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Modeling Paid and Incurred Losses Together 

Leigh J. Halliwell, FCAS, MAAA 
________________________________________________________________________ 
Abstract  

The modeling skills of actuaries and academicians have developed to the point of their seeking joint models for 
paid and incurred losses, i.e., models in which paid and incurred losses will inform each other so that their 
confidence intervals will narrow and the two sets of ultimate losses will be equal.  The key to such models is 
covariance; heteroskedastic models cannot serve the purpose.  Properly accounting for covariance in the linear 
statistical model will provide an exact, sound, and elegant solution to the problem.  Moreover, covariance is 
what distinguishes the same information from like information, and prevents the creation of information out of 
nothing. 
 
Key concepts: linear statistical model, paid and incurred losses, seemingly unrelated regression (SUR), 
covariance, variance structure 

________________________________________________________________________ 

1.  INTRODUCTION 

For setting the loss reserves of most casualty lines of insurance, actuaries must turn loss 
triangles into rectangles.  Until the mid-1990s this was largely a deterministic exercise, which 
involved selecting development factors – perhaps with certain adjustments and sensitivity 
testing.  Since then, business needs have demanded, and advances in theory and computing have 
allowed, probabilistic modeling of loss triangles.  Deterministic methods are waning as actuaries 
are increasingly asked to estimate statistical properties of loss reserves, especially their 
probability distributions.  However, attempts to answer this need are hampered by the duality 
(sometimes the multiplicity) of triangles for the same line of business.  Triangles usually come in 
pairs, one of paid losses and another of (case-) incurred losses, which ultimately must reach 
equality.  But when paid and incurred losses are modeled separately, any equality is accidental, 
and even then devoid of jointly statistical properties.  A crasis of models, however artful, is not 
science, despite appeals to actuarial judgment.1 

According to Gary Venter [2008, 348], “Formal modeling of paid and incurred 
simultaneously appears to have begun with Halliwell.”  But the idea received scant attention 
until a paper by Quarg and Mack [2004 and 2008], which spurred the Venter paper, as well as a 
yet unpublished paper by Zhang and Clark [2009].  Unlike the Quarg and Mack approach, which 
“reduces the gap” between the projections, the Halliwell [1997] approach offered an exact 

                                                 
1 Actuarial judgment functions within actuarial science, not to the transcendence or out-guessing of science.   “Actuarial 
judgment is no antidote …, as if actuaries possessed some expertise or intuition to herd or prod methods into 
correctness.  … Actuaries must not presume to judge what they cannot scientifically model.” [Halliwell, 2007, footnote 
5] 
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solution.  Moreover, Quarg and Mack sought the solution in the design matrix of their model, 
whereas the variance structure was the key for Halliwell.  We believe that Halliwell was on the 
right track, but with some flaws.  Our solution to the problem of modeling paid and incurred 
losses together improves on his variance approach, correcting its flaws.  Furthermore, it is easier 
to understand, simpler to program, as well as theoretically streamlined and elegant. 

In the next section we will introduce and comment upon Halliwell’s version of the linear 
statistical model.  In Section 3, while discussing basic properties of the model, we will introduce 
the distinction between statistical sameness and statistical similarity, which arises from differing 
variance structures and which ensures that information cannot be created ex nihilo.  Section 4 will 
apply this theory to a simple example of a joint model of paid and incurred loss triangles, and 
Section 5 will show a more elaborate application to industry Workers’ Compensation losses.  
Appendix A will deepen insights into the ideas of Section 3 by treating simultaneous equations 
as a subset of the linear statistical model.  Finally, Appendix B will elaborate on permissible 
variance structures, viz., how with two random variables of known correlation a third may be 
correlated. 

2.  GENERAL FORMULATION OF THE LINEAR STATISTICAL 
MODEL 

Many writers present versions of the linear statistical model; however, the version found in 
Halliwell [1997], despite its initial complexity, is most versatile and general.  Moreover, most 
presentations stop at the estimation of the parameter β.  But in his version this is just an 
intermediate step; the focus is on predictions based on β and their prediction-error variances.  
The basic form of the linear model is 111 ×××× +β= tkktt X ey .  It is the error term e that makes the 
model statistical (otherwise called probabilistic and stochastic); it is a random vector whose 
moments are: [ ] [ ] ttttt VarE ××× Φσ=Σ== 2

1 ,0 ee .  For those unfamiliar with multivariate means 
and variances, especially with the quadratic form [ ] [ ]AAVarAVar ′= ee  and with non-negative 
definite and positive definite matrices, the reader is advised to read Halliwell [1997; Appendix 
A], Healy [1986; Chapter 7], and Judge [1988, Appendix A]. 

The matrix X is known as the design, or regressor, matrix; its columns are called regressor 
variables and independent variables.  The vector y is called the response variable and the 
dependent variable, and β is the parameter of the model.  But in this formulation, which 
emphases predictions rather than parameters, the t rows of the model are partitioned into t1 
observations and t2 predictions.  In matrix-partitioned form it is expressed: 
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The noun ‘observations’ is imprecise.  What distinguishes observations from predictions is 
that predictions are missing, or blank, elements of y (which signals that predictions are desired), 
whereas “observations” are non-missing, real-valued elements.  Usually, they happen to come 
from observation, such as with loss amounts.  However, the key to a joint model of paid and 
incurred losses is what we will call “tautologous observations,” i.e., elements of y that contain 
zeroes as the differences by exposure period of incurred ultimate losses from paid ultimate 
losses.  We do not actually need to observe their ultimate equality to know that it will obtain; this 
is information that we know a priori and of which we should make use.  The observed and 
predicted elements can appear in any order; the clearest presentation may not place all the 
observations in rows above those of the predictions; however, our software will reorder them.  
Of course, since the variance structure is symmetric, the columns of Var[e] must likewise be 
reordered. 

The known, or specified, elements of the linear model are the entire2 design matrix X, the 
entire variance structure, whether in absolute form Σ or in relative form Φ, and the observed 
elements of y.  The modeler desires an estimate of y2, viz., 2ŷ .  However, that estimate will turn 
out to be in error by the vector 22 ŷy − , which we will call the prediction error.  The formulæ for 
an estimator of y2 and the variance of its prediction error, viz., 2ŷ  and [ ]22 ŷy −Var , are: 
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where ( ) 1
1
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1

1
1

111
ˆ y−−− Φ′Φ′= XXXβ  and [ ] ( ) 1

1
1

111
2ˆ −−Φ′σ= XXVar β .  Or one may use the absolute-

variance form, in which ‘σ2’ is omitted and ‘Σ’ replaces ‘Φ’.  This estimator algebraically 

                                                 
2 This conflicts with many linear models of loss triangles, in particular with the Quarg/Mack [2004 and 2008] model, 
whose predictions two or more periods into the future depend on predictions of the previous periods.  The feedback 
loop ‘predictions → regressors → predictions’, which Judge [1988; Chapter 13] calls “Stochastic Regressors,” is 
undesirable for theoretical, numerical-analytic, and æsthetic reasons, some of which Halliwell [2007; Section 5] discusses. 
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reduces to a linear function of y1, and Halliwell [1997; Appendix C] gives a version of the 
Gauss-Markov theorem in proof that 2ŷ  is the best linear unbiased estimator (BLUE) of y2.3 

A few minor conditions need to be made explicit.  First, the variance structure (Σ or Φ) must 
be non-negative definite.  Otherwise some random variable consisting of a linear combination of 
the elements of e would have a negative variance.  At the very least this implies that that none of 
the diagonal elements of the variance structure is negative.  Second, Σ11 or Φ11 must be positive 
definite.  Being a block-diagonal part of the variance structure, it must be non-negative definite.  
However, a positive definite Σ11 or Φ11 has no variance degeneracy, which guarantees the 
existence of its inverse.  Third, X1 must be of full column rank, i.e., rank(X1) = k.  The second 
and third conditions together guarantee that ( ) 1

1
1

111
−−Φ′ XX  exists. 

Usually the variance structure is known only to within a scale factor; most models posit relative, 
not absolute, variances.  In that case one must estimate σ2 as 

( ) ( ) ( )ktXX −−Φ
′

−= −
111

1
1111

ˆˆˆ ββσ yy2 , a matrix-weighted “sum of squared residuals” divided by 
the degrees of freedom.  Our software will display a 3×3 matrix titled “SSCP,” which stands for 
“(matrix-weighted) sums of squares and cross products.”  Define the t1×3 partitioned matrix 

[ ]ββ ˆˆ
1111 XXV −= yy .  Then VV 1

11
−Φ′=SSCP , and ( )kt −= 133ˆ SSCP2σ .  Theorems of the 

linear model state that 332211 SSCPSSCPSSCP +=  and 0== 2332 SSCPSSCP .  
SSCP22/SSCP11 is the portion of the observations that the model “explains.”4 

3.  BASIC PROPERTIES OF THE LINEAR STATISTICAL MODEL 

Before introducing the joint model of paid and incurred losses we must discuss some basic 
properties of the model and its predictions.  First consider the model: 
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One here wants just to predict the parameter ( β=2y ), so this is a check of the parameter of 

                                                 
3 This estimator is unbiased in that [ ] 22ˆ yy =E .  There are infinitely many linear-in-y1, unbiased estimators (LUE) of 

y2.  But according to the Gauss-Markov theorem, none of them is as good as 2ŷ ; 2ŷ is the best (B).  This means that 
its prediction-error variance is less than theirs, in the sense that the difference of its prediction-error variance from theirs 
is positive definite.  To the philosophically inclined it is amazing for an estimator to exist that positive-definitely 
dominates in the linear unbiased universe.  It is no less amazing that this BLUE estimator is identical to the maximum-
likelihood estimator under the assumption that the error terms are multivariate-normally distributed – an assumption not 
necessary to the linear statistical model.  Such feelings of amazement incline most mathematicians toward a Platonic 
belief that mathematics is discovered, rather than toward a formalist belief that it is invented.  Then again, in this 
abstruse realm what might be the difference between discovery and invention? 
4 Though we will call this a rho-square statistic, it differs from the commonly defined statistic that was devised for 
regression models containing an intercept and that strips away the explanatory power of the intercept.  Our definition is 
appropriate to our intercept-free models. 
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the model.  Applying the formulæ, we confirm: 
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In fact, Halliwell [1997; 331] began with a “wordier” version of the solution and derived in 
this manner the streamlined version of the solution that employs β̂ . 

The second model is: 
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The observed part of this model has been transformed by matrix A.  The transformation 
affects even the error term, e1 → Ae1, and one purpose of this exercise is to sensitize the reader 
to the variance structure.  For in general, [ ] [ ]BACovBACov ′= 2121 ,, eeee .  If A is a nonsingular, 
or invertible, matrix: 
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At this point we’ve demonstrated that the parameter estimate is unaffected.  A similar 
cancellation of A with its inverse continues into the rest of the prediction, as the reader can 
verify.  Hence, a one-to-one transformation of the observations has no effect on the predictions.  
A corollary to this is that incremental or cumulative models of loss triangles will yield the same 
predictions, as long as the variance structure is correctly handled. 

Now consider a transformation of the predictions: 
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In this case: 
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So the BLUE of a linear combination of predictions is the linear combination of the BLUE of 
the predictions.  Note that here B, unlike the previous A, does not have to be invertible.  The 
most common linear combinations of loss-triangle cells are exposure-period subtotals, i.e., 
unpaid, IBNR, or even ultimate losses.  When we care only for these subtotals, as in the 
Workers’ Compensation model of Section 5, this theorem allows us to bypass the extra time and 
space of cell-by-cell prediction and to predict them directly. 

A special pair of models that will illustrate the effect of covariance is the following: 
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Here the prediction is like the observation, the solution being: 
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The prediction is like, because the variance of e2 is like that of e1, ‘like’ in the sense of 
identically distributed, but nonetheless uncovaried.  But changing the variance structure to 
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This version predicts not something like y1, but rather something identical to y1.  Covariance 
is the key to distinguishing between likeness and sameness.5 

And finally, we consider pooling two models.  For this purpose and for here only, the 
subscripts ‘1’ and ‘2’ identify the models (e.g., paid and incurred), rather than observations and 
predictions (here dismissed with a dot ‘•’).  We might be tempted to solve the “super” model: 
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However, the solution for the parameter is: 

                                                 
5 Appendix A shows covariance to be the solution to the “paradox” of why writing data twice does not increase 
information.  It would increase, if it were like, or similar, information; just as repeated sampling of independent, 
identically-distributed random variables increases information.  But repetitions of the same information are perfectly 
correlated with the original, and provide nothing new, not even when the repetition is disguised by a linear 

transformation.  In matrix algebra, [ ]AI
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, and the rank of this larger matrix is 

still equal to the rank of Σ.  If the off-block-diagonal elements were zero the rank would increase, depending on A, to as 
much as twice the rank of Σ. 



Modeling Paid and Incurred Losses Together 

Casualty Actuarial Society E-Forum, Spring 2009 8 

( )
( )

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎦

⎤
⎢
⎣

⎡

Σ′
Σ′

=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡

Σ′
Σ′

⎥
⎦

⎤
⎢
⎣

⎡
=

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
Σ

Σ′

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

Σ′
Σ′=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡

Σ′
Σ′

=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

Σ
Σ

⎥
⎦

⎤
⎢
⎣

⎡
′

′
=

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
Σ

Σ′

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

−

−

−

−

−
∧∧

−−

−−

−

−

−

−

−

−

−
−

∧

2

1

2
1

2222

1
1

1111

2
1

222

1
1

111

2

1

2

1
1

22

11

2

1

2

1

2

1

2

1

1
2

1
222

1
1

1
111

1

2
1

222

1
1

111

1

2

1
1

22

1
11

2

1

1

2

1
1

22

11

2

1

2

1

ˆ
ˆ

ˆ
ˆ

ˆ0
0ˆ

0
0

0
0

ˆ0
0ˆ

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

β
β

β
β

β
β

β
β

β
β

β
β

β
β

y
y

y
y

y
y

XVar
XVar

X
X

Var
Var

X
X

Var

Var
Var

XX
XX

XX
XX

X
X

X
X

X
X

X
X

Var

 

Hence, simply juxtaposing two (or more) models provides no additional information.6  There 
is no covariance between the two; they are “frictionless” and “like ships passing in the night.”  
But if the off-block-diagonal variance were not zero, the combined model would not reduce to 
the separate submodels.  Judge [1988; Section 11.2] calls covariance-linked models “seemingly 
unrelated regression” (SUR) models, for they seem to be unrelated if one considers only the 
model design and ignores the variance structure.  The Zhang/Clark [2009] model is an SUR 
model, tying paid and incurred losses together with covariance; but it does not guarantee the 
equality of ultimate paid and incurred.  The Halliwell model [1997] also qualifies as SUR.  The 
model that we will present in the next section is not an SUR one; rather, tautologous equations 
                                                 
6 However, one caveat: The combined model in relative-variance format would invite the modeler to estimate an overall 
variance scale 2σ̂ , which would be an average of the scale estimates of the submodels weighted according to their 
respective degrees of freedom. 
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will be the glue between paid and incurred, and the only tricky part will be the effect of these 
additional equations on the variance structure. 

4.  TAUTOLOGY AND A SIMPLE JOINT PAID-INCURRED MODEL 

The following example comes from Halliwell [1997; Exhibit 1].  It consists of incremental 
paid and incurred losses for three accident years at three years of development, development 
being complete at the third year: 

Paid Incurred
@1 @2 @3 @1 @2 @3

AY1 50 30 20 75 15 10
AY2 60 25 75 25
AY3 45 50  

 

The AY exposures are equal, and the cells are homoskedastic.  The first accident year is 
mature, and both paid and incurred losses accumulate to 100.  The paid and incurred models 
have the same design matrix (viz., additive, cf. Halliwell [2007; 228]), and the parameter 
elements are pure premiums by loss type and by age or development period.  All cells have the 
same variance relativity and zero covariance.  In symbols, the model of the hijth cell is 

[ ] 1,1 2 ⋅σ=+β⋅= hijhijhjhij Var eey , where h ∈ {1 = Paid, 2 = Incurred}, i ∈ {1 = AY1, 2 = 
AY2, 3 = AY3}, and j ∈ {1 = Age1, 2 = Age2, 3 = Age3}.  If the accident years were not of 
equal exposure, the model would be [ ] ihijhijhjihij Var ξσ=+βξ= 2, eey , where ξi is the 
exposure of the ith accident year.  In this simple, juxtaposed model one would estimate paid 
development at ages 2 and 3 as 27.5 and 20, and incurred development likewise as 20 and 10.  
The paid ultimate losses of AY2 and AY3 would be 95 and 92.5, as compared with incurred 
ultimate losses of 110 and 80. 

Exhibit 1 contains the joint model in the standard form: 
 

( )

( )

( )

( )

( )

( )

( ) ( )

( ) ( )
⎥
⎦

⎤
⎢
⎣

⎡
ΦΦ
ΦΦ

σ=⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+β⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

××

××

×

×
×

×

×

×

×

662214621

614121414112

2

1

162

1141
16

662

6141

162

1141 ,
e
e

e
e

y
y

Var
X
X

 

 

The reader will recognize the y, X, and Φ matrices within the exhibit, and the dotted lines 
partition the matrices into observations and predictions.  Zeroes are present, but not shown.  
Except for rows 13 and 14, marked ‘Diff’, and corresponding columns 13 and 14 of Φ, the model 
would consist of two, unrelated paid and incurred homoskedastic submodels.  The ‘1’s in the 
design matrix represent the unitary exposure slotted into the hjth column of X so as to interact 
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with the hjth element of the model parameter β (implicit in the exhibit, but not shown). 

But it is the rows marked ‘Diff’ that join, or laminate, the paid and the incurred losses.  
Although we have not observed six of the eighteen cells, we do know that total paid must equal 
total incurred by AY.  For AY2 the difference is: 

{ }
[ ] { }Diff2

223222221123122121232221131211

223222221123122121

111111

0

e
eeeeee

yyyyyy

+β−−−=
−−−+++β−β−β−β+β+β=

−−−++=
 

So this tautology, or difference equation, is equivalent to a zero observation, the design 
[ ]111111 −−− , and error term that involves six other error terms.  Because of 
heteroskedasticity, the variance of this error term is 6.  However, because these are same error 
terms, not like ones, [ ] [ ]hijhij VarCov eee ±=±,Diff2 .  So the reader should now understand row 13 
of the model, and similarly, row 14, the tautology for AY3.  We could have added a tautology for 
AY1; however, its variance structure involves no predictions.  It would add no new observation, 
and the resulting 15×15 matrix Φ11 would still be of rank 14 (see footnote 5) and thus non-
invertible. 

In Exhibit 2 we solve for the estimates of β and σ, and derive the SSCP matrix, as explained 
in Section 2.  In the spreadsheet we simplified the notation by dropping subscripts (which are all 
‘1’, pertaining to observations) and carets.  Both paid and incurred total pure premiums equal 

691.97 , which is the average of the stand-alone total pure premiums of paid 61.99 and incurred 
6.96 . 

The predictions are estimated in Exhibit 3 according to the formulæ: 
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To help the reader who wishes to reproduce the results, in the bottom half of the exhibit are 
intermediate calculations.  The prediction and the variance of the prediction error are: 

Type AY Age
Paid 2 3 22.50 79.95 0 39.97 79.95 0 39.97
Paid 3 2 23.75 0 89.94 -29.98 0 29.98 29.98
Paid 3 3 17.50 39.97 -29.98 109.93 39.97 29.98 49.97
Incd 2 3 7.50 79.95 0 39.97 79.95 0 39.97
Incd 3 2 23.75 0 29.98 29.98 0 89.94 -29.98
Incd 3 3 12.50 39.97 29.98 49.97 39.97 -29.98 109.93

[ ]222 ˆˆ yyy −Var

 
 

In the topmost figure of the exhibit AY subtotals are formed and combined with the paid and 
incurred to date.  For example, the calculation of the prediction-error standard deviation of the 
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AY3 IBNR is 93.10998.2998.2994.8983.11 +−−= .  Although it may seem a wonder that the 
means and variances of the ultimate losses are identical whether one builds them from the paid to 
date or from the incurred, the model was constructed for this purpose.  The identity serves only 
to confirm that the model was solved without mistake. 

This technique is more general than the tautology of IncdPaid −=0 .  In addition to the 
observations y1 of the model ey +β= X , one may know by means other than observation that 

11 33 ××× = tttt Q yz . Hence: 
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Augmenting the model for the t3 new observations, we arrive at the form: 
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From the juxtaposed model the simple joint model will arise according to this form, if z is 
zero and: 

⎥
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=

110110100000100000
001001011000011000

Q  

It is a powerful extension of the linear statistical model; nevertheless, the same two questions 
inform every statistical model: “What is the equation for each row?” and “How does each row 
covary with itself and the other rows?” 7  Next we will apply the joint model to ten accident years 
                                                 
7 Halliwell’s solution [1997; Exhibit 14] differs from ours only in the prediction error variance, and there only because of 
a disagreement over the estimate of �2: his 106.597 versus our 79.948.  And this is due to a difference of degrees of 
freedom, his six versus our eight (106.597/79.948 =  8/6).  Halliwell [1997; 247-249] both constrained the variance 
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of industry Workers’ Compensation losses. 

5.  TAUTOLOGY AND A JOINT WORKERS’ COMPENSATION MODEL 

Exhibit 4 contains net paid and case-incurred (incurred less bulk and IBNR) triangles for U.S. 
Worker’s Compensation, along with net earned premium and ultimate loss.  Ignoring the prior-
to-1998 line, we have ten accident years at ten evaluations.  But we will project beyond the tenth 
evaluation (@120 months) to ultimate, our models assuming that at 120 months paid losses are 
85.5% of ultimate and incurred are 95.0%.  So our model will work with two 10×11 rectangles, 
each with fifty-five observations.  However, to save space we will not predict each future cell, 
but only the unpaid and IBNR totals by AY.  Thus, each of the paid and incurred submodels will 
have fifty-five observations and ten predictions. 

It is not necessary to do so, but we will use the same design matrix for both submodels, an 
additive design with pure premiums by age (cf. Halliwell [2007; Section 7 and Exhibits 7A and 
7B]).  Because we have no exposure data, net earned premium will have to suffice.  However, 
due to the underwriting cycle, we must adjust it to a constant loss ratio.  Without rate-change 
information, we needed to develop the triangles to ultimate with standard deterministic methods.  
It’s not desirable, perhaps it even smacks of cheating; but frequently it’s a necessary evil, and its 
circularity does not seem to be vicious.  The adjusted, or on-level, premium summary appears in 
Exhibit 5.  The “Selected” losses are the simple average of the booked ultimates and four 
development methods.  The overall loss ratio is 71%, and “Adj Prem” is simply the selected 
losses divided by this loss ratio, which conserves total premium.  Since premium is the exposure 
base, our pure-premium betas are actually loss ratios. 

Recognizing that the volatility, or unit-variance, of the incremental losses varies by age, we 
must also derive variances, or at least variance relativities, for a heteroskedastic model.  We use 
the additive method on adjusted premium in Exhibits 6.  First we derive pure premiums by age in 
Exhibit 6.1.  The pure premium from 120 months to ultimate is calculated as: 

( )12012ult 11
β++β⎟

⎠
⎞

⎜
⎝
⎛ −=β K

m
, 

where m, the maturity at 120 months, is 0.855 for paid and 0.950 for incurred.  We assume 
that variance is proportional to exposure, and the “Selected” rows of Exhibit 6.2 derive the paid 
and incurred unit variances with some judgmental smoothing and extrapolation.  The selected 
unit variances are then multiplied in Exhibit 6.3 by the adjusted premiums.  We will treat these 

                                                                                                                                                             
structure and imposed constraints on β. This seems to have double-counted some observations and reduced the degrees 
of freedom.  Our approach is more easily understood, stays closer to the empirical data, and does not require eigen-
decompostion of variance matrices.  Moreover, it will not disturb the variance relativities of non-homoskedastic models. 
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as absolute variances, and the “Unpaid” and “IBNR” columns contain the sums of the variances 
of AY predictions. 

Exhibits 7.1 and 7.2 present the separate paid and incurred models.  As mentioned, they share 
the same design matrix.  The column marked ‘Σ’ contains the homoskedastic variances; the 
column header ‘Σ’, rather than ‘Φ’, signals our modeling software to take these as absolute 
variances.  Each model has sixty-six rows, fifty-five observations, ten predictions of AY totals, 
and one row marked ‘Constraint’.  Since there is no observation beyond 120 months, the 
constraint (note its zero variance) allows for the estimation of βult.  In keeping with the two 
maturities, each constraint is ( )( ) ult1201210 β−β++β−= mm K . 

Part of the joint paid-incurred model appears in Exhibit 8.1.  A new column ‘Type’ identifies 
the paid and incurred submodels, which one can recognize in the block diagonal form.  To these 
one hundred thirty-two rows were added the tautologous observations, ‘Ult =’ for each accident 
year.  The negative exposure in the incurred half of these ten rows indicates that the zero ‘y’ 
values are the difference of incurred from paid (paid minus incurred).  The variance ‘Σ’ of each 
new row is the sum of all the paid and incurred variances of its AY.  However, the variance 
structure of the model at this point is the ‘Σ’ column distributed down the main diagonal of a 
142×142 matrix.  Variance matrices, though large (sometimes exceeding the limit of 256 
columns of a Excel spreadsheet) are often sparse.  Our software allows us to specify only the 
columns of non-zero covariance, and to treat the rest of the covariance as zero.  In Exhibit 8.2 we 
have specified how the last ten rows, the tautologous observations covary with all 142 rows.  
Each column (e.g., the 1998 ‘Covariance’ column) records the ‘Σ’ values of its AY, except that 
‘Type’ = ‘Incd’ rows must be negated, since incurred rows are subtracted in the tautology.  Let C 
be the 142×10 covariance matrix of this exhibit.  The software knows to insert C into the last ten 
columns and to insert C ′  into the last ten rows of the 142×142 variance structure.  This 
completes the joining of the two types of losses.  The two modeling questions are answered: 
“What is the expected value of each row?” and “How does each row vary with itself and covary 
with the others?” 

Exhibit 9.1 presents some diagnostics.  The model had ( ) 101552122 ++=  observations; 
however, two of these were constraints.  After transformation (see footnote 9), a model with 122 
observations in 22 parameters becomes one with 120 observations and 20 parameters.  Readers 
wishing to solve the model in Excel can do so by reformulating ‘@Ult’ predictions in terms of 
paid and incurred β12, … , β120 (if Excel will invert a 120×120 matrix).  Two paid observations, 
AY 1998@12 and AY 2001@60, are more than two standard units away from expected.  This is 
apparent even from the paid residuals of Exhibit 6.2.  However, the diagnostics are not unusual, 
and we will focus on the estimates of β and y2, as found in Exhibit 9.2.  As for ‘Betahat’, the first 
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eleven elements are paid, and the second eleven incurred.  They both sum to 0.696.  This pure-
premium equality would not obtain, if the exposures were adjusted for inflation and changes in 
claim processing; nonetheless, the ultimate AY equality would still be preserved.  The reader 
may verify that 12012

ˆˆ ββ K+  equals 0.855×0.696 for paid and 0.950×0.696 for incurred, as 
required by the constraints. 

The unpaid and IBNR predictions are transferred from Exhibit 9.2 to summary Exhibit 10.  
The ‘Joint Paid-Incurred’ box shows agreement of ultimate loss and the standard deviation of its 
prediction error throughout the ten accident years and in total.  The total ‘Std Dev’ of ±1,196,054 
equals the square root of the sum of the diagonal 11×11 blocks of the ‘VarPrdErr’ matrix of 
Exhibit 9.2.  We also ran separate paid and incurred models from Exhibits 7, and summarized 
them in the right side of Exhibit 10.  Not surprisingly, the joint model mediates between the 
separate models: 218,374,758 ∈ (217,725,562, 219,198,836).  This holds true by accident year 
except for AY 2000.  But the joint modeling produces second-moment estimates that dominate 
those of the submodels, both in total and by accident year. 

6.  CONCLUSION 

In a footnote of the introduction we quoted, “Actuaries must not presume to judge what they 
cannot scientifically model.”  For a time science may endure competing theories, but eventually 
one will prevail.  Likewise, the ad hoc blending of models, especially those arising from paid and 
incurred data sources, is a stopgap.  For at some point it puts knowledge at the mercy of intuition 
at best, and of whim at worst.  Hence actuaries have begun to search for joint models.  Here we 
have shown that the linear statistical model is versatile enough to satisfy the search.  The key, as 
always, is to ask first what all the equations are and second how they covary with each other.  
We may dub these the “first and second moment” questions.  Actuaries have made rapid progress 
on the first-moment question; we hope that this paper will spur progress on the second.8 

                                                 
8 Since 2000 the topic of generalized linear models (GLM) has received much attention from actuaries and academicians.  
One is easily lulled into thinking that generalizing is only in one direction.  Consider a linear statistical model (LSM) 

[ ] )(, σ=+= diagVarXb eey , i.e., a heteroskedastic model.  GLM generalizes it with a link function and with a 

distributional form of e, for example as:  ( ) [ ] ( )Θ−+= − ondistributiEXbg ~,1 eeey  [Anderson, 2004; 13-14].  
The LSM is a GLM whose link is the identity function and whose distribution is multivariate normal.  Now the link 
function can be accommodated with a non-linear statistical model (Halliwell [1997; 325-326] and Judge [1988; Chapter 
12]).  Hence, many consider the advantage of GLM over LSM to reside in non-normal error terms.  However, the 
density of e is invariably assumed to be the product of the densities of the elements of e, which implies zero covariance.  
GLM does not generalize the variance structure beyond heteroskedasticity.  Our linear model generalizes the LSM in a 
different direction from the one in which GLM generalizes it.  We do not wish to gainsay GLM; certainly, no one has a 
panacea.  However, to him whose only tool is a hammer everything looks like a nail.  Enthusiasm over GLM may 
distract actuaries from asking the second-moment question.  If covariance is key to the joint paid-incurred model, GLM 
will not provide an acceptable solution. 
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Exhibit 1 

 
Joint Paid-Incurred Model

Paid Incd
1 2 3 1 2 3

Type AY Age y X Φ
Paid 1 1 50 1 1
Paid 1 2 30 1 1
Paid 1 3 20 1 1
Paid 2 1 60 1 1 1
Paid 2 2 25 1 1 1
Paid 3 1 45 1 1 1
Incd 1 1 75 1 1
Incd 1 2 15 1 1
Incd 1 3 10 1 1
Incd 2 1 75 1 1 -1
Incd 2 2 25 1 1 -1
Incd 3 1 50 1 1 -1
Diff 2 Ult 0 1 1 1 -1 -1 -1 1 1 -1 -1 6 1 -1
Diff 3 Ult 0 1 1 1 -1 -1 -1 1 -1 6 1 1 -1 -1
Paid 2 3 1 1 1
Paid 3 2 1 1 1
Paid 3 3 1 1 1
Incd 2 3 1 -1 1
Incd 3 2 1 -1 1
Incd 3 3 1 -1 1  
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Exhibit 2 
Solution of the Joint Paid-Incurred Model

X 'Φ−1y X 'Φ−1X
155 3 0 0 0 0 0 Type AY Age y Xβ e

56.25 0 2.25 0.25 0 -0.25 -0.25 Paid 1 1 50 51.666667 -1.666667
28.75 0 0.25 1.75 0 -0.25 -0.75 Paid 1 2 30 26.25 3.75

200 0 0 0 3 0 0 Paid 1 3 20 20 0
38.75 0 -0.25 -0.25 0 2.25 0.25 Paid 2 1 60 51.666667 8.3333333

1.25 0 -0.25 -0.75 0 0.25 1.75 Paid 2 2 25 26.25 -1.25
Paid 3 1 45 51.666667 -6.666667

β   (X 'Φ−1X )−1 Incd 1 1 75 66.666667 8.3333333
Paid1 51.666667 0.3333333 0 0 0 0 0 Incd 1 2 15 21.25 -6.25
Paid2 26.25 0 0.4583333 -0.041667 0 0.0416667 0.0416667 Incd 1 3 10 10 0
Paid3 20 0 -0.041667 0.7083333 0 0.0416667 0.2916667 Incd 2 1 75 66.666667 8.3333333
Incd1 66.666667 0 0 0 0.3333333 0 0 Incd 2 2 25 21.25 3.75
Incd2 21.25 0 0.0416667 0.0416667 0 0.4583333 -0.041667 Incd 3 1 50 66.666667 -16.66667
Incd3 10 0 0.0416667 0.2916667 0 -0.041667 0.7083333 Diff 2 Ult 0 0 0

Diff 3 Ult 0 0 0
Var[β]

26.649306 0 0 0 0 0 SSCP
0 36.642795 -3.331163 0 3.3311632 3.3311632 24868.75 24229.167 639.58333
0 -3.331163 56.629774 0 3.3311632 23.318142 24229.167 24229.167 0
0 0 0 26.649306 0 0 639.58333 0 639.58333
0 3.3311632 3.3311632 0 36.642795 -3.331163
0 3.3311632 23.318142 0 -3.331163 56.629774 100.0% 97.4% 2.6%

t 14
k 6
df 8
σ2 79.947917  



Modeling Paid and Incurred Losses Together 

Casualty Actuarial Society E-Forum, Spring 2009 18 

Exhibit 3 
Prediction of the Joint Paid-Incurred Model

AY Paid Incd Unpaid IBNR Ultimate
1 100 100 0 ± 0 0 ± 0 100 ± 0
2 85 100 22.50 ± 8.94 7.50 ± 8.94 107.50 ± 8.94
3 45 50 41.25 ± 11.83 36.25 ± 11.83 86.25 ± 11.83

Total 230 250 63.75 ± 17.31 43.75 ± 17.31 293.75 ± 17.31

Type AY Age Std [PE] Var [Prediction Error]
Paid 2 3 22.50 ± 8.94 79.95 0 39.97 79.95 0 39.97
Paid 3 2 23.75 ± 9.48 0 89.94 -29.98 0 29.98 29.98
Paid 3 3 17.50 ± 10.48 39.97 -29.98 109.93 39.97 29.98 49.97
Incd 2 3 7.50 ± 8.94 79.95 0 39.97 79.95 0 39.97
Incd 3 2 23.75 ± 9.48 0 29.98 29.98 0 89.94 -29.98
Incd 3 3 12.50 ± 10.48 39.97 29.98 49.97 39.97 -29.98 109.93

X 2 - Φ21 Φ11
-1 X 1 Φ22 − Φ21 Φ11

-1Φ12

0 0 0.5 0 0 0.5 0.5 0 0 0.5 0 0
0 0.75 -0.25 0 0.25 0.25 0 0.75 -0.25 0 0.25 0.25
0 -0.25 0.75 0 0.25 0.25 0 -0.25 0.75 0 0.25 0.25
0 0 0.5 0 0 0.5 0.5 0 0 0.5 0 0
0 0.25 0.25 0 0.75 -0.25 0 0.25 0.25 0 0.75 -0.25
0 0.25 0.25 0 -0.25 0.75 0 0.25 0.25 0 -0.25 0.75

Φ21 Φ11
-1

0 0 0 -0.5 -0.5 0 0 0 0 0.5 0.5 0 0.5 0
0 0 0 0 0 -0.25 0 0 0 0 0 0.25 0 0.25
0 0 0 0 0 -0.25 0 0 0 0 0 0.25 0 0.25
0 0 0 0.5 0.5 0 0 0 0 -0.5 -0.5 0 -0.5 0
0 0 0 0 0 0.25 0 0 0 0 0 -0.25 0 -0.25
0 0 0 0 0 0.25 0 0 0 0 0 -0.25 0 -0.25

2ŷ
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Exhibit 4 

 
Industry Workers' Compensation Net Losses (000)

Cumulative Paid
AY EarnPrem @12 @24 @36 @48 @60 @72 @84 @96 @108 @120

1998 23,278,084 4,651,588 9,585,142 12,606,256 14,094,760 15,268,042 16,074,584 16,668,642 17,106,835 17,422,941 17,738,999
1999 21,555,421 4,211,880 9,632,480 12,750,495 14,618,989 15,637,068 16,221,974 16,753,957 17,200,779 17,557,257
2000 23,495,444 4,553,584 10,366,172 13,709,157 15,579,342 16,724,292 17,365,134 17,961,104 18,432,885
2001 25,864,065 4,556,995 10,343,323 13,761,573 15,619,782 16,358,074 16,800,979 17,289,118
2002 29,134,414 4,262,115 9,525,796 12,527,871 14,177,862 15,284,598 15,899,281
2003 32,391,860 4,274,440 9,451,725 12,390,213 14,138,206 15,283,538
2004 36,533,278 4,624,395 9,798,635 12,473,626 14,134,508
2005 39,208,849 4,865,363 9,946,876 12,789,801
2006 42,065,555 5,130,174 10,724,002
2007 40,220,014 5,211,936

Cumulative Case-Incurred
AY Ultimate @12 @24 @36 @48 @60 @72 @84 @96 @108 @120

1998 20,815,720 10,440,449 14,526,669 16,215,164 17,259,403 18,111,150 18,727,822 19,147,843 19,469,090 19,540,774 19,765,070
1999 21,107,246 10,104,076 14,366,317 16,374,957 17,641,331 18,407,246 18,857,403 19,336,715 19,548,265 19,812,936
2000 22,339,113 10,614,330 15,701,665 17,701,687 18,844,583 19,668,677 20,094,561 20,402,031 20,739,446
2001 21,958,321 11,104,926 15,846,924 17,963,819 18,932,871 19,179,055 19,484,216 19,811,447
2002 21,039,160 10,379,583 15,108,660 16,994,756 17,685,953 18,233,994 18,589,679
2003 21,658,869 10,932,703 15,324,420 16,898,562 17,695,675 18,314,350
2004 22,204,956 11,239,343 15,320,398 16,843,250 17,632,172
2005 23,445,324 11,978,411 15,632,319 17,221,257
2006 26,885,991 12,468,437 16,822,179
2007 27,906,944 12,931,177  
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Exhibit 5 

 
Comparison of Ultimates and On-Level Premium

AY EarnPrem Ultimate CL Paid CL Incd Add Paid Add Incd Selected
1998 23,278,084 20,815,720 20,747,367 20,805,337 20,226,368 20,881,833 20,695,325
1999 21,555,421 21,107,246 20,907,312 21,095,112 20,153,220 21,074,491 20,867,476
2000 23,495,444 22,339,113 22,380,335 22,271,937 21,614,963 22,286,578 22,178,585
2001 25,864,065 21,958,321 21,545,915 21,589,768 21,305,566 21,762,406 21,632,395
2002 29,134,414 21,039,160 20,472,774 20,661,071 21,107,195 21,042,136 20,864,467
2003 32,391,860 21,658,869 20,446,996 20,823,394 21,885,290 21,389,016 21,240,713
2004 36,533,278 22,204,956 20,265,744 20,762,892 23,064,618 21,607,790 21,581,200
2005 39,208,849 23,445,324 20,806,146 21,420,815 24,850,676 22,488,817 22,602,355
2006 42,065,555 26,885,991 22,848,638 23,395,295 28,090,567 24,939,425 25,231,983
2007 40,220,014 27,906,944 24,129,598 25,119,943 28,910,427 26,647,699 26,542,922

Total 313,746,984 229,361,644 214,550,827 217,945,563 231,208,890 224,120,191 223,437,423

AY Adj Prem Ultimate CL Paid CL Incd Add Paid Add Incd Selected
1998 29,060,019 89% 89% 89% 87% 90% 89%
1999 29,301,751 98% 97% 98% 93% 98% 97%
2000 31,142,788 95% 95% 95% 92% 95% 94%
2001 30,375,837 85% 83% 83% 82% 84% 84%
2002 29,297,526 72% 70% 71% 72% 72% 72%
2003 29,825,844 67% 63% 64% 68% 66% 66%
2004 30,303,950 61% 55% 57% 63% 59% 59%
2005 31,737,838 60% 53% 55% 63% 57% 58%
2006 35,430,317 64% 54% 56% 67% 59% 60%
2007 37,271,114 69% 60% 62% 72% 66% 66%

Total 313,746,984 73% 68% 69% 74% 71% 71%

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Ultimate
CL Paid
CL Incd
Add Paid
Add Incd
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Exhibit 6.1 

 
Additive Projections with On-Level Premium

Incremental Paid
AY Adj Prem @12 @24 @36 @48 @60 @72 @84 @96 @108 @120 @Ult Ultimate LR

1998 29,060,019 4,651,588 4,933,554 3,021,114 1,488,504 1,173,282 806,542 594,058 438,193 316,106 316,058 2,924,110 20,663,109 71%
1999 29,301,751 4,211,880 5,420,600 3,118,015 1,868,494 1,018,079 584,906 531,983 446,822 356,478 318,687 2,948,434 20,824,378 71%
2000 31,142,788 4,553,584 5,812,588 3,342,985 1,870,185 1,144,950 640,842 595,970 471,781 358,902 338,710 3,133,685 22,264,182 71%
2001 30,375,837 4,556,995 5,786,328 3,418,250 1,858,209 738,292 442,905 488,139 460,466 350,063 330,369 3,056,512 21,486,528 71%
2002 29,297,526 4,262,115 5,263,681 3,002,075 1,649,991 1,106,736 614,683 540,138 444,120 337,636 318,641 2,948,009 20,487,825 70%
2003 29,825,844 4,274,440 5,177,285 2,938,488 1,747,993 1,145,332 617,774 549,878 452,129 343,725 324,387 3,001,170 20,572,601 69%
2004 30,303,950 4,624,395 5,174,240 2,674,991 1,660,882 1,071,056 627,677 558,692 459,376 349,235 329,587 3,049,279 20,579,410 68%
2005 31,737,838 4,865,363 5,081,513 2,842,925 1,841,463 1,121,735 657,376 585,128 481,113 365,759 345,182 3,193,561 21,381,119 67%
2006 35,430,317 5,130,174 5,593,828 3,580,408 2,055,705 1,252,242 733,858 653,204 537,087 408,313 385,342 3,565,110 23,895,269 67%
2007 37,271,114 5,211,936 6,503,618 3,766,430 2,162,510 1,317,302 771,986 687,141 564,991 429,527 405,362 3,750,337 25,571,140 69%

Pure Prem 0.148 0.174 0.101 0.058 0.035 0.021 0.018 0.015 0.012 0.011 0.101 217,725,562 69%

Incremental Case-Incurred
AY Adj Prem @12 @24 @36 @48 @60 @72 @84 @96 @108 @120 @Ult Ultimate LR

1998 29,060,019 10,440,449 4,086,220 1,688,495 1,044,239 851,747 616,672 420,021 321,247 71,684 224,296 1,015,137 20,805,337 72%
1999 29,301,751 10,104,076 4,262,241 2,008,640 1,266,374 765,915 450,157 479,312 211,550 264,671 226,162 1,023,581 21,093,787 72%
2000 31,142,788 10,614,330 5,087,335 2,000,022 1,142,896 824,094 425,884 307,470 337,415 179,484 240,372 1,087,893 22,272,950 72%
2001 30,375,837 11,104,926 4,741,998 2,116,895 969,052 246,184 305,161 327,231 295,330 175,064 234,452 1,061,102 21,596,099 71%
2002 29,297,526 10,379,583 4,729,077 1,886,096 691,197 548,041 355,685 374,902 284,846 168,850 226,129 1,023,434 20,678,323 71%
2003 29,825,844 10,932,703 4,391,717 1,574,142 797,113 618,675 430,571 381,663 289,983 171,895 230,207 1,041,889 20,861,756 70%
2004 30,303,950 11,239,343 4,081,055 1,522,852 788,922 652,563 437,473 387,781 294,631 174,650 233,897 1,058,590 20,855,966 69%
2005 31,737,838 11,978,411 3,653,908 1,588,938 1,015,906 683,441 458,173 406,129 308,573 182,914 244,964 1,108,680 21,601,428 68%
2006 35,430,317 12,468,437 4,353,742 2,114,552 1,134,100 762,954 511,478 453,379 344,473 204,195 273,464 1,237,667 23,811,342 67%
2007 37,271,114 12,931,177 5,309,716 2,224,415 1,193,022 802,594 538,052 476,935 362,370 214,804 287,672 1,301,970 25,621,849 69%

Pure Prem 0.358 0.142 0.060 0.032 0.022 0.014 0.013 0.010 0.006 0.008 0.035 219,198,836 70%  
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Exhibit 6.2 
Variances from Additive Method

Paid Residuals
AY 1/AdjPrem @12 @24 @36 @48 @60 @72 @84 @96 @108 @120 @Ult

1998 3.44E-08 359,234 -137,270 84,456 -197,589 146,191 204,630 58,299 -2,327 -18,793 0
1999 3.41E-08 -116,179 307,595 156,928 168,375 -17,556 -22,012 -8,233 2,638 18,793
2000 3.21E-08 -46,408 378,332 195,853 63,247 44,246 -4,209 21,812 -311
2001 3.29E-08 70,286 485,901 348,622 95,770 -335,305 -186,261 -71,879
2002 3.41E-08 -65,320 151,413 41,415 -49,883 71,250 7,852
2003 3.35E-08 -131,031 -27,171 -75,561 17,466 91,174
2004 3.30E-08 148,305 -113,643 -387,373 -97,386
2005 3.15E-08 177,478 -456,577 -364,340
2006 2.82E-08 -103,114 -588,580
2007 2.68E-08 -293,250

Zero check 0 0 0 0 0 0 0 0 0 0
WSSR 10,180 33,825 15,703 3,150 4,962 2,602 305 0 24 0

df 9 8 7 6 5 4 3 2 1 0
Unit Var 1,131 4,228 2,243 525 992 651 102 0 24
Selected 1,131 4,228 2,243 992 992 651 102 102 55 27 1,928

Incurred Residuals
AY 1/AdjPrem @12 @24 @36 @48 @60 @72 @84 @96 @108 @120 @Ult

1998 3.44E-08 48,816 -53,727 -45,865 114,048 225,970 197,156 48,158 38,710 -95,797 0
1999 3.41E-08 -373,998 87,856 259,853 328,446 134,933 27,152 104,356 -73,338 95,797
2000 3.21E-08 -522,084 650,673 141,358 146,037 153,467 -23,699 -91,045 34,628
2001 3.29E-08 242,767 414,597 304,004 -3,257 -407,927 -133,350 -61,469
2002 3.41E-08 -96,980 555,294 137,561 -246,596 -82,850 -67,259
2003 3.35E-08 267,218 142,669 -205,924 -157,591 -23,593
2004 3.30E-08 402,891 -236,105 -285,748 -181,086
2005 3.15E-08 629,211 -867,527 -305,240
2006 2.82E-08 -201,163 -693,730
2007 2.68E-08 -396,678

Zero check 0 0 0 0 0 0 0 0 0 0
WSSR 41,458 69,959 13,759 8,805 8,866 2,121 842 274 629 0

df 9 8 7 6 5 4 3 2 1 0
Unit Var 4,606 8,745 1,966 1,467 1,773 530 281 137 629
Selected 4,606 8,745 1,966 1,773 1,773 530 291 291 291 200 1,072  
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Exhibit 6.3 

 
Absolute Variances from Additive Method

Paid Variance
AY Adj Prem 12 24 36 48 60 72 84 96 108 120 @Ult Unpaid

1998 29,060,019 3.29E+10 1.23E+11 6.52E+10 2.88E+10 2.88E+10 1.89E+10 2.95E+09 2.95E+09 1.59E+09 7.97E+08 5.60E+10 5.60E+10
1999 29,301,751 3.31E+10 1.24E+11 6.57E+10 2.91E+10 2.91E+10 1.91E+10 2.98E+09 2.98E+09 1.61E+09 8.04E+08 5.65E+10 5.73E+10
2000 31,142,788 3.52E+10 1.32E+11 6.99E+10 3.09E+10 3.09E+10 2.03E+10 3.16E+09 3.16E+09 1.71E+09 8.55E+08 6.01E+10 6.26E+10
2001 30,375,837 3.44E+10 1.28E+11 6.81E+10 3.01E+10 3.01E+10 1.98E+10 3.08E+09 3.08E+09 1.67E+09 8.33E+08 5.86E+10 6.42E+10
2002 29,297,526 3.31E+10 1.24E+11 6.57E+10 2.91E+10 2.91E+10 1.91E+10 2.98E+09 2.98E+09 1.61E+09 8.04E+08 5.65E+10 6.49E+10
2003 29,825,844 3.37E+10 1.26E+11 6.69E+10 2.96E+10 2.96E+10 1.94E+10 3.03E+09 3.03E+09 1.64E+09 8.18E+08 5.75E+10 8.54E+10
2004 30,303,950 3.43E+10 1.28E+11 6.80E+10 3.01E+10 3.01E+10 1.97E+10 3.08E+09 3.08E+09 1.66E+09 8.32E+08 5.84E+10 1.17E+11
2005 31,737,838 3.59E+10 1.34E+11 7.12E+10 3.15E+10 3.15E+10 2.06E+10 3.22E+09 3.22E+09 1.74E+09 8.71E+08 6.12E+10 1.54E+11
2006 35,430,317 4.01E+10 1.50E+11 7.95E+10 3.52E+10 3.52E+10 2.30E+10 3.60E+09 3.60E+09 1.94E+09 9.72E+08 6.83E+10 2.51E+11
2007 37,271,114 4.22E+10 1.58E+11 8.36E+10 3.70E+10 3.70E+10 2.42E+10 3.78E+09 3.78E+09 2.05E+09 1.02E+09 7.19E+10 4.22E+11

Incurred Variance
AY Adj Prem 12 24 36 48 60 72 84 96 108 120 @Ult IBNR

1998 29,060,019 1.34E+11 2.54E+11 5.71E+10 5.15E+10 5.15E+10 1.54E+10 8.45E+09 8.45E+09 8.45E+09 5.81E+09 3.12E+10 3.12E+10
1999 29,301,751 1.35E+11 2.56E+11 5.76E+10 5.20E+10 5.20E+10 1.55E+10 8.52E+09 8.52E+09 8.52E+09 5.86E+09 3.14E+10 3.73E+10
2000 31,142,788 1.43E+11 2.72E+11 6.12E+10 5.52E+10 5.52E+10 1.65E+10 9.06E+09 9.06E+09 9.06E+09 6.23E+09 3.34E+10 4.87E+10
2001 30,375,837 1.40E+11 2.66E+11 5.97E+10 5.39E+10 5.39E+10 1.61E+10 8.83E+09 8.83E+09 8.83E+09 6.08E+09 3.26E+10 5.63E+10
2002 29,297,526 1.35E+11 2.56E+11 5.76E+10 5.19E+10 5.19E+10 1.55E+10 8.52E+09 8.52E+09 8.52E+09 5.86E+09 3.14E+10 6.28E+10
2003 29,825,844 1.37E+11 2.61E+11 5.86E+10 5.29E+10 5.29E+10 1.58E+10 8.67E+09 8.67E+09 8.67E+09 5.97E+09 3.20E+10 7.98E+10
2004 30,303,950 1.40E+11 2.65E+11 5.96E+10 5.37E+10 5.37E+10 1.61E+10 8.81E+09 8.81E+09 8.81E+09 6.06E+09 3.25E+10 1.35E+11
2005 31,737,838 1.46E+11 2.78E+11 6.24E+10 5.63E+10 5.63E+10 1.68E+10 9.23E+09 9.23E+09 9.23E+09 6.35E+09 3.40E+10 1.97E+11
2006 35,430,317 1.63E+11 3.10E+11 6.96E+10 6.28E+10 6.28E+10 1.88E+10 1.03E+10 1.03E+10 1.03E+10 7.09E+09 3.80E+10 2.90E+11
2007 37,271,114 1.72E+11 3.26E+11 7.33E+10 6.61E+10 6.61E+10 1.98E+10 1.08E+10 1.08E+10 1.08E+10 7.45E+09 4.00E+10 6.31E+11  
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Exhibit 7.1 

 
title:Paid Linear Model

@12 @24 @36 @48 @60 @72 @84 @96 @108 @120 @Ult
AY Age AdjPrem y X Σ

1998 12 29,060,019 4,651,588 29,060,019 3.29E+10
1998 24 29,060,019 4,933,554 29,060,019 1.23E+11
1998 36 29,060,019 3,021,114 29,060,019 6.52E+10
1998 48 29,060,019 1,488,504 29,060,019 2.88E+10
1998 60 29,060,019 1,173,282 29,060,019 2.88E+10
1998 72 29,060,019 806,542 29,060,019 1.89E+10
1998 84 29,060,019 594,058 29,060,019 2.95E+09
1998 96 29,060,019 438,193 29,060,019 2.95E+09
1998 108 29,060,019 316,106 29,060,019 1.59E+09
1998 120 29,060,019 316,058 29,060,019 7.97E+08
1999 12 29,301,751 4,211,880 29,301,751 3.31E+10
1999 24 29,301,751 5,420,600 29,301,751 1.24E+11
1999 36 29,301,751 3,118,015 29,301,751 6.57E+10
1999 48 29,301,751 1,868,494 29,301,751 2.91E+10
1999 60 29,301,751 1,018,079 29,301,751 2.91E+10
1999 72 29,301,751 584,906 29,301,751 1.91E+10
1999 84 29,301,751 531,983 29,301,751 2.98E+09
1999 96 29,301,751 446,822 29,301,751 2.98E+09
1999 108 29,301,751 356,478 29,301,751 1.61E+09
2000 12 31,142,788 4,553,584 31,142,788 3.52E+10
2000 24 31,142,788 5,812,588 31,142,788 1.32E+11
2000 36 31,142,788 3,342,985 31,142,788 6.99E+10
2000 48 31,142,788 1,870,185 31,142,788 3.09E+10
2000 60 31,142,788 1,144,950 31,142,788 3.09E+10
2000 72 31,142,788 640,842 31,142,788 2.03E+10
2000 84 31,142,788 595,970 31,142,788 3.16E+09
2000 96 31,142,788 471,781 31,142,788 3.16E+09
2001 12 30,375,837 4,556,995 30,375,837 3.44E+10
2001 24 30,375,837 5,786,328 30,375,837 1.28E+11
2001 36 30,375,837 3,418,250 30,375,837 6.81E+10
2001 48 30,375,837 1,858,209 30,375,837 3.01E+10
2001 60 30,375,837 738,292 30,375,837 3.01E+10
2001 72 30,375,837 442,905 30,375,837 1.98E+10
2001 84 30,375,837 488,139 30,375,837 3.08E+09
2002 12 29,297,526 4,262,115 29,297,526 3.31E+10
2002 24 29,297,526 5,263,681 29,297,526 1.24E+11
2002 36 29,297,526 3,002,075 29,297,526 6.57E+10
2002 48 29,297,526 1,649,991 29,297,526 2.91E+10
2002 60 29,297,526 1,106,736 29,297,526 2.91E+10
2002 72 29,297,526 614,683 29,297,526 1.91E+10
2003 12 29,825,844 4,274,440 29,825,844 3.37E+10
2003 24 29,825,844 5,177,285 29,825,844 1.26E+11
2003 36 29,825,844 2,938,488 29,825,844 6.69E+10
2003 48 29,825,844 1,747,993 29,825,844 2.96E+10
2003 60 29,825,844 1,145,332 29,825,844 2.96E+10
2004 12 30,303,950 4,624,395 30,303,950 3.43E+10
2004 24 30,303,950 5,174,240 30,303,950 1.28E+11
2004 36 30,303,950 2,674,991 30,303,950 6.80E+10
2004 48 30,303,950 1,660,882 30,303,950 3.01E+10
2005 12 31,737,838 4,865,363 31,737,838 3.59E+10
2005 24 31,737,838 5,081,513 31,737,838 1.34E+11
2005 36 31,737,838 2,842,925 31,737,838 7.12E+10
2006 12 35,430,317 5,130,174 35,430,317 4.01E+10
2006 24 35,430,317 5,593,828 35,430,317 1.50E+11
2007 12 37,271,114 5,211,936 37,271,114 4.22E+10

Constraint 0 0.145 0.145 0.145 0.145 0.145 0.145 0.145 0.145 0.145 0.145 -0.855
1998 Unpd 29,060,019 29,060,019 5.60E+10
1999 Unpd 29,301,751 29,301,751 29,301,751 5.73E+10
2000 Unpd 31,142,788 31,142,788 31,142,788 31,142,788 6.26E+10
2001 Unpd 30,375,837 30,375,837 30,375,837 30,375,837 30,375,837 6.42E+10
2002 Unpd 29,297,526 29,297,526 29,297,526 29,297,526 29,297,526 29,297,526 6.49E+10
2003 Unpd 29,825,844 29,825,844 29,825,844 29,825,844 29,825,844 29,825,844 29,825,844 8.54E+10
2004 Unpd 30,303,950 30,303,950 30,303,950 30,303,950 30,303,950 30,303,950 30,303,950 30,303,950 1.17E+11
2005 Unpd 31,737,838 31,737,838 31,737,838 31,737,838 31,737,838 31,737,838 31,737,838 31,737,838 31,737,838 1.54E+11
2006 Unpd 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 2.51E+11
2007 Unpd 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 4.22E+11  
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Exhibit 7.2 
 

title:Case_Incurred Linear Model

@12 @24 @36 @48 @60 @72 @84 @96 @108 @120 @Ult
AY Age AdjPrem y X Σ

1998 12 29,060,019 10,440,449 29,060,019 1.34E+11
1998 24 29,060,019 4,086,220 29,060,019 2.54E+11
1998 36 29,060,019 1,688,495 29,060,019 5.71E+10
1998 48 29,060,019 1,044,239 29,060,019 5.15E+10
1998 60 29,060,019 851,747 29,060,019 5.15E+10
1998 72 29,060,019 616,672 29,060,019 1.54E+10
1998 84 29,060,019 420,021 29,060,019 8.45E+09
1998 96 29,060,019 321,247 29,060,019 8.45E+09
1998 108 29,060,019 71,684 29,060,019 8.45E+09
1998 120 29,060,019 224,296 29,060,019 5.81E+09
1999 12 29,301,751 10,104,076 29,301,751 1.35E+11
1999 24 29,301,751 4,262,241 29,301,751 2.56E+11
1999 36 29,301,751 2,008,640 29,301,751 5.76E+10
1999 48 29,301,751 1,266,374 29,301,751 5.20E+10
1999 60 29,301,751 765,915 29,301,751 5.20E+10
1999 72 29,301,751 450,157 29,301,751 1.55E+10
1999 84 29,301,751 479,312 29,301,751 8.52E+09
1999 96 29,301,751 211,550 29,301,751 8.52E+09
1999 108 29,301,751 264,671 29,301,751 8.52E+09
2000 12 31,142,788 10,614,330 31,142,788 1.43E+11
2000 24 31,142,788 5,087,335 31,142,788 2.72E+11
2000 36 31,142,788 2,000,022 31,142,788 6.12E+10
2000 48 31,142,788 1,142,896 31,142,788 5.52E+10
2000 60 31,142,788 824,094 31,142,788 5.52E+10
2000 72 31,142,788 425,884 31,142,788 1.65E+10
2000 84 31,142,788 307,470 31,142,788 9.06E+09
2000 96 31,142,788 337,415 31,142,788 9.06E+09
2001 12 30,375,837 11,104,926 30,375,837 1.40E+11
2001 24 30,375,837 4,741,998 30,375,837 2.66E+11
2001 36 30,375,837 2,116,895 30,375,837 5.97E+10
2001 48 30,375,837 969,052 30,375,837 5.39E+10
2001 60 30,375,837 246,184 30,375,837 5.39E+10
2001 72 30,375,837 305,161 30,375,837 1.61E+10
2001 84 30,375,837 327,231 30,375,837 8.83E+09
2002 12 29,297,526 10,379,583 29,297,526 1.35E+11
2002 24 29,297,526 4,729,077 29,297,526 2.56E+11
2002 36 29,297,526 1,886,096 29,297,526 5.76E+10
2002 48 29,297,526 691,197 29,297,526 5.19E+10
2002 60 29,297,526 548,041 29,297,526 5.19E+10
2002 72 29,297,526 355,685 29,297,526 1.55E+10
2003 12 29,825,844 10,932,703 29,825,844 1.37E+11
2003 24 29,825,844 4,391,717 29,825,844 2.61E+11
2003 36 29,825,844 1,574,142 29,825,844 5.86E+10
2003 48 29,825,844 797,113 29,825,844 5.29E+10
2003 60 29,825,844 618,675 29,825,844 5.29E+10
2004 12 30,303,950 11,239,343 30,303,950 1.40E+11
2004 24 30,303,950 4,081,055 30,303,950 2.65E+11
2004 36 30,303,950 1,522,852 30,303,950 5.96E+10
2004 48 30,303,950 788,922 30,303,950 5.37E+10
2005 12 31,737,838 11,978,411 31,737,838 1.46E+11
2005 24 31,737,838 3,653,908 31,737,838 2.78E+11
2005 36 31,737,838 1,588,938 31,737,838 6.24E+10
2006 12 35,430,317 12,468,437 35,430,317 1.63E+11
2006 24 35,430,317 4,353,742 35,430,317 3.10E+11
2007 12 37,271,114 12,931,177 37,271,114 1.72E+11

Constraint 0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 -0.95
1998 IBNR 29,060,019 29,060,019 3.12E+10
1999 IBNR 29,301,751 29,301,751 29,301,751 3.73E+10
2000 IBNR 31,142,788 31,142,788 31,142,788 31,142,788 4.87E+10
2001 IBNR 30,375,837 30,375,837 30,375,837 30,375,837 30,375,837 5.63E+10
2002 IBNR 29,297,526 29,297,526 29,297,526 29,297,526 29,297,526 29,297,526 6.28E+10
2003 IBNR 29,825,844 29,825,844 29,825,844 29,825,844 29,825,844 29,825,844 29,825,844 7.98E+10
2004 IBNR 30,303,950 30,303,950 30,303,950 30,303,950 30,303,950 30,303,950 30,303,950 30,303,950 1.35E+11
2005 IBNR 31,737,838 31,737,838 31,737,838 31,737,838 31,737,838 31,737,838 31,737,838 31,737,838 31,737,838 1.97E+11
2006 IBNR 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 2.90E+11
2007 IBNR 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 6.31E+11  
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Exhibit 8.1 
 

t itle:Joint Paid and Incurred Linear Model
@12 @24 @36 @48 @60 @72 @84 @96 @108 @120 @Ult @12 @24 @36 @48 @60 @72 @84 @96 @108 @120 @Ult

Type AY Age y X Σ
Paid 1998 12 4,651,588 29,060,019 3.29E+10
Paid 1998 24 4,933,554 29,060,019 1.23E+11
Paid 1998 36 3,021,114 29,060,019 6.52E+10
Paid 1998 48 1,488,504 29,060,019 2.88E+10
Paid 1998 60 1,173,282 29,060,019 2.88E+10
Paid 1998 72 806,542 29,060,019 1.89E+10
Paid 1998 84 594,058 29,060,019 2.95E+09
Paid 1998 96 438,193 29,060,019 2.95E+09
Paid 1998 108 316,106 29,060,019 1.59E+09
Paid 1998 120 316,058 29,060,019 7.97E+08
Paid 1999 12 4,211,880 29,301,751 3.31E+10
Paid 1999 24 5,420,600 29,301,751 1.24E+11
Paid 1999 36 3,118,015 29,301,751 6.57E+10
Paid 1999 48 1,868,494 29,301,751 2.91E+10
Paid 1999 60 1,018,079 29,301,751 2.91E+10
Paid 1999 72 584,906 29,301,751 1.91E+10
Paid 1999 84 531,983 29,301,751 2.98E+09
Paid 1999 96 446,822 29,301,751 2.98E+09
Paid 1999 108 356,478 29,301,751 1.61E+09
Paid 2000 12 4,553,584 31,142,788 3.52E+10
Paid 2000 24 5,812,588 31,142,788 1.32E+11
Paid 2000 36 3,342,985 31,142,788 6.99E+10
Paid 2000 48 1,870,185 31,142,788 3.09E+10
Paid 2000 60 1,144,950 31,142,788 3.09E+10
Paid 2000 72 640,842 31,142,788 2.03E+10
Paid 2000 84 595,970 31,142,788 3.16E+09
Paid 2000 96 471,781 31,142,788 3.16E+09
Paid 2001 12 4,556,995 30,375,837 3.44E+10
Paid 2001 24 5,786,328 30,375,837 1.28E+11
Paid 2001 36 3,418,250 30,375,837 6.81E+10
Paid 2001 48 1,858,209 30,375,837 3.01E+10
Paid 2001 60 738,292 30,375,837 3.01E+10
Paid 2001 72 442,905 30,375,837 1.98E+10
Paid 2001 84 488,139 30,375,837 3.08E+09
Paid 2002 12 4,262,115 29,297,526 3.31E+10
Paid 2002 24 5,263,681 29,297,526 1.24E+11
Paid 2002 36 3,002,075 29,297,526 6.57E+10
Paid 2002 48 1,649,991 29,297,526 2.91E+10
Paid 2002 60 1,106,736 29,297,526 2.91E+10
Paid 2002 72 614,683 29,297,526 1.91E+10
Paid 2003 12 4,274,440 29,825,844 3.37E+10
Paid 2003 24 5,177,285 29,825,844 1.26E+11
Paid 2003 36 2,938,488 29,825,844 6.69E+10
Paid 2003 48 1,747,993 29,825,844 2.96E+10
Paid 2003 60 1,145,332 29,825,844 2.96E+10
Paid 2004 12 4,624,395 30,303,950 3.43E+10
Paid 2004 24 5,174,240 30,303,950 1.28E+11
Paid 2004 36 2,674,991 30,303,950 6.80E+10
Paid 2004 48 1,660,882 30,303,950 3.01E+10
Paid 2005 12 4,865,363 31,737,838 3.59E+10
Paid 2005 24 5,081,513 31,737,838 1.34E+11
Paid 2005 36 2,842,925 31,737,838 7.12E+10
Paid 2006 12 5,130,174 35,430,317 4.01E+10
Paid 2006 24 5,593,828 35,430,317 1.50E+11
Paid 2007 12 5,211,936 37,271,114 4.22E+10
Paid Constraint 0 0.145 0.145 0.145 0.145 0.145 0.145 0.145 0.145 0.145 0.145 -0.855
Paid 1998 Unpd 29,060,019 5.60E+10
Paid 1999 Unpd 29,301,751 29,301,751 5.73E+10
Paid 2000 Unpd 31,142,788 31,142,788 31,142,788 6.26E+10
Paid 2001 Unpd 30,375,837 30,375,837 30,375,837 30,375,837 6.42E+10
Paid 2002 Unpd 29,297,526 29,297,526 29,297,526 29,297,526 29,297,526 6.49E+10
Paid 2003 Unpd 29,825,844 29,825,844 29,825,844 29,825,844 29,825,844 29,825,844 8.54E+10
Paid 2004 Unpd 30,303,950 30,303,950 30,303,950 30,303,950 30,303,950 30,303,950 30,303,950 1.17E+11
Paid 2005 Unpd 31,737,838 31,737,838 31,737,838 31,737,838 31,737,838 31,737,838 31,737,838 31,737,838 1.54E+11
Paid 2006 Unpd 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 2.51E+11
Paid 2007 Unpd 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 4.22E+11
Incd 1998 12 10,440,449 29,060,019 1.34E+11
Incd 1998 24 4,086,220 29,060,019 2.54E+11
Incd 1998 36 1,688,495 29,060,019 5.71E+10
Incd 1998 48 1,044,239 29,060,019 5.15E+10
Incd 1998 60 851,747 29,060,019 5.15E+10
Incd 1998 72 616,672 29,060,019 1.54E+10
Incd 1998 84 420,021 29,060,019 8.45E+09
Incd 1998 96 321,247 29,060,019 8.45E+09
Incd 1998 108 71,684 29,060,019 8.45E+09
Incd 1998 120 224,296 29,060,019 5.81E+09
Incd 1999 12 10,104,076 29,301,751 1.35E+11
Incd 1999 24 4,262,241 29,301,751 2.56E+11
Incd 1999 36 2,008,640 29,301,751 5.76E+10
Incd 1999 48 1,266,374 29,301,751 5.20E+10
Incd 1999 60 765,915 29,301,751 5.20E+10
Incd 1999 72 450,157 29,301,751 1.55E+10
Incd 1999 84 479,312 29,301,751 8.52E+09
Incd 1999 96 211,550 29,301,751 8.52E+09
Incd 1999 108 264,671 29,301,751 8.52E+09
Incd 2000 12 10,614,330 31,142,788 1.43E+11
Incd 2000 24 5,087,335 31,142,788 2.72E+11
Incd 2000 36 2,000,022 31,142,788 6.12E+10
Incd 2000 48 1,142,896 31,142,788 5.52E+10
Incd 2000 60 824,094 31,142,788 5.52E+10
Incd 2000 72 425,884 31,142,788 1.65E+10
Incd 2000 84 307,470 31,142,788 9.06E+09
Incd 2000 96 337,415 31,142,788 9.06E+09
Incd 2001 12 11,104,926 30,375,837 1.40E+11
Incd 2001 24 4,741,998 30,375,837 2.66E+11
Incd 2001 36 2,116,895 30,375,837 5.97E+10
Incd 2001 48 969,052 30,375,837 5.39E+10
Incd 2001 60 246,184 30,375,837 5.39E+10
Incd 2001 72 305,161 30,375,837 1.61E+10
Incd 2001 84 327,231 30,375,837 8.83E+09
Incd 2002 12 10,379,583 29,297,526 1.35E+11
Incd 2002 24 4,729,077 29,297,526 2.56E+11
Incd 2002 36 1,886,096 29,297,526 5.76E+10
Incd 2002 48 691,197 29,297,526 5.19E+10
Incd 2002 60 548,041 29,297,526 5.19E+10
Incd 2002 72 355,685 29,297,526 1.55E+10
Incd 2003 12 10,932,703 29,825,844 1.37E+11
Incd 2003 24 4,391,717 29,825,844 2.61E+11
Incd 2003 36 1,574,142 29,825,844 5.86E+10
Incd 2003 48 797,113 29,825,844 5.29E+10
Incd 2003 60 618,675 29,825,844 5.29E+10
Incd 2004 12 11,239,343 30,303,950 1.40E+11
Incd 2004 24 4,081,055 30,303,950 2.65E+11
Incd 2004 36 1,522,852 30,303,950 5.96E+10
Incd 2004 48 788,922 30,303,950 5.37E+10
Incd 2005 12 11,978,411 31,737,838 1.46E+11
Incd 2005 24 3,653,908 31,737,838 2.78E+11
Incd 2005 36 1,588,938 31,737,838 6.24E+10
Incd 2006 12 12,468,437 35,430,317 1.63E+11
Incd 2006 24 4,353,742 35,430,317 3.10E+11
Incd 2007 12 12,931,177 37,271,114 1.72E+11
Incd Constraint 0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 -0.95
Incd 1998 IBNR 29,060,019 3.12E+10
Incd 1999 IBNR 29,301,751 29,301,751 3.73E+10
Incd 2000 IBNR 31,142,788 31,142,788 31,142,788 4.87E+10
Incd 2001 IBNR 30,375,837 30,375,837 30,375,837 30,375,837 5.63E+10
Incd 2002 IBNR 29,297,526 29,297,526 29,297,526 29,297,526 29,297,526 6.28E+10
Incd 2003 IBNR 29,825,844 29,825,844 29,825,844 29,825,844 29,825,844 29,825,844 7.98E+10
Incd 2004 IBNR 30,303,950 30,303,950 30,303,950 30,303,950 30,303,950 30,303,950 30,303,950 1.35E+11
Incd 2005 IBNR 31,737,838 31,737,838 31,737,838 31,737,838 31,737,838 31,737,838 31,737,838 31,737,838 1.97E+11
Incd 2006 IBNR 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 2.90E+11
Incd 2007 IBNR 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 6.31E+11
Ult = 1998 0 29,060,019 29,060,019 29,060,019 29,060,019 29,060,019 29,060,019 29,060,019 29,060,019 29,060,019 29,060,019 29,060,019 -29,060,019 -29,060,019 -29,060,019 -29,060,019 -29,060,019 -29,060,019 -29,060,019 -29,060,019 -29,060,019 -29,060,019 -29,060,019 9.88E+11
Ult = 1999 0 29,301,751 29,301,751 29,301,751 29,301,751 29,301,751 29,301,751 29,301,751 29,301,751 29,301,751 29,301,751 29,301,751 -29,301,751 -29,301,751 -29,301,751 -29,301,751 -29,301,751 -29,301,751 -29,301,751 -29,301,751 -29,301,751 -29,301,751 -29,301,751 9.96E+11
Ult = 2000 0 31,142,788 31,142,788 31,142,788 31,142,788 31,142,788 31,142,788 31,142,788 31,142,788 31,142,788 31,142,788 31,142,788 -31,142,788 -31,142,788 -31,142,788 -31,142,788 -31,142,788 -31,142,788 -31,142,788 -31,142,788 -31,142,788 -31,142,788 -31,142,788 1.06E+12
Ult = 2001 0 30,375,837 30,375,837 30,375,837 30,375,837 30,375,837 30,375,837 30,375,837 30,375,837 30,375,837 30,375,837 30,375,837 -30,375,837 -30,375,837 -30,375,837 -30,375,837 -30,375,837 -30,375,837 -30,375,837 -30,375,837 -30,375,837 -30,375,837 -30,375,837 1.03E+12
Ult = 2002 0 29,297,526 29,297,526 29,297,526 29,297,526 29,297,526 29,297,526 29,297,526 29,297,526 29,297,526 29,297,526 29,297,526 -29,297,526 -29,297,526 -29,297,526 -29,297,526 -29,297,526 -29,297,526 -29,297,526 -29,297,526 -29,297,526 -29,297,526 -29,297,526 9.96E+11
Ult = 2003 0 29,825,844 29,825,844 29,825,844 29,825,844 29,825,844 29,825,844 29,825,844 29,825,844 29,825,844 29,825,844 29,825,844 -29,825,844 -29,825,844 -29,825,844 -29,825,844 -29,825,844 -29,825,844 -29,825,844 -29,825,844 -29,825,844 -29,825,844 -29,825,844 1.01E+12
Ult = 2004 0 30,303,950 30,303,950 30,303,950 30,303,950 30,303,950 30,303,950 30,303,950 30,303,950 30,303,950 30,303,950 30,303,950 -30,303,950 -30,303,950 -30,303,950 -30,303,950 -30,303,950 -30,303,950 -30,303,950 -30,303,950 -30,303,950 -30,303,950 -30,303,950 1.03E+12
Ult = 2005 0 31,737,838 31,737,838 31,737,838 31,737,838 31,737,838 31,737,838 31,737,838 31,737,838 31,737,838 31,737,838 31,737,838 -31,737,838 -31,737,838 -31,737,838 -31,737,838 -31,737,838 -31,737,838 -31,737,838 -31,737,838 -31,737,838 -31,737,838 -31,737,838 1.08E+12
Ult = 2006 0 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 -35,430,317 -35,430,317 -35,430,317 -35,430,317 -35,430,317 -35,430,317 -35,430,317 -35,430,317 -35,430,317 -35,430,317 -35,430,317 1.20E+12
Ult = 2007 0 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 -37,271,114 -37,271,114 -37,271,114 -37,271,114 -37,271,114 -37,271,114 -37,271,114 -37,271,114 -37,271,114 -37,271,114 -37,271,114 1.27E+12 
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Exhibit 8.2 
 

t itl e:Covariance of Joint Paid and Incurred Linear Model
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Type AY Age Σ Covariance
Paid 1998 12 3.29E+10 3.29E+10
Paid 1998 24 1.23E+11 1.23E+11
Paid 1998 36 6.52E+10 6.52E+10
Paid 1998 48 2.88E+10 2.88E+10
Paid 1998 60 2.88E+10 2.88E+10
Paid 1998 72 1.89E+10 1.89E+10
Paid 1998 84 2.95E+09 2.95E+09
Paid 1998 96 2.95E+09 2.95E+09
Paid 1998 108 1.59E+09 1.59E+09
Paid 1998 120 7.97E+08 7.97E+08
Paid 1999 12 3.31E+10 3.31E+10
Paid 1999 24 1.24E+11 1.24E+11
Paid 1999 36 6.57E+10 6.57E+10
Paid 1999 48 2.91E+10 2.91E+10
Paid 1999 60 2.91E+10 2.91E+10
Paid 1999 72 1.91E+10 1.91E+10
Paid 1999 84 2.98E+09 2.98E+09
Paid 1999 96 2.98E+09 2.98E+09
Paid 1999 108 1.61E+09 1.61E+09
Paid 2000 12 3.52E+10 3.52E+10
Paid 2000 24 1.32E+11 1.32E+11
Paid 2000 36 6.99E+10 6.99E+10
Paid 2000 48 3.09E+10 3.09E+10
Paid 2000 60 3.09E+10 3.09E+10
Paid 2000 72 2.03E+10 2.03E+10
Paid 2000 84 3.16E+09 3.16E+09
Paid 2000 96 3.16E+09 3.16E+09
Paid 2001 12 3.44E+10 3.44E+10
Paid 2001 24 1.28E+11 1.28E+11
Paid 2001 36 6.81E+10 6.81E+10
Paid 2001 48 3.01E+10 3.01E+10
Paid 2001 60 3.01E+10 3.01E+10
Paid 2001 72 1.98E+10 1.98E+10
Paid 2001 84 3.08E+09 3.08E+09
Paid 2002 12 3.31E+10 3.31E+10
Paid 2002 24 1.24E+11 1.24E+11
Paid 2002 36 6.57E+10 6.57E+10
Paid 2002 48 2.91E+10 2.91E+10
Paid 2002 60 2.91E+10 2.91E+10
Paid 2002 72 1.91E+10 1.91E+10
Paid 2003 12 3.37E+10 3.37E+10
Paid 2003 24 1.26E+11 1.26E+11
Paid 2003 36 6.69E+10 6.69E+10
Paid 2003 48 2.96E+10 2.96E+10
Paid 2003 60 2.96E+10 2.96E+10
Paid 2004 12 3.43E+10 3.43E+10
Paid 2004 24 1.28E+11 1.28E+11
Paid 2004 36 6.80E+10 6.80E+10
Paid 2004 48 3.01E+10 3.01E+10
Paid 2005 12 3.59E+10 3.59E+10
Paid 2005 24 1.34E+11 1.34E+11
Paid 2005 36 7.12E+10 7.12E+10
Paid 2006 12 4.01E+10 4.01E+10
Paid 2006 24 1.50E+11 1.50E+11
Paid 2007 12 4.22E+10 4.22E+10
Paid Constraint
Paid 1998 Unpd 5.60E+10 5.60E+10
Paid 1999 Unpd 5.73E+10 5.73E+10
Paid 2000 Unpd 6.26E+10 6.26E+10
Paid 2001 Unpd 6.42E+10 6.42E+10
Paid 2002 Unpd 6.49E+10 6.49E+10
Paid 2003 Unpd 8.54E+10 8.54E+10
Paid 2004 Unpd 1.17E+11 1.17E+11
Paid 2005 Unpd 1.54E+11 1.54E+11
Paid 2006 Unpd 2.51E+11 2.51E+11
Paid 2007 Unpd 4.22E+11 4.22E+11
Incd 1998 12 1.34E+11 -1.34E+11
Incd 1998 24 2.54E+11 -2.54E+11
Incd 1998 36 5.71E+10 -5.71E+10
Incd 1998 48 5.15E+10 -5.15E+10
Incd 1998 60 5.15E+10 -5.15E+10
Incd 1998 72 1.54E+10 -1.54E+10
Incd 1998 84 8.45E+09 -8.45E+09
Incd 1998 96 8.45E+09 -8.45E+09
Incd 1998 108 8.45E+09 -8.45E+09
Incd 1998 120 5.81E+09 -5.81E+09
Incd 1999 12 1.35E+11 -1.35E+11
Incd 1999 24 2.56E+11 -2.56E+11
Incd 1999 36 5.76E+10 -5.76E+10
Incd 1999 48 5.20E+10 -5.20E+10
Incd 1999 60 5.20E+10 -5.20E+10
Incd 1999 72 1.55E+10 -1.55E+10
Incd 1999 84 8.52E+09 -8.52E+09
Incd 1999 96 8.52E+09 -8.52E+09
Incd 1999 108 8.52E+09 -8.52E+09
Incd 2000 12 1.43E+11 -1.43E+11
Incd 2000 24 2.72E+11 -2.72E+11
Incd 2000 36 6.12E+10 -6.12E+10
Incd 2000 48 5.52E+10 -5.52E+10
Incd 2000 60 5.52E+10 -5.52E+10
Incd 2000 72 1.65E+10 -1.65E+10
Incd 2000 84 9.06E+09 -9.06E+09
Incd 2000 96 9.06E+09 -9.06E+09
Incd 2001 12 1.40E+11 -1.40E+11
Incd 2001 24 2.66E+11 -2.66E+11
Incd 2001 36 5.97E+10 -5.97E+10
Incd 2001 48 5.39E+10 -5.39E+10
Incd 2001 60 5.39E+10 -5.39E+10
Incd 2001 72 1.61E+10 -1.61E+10
Incd 2001 84 8.83E+09 -8.83E+09
Incd 2002 12 1.35E+11 -1.35E+11
Incd 2002 24 2.56E+11 -2.56E+11
Incd 2002 36 5.76E+10 -5.76E+10
Incd 2002 48 5.19E+10 -5.19E+10
Incd 2002 60 5.19E+10 -5.19E+10
Incd 2002 72 1.55E+10 -1.55E+10
Incd 2003 12 1.37E+11 -1.37E+11
Incd 2003 24 2.61E+11 -2.61E+11
Incd 2003 36 5.86E+10 -5.86E+10
Incd 2003 48 5.29E+10 -5.29E+10
Incd 2003 60 5.29E+10 -5.29E+10
Incd 2004 12 1.40E+11 -1.40E+11
Incd 2004 24 2.65E+11 -2.65E+11
Incd 2004 36 5.96E+10 -5.96E+10
Incd 2004 48 5.37E+10 -5.37E+10
Incd 2005 12 1.46E+11 -1.46E+11
Incd 2005 24 2.78E+11 -2.78E+11
Incd 2005 36 6.24E+10 -6.24E+10
Incd 2006 12 1.63E+11 -1.63E+11
Incd 2006 24 3.10E+11 -3.10E+11
Incd 2007 12 1.72E+11 -1.72E+11
Incd Constraint
Incd 1998 IBNR 3.12E+10 -3.12E+10
Incd 1999 IBNR 3.73E+10 -3.73E+10
Incd 2000 IBNR 4.87E+10 -4.87E+10
Incd 2001 IBNR 5.63E+10 -5.63E+10
Incd 2002 IBNR 6.28E+10 -6.28E+10
Incd 2003 IBNR 7.98E+10 -7.98E+10
Incd 2004 IBNR 1.35E+11 -1.35E+11
Incd 2005 IBNR 1.97E+11 -1.97E+11
Incd 2006 IBNR 2.90E+11 -2.90E+11
Incd 2007 IBNR 6.31E+11 -6.31E+11
Ult = 1998 9.88E+11 9.88E+11
Ult = 1999 9.96E+11 9.96E+11
Ult = 2000 1.06E+12 1.06E+12
Ult = 2001 1.03E+12 1.03E+12
Ult = 2002 9.96E+11 9.96E+11
Ult = 2003 1.01E+12 1.01E+12
Ult = 2004 1.03E+12 1.03E+12
Ult = 2005 1.08E+12 1.08E+12
Ult = 2006 1.20E+12 1.20E+12
Ult = 2007 1.27E+12 1.27E+12 
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Exhibit 9.1 
 

Joint Paid and Incurred Linear Model: Diagnostics
TYPE AY AGE y1 Fitted Resid Student Cnstrnd SSCP TTy1 Fitted Resid
Paid 1998 12 4,651,588 4,295,141 356,447 2.06 0 TTy1 21797.28 21712.24 85.03434
Paid 1998 24 4,933,554 5,081,187 -147,633 -0.44 0 Fitted 21712.24 21712.24 0
Paid 1998 36 3,021,114 2,939,870 81,244 0.34 0 Resid 85.03434 0 85.03434
Paid 1998 48 1,488,504 1,689,312 -200,808 -1.27 0 rhosq 100.0% 99.6% 0.4%
Paid 1998 60 1,173,282 1,034,360 138,922 0.89 0 df 120 20 100
Paid 1998 72 806,542 612,055 194,487 1.57 0 s2hat 181.644 1085.612 0.850343
Paid 1998 84 594,058 538,316 55,742 1.18 0 s2sel 1
Paid 1998 96 438,193 444,117 -5,924 -0.13 0
Paid 1998 108 316,106 337,302 -21,196 -0.74 0
Paid 1998 120 316,058 320,133 -4,075 0/0 0
Paid 1999 12 4,211,880 4,330,869 -118,989 -0.69 0
Paid 1999 24 5,420,600 5,123,455 297,145 0.89 0
Paid 1999 36 3,118,015 2,964,325 153,690 0.64 0
Paid 1999 48 1,868,494 1,703,364 165,130 1.04 0
Paid 1999 60 1,018,079 1,042,964 -24,885 -0.16 0
Paid 1999 72 584,906 617,146 -32,240 -0.26 0
Paid 1999 84 531,983 542,793 -10,810 -0.23 0
Paid 1999 96 446,822 447,812 -990 -0.02 0
Paid 1999 108 356,478 340,107 16,371 0.57 0
Paid 2000 12 4,553,584 4,602,979 -49,395 -0.28 0
Paid 2000 24 5,812,588 5,445,363 367,225 1.07 0
Paid 2000 36 3,342,985 3,150,575 192,410 0.78 0
Paid 2000 48 1,870,185 1,810,387 59,798 0.37 0
Paid 2000 60 1,144,950 1,108,494 36,456 0.23 0
Paid 2000 72 640,842 655,922 -15,080 -0.12 0
Paid 2000 84 595,970 576,897 19,073 0.39 0
Paid 2000 96 471,781 475,948 -4,167 -0.09 0
Paid 2001 12 4,556,995 4,489,622 67,373 0.38 0
Paid 2001 24 5,786,328 5,311,260 475,068 1.40 0
Paid 2001 36 3,418,250 3,072,986 345,264 1.41 0
Paid 2001 48 1,858,209 1,765,803 92,406 0.57 0
Paid 2001 60 738,292 1,081,195 -342,903 -2.16 0
Paid 2001 72 442,905 639,769 -196,864 -1.56 0
Paid 2001 84 488,139 562,690 -74,551 -1.55 0
Paid 2002 12 4,262,115 4,330,245 -68,130 -0.39 0
Paid 2002 24 5,263,681 5,122,716 140,965 0.42 0
Paid 2002 36 3,002,075 2,963,898 38,177 0.16 0
Paid 2002 48 1,649,991 1,703,119 -53,128 -0.34 0
Paid 2002 60 1,106,736 1,042,814 63,922 0.41 0
Paid 2002 72 614,683 617,057 -2,374 -0.02 0
Paid 2003 12 4,274,440 4,408,332 -133,892 -0.77 0
Paid 2003 24 5,177,285 5,215,093 -37,808 -0.11 0
Paid 2003 36 2,938,488 3,017,345 -78,857 -0.32 0
Paid 2003 48 1,747,993 1,733,831 14,162 0.09 0
Paid 2003 60 1,145,332 1,061,619 83,713 0.53 0
Paid 2004 12 4,624,395 4,478,997 145,398 0.83 0
Paid 2004 24 5,174,240 5,298,691 -124,451 -0.37 0
Paid 2004 36 2,674,991 3,065,713 -390,722 -1.60 0
Paid 2004 48 1,660,882 1,761,624 -100,742 -0.63 0
Paid 2005 12 4,865,363 4,690,929 174,434 0.97 0
Paid 2005 24 5,081,513 5,549,408 -467,895 -1.35 0
Paid 2005 36 2,842,925 3,210,773 -367,848 -1.48 0
Paid 2006 12 5,130,174 5,236,686 -106,512 -0.56 0
Paid 2006 24 5,593,828 6,195,043 -601,215 -1.66 0
Paid 2007 12 5,211,936 5,508,761 -296,825 -1.54 0
Paid Constraint 0 0 0 0.00 1
Incd 1998 12 10,440,449 10,388,110 52,339 0.15 0
Incd 1998 24 4,086,220 4,135,376 -49,156 -0.10 0
Incd 1998 36 1,688,495 1,735,893 -47,398 -0.21 0
Incd 1998 48 1,044,239 928,957 115,282 0.55 0
Incd 1998 60 851,747 618,070 233,677 1.12 0
Incd 1998 72 616,672 413,144 203,528 1.82 0
Incd 1998 84 420,021 365,835 54,186 0.67 0
Incd 1998 96 321,247 273,968 47,279 0.62 0
Incd 1998 108 71,684 157,407 -85,723 -1.25 0
Incd 1998 120 224,296 198,262 26,034 0.79 0
Incd 1999 12 10,104,076 10,474,522 -370,446 -1.06 0
Incd 1999 24 4,262,241 4,169,776 92,465 0.19 0
Incd 1999 36 2,008,640 1,750,333 258,307 1.15 0
Incd 1999 48 1,266,374 936,684 329,690 1.55 0
Incd 1999 60 765,915 623,211 142,704 0.68 0
Incd 1999 72 450,157 416,581 33,576 0.30 0
Incd 1999 84 479,312 368,878 110,434 1.37 0
Incd 1999 96 211,550 276,247 -64,697 -0.84 0
Incd 1999 108 264,671 158,716 105,955 1.54 0
Incd 2000 12 10,614,330 11,132,639 -518,309 -1.44 0
Incd 2000 24 5,087,335 4,431,764 655,571 1.33 0
Incd 2000 36 2,000,022 1,860,307 139,715 0.60 0
Incd 2000 48 1,142,896 995,536 147,360 0.68 0
Incd 2000 60 824,094 662,368 161,726 0.75 0
Incd 2000 72 425,884 442,755 -16,871 -0.15 0
Incd 2000 84 307,470 392,055 -84,585 -1.03 0
Incd 2000 96 337,415 293,604 43,811 0.56 0
Incd 2001 12 11,104,926 10,858,477 246,449 0.69 0
Incd 2001 24 4,741,998 4,322,623 419,375 0.86 0
Incd 2001 36 2,116,895 1,814,493 302,402 1.32 0
Incd 2001 48 969,052 971,019 -1,967 -0.01 0
Incd 2001 60 246,184 646,056 -399,872 -1.88 0
Incd 2001 72 305,161 431,851 -126,690 -1.11 0
Incd 2001 84 327,231 382,400 -55,169 -0.68 0
Incd 2002 12 10,379,583 10,473,012 -93,429 -0.27 0
Incd 2002 24 4,729,077 4,169,174 559,903 1.17 0
Incd 2002 36 1,886,096 1,750,080 136,016 0.60 0
Incd 2002 48 691,197 936,549 -245,352 -1.16 0
Incd 2002 60 548,041 623,121 -75,080 -0.36 0
Incd 2002 72 355,685 416,521 -60,836 -0.54 0
Incd 2003 12 10,932,703 10,661,870 270,833 0.77 0
Incd 2003 24 4,391,717 4,244,357 147,360 0.30 0
Incd 2003 36 1,574,142 1,781,639 -207,497 -0.91 0
Incd 2003 48 797,113 953,438 -156,325 -0.73 0
Incd 2003 60 618,675 634,358 -15,683 -0.07 0
Incd 2004 12 11,239,343 10,832,779 406,564 1.14 0
Incd 2004 24 4,081,055 4,312,393 -231,338 -0.48 0
Incd 2004 36 1,522,852 1,810,199 -287,347 -1.26 0
Incd 2004 48 788,922 968,721 -179,799 -0.84 0
Incd 2005 12 11,978,411 11,345,353 633,058 1.75 0
Incd 2005 24 3,653,908 4,516,442 -862,534 -1.74 0
Incd 2005 36 1,588,938 1,895,852 -306,914 -1.32 0
Incd 2006 12 12,468,437 12,665,306 -196,869 -0.52 0
Incd 2006 24 4,353,742 5,041,899 -688,157 -1.32 0
Incd 2007 12 12,931,177 13,323,337 -392,160 -1.01 0
Incd Constraint 0 0 0 0.00 1
Ult = 1998 0 -2,019 2,019 0.00 0
Ult = 1999 0 -2,035 2,035 0.00 0
Ult = 2000 0 -2,163 2,163 0.00 0
Ult = 2001 0 -2,110 2,110 0.00 0
Ult = 2002 0 -2,035 2,035 0.00 0
Ult = 2003 0 -2,072 2,072 0.00 0
Ult = 2004 0 -2,105 2,105 0.00 0
Ult = 2005 0 -2,205 2,205 0.00 0
Ult = 2006 0 -2,461 2,461 0.00 0
Ult = 2007 0 -2,589 2,589 0.00 0  
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Exhibit 9.2 
 

Joint Paid and Incurred Linear Model: Predictions
TYPE AY AGE y2hat StdPrdErr VarPrdErr VarPrdErr VarPrdErr VarPrdErr VarPrdErr VarPrdErr VarPrdErr VarPrdErr VarPrdErr VarPrdErr VarPrdErr VarPrdErr VarPrdErr VarPrdErr VarPrdErr VarPrdErr VarPrdErr VarPrdErr VarPrdErr VarPrdErr
Paid 1998 Unpd 2,999,915 ± 142,339 2.03E+10 3.9E+08 5.28E+08 5.95E+08 6.3E+08 8.06E+08 1.12E+09 1.43E+09 2.04E+09 3.23E+09 2.03E+10 3.9E+08 5.28E+08 5.95E+08 6.3E+08 8.06E+08 1.12E+09 1.43E+09 2.04E+09 3.23E+09
Paid 1999 Unpd 3,398,227 ± 158,471 3.9E+08 2.51E+10 2.53E+09 2.43E+09 2.34E+09 2.60E+09 2.88E+09 3.27E+09 4.21E+09 5.59E+09 3.9E+08 2.51E+10 2.53E+09 2.43E+09 2.34E+09 2.60E+09 2.88E+09 3.27E+09 4.21E+09 5.59E+09
Paid 2000 Unpd 3,804,647 ± 177,631 5.28E+08 2.53E+09 3.16E+10 3.96E+09 3.77E+09 4.09E+09 4.37E+09 4.85E+09 6.08E+09 7.67E+09 5.28E+08 2.53E+09 3.16E+10 3.96E+09 3.77E+09 4.09E+09 4.37E+09 4.85E+09 6.08E+09 7.67E+09
Paid 2001 Unpd 4,227,840 ± 186,625 5.95E+08 2.43E+09 3.96E+09 3.48E+10 4.60E+09 4.95E+09 5.22E+09 5.73E+09 7.08E+09 8.71E+09 5.95E+08 2.43E+09 3.96E+09 3.48E+10 4.60E+09 4.95E+09 5.22E+09 5.73E+09 7.08E+09 8.71E+09
Paid 2002 Unpd 4,662,500 ± 192,377 6.3E+08 2.34E+09 3.77E+09 4.60E+09 3.70E+10 5.45E+09 5.71E+09 6.24E+09 7.64E+09 9.26E+09 6.3E+08 2.34E+09 3.77E+09 4.60E+09 3.70E+10 5.45E+09 5.71E+09 6.24E+09 7.64E+09 9.26E+09
Paid 2003 Unpd 5,421,105 ± 220,945 8.06E+08 2.60E+09 4.09E+09 4.95E+09 5.45E+09 4.88E+10 7.87E+09 8.50E+09 1.02E+10 1.19E+10 8.06E+08 2.60E+09 4.09E+09 4.95E+09 5.45E+09 4.88E+10 7.87E+09 8.50E+09 1.02E+10 1.19E+10
Paid 2004 Unpd 6,568,927 ± 272,535 1.12E+09 2.88E+09 4.37E+09 5.22E+09 5.71E+09 7.87E+09 7.43E+10 1.25E+10 1.46E+10 1.67E+10 1.12E+09 2.88E+09 4.37E+09 5.22E+09 5.71E+09 7.87E+09 7.43E+10 1.25E+10 1.46E+10 1.67E+10
Paid 2005 Unpd 8,692,524 ± 320,964 1.43E+09 3.27E+09 4.85E+09 5.73E+09 6.24E+09 8.50E+09 1.25E+10 1.03E+11 1.92E+10 2.15E+10 1.43E+09 3.27E+09 4.85E+09 5.73E+09 6.24E+09 8.50E+09 1.25E+10 1.03E+11 1.92E+10 2.15E+10
Paid 2006 Unpd 13,144,841 ± 403,064 2.04E+09 4.21E+09 6.08E+09 7.08E+09 7.64E+09 1.02E+10 1.46E+10 1.92E+10 1.62E+11 3.07E+10 2.04E+09 4.21E+09 6.08E+09 7.08E+09 7.64E+09 1.02E+10 1.46E+10 1.92E+10 1.62E+11 3.07E+10
Paid 2007 Unpd 20,392,908 ± 549,291 3.23E+09 5.59E+09 7.67E+09 8.71E+09 9.26E+09 1.19E+10 1.67E+10 2.15E+10 3.07E+10 3.02E+11 3.23E+09 5.59E+09 7.67E+09 8.71E+09 9.26E+09 1.19E+10 1.67E+10 2.15E+10 3.07E+10 3.02E+11
Incd 1998 IBNR 973,844 ± 142,339 2.03E+10 3.9E+08 5.28E+08 5.95E+08 6.3E+08 8.06E+08 1.12E+09 1.43E+09 2.04E+09 3.23E+09 2.03E+10 3.9E+08 5.28E+08 5.95E+08 6.3E+08 8.06E+08 1.12E+09 1.43E+09 2.04E+09 3.23E+09
Incd 1999 IBNR 1,142,547 ± 158,471 3.9E+08 2.51E+10 2.53E+09 2.43E+09 2.34E+09 2.60E+09 2.88E+09 3.27E+09 4.21E+09 5.59E+09 3.9E+08 2.51E+10 2.53E+09 2.43E+09 2.34E+09 2.60E+09 2.88E+09 3.27E+09 4.21E+09 5.59E+09
Incd 2000 IBNR 1,498,084 ± 177,630 5.28E+08 2.53E+09 3.16E+10 3.96E+09 3.77E+09 4.09E+09 4.37E+09 4.85E+09 6.08E+09 7.67E+09 5.28E+08 2.53E+09 3.16E+10 3.96E+09 3.77E+09 4.09E+09 4.37E+09 4.85E+09 6.08E+09 7.67E+09
Incd 2001 IBNR 1,705,511 ± 186,625 5.95E+08 2.43E+09 3.96E+09 3.48E+10 4.60E+09 4.95E+09 5.22E+09 5.73E+09 7.08E+09 8.71E+09 5.95E+08 2.43E+09 3.96E+09 3.48E+10 4.60E+09 4.95E+09 5.22E+09 5.73E+09 7.08E+09 8.71E+09
Incd 2002 IBNR 1,972,102 ± 192,377 6.3E+08 2.34E+09 3.77E+09 4.60E+09 3.70E+10 5.45E+09 5.71E+09 6.24E+09 7.64E+09 9.26E+09 6.3E+08 2.34E+09 3.77E+09 4.60E+09 3.70E+10 5.45E+09 5.71E+09 6.24E+09 7.64E+09 9.26E+09
Incd 2003 IBNR 2,390,298 ± 220,945 8.06E+08 2.60E+09 4.09E+09 4.95E+09 5.45E+09 4.88E+10 7.87E+09 8.50E+09 1.02E+10 1.19E+10 8.06E+08 2.60E+09 4.09E+09 4.95E+09 5.45E+09 4.88E+10 7.87E+09 8.50E+09 1.02E+10 1.19E+10
Incd 2004 IBNR 3,071,266 ± 272,536 1.12E+09 2.88E+09 4.37E+09 5.22E+09 5.71E+09 7.87E+09 7.43E+10 1.25E+10 1.46E+10 1.67E+10 1.12E+09 2.88E+09 4.37E+09 5.22E+09 5.71E+09 7.87E+09 7.43E+10 1.25E+10 1.46E+10 1.67E+10
Incd 2005 IBNR 4,261,067 ± 320,964 1.43E+09 3.27E+09 4.85E+09 5.73E+09 6.24E+09 8.50E+09 1.25E+10 1.03E+11 1.92E+10 2.15E+10 1.43E+09 3.27E+09 4.85E+09 5.73E+09 6.24E+09 8.50E+09 1.25E+10 1.03E+11 1.92E+10 2.15E+10
Incd 2006 IBNR 7,046,664 ± 403,064 2.04E+09 4.21E+09 6.08E+09 7.08E+09 7.64E+09 1.02E+10 1.46E+10 1.92E+10 1.62E+11 3.07E+10 2.04E+09 4.21E+09 6.08E+09 7.08E+09 7.64E+09 1.02E+10 1.46E+10 1.92E+10 1.62E+11 3.07E+10
Incd 2007 IBNR 12,673,667 ± 549,291 3.23E+09 5.59E+09 7.67E+09 8.71E+09 9.26E+09 1.19E+10 1.67E+10 2.15E+10 3.07E+10 3.02E+11 3.23E+09 5.59E+09 7.67E+09 8.71E+09 9.26E+09 1.19E+10 1.67E+10 2.15E+10 3.07E+10 3.02E+11

Betahat StdBeta VarBeta VarBeta VarBeta VarBeta VarBeta VarBeta VarBeta VarBeta VarBeta VarBeta VarBeta VarBeta VarBeta VarBeta VarBeta VarBeta VarBeta VarBeta VarBeta VarBeta VarBeta VarBeta
0.148 ± 0.002 3.59E-06 -5.2E-08 -3.5E-08 -2E-08 -2.7E-08 -2.8E-08 -7E-09 -1.2E-08 -1.3E-08 -1.7E-08 5.74E-07 1.5E-08 3.5E-08 0 1.6E-08 2.6E-08 1.4E-08 1.5E-08 2.8E-08 5.8E-08 1.07E-07 1.7E-08
0.175 ± 0.004 -5.2E-08 1.48E-05 -2.93E-07 -1.49E-07 -1.82E-07 -1.61E-07 -3.7E-08 -5.9E-08 -6E-08 -7.4E-08 2.33E-06 6.6E-08 7.11E-07 1.75E-07 1.82E-07 2.25E-07 9.5E-08 8.2E-08 1.37E-07 2.68E-07 4.74E-07 1.27E-07
0.101 ± 0.003 -3.5E-08 -2.93E-07 8.96E-06 -1.68E-07 -1.89E-07 -1.51E-07 -3.1E-08 -4.6E-08 -4.3E-08 -5.1E-08 1.35E-06 4.4E-08 3.97E-07 2.52E-07 2.44E-07 2.72E-07 1E-07 7.4E-08 1.11E-07 1.97E-07 3.26E-07 1.06E-07
0.058 ± 0.002 -2E-08 -1.49E-07 -1.68E-07 4.6E-06 -1.5E-07 -1.14E-07 -2.2E-08 -3.1E-08 -2.7E-08 -3.1E-08 6.6E-07 2.5E-08 1.89E-07 1.16E-07 2.14E-07 2.3E-07 7.9E-08 5.5E-08 7.6E-08 1.26E-07 1.96E-07 6.9E-08
0.036 ± 0.002 -2.7E-08 -1.82E-07 -1.89E-07 -1.5E-07 5.28E-06 -1.94E-07 -3.6E-08 -4.8E-08 -4.1E-08 -4.4E-08 7.41E-07 3.5E-08 2.1E-07 1.23E-07 2.24E-07 4.18E-07 1.39E-07 9.2E-08 1.21E-07 1.89E-07 2.82E-07 9.6E-08
0.021 ± 0.002 -2.8E-08 -1.61E-07 -1.51E-07 -1.14E-07 -1.94E-07 4.13E-06 -4.3E-08 -5.5E-08 -4.4E-08 -4.6E-08 5.58E-07 3.5E-08 1.65E-07 8.9E-08 1.59E-07 2.94E-07 1.72E-07 1.1E-07 1.39E-07 2.08E-07 2.96E-07 8.8E-08
0.019 ± 0.001 -7E-09 -3.7E-08 -3.1E-08 -2.2E-08 -3.6E-08 -4.3E-08 8.35E-07 -1.5E-08 -1.2E-08 -1.2E-08 1.05E-07 0 3.4E-08 1.7E-08 2.8E-08 5.2E-08 3E-08 3.2E-08 3.9E-08 5.7E-08 7.8E-08 2E-08
0.015 ± 0.001 -1.2E-08 -5.9E-08 -4.6E-08 -3.1E-08 -4.8E-08 -5.5E-08 -1.5E-08 1.11E-06 -2.2E-08 -2.1E-08 1.35E-07 1.6E-08 4.8E-08 2.1E-08 3.5E-08 6.3E-08 3.6E-08 3.8E-08 7.2E-08 1.03E-07 1.38E-07 3E-08
0.012 ± 0.001 -1.3E-08 -6E-08 -4.3E-08 -2.7E-08 -4.1E-08 -4.4E-08 -1.2E-08 -2.2E-08 9.17E-07 -2.3E-08 1.07E-07 1.7E-08 4.5E-08 1.8E-08 2.7E-08 4.8E-08 2.7E-08 2.8E-08 5.4E-08 1.13E-07 1.5E-07 2.8E-08
0.011 ± 0.001 -1.7E-08 -7.4E-08 -5.1E-08 -3.1E-08 -4.4E-08 -4.6E-08 -1.2E-08 -2.1E-08 -2.3E-08 9.14E-07 1.01E-07 2.1E-08 5.2E-08 1.8E-08 2.7E-08 4.6E-08 2.6E-08 2.7E-08 5E-08 1.06E-07 1.95E-07 3E-08
0.101 ± 0.001 5.74E-07 2.328E-06 1.35E-06 6.6E-07 7.41E-07 5.58E-07 1.05E-07 1.35E-07 1.07E-07 1.01E-07 1.13E-06 4.8E-08 3.2E-07 1.43E-07 1.96E-07 2.84E-07 1.22E-07 9.3E-08 1.4E-07 2.42E-07 3.8E-07 1.04E-07
0.357 ± 0.004 1.5E-08 6.6E-08 4.4E-08 2.5E-08 3.5E-08 3.5E-08 0 1.6E-08 1.7E-08 2.1E-08 4.8E-08 1.47E-05 -4.4E-08 0 -2E-08 -3.3E-08 -1.8E-08 -1.8E-08 -3.5E-08 -7.3E-08 -1.35E-07 7.51E-07
0.142 ± 0.006 3.5E-08 7.11E-07 3.97E-07 1.89E-07 2.1E-07 1.65E-07 3.4E-08 4.8E-08 4.5E-08 5.2E-08 3.2E-07 -4.4E-08 3.04E-05 -2.93E-07 -2.81E-07 -3.1E-07 -1.11E-07 -8E-08 -1.17E-07 -2.04E-07 -3.31E-07 1.51E-06
0.060 ± 0.003 0 1.75E-07 2.52E-07 1.16E-07 1.23E-07 8.9E-08 1.7E-08 2.1E-08 1.8E-08 1.8E-08 1.43E-07 0 -2.93E-07 7.95E-06 -1.89E-07 -1.98E-07 -6.5E-08 -4.2E-08 -5.4E-08 -8.2E-08 -1.19E-07 3.63E-07
0.032 ± 0.003 1.6E-08 1.82E-07 2.44E-07 2.14E-07 2.24E-07 1.59E-07 2.8E-08 3.5E-08 2.7E-08 2.7E-08 1.96E-07 -2E-08 -2.81E-07 -1.89E-07 8.12E-06 -3.7E-07 -1.19E-07 -7.4E-08 -9.1E-08 -1.3E-07 -1.77E-07 3.51E-07
0.021 ± 0.003 2.6E-08 2.25E-07 2.72E-07 2.3E-07 4.18E-07 2.94E-07 5.2E-08 6.3E-08 4.8E-08 4.6E-08 2.84E-07 -3.3E-08 -3.1E-07 -1.98E-07 -3.7E-07 9.21E-06 -2.22E-07 -1.36E-07 -1.64E-07 -2.29E-07 -3E-07 3.81E-07
0.014 ± 0.002 1.4E-08 9.5E-08 1E-07 7.9E-08 1.39E-07 1.72E-07 3E-08 3.6E-08 2.7E-08 2.6E-08 1.22E-07 -1.8E-08 -1.11E-07 -6.5E-08 -1.19E-07 -2.22E-07 3.42E-06 -8E-08 -9.5E-08 -1.3E-07 -1.68E-07 1.27E-07
0.013 ± 0.002 1.5E-08 8.2E-08 7.4E-08 5.5E-08 9.2E-08 1.1E-07 3.2E-08 3.8E-08 2.8E-08 2.7E-08 9.3E-08 -1.8E-08 -8E-08 -4.2E-08 -7.4E-08 -1.36E-07 -8E-08 2.34E-06 -9.9E-08 -1.36E-07 -1.74E-07 7.9E-08
0.009 ± 0.002 2.8E-08 1.37E-07 1.11E-07 7.6E-08 1.21E-07 1.39E-07 3.9E-08 7.2E-08 5.4E-08 5E-08 1.4E-07 -3.5E-08 -1.17E-07 -5.4E-08 -9.1E-08 -1.64E-07 -9.5E-08 -9.9E-08 3.06E-06 -2.58E-07 -3.29E-07 9.6E-08
0.005 ± 0.002 5.8E-08 2.68E-07 1.97E-07 1.26E-07 1.89E-07 2.08E-07 5.7E-08 1.03E-07 1.13E-07 1.06E-07 2.42E-07 -7.3E-08 -2.04E-07 -8.2E-08 -1.3E-07 -2.29E-07 -1.3E-07 -1.36E-07 -2.58E-07 4.44E-06 -6.94E-07 1.32E-07
0.007 ± 0.002 1.07E-07 4.74E-07 3.26E-07 1.96E-07 2.82E-07 2.96E-07 7.8E-08 1.38E-07 1.5E-07 1.95E-07 3.8E-07 -1.35E-07 -3.31E-07 -1.19E-07 -1.77E-07 -3E-07 -1.68E-07 -1.74E-07 -3.29E-07 -6.94E-07 5.6E-06 1.67E-07
0.035 ± 0.000 1.7E-08 1.27E-07 1.06E-07 6.9E-08 9.6E-08 8.8E-08 2E-08 3E-08 2.8E-08 3E-08 1.04E-07 7.51E-07 1.51E-06 3.63E-07 3.51E-07 3.81E-07 1.27E-07 7.9E-08 9.6E-08 1.32E-07 1.67E-07 2.08E-07  
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Exhibit 10 
 

Summary of Linear Models

Joint Paid-Incurred Paid Case-Incurred
AY EarnPrem Paid CaseIncd Unpaid Std Dev IBNR Std Dev Ultimate = Ultimate Std Dev Ultimate Std Dev

1998 23,278,084 17,738,999 19,765,070 2,999,915 ± 142,339 973,844 ± 142,339 20,738,914 TRUE 20,663,109 ± 239,110 20,780,207 ± 177,147
1999 21,555,421 17,557,257 19,812,936 3,398,227 ± 158,471 1,142,547 ± 158,471 20,955,484 TRUE 20,824,378 ± 244,026 21,062,679 ± 209,846
2000 23,495,444 18,432,885 20,739,446 3,804,647 ± 177,631 1,498,084 ± 177,630 22,237,532 TRUE 22,264,182 ± 257,624 22,247,195 ± 248,293
2001 25,864,065 17,289,118 19,811,447 4,227,840 ± 186,625 1,705,511 ± 186,625 21,516,958 TRUE 21,486,528 ± 262,929 21,577,395 ± 268,263
2002 29,134,414 15,899,281 18,589,679 4,662,500 ± 192,377 1,972,102 ± 192,377 20,561,781 TRUE 20,487,825 ± 265,436 20,667,840 ± 282,302
2003 32,391,860 15,283,538 18,314,350 5,421,105 ± 220,945 2,390,298 ± 220,945 20,704,643 TRUE 20,572,601 ± 310,529 20,860,557 ± 317,408
2004 36,533,278 14,134,508 17,632,172 6,568,927 ± 272,535 3,071,266 ± 272,536 20,703,435 TRUE 20,579,410 ± 367,486 20,871,758 ± 408,036
2005 39,208,849 12,789,801 17,221,257 8,692,524 ± 320,964 4,261,067 ± 320,964 21,482,325 TRUE 21,381,119 ± 424,534 21,630,036 ± 491,580
2006 42,065,555 10,724,002 16,822,179 13,144,841 ± 403,064 7,046,664 ± 403,064 23,868,843 TRUE 23,895,269 ± 547,487 23,858,441 ± 597,042
2007 40,220,014 5,211,936 12,931,177 20,392,908 ± 549,291 12,673,667 ± 549,291 25,604,844 TRUE 25,571,140 ± 709,931 25,642,727 ± 867,816

Total 313,746,984 145,061,325 181,639,713 73,313,433 ± 1,196,054 36,735,050 ± 1,196,055 218,374,758 TRUE 217,725,562 ± 1,572,984 219,198,836 ± 1,866,883  
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APPENDIX A 

The Effect of Covariance in a Simple Model 

This appendix will present variations of an elementary model so as to illustrate the 
effect of covariance.  The top part of Exhibit A.1 shows the basic form (Model 1).  Eight 
quantities are observed (Obs 1–8), and two predictions are desired (Pred 1–2).  The 
model for each y, whether observed or predicted, is iii x ey +β= .  Except for Pred 2, all x 
and φ values are one; Pred 2 is like a doubling of Pred 1, which makes its variance 
relativity four.  Zeroes in the variance structure are not shown.  This is a heteroskedastic 
model (homoskedastic in the observed part).  The formulæ of the linear statistical model 
were explained in Section 2. 

In the middle of the exhibit is shown the estimate of the parameter: 
074.2875.97ˆ ±=β .  Those unfamiliar with this formulation of the linear model should at 

least recognize that Model 1 is equivalent to the simple average.  At the bottom of the 
exhibit are various diagnostics (left side) and weighted sums of squares and crossproducts 
(“SSCP”, right side).  The diagonal elements of the 3×3 SSCP matrix must satisfy the 
equation 321 ddd += , and the fit accounts for 99.7% of d1.  Eight (unrelated) 
observations and one parameter make for seven degrees of freedom, and the estimate of 
the variance scale is 411.347/875.240ˆ ==2σ . 

The estimator of β linearly depends on the error terms of the observations.  Because 
the error terms of the predictions do not covary with those of the observations, nether do 
they covary with β̂ .  Hence: 
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(We explain the model in this manner for the benefit of those unfamiliar with matrix 
algebra and multivariate statistics; nevertheless, we encourage them to study these fields 
until they become natural.  See references.)  We conclude Model 1 by saying that Pred 2 
is like Pred 1, but on twice the scale.  The covariance between the two predictions is 
solely due to their reliance on the estimate of β; it has to do with parameter variance or 
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uncertainty. 

Model 2 of Exhibit A.2 is identical to Model 1 except that the variance relativity of 
Obs 4 is zero, rather than one.  The column ‘Constrnd’ signals a variance degeneracy 
with a ‘1’ for this observation.  Whether this be unrealistic, it is at least instructive as a 
limiting case.  The model says that in one observation we were able to see β without the 
obfuscation of an error term.  So 096ˆ ±=β , plain and simple.  The error terms readjust, 
and according to the formulation of our software9 there are seven (stochastic) 
observations and zero estimated parameters, which again makes for seven degrees of 
freedom.  In this model it is easier to see that Pred 2 is like Pred 1, but on twice the scale.  
If, in addition, the variance of any other observation were set to zero, the resulting two 
equations would be inconsistent. 

Things become very interesting with Model 3 (Exhibit A.3), in which Obs 2 and Obs 6 
covary, as well as Obs 7 and Pred 2.  Both covariances imply perfect positive 
correlations.  In the latter case, we show non-negative definiteness by: 
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So the error term of Pred 2 equals (with probability one) the error term of Obs 7.  It is 
not like twice the error term of Obs 7; rather, it is the same as twice the error term.  And 
because its dependent variable is twice that of Obs 7, Pred 2 is not like twice Obs 7; it is 
twice Obs 7.  Without even estimating β we know Pred 2 to be 0180902 ±=⋅ .  
Covariance makes the difference between like and same.   

But within the observations themselves is a variance degeneracy.  Though all the 
observation error terms are alike, the error term of Obs 7 is that of Obs 3.  The ‘Cnstrnd’ 
column indicates with ‘0.5’ the dependency of the two observations.  In effect, it says that 
the same observation is written twice, and should be counted once.  Thus instead of eight 
observations, there are really seven, which with one parameter estimated makes for six 
degrees of freedom.  When covariance is properly considered, one cannot create 
information ex nihilo, i.e., by repeating the same observation.  One cannot fool the model 

                                                 
9 It would take us too far afield to detail how our software solves the linear statistical model when the variance 
of the observations Σ11 is not positive definite.  But briefly, it eigen-decomposes the observations, and treats 
the once-transformed rows whose eigenvalues are zero as constraints on β.  Then it transforms constrained β -
space into a lower-dimensional, unconstrained γ-space.  The twice-transformed model (cf. “TTy1” in SSCP, 
where “TT” stands for “twice-transformed”) is solved, and transformed back.  It is a theorem that the solution 
of a linear model is invariant to any invertible, or one-to-one, transformation of the observations, i.e., 

111 ey AAXA +β= , for any nonsingular A.  But one must not forget to transform the covariances: Σ 12 → 
A Σ 12 and Σ 21 → Σ 21A'. 
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even by repeating a linear combination of observations, for ⎥
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contains no more information than Σ11 contains.  Note that although Obs 2 and Obs 6 are 
redundant, they are consistent.  If they were not both 93, they would be inconsistent 
equations. 

Lastly, Model 4 in Exhibit A.4 is a mixture of Models 2 and 3.  The reason for 
changing Obs 6 from 93 to 94 will soon appear.  Similarly to Model 3: 
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i.e., [ ] 1012Prob 62 ==− ee , or simply, 26 2ee = .  But here Obs 2 and Obs 6 are not 
redundant.  Nevertheless, they are equivalent to three equations in three variables: 

26

6

2

2
94
93

ee
e
e

=
+β=
+β=

, 

whose solution is 2,1,92 62 ===β ee .  In Model 2 β was like a gem lying on the 
surface; here we had to pan a little for it.  So 092ˆ ±=β .  If we had not changed Obs 6, 
the equations still would have been consistent, but the error terms would have both been 
zero – a much less interesting result.  The ‘Cnstrnd’ column indicates the variance 
degeneracy between the two observations; but their counting as one observation is 
apportioned inversely according to their 1:4 variance relativities. 

Granted, the behavior of Models 2–4 depends on perfect correlation, and is akin to 
imagining relativistic effects at the speed of light.  As long as Σ11 has no variance 
degeneracy, i.e., is positive definite, the observations consist of t1 consistent equations in 

kt +1  variables.  They comprise a system of equations that can be solved only 
probabilistically.  However, these limiting cases confirm the conservation of information.  
Just as there is no magic, just illusion, so too only by trickery can someone produce 
information out of nothing. 

Consequently, to include in a joint paid-incurred model tautologous observations for 
completely observed exposure periods, correctly accounting for covariance, will furnish 
no additional information.  For it’s simply a linear combination of old information.  
Moreover, for numerical-analytic reasons it’s dangerous, since the software must decide 
when small eigenvalues should be treated as zeroes.  Without these redundant equations 
the joint model will be of full rank. 

 



Modeling Paid and Incurred Losses Together 

Casualty Actuarial Society E-Forum, Spring 2009 34 

Exhibit A.1 
Model 1

ID y X Φ
Obs 1 106 1 1
Obs 2 93 1 1
Obs 3 99 1 1
Obs 4 96 1 1
Obs 5 105 1 1
Obs 6 93 1 1
Obs 7 90 1 1
Obs 8 101 1 1
Pred 1 1 1
Pred 2 2 4  

 
 
 

ID y2hat StdPrdErr VarPrdErr VarPrdErr
Pred 1 97.875 6.222 38.712 8.603
Pred 2 195.750 12.444 8.603 154.848

Betahat StdBeta VarBeta
97.875 2.074 4.301  

 
ID y1 Fitted Resid Student Cnstrnd SSCP TTy1 Fitted Resid
Obs 1 106 97.875 8.125 1.48 0 TTy1 76877 76636.13 240.875
Obs 2 93 97.875 -4.875 -0.89 0 Fitted 76636.13 76636.13 0
Obs 3 99 97.875 1.125 0.21 0 Resid 240.875 0 240.875
Obs 4 96 97.875 -1.875 -0.34 0 rhosq 100.0% 99.7% 0.3%
Obs 5 105 97.875 7.125 1.30 0 df 8 1 7
Obs 6 93 97.875 -4.875 -0.89 0 s2hat 9609.625 76636.13 34.41071
Obs 7 90 97.875 -7.875 -1.44 0 s2sel 34.41071
Obs 8 101 97.875 3.125 0.57 0  
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Exhibit A.2 
Model 2

ID y X Φ
Obs 1 106 1 1
Obs 2 93 1 1
Obs 3 99 1 1
Obs 4 96 1 0
Obs 5 105 1 1
Obs 6 93 1 1
Obs 7 90 1 1
Obs 8 101 1 1
Pred 1 1 1
Pred 2 2 4  

 
ID y2hat StdPrdErr VarPrdErr VarPrdErr
Pred 1 96 6.199 38.429 0
Pred 2 192 12.398 0 153.714

Betahat StdBeta VarBeta
96 0 0  

 

 
ID y1 Fitted Resid Student Cnstrnd SSCP TTy1 Fitted Resid
Obs 1 106 96 10 1.61 0 TTy1 269 0 269
Obs 2 93 96 -3 -0.48 0 Fitted 0 0 0
Obs 3 99 96 3 0.48 0 Resid 269 0 269
Obs 4 96 96 0 0.00 1 rhosq 100.0% 0.0% 100.0%
Obs 5 105 96 9 1.45 0 df 7 0 7
Obs 6 93 96 -3 -0.48 0 s2hat 38.42857 0 38.42857
Obs 7 90 96 -6 -0.97 0 s2sel 38.42857
Obs 8 101 96 5 0.81 0  
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Exhibit A.3 
Model 3

ID y X Φ
Obs 1 106 1 1
Obs 2 93 1 1 1
Obs 3 99 1 1
Obs 4 96 1 1
Obs 5 105 1 1
Obs 6 93 1 1 1
Obs 7 90 1 1 2
Obs 8 101 1 1
Pred 1 1 1
Pred 2 2 2 4  

 
 
 

ID y2hat StdPrdErr VarPrdErr VarPrdErr
Pred 1 98.571 6.380 40.707 0
Pred 2 180 0 0 0

Betahat StdBeta VarBeta
98.571 2.256 5.088  

 
ID y1 Fitted Resid Student Cnstrnd SSCP TTy1 Fitted Resid
Obs 1 106 98.571 7.429 1.34 0 TTy1 68228 68014.29 213.7143
Obs 2 93 98.571 -5.571 -1.01 0.5 Fitted 68014.29 68014.29 0
Obs 3 99 98.571 0.429 0.08 0 Resid 213.7143 0 213.7143
Obs 4 96 98.571 -2.571 -0.47 0 rhosq 100.0% 99.7% 0.3%
Obs 5 105 98.571 6.429 1.16 0 df 7 1 6
Obs 6 93 98.571 -5.571 -1.01 0.5 s2hat 9746.857 68014.29 35.61905
Obs 7 90 98.571 -8.571 -1.55 0 s2sel 35.61905
Obs 8 101 98.571 2.429 0.44 0  
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Exhibit A.4 
Model 4

ID y X Φ
Obs 1 106 1 1
Obs 2 93 1 1 2
Obs 3 99 1 1
Obs 4 96 1 1
Obs 5 105 1 1
Obs 6 94 1 2 4
Obs 7 90 1 1
Obs 8 101 1 1
Pred 1 1 1
Pred 2 2 4  

 
 
 

ID y2hat StdPrdErr VarPrdErr VarPrdErr
Pred 1 92 8.586 73.714 0
Pred 2 184 17.171 0 294.857

Betahat StdBeta VarBeta
92 0 0  

 
ID y1 Fitted Resid Student Cnstrnd SSCP TTy1 Fitted Resid
Obs 1 106 92 14 1.63 0 TTy1 516 0 516
Obs 2 93 92 1 0.12 0.8 Fitted 0 0 0
Obs 3 99 92 7 0.82 0 Resid 516 0 516
Obs 4 96 92 4 0.47 0 rhosq 100.0% 0.0% 100.0%
Obs 5 105 92 13 1.51 0 df 7 0 7
Obs 6 94 92 2 0.12 0.2 s2hat 73.71429 0 73.71429
Obs 7 90 92 -2 -0.23 0 s2sel 73.71429
Obs 8 101 92 9 1.05 0  
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APPENDIX B 

Correlation Constraints among Three Random Variables 

Our solution to the joint model involved the addition of tautologous observations 
which covary with certain of the paid and incurred observations.  Often the loss 
observations are not inter-correlated.  According to statistical and econometric 
terminology (e.g., Judge [1988], Chapter 9), the variance structure of such observations is 
homo- or heteroskedastic, as opposed to autocorrelated.  In our simple example they were 
homoskedastic; in the Workers’ Compensation example they were heteroskedastic.  If z 
be a tautologous observation that involves loss observation x (so that [ ] 0, ≠xzCov ; in our 
models, [ ] [ ]xVarxzCov ±=, ), and x does not covary with any other loss observation, then 
we may assume that z does not secondarily covary with any other loss observation.  But in 
general, for z to covary with x and for x to covary with y places a transitive tendency for z 
to covary with y.  Ignoring secondary covariance may lead one to create models whose 
variance structure is not non-negative definite.  Such models would be defective, because 
a variance structure is legitimate if and only if it is non-negative definite.   

So our task here is to solve an interesting problem: If the correlation between two 
random variables is ρ, what are legitimate values of x and y, the correlations of a third 
random variable with the first two?  Mathematically expressed, for what values of x and y 
is 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
ρ

ρ

1
1

1

yx
y
x

 non-negative definite?  To express the problem as correlation is simpler 
and no less general than to express it as covariance. 

First, because the correlation coefficient is bounded, 1,,1 ≤ρ≤− yx .  Hence, 
regardless of ρ, allowable pairs (x, y) must be on or within the square whose four corners 
are (±1, ±1).  And second, it is a theorem of matrix algebra that a matrix Σ is non-
negative definite if and only if it has a “square root,” i.e., a real-valued matrix W such 
that WW ′=Σ .  The Cholesky decomposition yields a suitable square W that is lower-
triangular (i.e., zero above the main diagonal).10 

The Cholesky decomposition of the correlation matrix is: 
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10 Cf. Halliwell [1997; Appendix A], Healy [1986; 54f], and Judge [1988; 961]. 
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where: 

222

2

1
1

bax
axy

++=
ρ−+ρ=  

Hence, the correlation matrix is non-negative definite if and only if real values of a 
and b exist that solve these two last equations (in which ρ, x, and y are given). 

Of course, 01 2 ≥ρ− .  If 01 2 =ρ− , y must equal ρx, and a may be any real 
number.  Setting a to zero in this case gives the most leeway for b to be real.  Hence, a 
Cholesky decomposition exists if and only if 02 ≥b .  With this information we derive 
the inequality: 

( ) ( )
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( )( )

( )2
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bax
ax
ax

ax

xyx
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Therefore, the correlation matrix is non-negative definite if and only if 
( )222 12 ρ−≤+ρ− yxyx . 

Legitimate (x, y) points satisfy the equation ( )222 12 ρ−≤+ρ− yxyx .  The region of 
these legitimate points is symmetric about the two lines xy ±= . In fact, it is an ellipse 
whose axes are on those lines, its half lengths along the lines being ρ±1  respectively.  
Here is a graph is of the ellipse when 8.0=ρ : 
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Interior points of the ellipse, i.e., ( )222 12 ρ−<+ρ− yxyx , produce positive definite 
matrices; boundary points indicate a linear dependence among the three random variables.  
If 0=ρ , the ellipse becomes the unit circle.  In the case that 1±=ρ , the ellipse degenerates 
into the respective lines xy ±= , as expected.  The origin is always a legitimate candidate for 
(x, y), since for any two random variables there exists a third uncorrelated with either one of 
them. 

The area of the ellipse is 21 ρ−π .  That this is maximized for 0=ρ  means that one 
may accommodate new random variables most freely into a universe of uncorrelated 
random variables.  We can integrate the area of ellipse(ρ) over 
ρ:

22
1

21

1

2 π
=

π
π=ρρ−π∫

−

d .  From this we conclude that the probability of constituting a 
legitimate correlation structure by randomly sampling ρ, x, and y from a Uniform [ ]1,1−  
distribution is %7.61
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11 The legitimacy equation has the three-way symmetric form 12222 ≤−++ xyzzyx , as well as the 

determinant form 0
1

1
1

≥
zy

zx
yx

.  However, non-negative (positive) definiteness means more than a non-

negative (positive) determinant.  A symmetric n×n matrix is non-negative (positive) definite if and only if all its 
subdeterminants, of which there are 2n–1, are ≥ 0 (> 0).  However, as a test of definiteness this is much less 
efficient than the Cholesky decomposition. 


