree to which a firms wants to 
retain or reduce exposure to risks on a consistent basis from a top down point of view.   

Actuarial involvement in risk controlling has traditionally been limited.  Actuaries have worked as 
underwriters and as investment managers in insurers but that has mostly been stepping outside of 
the actuarial role into another specialty.  Actuaries have taken more prominent roles in development 
and monitoring of limits in areas such as cat risk, where the measurement depended on complex 
models.  Those models also require collaboration with scientists who are specialists in the specific 
catastrophes.  Actuaries play a major role in ALM and hedging of insurance exposures there also 
usually in collaboration with specialists in the investments that make up half of the equation.   

The new role for actuaries in risk controlling is the development, maintenance and interpretation 
of comprehensive risk models that can be used to bring all risks onto the same basis for top level 
discussion and ultimately the determination of overall risk tolerance and decisions on which risks to 
retain to use up that tolerance.  The first awakening from this process is the first time glance at the 
actual risk profile of the firm and the realization that some risks are managed very tightly while 
others are quite the opposite.  Once that discussion has been held, actuaries than also have a role to 
help to translate that risk tolerance back into measures that are more familiar to managers in each 
risk area.   

Risk controlling is the area of ERM that is addressed by COSO and AS/NZ Risk Management 
Standard.  It is often dismissed by actuaries as being of relatively little importance or not even a part 
of ERM.  However, the risk management activities of most non-financial firms fall largely into the 
area of risk controlling.   

When actuaries look at potential roles outside of financial services for ERM activities, there needs 
to be recognition of the large amount of physical risk that is present in many non-financial firms that 
actuaries are totally unprepared to help manage.  These risks are most often managed by engineers 
or people with similar backgrounds.   

Many firms will never go beyond risk controlling in their risk management programs.  And that 
might well be the best use of management time and resources.  That will depend on the major 
limiting factor of the firm.  Financial firms are usually faced with capital as a major limiting factor 
and retained risk as a major driver of capital needs.  So financial firms must have risk and risk 
management at the heart of many management discussions. For non-financial firms, risk will 
influence need for cash or access to cash and availability of cash and capital, but there may be other 
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much more important limiting factors.  In the recent times, more and more firms have leveraged 
themselves more and more creating a situation where risk and the resulting volatility in cashflow 
needs are now of very high importance.  But there are other firms, such as the large well established 
technology firms that are awash in cash and have plenty of capital but have very different key 
limiting factors that push risk management to a lower level on the priority list which means that risk 
controlling is the only type of risk management that will be undertaken.   

As the actuarial profession seeks to promote an “all industry” approach to professional 
involvement in risk management, these factors need to be taken into account.  And in addition, the 
most likely area of actuarial involvement, for creation of comprehensive risk models needs to be 
developed into a practice area where an actuary could be able to learn from established methods for 
modeling of all risks.  These methods have not been established, which makes it extremely difficult 
to sustain a standard of professionalism that is equivalent to traditional areas of actuarial practice.   

RISK TRADING 

Risk Trading is the second major type of ERM activities.  Modern ERM can be traced to the 
trading businesses of banks.  Hard lessons from uncontrolled risk trading led to the development of 
processes and standards for controlling the traded risks.  A major element in these systems is the 
function of valuing, or in other words, pricing of risks.  For this paper, all activities that include the 
deliberate acquisition of risks for the purpose of making a profit by management of a pool of risks 
to be risk trading.  With that definition, insurance and reinsurance companies can be seen to be pure 
risk trading firms.  And actuaries are at the heart of this activity as major players in the pricing and 
valuation of insurance risks.  With this way of organizing risk management activities, it is clear that 
most actuarial is and has always been risk management.  In fact, as usually boasted, actuaries 
probably have over 100 years more experience in risk management than any others active in this part 
of the field of risk management.   

ERM changes the risk pricing by introducing a consistent view of pricing of risk margins across 
all risks.  For actuaries and insurance products this has taken the form of economic capital and cost 
of capital pricing.   

But the activity in this area that has developed in banking and that has, until very recently, been 
driving regulatory thinking has gone in different directions than actuarial risk trading.  Actuaries 
have entered into parallel activities, but most often with totally different objectives.   

At a fundamental level, actuarial practice has been organized along the basic insurance principle 
of diversification.  Risk pricing for insurers has been a compromise between the cost of risk to the 
customer with a highly specific risk and the cost of risk to the insurer with a diversified pool of risks.   
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The banking approach to risk trading has been that of replication.  It is an extension of the 
fundamental activity of trading away market inefficiencies of prices between different markets.  
Risks are taken and offset.  Banks keep the difference between one version of a risk and a replicating 
position based on other securities.  Different risk trading strategies employ different degrees of 
replication.  The closer the strategy is to exact replication, usually the lower the margin per trade.  
For example, Long Term Capital Management used a trading strategy firms developed at Solomon 
Brothers that offset positions in 20 year treasuries with positions in 19 year treasuries.  Other risk 
trading employed by banks is the so called “carry trade” where the banks borrow funds in a currency 
with very low interest rates (most often Japan in recent years) and lend those same funds in a market 
with higher interest rates, usually for a much longer term.   

One of the underlying principles of bank trading risk management is liquid markets for risk.  
Another major principle is the atomization of risk and the dispersal of risk.  This is seen as a 
solution to a classic bank problem of risk concentration.  Historically, banks operated locally and 
had very highly concentrated loan portfolios that focused on their local businesses.  Atomization of 
risk, usually referred to as securitization, allows for drastic reduction in the risk concentration of 
banks.   

Actuaries use very similar techniques to bank risk trading when they do ALM and hedging.  
However, similar seeming activities are classified as risk controlling for insurers and trading for 
banks.  This is because in most cases, banks do risk trading to achieve profits while insurers do ALM 
and hedging to reduce or eliminate risk.  This is fairly arbitrary and the reader can decide that form 
of activity, rather than objective of activity is the more important classification criteria.   

It is important note that bankers and bank regulators have been very vocally promoting the risk 
management practices that have been devised for their risk trading as THE platform for all risk 
management.  In fact, they have struggled mightily to force the credit and operational risks of banks 
into this framework.  Meanwhile, insurers and insurance regulators have also been drawn into this 
path as well.   

The idea is that trading of all risks will enhance the risk management of all risks.  And even if 
there is no trading of a risk, that the best course of action for risks that are not traded is to pretend 
that they are traded.   

This approach has caused the management of many, many non-financial firms to conclude that 
risk management does not apply to them.  They would contend that their risks do not even slightly 
fit into the risk trading model.  This discussion is intended to show how they fit into ERM and this 
author heartily agrees that most risks will not ever fit into a risk trading model.   

Recent events perhaps call into question the entire risk trading model of banks.  The idea that 
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inexact replication can be a reliable activity can only be supported if it is believed that the degree of 
residual risk can be determined reliably.  However, there have been repeated market events that 
show that periodically, the small and moderate amounts of expected residual risk can become 
mammoth when economic activity falls into a transition period between predictable regimes.   

Another major difference between the actuarial approach to risk pricing and the banking 
approach is the reference basis.  Actuarial pricing and valuation tends to reference the cashflows in a 
fundamental analysis approach to risk.  Banking pricing and valuation tend to reference other prices.   

In recent years, actuaries have been heavily criticized and self critical because of the failure to 
sufficiently reference market prices.  One problem for actuarial valuations has been the treatment of 
market risk margins.  When actuaries cannot find a cahsflow basis for risk margins, those margins 
are treated as any other cashflows and are then a positive contribution to value.  This leads to the 
illogical result that an investment with a large risk margin that was purchased for $100 would be 
considered to be worth $120 immediately by the actuarial valuation.   

In addition, and even more important to a discussion of risk management, actuaries were valuing 
risky options that were implicitly granted inside of an insurance contract at values much, much lower 
than the price of replicating options purchased in the financial markets.  In some cases, actuaries 
were underestimating both the expected losses from the options and the risk margins.   

However, the recent credit crisis shows that market evaluations of risk margins are not perfect 
either.  In the period preceding the sub prime meltdown, market based margins for risk for many 
financial instruments were at or near historical lows.  A fundamental evaluation of the potential risk 
would have suggested that the market was not paying appropriately for taking risks.   

Risk trading is also done by some of the non-financial firms that have built trading platforms to 
support hedging of their raw materials costs.  These firms seek to get profits from the insights into 
the movements in market prices and their knowledge of the actual activities related to the underlying 
goods.  Enron was the largest proponent of this activity.  Many other firms have continued in these 
practices after the demise of Enron, but in a much more controlled fashion.   

RISK STEERING 

Management has always looked to choose strategies that enhance firm value.  ERM provides an 
entire new and more quantitative approach to this high level activity.   

At the macro level, management will leverage the risk and reward information that comes from 
the ERM systems to optimize the risk reward mix of the entire portfolio of insurance and 
investment risks that they hold.  Proposals to grow or shrink parts of the business and choices to 
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offset or transfer different major portions of the total risk positions can be viewed in terms of risk 
adjusted return.   This can be done as part of a capital budgeting / strategic resource allocation 
exercize and can be incorporated into regular decision making.  Some firms bring this approach into 
consideration only for major ad hoc decisions on acquisitions or divestitures and some use it all of 
the time.   

There are several common activities that may support the macro level risk exploitation: 

Economic Capital. Realistic risk capital for the actual risks of the company is calculated for all 
risks and adjustments are made for the imperfect correlation of the risks. Identification of the 
highest concentration of risk as well as the risks with lower correlation to those higher concentration 
risks is the risk information that can be exploited.  Insurers will find that they have a competitive 
advantage in adding risks to those areas with lower correlation to their largest risks.  Insurers should 
be careful to charge something above their “average” risk margin for risks that are highly correlated 
to their largest risks.  In fact, at the macro level as with the micro level, much of the exploitation 
results from moving away from averages to specific values for sub classes.   

Risk Adjusted Product Pricing. Product pricing reflects the cost of capital associated with the 
economic capital of the product as well as volatility of expected income. Product profit projections 
show the pure profit as well as the return for risk of the product. Risk adjusted value added is 
another way of approaching this that has the advantage that it does not favor shrinkage of the 
business as a rate driven risk adjusted rate of return does.   

Capital Budgeting. The capital needed to fulfill proposed business plans is projected based on the 
economic capital associated with the plans. Acceptance of strategic plans includes consideration of 
these capital needs and the returns associated with the capital that will be used. Risk exploitation as 
described above is one of the ways to optimize the use of capital over the planning period.   

Risk Adjusted Performance Measurement (RAPM). Financial results of business plans are 
measured on a risk-adjusted basis. This includes recognition of the economic capital that is necessary 
to support each business as well as the risk premiums and loss reserves for multi-period risks such as 
credit losses or casualty coverages.  

Risk Adjusted Compensation.  An incentive system that is tied to the risk exploitation principles 
is usually needed to focus attention away from other non-risk adjusted performance targets such as 
sales or profits.  In some cases, the strategic choice with the best risk adjusted value might have 
lower expected profits with lower volatility.  That will be opposed strongly by managers with purely 
profit related incentives.  Those with purely sales based incentives might find that it is much easier 
to sell the products with the worst risk adjusted returns.  A risk adjusted compensation situation 
creates the incentives to sell the products with the best risk adjusted returns.   
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A fully operational risk steering program will position a firm in a broad sense similarly to an auto 
insurance provider with respect to competitors.  There, the history of the business for the past 10 
years has been an arms race to create finer and finer pricing/underwriting classes.  As an example, 
think of the underwriting/pricing class of drivers with brown eyes.  In a commodity situation where 
everyone uses brown eyes to define the same pricing/underwriting class, the claims cost will be seen 
by all to be the same at $200.  However, if the Izquierdo Insurance Company notices that the claims 
costs for left-handed, brown-eyed drivers are 25% lower than for left handed drivers, and then they 
can divide the pricing/underwriting into two groups.   They can charge a lower rate for that class 
and a higher rate for the right handed drivers.  Their competitors will generally lose all of their left 
handed customers to Izquierdo, and keep the right handed customers.  Izquierdo will had a group of 
insureds with adequate rates, while their competitors might end up with inadequate rates because 
they expected some of the left-handed people in their group and got few.  Their average claims costs 
go up and their rates may be inadequate.  So Izquierdo has exploited their knowledge of risk to 
bifurcate the class, get good business and put their competitors in a tough spot.   

Risk Steering can be seen as a process for finding and choosing the businesses with the better risk 
adjusted returns to emphasize in firm strategic plans.  Their competitors will find that their path of 
least resistance will be the businesses with lower returns or higher risks.   

JP Morgan in the current environment is showing the extreme advantage of macro risk 
exploitation.  In the subprime driven severe market situation, JP Morgan has experienced lower 
losses than other institutions and in fact has emerged so strong on a relative basis that they have 
been able to purchase several other major financial institutions when their value was severely 
distressed.  And by the way, JP Morgan was the firm that first popularized VaR in the early 1990’s, 
leading the way to the development of modern ERM.  However, very few banks have taken this 
approach.  Most banks have chosen to keep their risk information and risk management local within 
their risk silos. 

Actuaries play a key role in providing the information for risk steering with economic capital and 
return/value modeling.   

This is very much an emerging field for non-financial firms and may prove to be of lower value 
to them because of the very real possibility that risk and capital is not the almost sole constraint on 
their operations that it is within financial firms as discussed above.  

Implications for Actuaries 

This framework shows how much actuarial work can be seen as risk management.   

It also shows very briefly summarizes the differences between traditional actuarial work and 
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ERM. 

The framework shows the ERM work that is not now performed by actuaries, the risk 
management work that is not performed by actuaries and the work that arises from a shift to ERM 
that could be undertaken by actuaries.   

Actuaries need to consider how the profession should relate to the areas of risk management 
where actuaries are not primary players but have related roles.  These areas exist within insurance 
and include some of the largest risks such as equity risk, credit risk, underwriting and operational 
risk.   

Actuaries need to consider how the profession should relate to areas of risk management where 
actuaries currently have no current connection.   
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 Banks Insurers Non Financial Main Idea 
Risk Controlling − Basel II – has risk controlling 

focus, but thinking is trading risk 
based.   

− Credit Risk management has 
traditionally fallen here, but with 
advent of credit trading (CDS) 
has been moving it into Risk 
Trading. 

− ORM should be in this box, 
trading risk focus of banks forces 
ORM into a trading risk 
approach. 

− Solvency 2– has risk controlling 
focus, but thinking is copy of 
banking risk trading approach.   

− RBC 
− Underwriting Standards 
− Investment Policies 
− ORM is developing 
− ALM & Hedging 
− Reinsurance 
 

COSO 
Cost benefit approach to risk 
management.   
Insurance is primarily a risk 
controlling tool. 
 

To keep risk within tolerance.  To 
limit potential losses.  Main tools are 
underwriting/risk selection and loss 
control activities to reduce frequency 
& severity of unavoidable losses. 
Works with gross positions. Starts as 
silos.  Eventually in aggregate.  

Risk Trading − Market Risk of trading books 
− Valuation models 
− Focus is solely on getting market 

price and volatility of market 
price.   

− Usually no fundamental analysis 
of risks 

− Most insurers have buy and hold 
approach to risk 

− Some do trading of market risk for 
profit 

− Pricing of many insurance products  
− Valuation of insurance risks 
− Initially based solely on fundamental 

analysis of risks 
− Shifting to market price of risk  

− Applies only to hedging 
of raw materials and 
prices of products. 

− Non-Financials not 
familiar with controlling 
of trading risks leading to 
frequent mismatches 
between risk appetite and 
hedging positions.   

To get the prices right on risks to 
make trade-offs.  Starts in Silos.  
Eventually consistent across risks.  To 
limit net positions.   
Tools are risk structuring & risk 
trading.   
Counterparty risk becomes key.   

Risk Steering Not usually 
A few banks use RAROC 
With risk trading view Risk Steering 
doesn’t make sense, since positions 
change constantly.  All risk 
management is seen to be tactical.   

Some trying to use EC & RAROC or EC 
& cost of capital in Embedded value  

Not usually considered by 
non-financials 
Rarely is there any clearly 
articulated risk reward trade-
off standards.   

To balance aggregate risks & 
understand aggregations and 
diversifications in the businesses in 
order to improve the spread for risk 
and the return for net firm-wide risk. 

Comments Banks started with Risk Trading and 
they are trying to force all of their 
ERM activity into a trading 
framework 

Insurers try to copy bank ERM, but it 
doesn’t translate well because they are 
predominantly buy & hold risk takers.  
May cause insurers to shift to more risk 
trading.   

Non-Financials protest the 
application of trading 
centered bank ERM ideas to 
their businesses where very 
few of the risks are traded.   
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______________________________________________________________________________________ 
Abstract 

In this paper, we study the issue of whether a price discount for renewal business is warranted for 
property and casualty insurance.  The discount is motivated by the fact that new business with 
insurance coverage lapse, or new business in general, may perform worse than renewal business.  
The study is based on a total of 25 books of insurance business with a total amount of almost $29 
billion of premium.  The data cover all the primary property and casualty lines of business, 
including personal Auto and Homeowners as well as commercial Business Owners Policies, Auto, 
WC, GL and Property.  The data do indicate that new business universally has a higher loss ratio 
and a lower retention rate than renewal business across all the 25 books of business.  We will 
attempt to offer reasons as to why such difference exists between new and renewal business for 
insurance. 
 
Keywords: Persistency discount, renewal discount, loss ratio, retention. 

          ____________ 

1. INTRODUCTION  

It may be known to the property and casualty insurance industry that new business 
possesses higher risk than renewal business.  Stable and persisting insureds are generally 
bringing in more profits to insurers, while insureds who frequently switch from one carrier 
to another are usually poor risks [1].  For example, the research report by Conning [2] 
indicates that new business loss ratios can vary from 10% higher to more than 30% higher 
than renewal business, depending on the line of business and underwriting cycle.  As a result, 
the industry may want to surcharge new business or award discounts to their renewal 
business.   

One primary principle for insurance pricing is that “A rate is an estimate of the expected value 
of future costs” [3]. In other words, two risks with same characteristics should be charged the 
same rate.  Therefore, such price differentiation between new and renewal business has 
caused some debate in the past because some people believed that insurance rates should not 
be unfairly discriminatory due to the length of an insured staying with a carrier.  For 
example, in California, over the last decade, the new business surcharge or persistent 
discount debate has been one of the insurance regulation focuses.  California regulators once 
barred automobile insurance companies from levying surcharges against new customers who 
drove without coverage [4].  After this bar was lifted later, consumer advocate groups also 
filed separate lawsuits against companies who use a customer’s lack of prior insurance as a 
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factor in determining premiums [5].  On the other hand, the insurance industry did propose 
to allow drivers who renew coverage with their current insurer to receive discounts on basis 
of the argument that actuarial evidence shows drivers who maintain insurance for an 
extended period of time with an insurer have lower loss costs [6].   

Different states may have different regulations on such a new business surcharge or 
renewal business discount [7].  We conducted a survey with the department of insurance in 
various states. Regulations for some states are silent on the topic, while other states do not 
prohibit price differentiation as long as insurers can provide support for the discount.  The 
survey result suggests that most of the states appear to allow the price differentiation.  Table 
1 in appendix summarizes the highlight of the responses from the departments of insurance 
we contacted. 

There is a difference between persistency discount and renewal discount.  The persistency 
discount rewards a lower rate to new business without prior insurance lapse.  Hence, the 
discount essentially implies a surcharge to new business with insurance lapse.  On the other 
hand, the renewal discount results in a lower rate for renewal business. Therefore, the 
renewal discount implies a surcharge to new business as a whole.  Since insurance companies 
in general do not capture data well that can allow us to differentiation new business with or 
without prior insurance, our study focuses on the total new business.         

Setting aside public policy and regulation considerations, the key actuarial and rating 
questions for the issue are: 

• Is it true that new business in general performs worse than renewal business? 

• If yes, what are the reasons for such a difference?  

Several published studies before have noted that renewal business in general exhibits 
continuing improvement in loss ratio as the business has stayed with the same insurer for 
multiple terms [1,2, 8-10].  One study further attributes such improvement to the fact that as 
an insured stays longer with the same insurer, the insurer is able to obtain more information 
about the insured, including a verified loss history, the condition of the insured property and 
the degree of cooperation by the insured in settling claims [8].  This enhanced information 
about the insured enables the insurer to select desirable risks and thus improve the 
performance of its book.  A persisting insured could also provide income over multiple 
terms and spread the acquisition cost and other underwriting costs over a long period of 
time to achieve lower average expenses per year, which provides savings to the insurer in 
addition to the improvement in loss ratio. 

While the issue has a long history and several studies were published before on the issue, 
we believe that additional research, especially a study that utilizes the real industry data, can 
be done to help the industry gain a better understanding of it.  Through our work on data 
mining and predictive modeling in past several years, we have studied a fairly large amount 
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of data from a wide range of insurers.  The data enables us to review the performance 
difference between new and renewal business in detail.  In this paper, we will share our 
findings and knowledge on this issue based on our experience with the industry data in the 
past.  In addition, we will bring in macroeconomic data for insurance exposures on drivers, 
vehicles, property, and business [11-13] as well as insurance industry data from AM Best [14] 
to compare with our finding.  We believe by putting all the information and data together, 
we can offer in-depth insights on why new business and renewal business perform 
differently for the property and casualty insurance.       

2. DATA  

We have studied a total of 25 books of business with a total amount of premium of $29 
billion.  The 25 different books are from a wide range of carriers, including national, multi-
line carriers as well as regional, mono-line carriers, and they cover all the major primary lines 
of business for property and casualty insurance, including personal Auto and Homeowners, 
as well as commercial BOP, Auto, Property, GL, Package, and Workers’ Compensation.  
The data as a whole spans across the last underwriting cycle from late 1990 to mid 2000.  
Tables 2 in the appendix shows some details of the data used in this paper.  Tables 3-5 
shows the performance difference in several characteristics between new business and 
renewal business for these 25 books.   

In addition, Tables 6-9 show the historical macroeconomic data for the drivers, vehicles, 
homes and businesses [11-13].  The data indicates the underlying exposure information for 
the U.S. property and casualty insurance industry.  Finally, Table 10 shows the historical 
industry premium data for different lines of business from AM Best [14].   

3. RESULTS AND DISCUSSION  

Table 3 indicates that new business show a higher loss than renewal business.  The data 
further indicates that all of the 25 books of business under study show such result.  On 
average, the new business loss ratio is 13 points worse than the renewal business.  The fact 
that new business has a higher loss ratio than renewal business is the primary reason why 
insurance companies are interested in offering a price discount for their renewal business.   

Our experience further indicates that as the renewal business continues to age, the loss 
ratio will continue to improve.  The renewal business’ loss ratio will be close to the overall 
average loss ratio around 3 to 5 years after the business is on the book.  In other words, 
insurance carries need to invest a couple years on a new business before the business turns 
into profit.  It also suggests that long-time, loyal customers bring in the highest share of 
profit for the carriers.  Such loss ratio-policy age pattern we have seen in our data is 
consistent with the study result by D’Arcy [8].   
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Another result given in Table 3 is that new business appears to have a higher turnover 
rate than renewal business.  Similar to the loss ratio result, all of the 25 books are showing a 
lower retention rate for the new business.  On average, renewal business has a 6 point higher 
retention rate than new business.  

In general, there are three reasons why an insured is not retained by a carrier.  First, the 
insured’s exposure stops to exist, for example, termination of business operation or 
discontinued ownership of a car or a property.  The second reason is because the insured 
voluntarily switches insurance from one carrier to another.  Multiple factors may trigger an 
insured to switch its carrier, and they may include price shopping, dissatisfaction of the 
service, agent’s action etc., to name a few.  The third reason is because the carrier terminates 
the policy due to its own action.  For example, insurer carriers always take underwriting 
action to manage the poor risks on their book, and the action may includes terminating the 
insurance contract, raising the price, limiting the coverage, restricting the selection of 
payment plan, etc.  Such underwriting action inevitably will result in some risks leaving the 
carrier to seek another carrier.  We can expect that the latter two reasons, insured’s voluntary 
switch from one carrier to another and the action by insurance carriers, are the primary 
reasons for the fact that new business has a lower retention rate than renewal business.  
Later, we will bring in additional macroeconomic data and other insurance statistics to 
further explain the retention difference between new and renewal business.   

While Table 3 clearly indicates that loss ratio for new business is worse than renewal 
business, it may not support the fact that new business has more risk or higher pure 
premium than renewal business.  This is because insurance companies may need to offer 
low, competitive price in the market place in order to compete for new business.  However, 
for the data used in this study, it is not possible to compare pure premium between new and 
renewal business.  Therefore, we have come up with another analysis to address this issue 
and question, and the result is given in Table 4.   

For personal insurance, the rate is less flexible, so it is hard to manipulate price to 
compete for new business.  On the other hand, the price for commercial insurance is fairly 
flexible because typical commercial line pricing contains several subjective and flexible price 
components.  Commercial carriers can apply these flexible components compete for new 
business price.  One commonly used flexible price component is scheduled credit/debit or 
individual risk modification factor, IRPM.  Analyzing how commercial insurance carriers 
apply scheduled credits and debits will allow us to understand their pricing strategy in the 
market place for new business.  In Table 4, we show, by the major commercial lines of 
business, the average percentage of policies receiving credits vs. debits between new and 
renewal business.  Table 4 indicate that, while the result is somewhat mixed for policies 
receiving credits, the new business appears to receive less debits than renewal business.  The 
result does suggest that insurance companies may charge less for new business than renewal 
in order to compete for new business.  Such pricing strategy for competing new business 
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may partially contribute to the fact that new business has a higher loss ratio than renewal 
business.  However, the magnitude of credit and debit difference in Table 4 does not seem 
to be large enough to account for the loss ratio difference in Table 3.   

The next analysis we have performed is that we selected 3 books from Table 2, all of 
them commercial, and for each book, and we split the data into 2 groups.  One group 
contains the risks that were retained for the next term with the same insurer, while the other 
group contains the risks which were not retained. Then, between the two groups, we 
measure and compare two characteristics: loss ratio and business financial credit score.  The 
result is given in Table 5.    

The first characteristic for comparison is loss ratio.  We find that the group which was 
retained for the next term has a lower loss ratio than the group which was not retained.  This 
suggests that insurance companies appear to retain more of their “profitable business” than 
their “unprofitable business”.   

In addition to loss ratio, we also compare a financial credit score between the 2 groups.  
The financial credit score data we use is developed by Dunn and Bradstreet.  The score is a 
measurement of the likelihood for a business to fulfill its future financial obligation, such as 
payment on time.  The score we use for comparison has a scale of 1 to 100, and the higher 
the score, the better the financial condition.  Table 5 shows, again, a better average credit 
score for business retained than business not retained.   

From the loss ratio and credit score comparison, we can see that the quality of the 
retained business is better than the quality of non-retained business.  This is consistent with 
the fact that insurance companies do take underwriting action to manage poorer risks on 
their books.  It also suggests that as the non-retained business becomes new business for 
another carrier, the quality of the new business is worse the renewal business for the carrier.   

Another result given in Table 3 is that on average, the new business accounts for 20% of 
the total business for the 25 books under study.  We can expect that an insurer’s new 
business should compose two different portions of risks.  The first portion is the first-time 
insurance buyers, for example, first time drivers with a new drivers’ license, a new vehicles, a 
first-time home owner or property owner, or a newly established business or property that 
need insurance coverage, etc.  In other words, from the perspective of the insurance industry 
as whole, this portion of risks is the “true” new business.  The second portion is the risks 
which did not renew their insurance with prior insurance carriers.  In other words, while they 
are “new business” for the insurer, the business is from other carrier’s renewal book.  . 

In order to research the two compositions of the new business, we bring in additional 
macroeconomic and insurance data. Tables 6 to 9 show the 20 years of statistics, from 1986 
to 2006, for drivers, vehicles, homes, property, and business in the U.S.  The statistics 
indicates the underlying exposure information for the overall US property and casualty 
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insurance industry, and it shows that the growth rate in the overall exposure is fairly minor, 
much less than the average of “20%” new business for the 25 books under study.     

In addition, Table 10 shows 10-year history of premium dollars for the personal lines, 
commercial property lines and commercial casualty lines combined from AM Best.  Again, 
the total industry premium growth rate over the last 10 years has been very mild and is less 
than the average new business percentage for the insurance data used in this study.         

Another fact about insurance carriers in accepting and underwriting their new business is 
that typically they are tougher on the “truly new exposures”, such as newly established 
businesses or drivers who just obtained their driver licenses.  For example, to our 
knowledge, many commercial line carriers will not accept a commercial risk with less than 3 
years of history, or if they accept, they will apply their higher priced company or restrict their 
schedule credits.  Therefore, many commercial line carriers have very few first time 
established businesses on their books.  Similar experience can be applied to personal auto 
carriers, whose books typically have very few first-time youthful drivers.   

From the macroeconomic statistics for the overall industry exposure data, the total 
industry premium data, and the standard insurance industry practice on accepting new 
business; we can conclude that the majority of an insurance company’s new business comes 
from other insurance company’s renewal business, and not from the truly new business as a 
first time insurance buyer.   

Let us put together the performance comparison results and the industry exposure 
information from Table 3 to Table 10, and we can then begin to describe the dynamic 
process of new and renewal business for insurance companies.  Such a dynamic cycle can 
make us understand why there is a difference in performance between new and renewal 
businesses.     

Insurance companies constantly trade and swap risks between themselves.  Most of the 
new business for an insurance company comes from other insurance companies’ renewal 
book.  Since every insurance company underwrites its book and takes action against the 
poorly performing risks, one reason for insureds to leave their carriers and seek insurance 
for another company is due to the result of the underwriting action by the existing company, 
such as non-renewal or increase in renewal price.  Of course, they may also voluntarily 
change insurance carriers due to a wide range of other reasons, such as shopping for cheaper 
rates or not being satisfied with their carriers for service.  No matter what the reasons are for 
insureds to leave their insurance carriers, our study shows that overall, they possess worse 
characteristics, such as higher loss ratios or worse credit scores, than the insureds who stay 
and renew their policies with their existing insurance carriers.  After leaving the existing 
insurance carriers, they most likely become another company’s new business, unless their 
exposure stops to exist.  Since the new business in general possesses poorer risk 
characteristics, our study shows that for all the 25 different books of data under study, the 
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new business’ performance for loss ratio and retention is universally worse than the renewal 
business.  Sometimes, insurance carriers’ business strategy of using flexible pricing 
components to compete for new business will worsen new business’ loss ratio even more.  
Such a dynamic cycle suggests that renewal business is subsidizing new business for the 
property and casualty insurance.  It is due to such differences in loss ratio, retention, and risk 
quality that the insurance industry is interested in deploying a price difference in their rating 
between new and renewal business.     

4. CONCLUSIONS 

We believe that the data underlying this research is very credible and can represent the 
general result for the property and casualty insurance industry.  Our study clearly shows that 
for property and casualty insurance carriers, the new business performance is worse than the 
renewal business.  The new business appears to have higher loss ratios and worse retention 
than renewal business.  Our experience further indicates that as renewal business ages, its 
performance will become even better.   

We believe that the reasons why new business performance is worse than the renewal 
business is two fold: (1) The first time insurance buyers are less experienced in dealing with 
managing their insurance risks, and (2) Those who are not the first time insurance buyers but 
seek new insurance carriers, typically have worse risk characteristics and may be price 
shoppers.  Actuarially, new business surcharges or renewal business discounts appear to be 
justifiable by the data in this study. 

While we believe that new business surcharge or renewal business discount can be 
justified, there is still an issue: if a new risk and a renewal risk are the same in their 
characteristics, why can they be charged differently just because one risk is a new business 
and the other one is a renewal business?  One key reason is because insurance carriers have 
more knowledge of their renewal business than their new business.   

When a risk has been with a carrier for several years, the carrier will know the risk’s loss 
experience with the carrier.  The carrier also knows many other details about the risk, such as 
its premium paying history, its coverage change and endorsement records, etc.  When the 
risk leaves the carrier and become a new business to another company, some of the 
important information may not be known to the new company because such information is 
not captured during the new business writing and binding process. Even if the new company 
does collect some of the information, it is in a way that is not verifiable or can be 
manipulated by the insured.  Also, for writing new business, there is a balance of gathering 
more information verse “ease to do business”.  Gathering too much information when 
writing new business may cause undue burden on agents or brokers. 
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For example, for commercial insurance, while many insurance companies will ask for 
prior loss runs for new business and will use the loss run to underwrite the new business, the 
data on the loss run typically is not passed to the data system and therefore is not captured in 
the pricing database.  Therefore, prior loss history of a new business is subsequently lost 
after the new business is written.  Unless the insurance industry enhances its information 
gathering practice and collect much more information for new business underwriting and 
pricing, the industry probably will continue to experience worse performance for their new 
business than their renewal business.    
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Appendices  
 

Table 1: Summary of the Survey Responses on Price Differentiation between New and 
Renewal Business 
 

State Response from the Department of Insurance 

AZ 
There should be no difference in the premium that is charged between new business and renewal 
business if all the risk characteristics are the same  

CA Persistency is a permitted rating factor for personal auto in California 
FL It would be very unusual for companies to file a different price for new versus renewal.  

IL 
We do not have a rating law in Illinois. A lot of personal lines insurers give renewal discounts. 
Commercial rates are not filed at all. 

LA Louisiana law does not prohibit insurance companies from offering discounts for renewal policies 

MO 
The rating laws do not delineate between new and renewal business, rather they speak to rates in 
general.  

NC Does not prohibit difference for new and renewal business. 
ND We do allow companies to file renewal discounts  

NJ 
The NJ regulations do not prohibit companies from charging higher premium for new business 
versus renewal business or offer discounts for renewal business. 

NM We do allow carriers to charge more for new policies.  

NY 
We do allow renewal discounts and they are heavily used. These are often tied to "claim free" 
discounts. 

OH 
If a company provides support that there is a cost difference between new and renewal business 
then they can reflect the difference in their rates. 

OR 
An insurer can charge more for new business, or offer a persistency discount, provided the 
difference is supported statistically. 

PA 

If a company has reasonable, actuarial support that demonstrates the appropriateness of “lower” 
rates for renewal business than for new business (i.e., lower expenses and/or lower losses), rates 
based upon this support would be acceptable.  

TX 

There isn't anything that speaks directly to new business vs. renewal business for property and 
casualty insurance but any price difference between the two would be subject to the rate standards 
in the statutes. 

WA 
Renewal discounts are permitted in Washington, as there is no statute or regulation prohibiting 
them 

 
 
Table 2: Summary of the Data 
 

Line of Business 
Number 
of Books 

Total Premium, in 
Billions Data Period 

BOP 4 $4.9 1995 to 2004 
Commercial Package 3 $4.7 1996 to 2004 
Commercial Auto 4 $3.6 1998 to 2005 
General Liability 2 $1.1 1995 to 2004 
Commercial Property 3 $1.7 1995 to 2002 
WC 4 $3.9 1996 to 2004 
Personal Auto 3 $2.0 1997 to 2005 
Personal Home 2 $6.8 1997 to 2003 
Total 25 $28.7 1995 to 2005 
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Table 3: Comparison of Loss Ratio and Retention between New Business and Renewal 
Business 
 

Line of Business 
Number 
of Books 

Average % of New 
Business 

Average of Loss 
Ratio Difference, 
New – Renewal* 

Average of Retention 
Difference, 

New – Renewal* 
BOP 4 19% 18% -5% 
Commercial Package 3 19% 9% -7% 
Commercial Auto 4 19% 15% -5% 
General Liability 2 22% 7% -8% 
Commercial Property 3 17% 17% -8% 
WC 4 27% 11% -3% 
Personal Auto 3 16% 12% -3% 
Personal Home 2 23% 15% -19% 
Total 25 20% 13% -6% 

*  For all the 25 books under study, the loss ratio is higher and the retention is lower for the new business than 
the renewal business. 
 
 
Table 4: Comparison of Percentage of Policies Receiving Schedule Credits or Debits 
between New and Renewal Business for Commercial Lines  
 

Average Percentage 
of Policies 

Receiving Credit 

Average Percentage 
of Policies 

Receiving Debit 

Line of Business 
Number 
of Books New Renewal New Renewal 

BOP 4 15% 16% 3% 8% 
Commercial Package 3 16% 18% 5% 11% 
Commercial Auto 4 20% 14% 2% 9% 
General Liability 2 30% 29% 12% 23% 
Commercial Property 3 29% 30% 5% 12% 
WC 4 7% 7% 1% 1% 

 
 
Table 5: Comparison of Loss Ratio and Financial Credit Score between Retained Business 
and Non-Retained Business for 3 Selected Commercial Books: 
 
Line of Business Total Premium Loss Ratio Difference, Non 

Retained - Retained 
Difference in Business Financial 
Score, Non Retained – Retained * 

BOP $690 Millions +4 points -5 
General Liability $533 Millions +4 points -2 
Commercial Property $345 Millions +7 points -3 
* The business financial credit score used is published by Dunn and Bradstreet.  The score is on 1-100 scale, 
and the higher the score the better the financial credit.   
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Table 6: US Licensed Drivers Statistics 
 

Year Total Licensed Drivers Annual Growth 
1986 159,487,000 1.7% 
1987 161,818,461 1.5% 
1988 162,853,255 0.6% 
1989 165,555,295 1.7% 
1990 167,015,250 0.9% 
1991 168,995,076 1.2% 
1992 173,125,396 2.4% 
1993 169,968,825 -1.9% 
1994 175,409,447 3.2% 
1995 176,634,467 0.7% 
1996 179,539,340 1.6% 
1997 182,709,204 1.8% 
1998 184,980,177 1.2% 
1999 187,170,420 1.2% 
2000 190,625,023 1.9% 
2001 191,275,719 0.3% 
2002 194,295,633 1.6% 
2003 196,165,667 1.0% 
2004 198,888,912 1.4% 
2005 200,548,972 0.8% 
2006 202,810,438 1.1% 

Source: Office of Highway Policy Information, Highway Statistics Publications 
 
 
Table 7: US Motor Vehicles Statistics 
  

Year 

Private & 
Commercial 

Vehicles 
Annual 
Growth 

Publicly Owned 
Vehicles 

Annual 
Growth Total 

Annual 
Growth 

1986     172,763,183  2.4%   2,937,156  0.9%   175,700,339  2.3%
1987     175,998,790  1.9%   2,997,857  2.1%   178,909,773  1.8%
1988     181,322,995  3.0%   3,069,679  2.4%   184,392,674  3.1%
1989     184,197,489  1.6%   3,158,617  2.9%   187,356,106  1.6%
1990     185,540,912  0.7%   3,257,002  3.1%   188,797,914  0.8%
1991     184,829,525  -0.4%   3,306,944  1.5%   188,136,469  -0.4%
1992     186,960,290  1.2%   3,401,938  2.9%   190,362,228  1.2%
1993     190,642,869  2.0%   3,420,613  0.6%   194,063,482  1.9%
1994     194,531,748  2.0%   3,513,617  2.7%   198,045,365  2.1%
1995     197,941,202  1.8%   3,588,819  2.1%   201,530,021  1.8%
1996     202,713,708  2.4%   3,651,448  1.8%   206,365,156  2.4%
1997     204,079,162  0.7%   3,674,498  0.6%   207,753,660  0.7%
1998     207,840,942  1.8%   3,775,611  2.8%   211,616,553  1.9%
1999     212,474,300  2.2%   3,834,323  1.6%   216,308,623  2.2%
2000     217,566,789  2.4%   3,908,384  1.9%   221,475,173  2.4%
2001     226,646,079  4.2%   3,782,247  -3.2%   230,428,326  4.0%
2002     225,772,196  -0.4%   3,847,783  1.7%   229,619,979  -0.4%
2003     227,475,999  0.8%   3,913,999  1.7%   231,389,998  0.8%
2004     233,266,291  2.6%   3,976,325  1.6%   237,242,616  2.5%
2005     237,139,650  1.7%   4,054,324  2.0%   241,193,974  1.7%
2006     240,059,464  1.2%   4,106,222  1.3%   244,165,686  1.2%

 Source: Office of Highway Policy Information, Highway Statistics Publications 
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Table 8: US Total Housing Inventory Statistics 
 

Year Estimated Total Housing (000s) Annual Growth 
1986 99,318 2.0% 
1987 101,811 2.5% 
1988 103,653 1.8% 
1989 105,729 2.0% 
1990 106,283 0.5% 
1991 107,276 0.9% 
1992 108,316 1.0% 
1993 109,611 1.2% 
1994 110,952 1.2% 
1995 112,655 1.5% 
1996 114,139 1.3% 
1997 115,621 1.3% 
1998 117,282 1.4% 
1999 119,044 1.5% 
2000 119,628 0.5% 
2001 121,480 1.6% 
2002 119,297 -1.8% 
2003 120,834 1.3% 
2004 122,187 1.1% 
2005 123,925 1.4% 
2006 126,012 1.7% 

Source: US Census Bureau, Housing Vacancies and Homeownership 
 
 
Table 9: US Business Statistics 
 

Time Period Initial Year 
Establishments 

Percent of Net 
Growth 

1995-1996 5,878,957 1.6%
1996-1997 5,970,420 2.5%
1997-1998 6,120,714 1.1%
1998-1999 6,187,599 1.0%
1999-2000 6,248,411 0.8%
2000-2001 6,297,423 0.8%
2001-2002 6,345,890 0.6%
2002-2003 6,386,609 1.1%
2003-2004 6,455,018 1.4%

Source: US Census Bureau, Statistics of U.S. Businesses 
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Table 10: AM Best Statistics for US Property& Casualty Insurance Industry 
  

LOB Year Premiums earned (in $1,000) Growth Rate
1996 123,722,772  
1997 129,529,545 4.7%
1998 134,910,240 4.2%
1999 139,053,922 3.1%
2000 146,442,174 5.3%
2001 155,377,660 6.1%
2002 171,055,476 10.1%
2003 189,414,491 10.7%
2004 204,074,773 7.7%
2005 212,766,944 4.3%

Total US Personal Lines 

2006 217,629,797 2.3%
1996 5,639,304
1997 5,893,398 4.5%
1998 5,937,140 0.7%
1999 6,205,553 4.5%
2000 6,459,054 4.1%
2001 7,617,844 17.9%
2002 7,528,501 -1.2%
2003 10,110,915 34.3%
2004 10,430,080 3.2%
2005 11,138,340 6.8%

Total US Commercial 
Property 

2006 11,976,705 7.5%
1996 104,742,557
1997 105,914,101 1.1%
1998 105,305,898 -0.6%
1999 103,930,114 -1.3%
2000 110,111,876 6.0%
2001 120,055,783 9.0%
2002 141,695,628 18.0%
2003 159,335,190 12.5%
2004 174,887,038 9.8%
2005 176,755,172 1.1%

Total US Commercial 
Casualty Lines 

2006 181,148,749 2.5%
Source: AM Best  
 




