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Mixing Collective Risk Models 

Leigh J. Halliwell, FCAS, MAAA 
 

Abstract: The form of the collective risk model is MXXS  1 , where X represents a 
common severity distribution and M is a claim-count random variable.  The model for a second 

loss is NYYT  1 .  Let Z represent the mixed severity, i.e., the distributions of X and Y 

weighted according to their expected claim counts.  How does the mixed model  

NMZZU  1  compare with TS  ?  Although the mean is unaffected, we will show 

that if the claim-count distributions are negative binomial with a common contagion, 

   TSVarUVar  .  In other words, attendant to the reduction of homogeneity (upon 
mixing the severities) is a reduction of variance.  An appendix reveals the conditions under which 
one may fully reduce a set of collective risk models to one mixed model.  This should be of value 
to the task of modeling correlated exposures.  

Keywords: collective risk model, mixed distribution, negative binomial, contagion, homogenous, 
moment generating function, multinomial 

 

Most casualty actuaries know that the National Council on Compensation Insurance 

divides workers’ compensation claims into five injury types: fatal, permanent total, 

permanent partial, temporary total, and medical only.  It publishes excess loss factors (ELFs) 

for these injury types, to which one can fit underlying severity distributions.  Moreover, by 

weighting these ELFs according to the expected losses of their injury types NCCI derives an 

overall ELF, which yields a mixed severity distribution.  How does an overall collective risk 

model compare with the sum of five injury-type collective risk models?  This was, for the 

author, the genesis of the problem of mixing collective risk models, which we will 

henceforth treat abstractly. 

We will consider k loss models, S1 … Sk, and their mixture S0: 
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Moreover, let   



k

i
iNE

1
00 .  Since claim counts are non-negative integers, each  

is greater than or equal to zero, and a zero  indicates a trivial model of no claims.  We will 

assume that no model is trivial; hence, we can assign weights to each model, 0 ii , 

which together constitute a probability measure.  The individual losses of the ith model are 

independent, but identically distributed; so we will henceforth drop the column subscript 
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and speak of a typical “severity” Xi, for  ki ,,1,0  .  However, the distribution of X0 is 

the mixture of the other severity distributions weighted according to their probabilities.  All 

the X and N random variables are independent of each other, except for the obvious case 

that 



k

i
iNN

1
0 . 

Homogeneity arises from the models’ having different severity distributions; we could 

and should combine models whose severity distributions are identical.  Since X0 is a mixture 

of the other Xi , the S0 model is less homogenous than the summation of models kSS ,1 .  

But how does the reduction of homogeneity affect the distribution of S0? 

One might suppose that the reduction of homogeneity always affects S0, and that 
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0 .  However, at the 2008 Seminar on Reinsurance the 

author gave counterexamples to both suppositions.1  First, he gave an example in which 
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0 .  Second and more surprising, he demonstrated that if the Ni are 

Poisson distributed, the moment generating function of S0 is the same as that of 
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which implies the sameness of their probability distributions.  So with Poisson claim counts, 

reducing homogeneity makes no difference to collective risk modeling.  Although the author 

stated, “    TSVarUVar   … might be the usual case in real insurance problems,” he 

could produce no example.  But subsequently he has found, and will show here, that if the 

Ni are negative-binomial distributed,    



k

i
iSVarSVar

1
0 , and realistically, that the 

inequality is strict. 

So first, let us denote as NB(, c) the negative binomial random variable with mean  and 

variance  c 1 , where  and c are greater than zero.  The parameter c is called the 

contagion.  The characteristic of the negative binomial random variable N is that 

     NEcNVar  1 ; the Poisson distribution is the limiting case of the negative 

binomial as c → 0+.  The moment generating function of NB(, c) is:2 

     ct
N ectM


 11  

                                                 
1 www.casact.org/education/reinsure/2008/handouts/halliwell.pdf.  The formulation there was less general 
than that used here: the mixed model U was compared with homogenous models S and T. 
2 The reader may verify that      0NMNE  and that      cMNE N  102 , whence it 

follows that    cNVar  1 . 
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As a check,    1

0

lim 


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etM , the moment generating function of the Poisson() 

random variable.  Furthermore, the moment generating function of the sum of two 

independent negative binomial random variables with common contagion c is: 
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Next, as is well known from the actuarial syllabus, the formulas for the mean and the 

variance of the collective risk model NXXS  1  are: 
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For our purpose we need only to modify these formulas with our subscripting 

convention.  Furthermore, if the Ni are negative binomial with common contagion c: 

           2221 iiiiiiiii XEcXEXEcXVarSVar   

Finally, in order to compare S0 with 

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, we require formulas for the two moments of 

X0.  Since X0 is a mixture of the other Xi weighted according to pi: 

      





n

i

n
ii

nn XEXEEXE
1

00  

Therefore, after all this preparation, we make a first-moment comparison: 

   

 

 

 



















k

i
i

k

i
ii

k

i
ii

SE

XE

XE

XESE

1

1

1
0

000

 

The mixed model preserves the first moment of the sum.  This holds true regardless of 

both the probability distributions of the Ni and their independence. 

But implicit in the first line of the second-moment comparison are all the assumptions 

(viz., independent negative binomial distributions with common contagion c): 

                                                 
3 The symbol ‘~’ means ‘is distributed as’. 
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Therefore, according to our realistic assumptions, the variance of mixed model S0 is less 

than or equal to that of the sum 


k

i
iS

1

.  Equality obtains only in the extremely trivial case 

that 0 equals zero, or in the Poisson limiting case that 0c , or in the case that the mean 

severities of all the models are equal (or 0VHM ).4  In the first and second cases the 

distributions of S0 and 


k

i
iS

1

are identical.  In the third case the distributions are the same if 

and only if all the moments of the Xi are equal, i.e., if and only if the severity distributions 

are identical.  But as long as the mean severities of the Si models are equal, the distributions 

of S0 and 


k

i
iS

1

match to two moments.  Aside from these three cases, the variance of the 

mixed model is strictly less. 

A trick allows us to extend the inequality.  The binomial distribution BN(n, p) has mean 

np and variance  pnp 1 .  Formally this is a negative binomial distribution with a negative 

contagion, i.e., cp  .  In fact, BN(n, p) is equivalent to NB(np, –p), as the moment 

generating function proves; 

                                                 
4 In actuarial parlance VHM stands for ‘variance of the hypothetical means’; here it can be interpreted as 
‘variance of the homogenous mean severities’.  To the extent to which the severity distributions do not vary the 
mixed model suffers no reduction in homogeneity.  The converse is not necessarily true, for a mixed model 
with Poisson claim counts fully preserves the sum of its parts. 
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Hence, if the claim counts are BN(n, p) ~ NB(np, –p): 
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So, perhaps contrary to intuition, the variance of a collective risk model mixed from 

homogeneous collective risk models whose claim-count distributions are compatibly 

binomial is greater than the variance of the sum of the models.5 

To conclude, the divergence of a mixed collective risk model from the sum of the models 

from which it is mixed is determined by the claim-count distributions, not by the severity 

distributions.  The distribution of S0 given that 1
1

0  


k

i
iNN  is the distribution of X0; the 

mixed severity is fully adequate to a one-claim outcome.  The divergence arises from a 

plurality of claims.  One may gain some insight from BN(ni, p) claim counts: the claim count 

of the ith model cannot exceed ni.
6  However, the claim-count vector of the mixed model is in 

effect: 
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5 And, similarly to the negative binomial, one obtains the Poisson limiting case by keeping 

  npNE  constant as p → 0+, but discretely stepwise so as to maintain integer values for   pNEn  .  

Equivalently, let integer n → ∞ and   nNEp  . 
6 Because the support of the binomial distribution is finite, it is theoretically unsuited for modeling most 
casualty insurance claims: the possible number of claims from a unit of exposure is unlimited.  Binomial claim 
counts may suit life insurance, since there can be no more deaths than there are persons insured.  Of course, 
for large n and small p the binomial distribution approximates the Poisson.  Then again, a realistic claim-count 
distribution, though of infinite support, may not be negative binomial; e.g., it could be bimodal.  How this 
affects our analysis is unknown; certainly it ruins the desirable property assumed herein of “divisibility,” i.e., 
that sums of independent random variables of the same family remain in the family. 
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There is positive probability that ii nN * ; the claim counts implicit in the mixed model 

can range more than those of the homogenous models.  Thus a binomial distribution can 

splay more in the mixed model.  On the other hand, the support of the negative binomial 

distribution is infinite.  It seems to splay more in the separate models, especially when one 

considers that the Poisson distribution is the equilibrium. 
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Appendix 

When Mixing preserves the Distribution 

In our conclusion we remarked that the mixed severity is fully adequate to a one-claim 

outcome.  So why can’t a convolution argument be invoked for n-claim outcomes?  Just 

where will a convolution argument take us?  We will answer these questions in this technical 

appendix, which requires an excursion into random vectors. 

First, let X be a k1 random vector with probability distribution  kxxf ,,1 X .  The 

multivariate moment generating function, though still yielding a scalar, is the function of the 

k1 vector t:7 
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Its partial derivatives evaluated at zero generate the joint moments of X: 
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Furthermore, the moment generating function of a random vector whose elements are 

independent is the product of the moment generating functions: 
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As with scalars, identity of multivariate moment generating functions implies identity of 

probability distributions. 

Second, we introduce the notation XN for the k collective risk models, considered as a 

k1 random vector: 
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7 The roman and italic typefaces distinguish ‘t’ as a vector from ‘t’ as a scalar.  One must be careful also to 

distinguish    kk XtXteEM  11tX  from      tMeEtM
k

k
XX

tXtX


  


1

1
k1X , where 1k is the 

k1 vector whose elements are ones. 
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As in the body of this paper, X is a k1 “severity” vector; the Xij terms are independent 

instances of the severities.  The k1 random claim-count vector N specifies the number of 

instances; however, we will henceforth relax the assumption that its elements Ni are 

independent of each other.  The moment generating function of XN  is: 
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And third, let C be what is known as the categorical random variable: Ci is Bernoulli with 

probability i, and 1
1




k

i
i .  This is a “switching” or “indicator” random variable; one of 

the elements of C must be one and the others zero.  Its moment generating function is: 
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Obviously, the Ci are not independent; they must sum to one.  As one can show from 

differentiation,   iiCE  ,    iiiCVar  1 , and   jiiji CCCov , .  Actually, the 

categorical distribution is a multinomial distribution of one trial.  Therefore, the mixture of 

the severities of X is XC , and its moment generating function is: 
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This amounts to a proof of our assertion that the mixed severity is fully adequate to a 

one-claim outcome; in symbols,  XCXC  k1~  

Finally, let the k1 random vector N represent the sum of N categorical random 

variables: 
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This is like a group of k collective risk models whose claim counts are equal.8  Because of 

the binary nature of the Ci, Nk  N1 .  N is any claim-count random variable derivable from 

convolutions of C(1, … , k), and its moment generating function is: 
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Consequently, the moment generating function of the k collective risk models XN  is: 
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And the moment generating function for the sum of the models  XNk1  is: 

                                                 
8 It fails to be a collective risk model in that the Cij are not independent; hence, its moment generating function 
must be derived anew. 
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From this follows the distributional identity        XCNXCXN  kk N 1~1 .  

In words, if N is a convolution of the categorical distribution (i.e., a multinomial distribution 

whose parameter for the number of trials is the claim-count scalar N), then the k 

homogenous models of XN  are reducible to one model of N claims and mixed severity 

XC .  It is truly unexpected that the severity distributions X have nothing to do with this 

reducibility; it all depends on the claim-count random vector N. 

A broad family of suitable random vectors consists of negative binomial convolutions of 

C(1, … , k), i.e.,   CN  kc 1NB( ~ .  The moment generating function of N is: 
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The marginal distribution of Ni, the ith element of N, is: 
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Hence, Ni ~ NB(i, ci).  We know its mean and variance to be i and  ii c 1 .   

Similarly, the distribution of the sum of ,, jiNN ji  is: 
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This does not contradict the earlier formula   
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i
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i
i ,NB~,NB , which formula 

assumed the independence of the negative binomial distributions.  For here the elements of 

N are not necessarily independent.  Although one can derive the covariances of the elements 

by twice differentiating  tNM , the following way is elegant and simpler: 
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In general, the ijth element of Var[N] is    jiijiji cNNCov , , where  is the 

Kronecker delta.  The off-diagonal correlation coefficient is   ji

ji
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c





11
. 

We saw that the binomial distribution can be treated as a negative binomial distribution 

with a negative contagion.9  In this case, 0c  and the claim counts of the k models are 

negatively correlated.  In the case that 0c , we know that the counts are Poisson(ii) 

distributed.  But furthermore, 
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The product form indicates the elements of N not only to be Poisson, but also to be 

independent.  If the Ni are independent, then only Poisson convolutions of the categorical 

distribution will allow for mixed-model equivalency.  Now we can understand our earlier 

findings.  The assumption of claim-count independence ignores the correlations of the Ni 

                                                 
9 Of course, for the variance to be meaningful, 1c .  And        

  tt
N eetM 1111, , which 

correctly represents the constant . 
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variables that provide for mixed-model equivalency.  Binomial convolutions ( 0c ) are thus 

given too much variance in the mixed model, and hence its variance is overstated.  Likewise, 

negative binomial convolutions ( 0c ) are given too little variance in the mixed model, 

which results in its understating the total variance.  Lately, actuaries have sought to model 

correlated exposures.  The windfall of mixed-model equivalence should invite them to test 

the top-down10 modeling of claims as a convolution of the categorical distribution.11 

                                                 
10  By “top-down” we mean that the sum N is logically prior to the summands Ni.  A top-down simulation first 
simulates n total claims, which it then parcels into the ni claims by simulating from a multinomial(n; 1, … , k) 
distribution.  The assumption that the Ni are independent comports with the reverse, or bottom-up, approach. 
11 We proved that claim-count distributions that are built from convoluting the categorical distribution allow 
for mixing; we did not prove that only such distributions allow for it.  In other words, we proved sufficiency, 
but not necessity.  However, necessity (“only if”) follows from the fact that if a mixing scheme is not adequate 
to a one-claim outcome, it will not work for multi-claim outcomes.  But if it does work for the one-claim 
outcome, we’re back to the categorical distribution and its convolutions.  There is no other starting point for 
the induction. 


