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________________________________________________________________________ 
Abstract 

Motivation. Chain ladder forecasts are notoriously volatile for immature exposure periods.  The Bornhuetter-
Ferguson method is one commonly used alternative but needs a priori estimates of ultimate losses.  Berquist and 
Sherman presented another alternative that used claim counts as an exposure base and used trended incremental 
severities to “square the triangle.”  A significant advantage of the Berquist and Sherman method is the 
simultaneous estimate of underlying inflation.  Though not the first to do so, this paper looks to extend the 
incremental severity method to a stochastic environment.  Rather than using logarithmic transforms or 
(generalized) linear models, used in many other approaches, we use maximum likelihood estimators, bringing to 
bear the strength of that approach avoiding limiting assumptions necessitated when taking logarithms.  
Method. Given that incremental severities can be looked at as averages over a number of claims, the law of large 
numbers would suggest those averages follow an approximately normal distribution.  We then assume the 
variance of the incremental payments in a cell are proportional to a power of the mean (with the constant of 
proportionality and power constant over the triangle).  We then use maximum likelihood estimators (MLEs) to 
estimate the incremental severities, along with the inherent claims inflation to “square the triangle.”  We also use 
properties of MLEs to estimate the variance-covariance matrix of the parameters, giving not only estimates of 
process but also of parameter uncertainty for this method.  Not only do we consider the model described by 
Berquist and Sherman, but we also set the presentation in a more general framework that can be applied to a 
wide range of potential underlying models. 
Results. A reasonably common and powerful method now presented in a stochastic framework allowing for 
assessment of variability in the forecasts of the method. 
Availability. The R script for these estimates appear on the CAS Web Site. 
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1. INTRODUCTION 

The chain ladder method has long been recognized as leading to potentially volatile forecasts for 
immature exposure periods.  As a result, other methods that depended on information in addition to 
the amounts to date were soon used to augment the chain ladder method for less mature ages.  
These methods include the Bornhuetter-Ferguson method [1], incremental severity methods shown 
in Berquist and Sherman [2], and the operational time models from Wright [3], among others.  In 
effect, these approaches replace the multiplicative model inherent in the chain ladder with additive 
increments.  The Bornhuetter-Ferguson method looks to historical development and an a priori 
estimate of ultimate losses to derive these additive increments, while the incremental severity 
method considers incremental average costs per ultimate claim (or other unit of exposure) and a 
measure of inflationary trend to derive these increments.  In the discussion by Berquist and 
Sherman, the trend itself is estimated from the data. 
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Thus by adding a single parameter trend to be estimated from the data, Berquist and Sherman 
avoided assumptions about the relative adequacy of pricing or the need of deriving a priori ultimate 
loss estimates by exposure year.  Of course, they do require a measure of relative exposure, usually 
claim counts. 

There has been much published about stochastic generalizations of the chain ladder method.  
Verall and England [4] presents a very nice summary.  We will not touch on those here, but rather 
attempt to re-cast the incremental severity method in a stochastic light. 

In the present paper we first consider the incremental severity method in a stochastic framework.  
We note that the incremental severities are themselves averages over a number of observations and, 
as a result of the law of large numbers, would likely have a distribution that is asymptotically normal.  
This is a very significant observation and was made by Stelljes [5] and provides a bit of support to at 
least one answer to the question of what statistical model to use.  Stelljes assumes that the 
development pattern follows a mixed exponential over time and does not measure the trend 
inherent in the data.   

We however, start with the classic incremental severity model (allowing for different averages at 
each age) but measure the inflation inherent in the loss experience.  Not only does this allow for a 
broader range of runoff curves, it also allows for systematic negative incremental amounts, making it 
possible to model not only paid amounts (net of recoverable) but also incurred amounts.  In 
addition, rather than making somewhat restrictive assumptions about the underlying variance 
structure as present in Stelljes that allows the use of non-linear regression, we will take a somewhat 
more general approach of maximum likelihood estimators allowing more flexible assumptions 
regarding the underlying variance structure. 

 In this paper we not only derive parameter estimates for our model, including inherent trend, but 
also estimates of the standard deviation of those parameter estimates, often called the standard error 
of the parameters.  The standard error can be used to measure the significance of the parameter as 
well as the parameter uncertainty inherent in the forecasts of this model.  We also derive estimates 
of the distribution of outcomes for this model, not to be confused with the distribution of potential 
outcomes for the liabilities under review. 

1.1 Research Context 

In the context of reserves for a book of liabilities at a point in time, there is a wide range of 
possible outcomes, some of which may be more likely than others.  We call this entire range of 
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outcomes along with their likelihoods the “distribution of outcomes” for the liabilities under 
consideration.  This observation seems to have pervaded the analysis of reserves for decades.  
Traditional reserving approaches, although relying on deterministic methods, usually had the actuary 
applying a variety of those methods with the unstated goal of providing at least a subjective view of 
the distribution of outcomes, or at least the portion of that distribution that contained “reasonable 
estimates.” 

More recently, though, questions of just how “good” the “reasonable estimates” were led to 
consideration of stochastic methods to rigorously quantify that uncertainty.  Statements such as “My 
selection for unpaid liabilities is $a million.  In my view it is just as likely that the ultimate unpaid 
liabilities will be between $x million and $y million as outside that range and in addition, it is very 
unlikely that the ultimate unpaid liabilities will be below $w million or above $z million” provide 
much more useful information to a principal than “My best estimate is $a million and I believe a 
range of reasonable estimates is between $b million and $c million.”  Because of this there has been 
increased focus on models that will assist the actuary in estimating the distribution of outcomes. 

Just as no traditional reserve method completely captures all the complexities possible for all lines 
of business, it is not likely that any current stochastic model can capture all those complexities.  
Because of this, results presented here should not be interpreted as estimates of the distribution of 
outcomes, but rather the distribution of possibilities under the specific assumptions of the single 
model we present. 

1.2 Objective 

The incremental average cost method has long been a very powerful alternative to the chain 
ladder method that can be quite volatile for more immature exposure periods.  The Cape Cod and 
Bornhuetter-Ferguson methods are often used as alternatives that try to overcome this problem.  
There has been research setting all of these methods in stochastic frameworks.  Our objective is to 
take another powerful alternative to the chain ladder method, the incremental average loss method 
presented by Berquist and Sherman [2], and set it into a stochastic framework. 

One substantial contribution of the Berquist and Sherman approach is the estimation of trend in 
the averages from the averages themselves.  This is in contrast to the necessary external trend usually 
necessary in stochastic versions of both the Bornhuetter-Ferguson and Cape Cod methods. 

Another weakness of many stochastic generalizations of traditional methods is the necessity of 
assumptions about the form of the distributions used.  Because of the central limit theorem, 
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averages of independent samples from a distribution are asymptotically normal, thus suggesting a 
form for the distributions in the stochastic model. 

Another inherent limitation of most stochastic generalizations is the necessity of assuming all 
incremental amounts are positive.  This limits the generalization of those methods in the case of 
incurred losses, or in the case of consistent downward paid development.  The use of the normal 
distribution allows more flexibility in handling consistent negative incremental averages. 

The goal of this paper is to set the traditional incremental average method in a stochastic 
framework taking advantage of the ease of computation afforded by the normal distribution and 
ability to handle negative values.  In addition to moving the average cost method into a stochastic 
framework, this paper also shows the relative ease of moving to a completely non-linear 
environment, thereby avoiding the constraints inherent in linear or generalized linear methods, 
echoing the comments of Venter in several venues, including [7]. 

1.3 Outline 

In Section 2 we set out our stochastic generalization of the incremental average method 
presented in Berquist and Sherman [2].  Section 3 discusses the results of applying these methods to 
the adjusted paid automobile bodily injury liability data in that paper.  We present our conclusions in 
Section 4 with Appendix A showing the derivatives used in the estimation along with the R script 
that we used in the calculations. 

2. BACKGROUND AND METHODS 

Klugman, Panjer, and Willmot [6] present a very clear and concise discussion of maximum 
likelihood estimates (MLEs).  We will make use of that approach in this paper. 

For this paper Cij denotes payments made or the change in incurred losses (defined as payments 
plus case reserve estimates) for exposure (policy, accident, underwriting, etc.) period (year, quarter, 
month, etc.) i during development period j.  For convenience here we will assume the same 
frequency for both i and j, and hence the resulting development triangle will have the same number 
of rows as columns, denoted as n here.  Without loss of generality, we will talk in terms of accident 
and development years. 

For each accident year we have some measure of loss exposure, either an exposure count or an 
estimate of ultimate claim counts.  Exposure count, such as earned car years for automobile 
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coverages, generally does not require estimation.  The same cannot be said for claim counts that 
must be estimated and hence should be treated as random variables.  We will not make that 
generalization here but rather leave it as a future project.   

We do note that, just as there are a number of models that can be used to estimate ultimate loss 
amounts, there are a number of approaches that can be used to estimate the ultimate number of 
claims.  If the number of reported counts is deemed to be a reliable and stable base, that is, if there 
has been no change in the definition or nature of reported claims during the experience period 
under consideration, they often provide a measure of exposure that matures more quickly than 
losses and hence those estimates will likely have less inherent uncertainty, i.e., lower standard error, 
than losses.  It might well be that consideration of both chain ladder estimates and those of an 
incremental average frequency method, such as presented here applied to claim counts, using earned 
exposures as an exposure base, could provide reasonable estimate of ultimate reported counts for 
use here. 

In any event, we will denote this measure of relative exposure as Ei for accident year i.  We will 
thus focus on the incremental averages Aij defined by equation (2.1).  

 = .ij
ij

i

C
A

E
 (2.1) 

The traditional incremental severity method then “squares the triangle” with trended averages as 
in equation (2.2). 

 α τ= = = − +K K, 2, 3, , ; 2, , .i
ij jA i n j n i n  (2.2) 

We will effectively take this same approach to frame a stochastic model based on this method.  It 
is not unusual, see for example Venter [6], to assume that the variance of the incremental amounts is 
a power of their expected value.  We will take this same approach.  However, since we will allow the 
expected values to be negative we will, without loss of generality, we take the variance to be a power 
of the square of the mean.  Also we are taking the constant of proportionality among the variances 
as an exponential, thereby allowing the parameter to take on any value.  However, we note that the 
variance of the average of n items is inversely proportional to the number of items so we further 
adjust our assumed variances to reflect the potential for a different number of exposures or claims in 
the various accident years.  For this we let e denote the number of exposures or claims for the year.  
Following the notation in [6] we will assume the relationships in (2.3), suppressing subscripts for the 
moment. 
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Now, since the Aij are averages, the law of large numbers implies that they are asymptotically 
normal with parameters given in (2.4), again suppressing subscripts for the moment. 

 ( )κμ μ− 2~ N , .e pA e  (2.4) 

Since we are concerned with maximum likelihood estimates, the negative log likelihood for this 
distribution will be key to our analysis.  Since we have a normal distribution the likelihood function 
is relatively simple and given by (2.5). 
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This gives a negative log likelihood for a single variable given in (2.6). 
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We note the incremental amounts Aij under consideration are averages of a number of 
observations.  If we assume the observations are themselves independent, then the central limit 
theorem would imply that they have asymptotically normal distributions.   For this reason we will 
assume that the Aij variables are all independent and have normal distributions.  We generalize the 
incremental severity model with the parametric model shown in (2.7). 
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~ N , .i
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ij j jA e  (2.7) 

With observations in a typical loss triangle we get the negative log likelihood function given in 
(2.8). 
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The set S in (2.8) denotes the set of all index pairs for which data are available.  If the data were 
available in a full triangle, with n rows and n columns then S would follow the form given in (2.9).   

 ( ){ }, 1, 2, , , 1, 2, , 1 .S i j i n j n i= = = − +K K  (2.9) 

However, we will not restrict ourselves to this regular case.  We also note in formula (2.8) the ei 
values are known constants (the natural logs of the number of exposures for accident year i, not 
parameters to be estimated. 

Once parameters that minimize the negative log likelihood function are determined, then it is 
straight-forward to obtain estimates of the distribution of outcomes under the assumption that this 
model and the resulting parameters completely describe the loss emergence phenomenon.  Let us 
denote these estimates by ˆkα , κ̂ , τ̂ , and p̂ .  Under our assumptions we can now conclude that the 
distribution of average future payments for each year is given by (2.10). 

 ( ) ˆ2ˆ

2 2

ˆ ˆˆ ˆ~ N , .κα τ α τ−

= − + = − +

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ ∑ i

n n pei i
i j j

j n i j n i
R e  (2.10) 

 This then gives the effect of process uncertainty on the total forecast incremental severity by 

accident year.  This does not, however, address the issue of parameter uncertainty.  Just as the 

standard error provides insight into parameter uncertainty in usual regression applications, the 

information matrix can be helpful in estimating the variance-covariance matrix of the parameters.  

For this, we first define the Fisher Information Matrix as the matrix of expected values of the 

Hessian of the negative log likelihood function.  That is, the matrix whose element in ith row and jth 

column is the second derivative of the negative log likelihood function, once with respect to the ith 

variable and once with respect to the jth.  We show these expectations, along with both the elements 

of the gradient and Hessian of the negative log likelihood function in the appendix to this paper.  

The inverse of the information matrix is then an approximation for the variance-covariance matrix 

for the parameters. 

Since the mean and variance for individual incremental averages are functions of the parameters, 

we elected to estimate the distribution of future amounts both by exposure period and in total using 

simulation.  For this we first selected the parameters from a multivariate normal distribution with 

expected values equal to the MLE estimates and variance-covariance matrix equal to the inverse of 

the information matrix.  Given those parameters, we then randomly selected future incremental 
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averages in each cell using the relationship in (2.7).  We added up the indications by exposure year 

and multiplied by the denominator (claim count or exposure count) to obtain a single observation 

for an exposure year and then added all those simulations together to get a single observation of the 

total future amount.   

At this juncture if we wished to assume that claim counts, instead of being deterministic, were 

themselves stochastic, but independent of the incremental severities, we could simulate the ultimate 

number of claims by exposure year at this juncture to add a provision for uncertainty in those 

estimates in the final forecast. 

3. RESULTS AND DISCUSSION 

As an example of this model, the top portion of Exhibit 1 shows the incremental averages based 
on automobile bodily injury liability data from Berquist and Sherman [2].  The last column is the 
forecast ultimate claim counts from Exhibit J of that paper.  The incremental severities are based on 
adjusted paid losses in Exhibit N divided by these claim count estimates. 

The bottom portion of Exhibit 1 shows the parameter estimates derived by minimizing the 
negative log likelihood function shown in (2.8).  Shown in the “standard error” row is the square 
root of the diagonal of the approximate parameter variance-covariance matrix. 

Exhibit 2 shows scatter plots of the standardized residuals from the fitted model, calculated as 
the ratio of the difference between the historical average minus the expected average from the 
model, divided by the estimated standard deviation by cell.  The first three charts show the residuals 
first by calendar year, then by accident year, and finally by development lag.  The last histogram 
shows the simulated range of forecasts from 25,000 simulations.  The line on that histogram 
presents the distribution assuming independence and the mean and variance by cell implied by the 
parameter estimates. 

Exhibit 3 shows the expected averages and related variances by cell indicated by the estimated 
parameters and the model shown in (2.7).  Exhibit 4 shows the indicated mean forecast and 
standard deviation by accident year and for all years combined.  Exhibit 4 also shows the forecasts 
for the next calendar year, both with and without parameter uncertainty.  These estimates can be 
used to assess how well emerging experience fits with what is forecast by the model, a critical test for 
the on-going application of just about any model. 
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Since the model in (2.7) assumes the incremental averages are independent, the future average 
forecast is simply the sum of the future indications by accident year, as is the variance for the future 
forecast, assuming process uncertainty only.  The resulting means and standard deviations, after 
multiplication by the number of claims are shown under the “Process Only” columns. 

The remaining columns summarize the results of the simulation.  We first randomly simulated a 
selection of parameters given the parameter estimates and the approximate variance-covariance 
matrix, using a multivariate normal distribution.  Given those parameters, we then randomly 
simulated individual incremental averages by cell using a normal distribution with the mean and 
standard deviation shown in (2.7).  We then totaled the results for one simulation to derive both the 
simulated future average estimates by accident year and then, after multiplying by claim counts, the 
total indicated future amounts.  The averages and standard deviations in the right portion of that 
exhibit represent the mean and standard deviation of the simulated amounts as are the fifth 
percentile and 95th percentile (the 90% probability interval) for the simulations.   These last columns 
thus present an estimate of the distribution of possible forecasts from this model, given the loss data 
in the top of Exhibit 1. 

As can be seen, parameter uncertainty clearly contributes substantially to the uncertainty in the 
forecasts for this model.  The standard deviation including parameter uncertainty is nearly three 
times that for process uncertainty only.  In addition, as one would expect there are correlations in 
the forecasts among accident years, particularly since the forecast for an accident year depends not 
only on the losses for that year but also on the losses and forecasts for previous years.  If the 
accident years were independent, then the standard deviation for the total would equal the square 
root of the sum of the squares of the standard deviations for the various years.  That calculation 
yields approximately 1.1 million, compared with the final 1.5 million shown in Exhibit 4.   

Although we do not show the results of the calculations, the model and estimation process reacts 
as one should expect with negative values.  A simple test would simply replace the incrementals in a 
column with their negatives.  When doing this all values of the parameters and variance-covariance 
matrix remain unchanged, except with a sign change in the parameter estimates and covariances 
related to the affected column. 

The R script used to derive these estimates are also shown in Appendix A.  Generally the 
approach is quite straight forward.  Key to deriving the estimates is the function R nlminb.  As with 
many optimization routines, this function requires a starting value.  In this case, we first selected a 
starting value for τ  as the trend in the averages for the first development period (unless that trend 
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generates an error, in which case we selected 1.03).  We then estimated the initial jα  values as the 
averages of the averages, discounted at the initial τ  estimate, and selected the initial values for κ  
and p as the natural logarithm of the largest exposure number and 1.5, respectively (somewhat 
arbitrarily). 

This R function also allows for different iteration increments for the various variables to be 
optimized.  Users should consult the documentation that accompanies R for this function.  We 
selected relative scaling among variables inversely proportional to the initial averages for the jα  
variables and five for the remaining three. 

4. CONCLUSIONS 

Although we focused on a very simple model of incremental averages, nothing in what we have 
done relies on the specific structure of the underlying model.  This is in contrast to many stochastic 
approaches that require non-negative incrementals, and the necessity of making additional 
assumptions about the distributions of the incremental amounts.  The framework we chose, along 
with the central limit theorem, suggests the normal distribution for the incremental averages.   

As shown in (2.8), this distribution leads to a rather convenient form for the negative log 
likelihood function.  Together with the ability to differentiate the assumed model for the average and 
resulting standard deviation makes this approach easily expandable to other models for the 
incremental averages.  Coupled with powerful, reasonably easy-to-use, and affordable statistical 
software such as the language R, actuaries now have quite flexible tools to use to expand the models 
used in estimating future losses, even beyond the simple model presented here. 

 

Supplementary Material 
The R script used for these calculations is stored electronically on the CAS Web Site. 

 
Appendix A 

In order to derive estimates of parameter uncertainty we need the matrix of second derivatives of 
the negative log likelihood function.  In this appendix we list those derivatives. 

 
Recall from (2.8) the negative log likelihood function is given by 
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Suppressing arguments and parameters we thus have the following first partial derivatives: 
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These then give the following second derivatives: 
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The information matrix then requires the expected values of these derivatives.  To this end recall 

that because of (2.7) we have the following relationships: 
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The calculations in this paper made use of the following R script: 
 
library(mvtnorm) 
library(MASS) 
 
A0=matrix(c(178.73,361.03,283.69,264.00,137.94,61.49,15.47,8.82, 
  196.56,393.24,314.62,266.89,132.46,49.57,33.66,NA, 
  194.77,425.13,342.91,269.45,131.66,66.73,NA,NA, 
  226.11,509.39,403.20,289.89,158.93,NA,NA,NA, 
  263.09,559.85,422.42,347.76,NA,NA,NA,NA, 
  286.81,633.67,586.68,NA,NA,NA,NA,NA, 
  329.96,804.75,NA,NA,NA,NA,NA,NA, 
  368.84,NA,NA,NA,NA,NA,NA,NA),8,8,byrow=TRUE) 
dnom=c(7822,8674,9950,9690,9590,7810,8092,7594) 
 
# Input (A0) is a development array of incremental averages with a the  
# exposures (claims) used in the denominator appended as the last column.   
# Assumption is for the same development increments as exposure  
# increments and that all development lags with no development have #  
# been removed.  Data elements that are not available are indicated as  
# such.  This should work (but not tested for) just about any subset of  
# an upper triangular data matrix.  Another requirement of this code is  
# that the matrix contain no columns that are all zero. 
 
# Matrix shape, m rows, n columns 
m=(nrow(A0))[1] 
n=(ncol(A0))[1] 
 
# Generate a matrix to reflect exposure count in the variance structure 
logd=log(matrix(dnom,m,n)) 
 
# Set up matrix of rows and columns, makes later calculations simpler 
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r=row(A0) 
c=col(A0) 
 
 
# msk is a mask matrix of allowable data, upper triangular assuming same 
# development increments as exposure increments, msn picks off the first 
# forecast diagonal 
msk=(m-r)>=c-1 
msn=(m-r)==c-2 
 
# Negative loglikelihood function, to be minimized 
l.obj=function(a,A) { 
    e=outer(a[n+2]^(1:m),a[1:n]) 
    v=exp(a[n+1]-logd)*(e^2)^a[n+3] 
    t1=log(2*pi*v)/2 
    t2=(A-e)^2/(2*v) 
  sum(t1+t2,na.rm=TRUE)} 
 
# Gradient of the objective function 
l.grad=function(a,A) { 
    e=outer(a[n+2]^(1:m),a[1:n]) 
    v=exp(a[n+1]-logd)*(e^2)^a[n+3] 
    da=colSums(a[n+3]-(e*(A-e)+a[n+3]*(A-e)^2)/ 
      v,na.rm=TRUE)/a[1:n] 
    yy=1-(A-e)^2/v 
    dk=sum(yy/2,na.rm=TRUE) 
    dp=sum(yy*log(e^2)/2,na.rm=TRUE) 
    du=sum((a[n+3]*r/a[n+2])- 
      (r*e*(A-e)+a[n+3]*r*(A-e)^2)/(a[n+2]*v),na.rm=TRUE) 
  c(da,dk,du,dp)} 
   
 # Hessian of the objective function 
l.hess=function(a,A) { 
    e=outer(a[n+2]^(1:m),a[1:n]) 
    v=exp(a[n+1]-logd)*(e^2)^a[n+3] 
    daa=diag( 
          colSums((e^2+4*a[n+3]*e*(A-e)+ 
            a[n+3]*(2*a[n+3]+1)*(A-e)^2)/v-a[n+3], 
          na.rm=TRUE)/a[1:n]^2) 
    dak=colSums((e*(A-e)+a[n+3]*(A-e)^2)/v,na.rm=TRUE)/a[1:n] 
    dat=colSums((r*e^2+(4*a[n+3]-1)*r*e*(A-e)+ 
          2*a[n+3]^2*r*(A-e)^2)/v, 
          na.rm=TRUE)/(a[1:n]*a[n+2]) 
    dap=colSums(msk+(log(e^2)*e*(A-e)+ 
          (a[n+3]*log(e^2)-1)*(A-e)^2)/v,na.rm=TRUE)/a[1:n] 
    dkk=sum((A-e)^2/v,na.rm=TRUE) 
    dkt=sum((r*e*(A-e)+a[n+3]*r*(A-e)^2)/(a[n+2]*v),na.rm=TRUE) 
    dkp=sum(log(e^2)*(A-e)^2/(2*v),na.rm=TRUE) 
    dtt=sum((r^2*e^2+(4*r*a[n+3]-r+1)*r*e*(A-e)+ 
            (2*r*a[n+3]+1)*a[n+3]*r*(A-e)^2)/v-a[n+3]*r, 
            na.rm=TRUE)/a[n+2]^2 
    dtp=sum(r+(r*e*log(e^2)*(A-e)+ 
            (a[n+3]*r*log(e^2)-1)*(A-e)^2)/v,na.rm=TRUE)/a[n+2] 
    dpp=sum(log(e^2)^2*(A-e)^2/(2*v),na.rm=TRUE) 
    dm1=matrix(c(dak,dat,dap),n,3) 
    dm2=matrix(c(dkk,dkt,dkp,dkt,dtt,dtp,dkp,dtp,dpp),3,3) 
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  rbind(cbind(daa,dm1),cbind(t(dm1),dm2))} 
 
# Set up starting values, take trend from first column, unless it errors  
# out (because of 0 or negatives) in which case take 3% as a default 
tmp=na.omit(data.frame(x=1:m,y=log(A0[,1]))) 
trd=1.03 
trd=exp(coef(lm(tmp$y~tmp$x))[2]) 
a0=c(colSums(A0/(trd^c),na.rm=TRUE)/colSums(msk+0*A0,na.rm=TRUE),log(max(dnom))

,trd,1.5) 
 
max=list(10000,10000) 
names(max)=c("iter.max","eval.max") 
 
# Actual minimization 
mle= nlminb(a0,l.obj,gradient=l.grad,hessian=l.hess, 
  scale=c(abs(1/a0[1:n]),rep(5,3)),A=A0,control=max) 
 
# mean and var are model fitted values, stres standardized residuals 
mean=outer(mle$par[n+2]^(1:m),mle$par[1:n]) 
var=exp(mle$par[n+1]-logd)*(mean^2)^mle$par[n+3] 
stres=(A0-mean)/sqrt(var) 
 
# Calculate the information matrix using second derivatives of the 
# log likelihood function 
 
# Second with respect to alpha parameters 
aa=diag( 
  (2*mle$par[n+3]^2* 
    colSums(msk+0*A0,na.rm=TRUE)/ 
      mle$par[1:n]^2)+ 
    colSums((msk+0*A0)/ 
      outer(exp(mle$par[n+1]-log(dnom))*mle$par[n+2]^(2*(1:m)*(mle$par[n+3]-

1)), 
        (mle$par[1:n]^2)^mle$par[n+3]) 
      ,na.rm=TRUE) 
    )                                                      
 
# Second with respect to alpha and kappa 
ak=(mle$par[n+3]/mle$par[1:n])* 
  colSums(msk+0*A0,na.rm=TRUE) 
 
# Second with respect to alpha and tau 
at=(2*mle$par[n+3]^2/(mle$par[n+2]*mle$par[1:n]))* 
  colSums((msk+0*A0)*r,na.rm=TRUE)+ 
    colSums((msk+0*A0)*outer((1:m)/(exp(mle$par[n+1]-log(dnom))* 
      mle$par[n+2]^(2*(1:m)*(mle$par[n+3]-1))), 
        1/(mle$par[1:n]^2)^(mle$par[n+3]-1)), 
    na.rm=TRUE)/(mle$par[n+2]*mle$par[1:n])   
 
# Second with respect to alpha and p 
ap=(mle$par[n+3]*log(mle$par[1:n]^2)/mle$par[1:n])* 
    colSums((msk+0*A0),na.rm=TRUE)+ 
  (mle$par[n+3]*log(mle$par[n+2]^2)/mle$par[1:n])* 
    colSums((msk+0*A0)*r,na.rm=TRUE) 
 
# Second with respect to kappa 
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kk=sum((msk+0*A0),na.rm=TRUE)      
 
# Second with respect to kappa and tau 
kt=mle$par[n+3]*sum((msk+0*A0)*r,na.rm=TRUE)/mle$par[n+2] 
 
# Second with respect to kappa and p 
kp=sum((msk+0*A0)*log(outer(mle$par[n+2]^(2*(1:m)), 
  mle$par[1:n]^2)),na.rm=TRUE)/2 
 
# Second with respect to tau 
tt=2*mle$par[n+3]^2*sum((msk+0*A0)*r^2,na.rm=TRUE)/mle$par[n+2]^2+ 
  sum((msk+0*A0)* 
    outer((1:m)^2/(exp(mle$par[n+1]-log(dnom))*mle$par[n+2]^ 
        (2+2*((1:m)*(mle$par[n+3]-1)))), 
      1/(mle$par[1:n]^2)^(mle$par[n+3]-1)), 
    na.rm=TRUE) 
     
# Second with respect to tau and p 
tp=sum((msk+0*A0)*(r-1),na.rm=TRUE)/mle$par[n+2]+mle$par[n+3]*( 
  sum((msk+0*A0)*outer(1:m, 
    log(mle$par[1:n]^2)), 
    na.rm=TRUE)+ 
  sum((msk+0*A0)*r*log(mle$par[n+2]^(2*r)),na.rm=TRUE))/ 
  mle$par[n+2] 
 
# Second with respect to p 
pp=sum((msk+0*A0)*log(outer(mle$par[n+2]^(2*(1:m)), 
  mle$par[1:n]^2))^2,na.rm=TRUE)/2 
 
# Create information matrix in blocks 
m1=matrix(c(ak,at,ap),n,3) 
m2=matrix(c(kk,kt,kp,kt,tt,tp,kp,tp,pp),3,3) 
inf=rbind(cbind(aa,m1),cbind(t(m1),m2)) 
 
# Variance-covariance matrix for parameters, inverse of information     
# matrix 
vcov=solve(inf) 
 
# Initialize simulation array to keep simulation results 
sim=matrix(0,0,m+1) 
smn=matrix(0,0,m+1) 
 
# Simulation for distribution of future amounts 
# Want 10,000 simulations, but exceeds R capacity, so do 
# in batches of 5,000 
nsim=5000 
smsk=aperm(array(c(msk),c(m,n,nsim)),c(3,1,2)) 
smsn=aperm(array(c(msn),c(m,n,nsim)),c(3,1,2)) 
 
for (i in 1:5) { 
 
# Randomly generate parameters from multivariate normal 
spar=rmvnorm(nsim,mle$par,vcov) 
 
# Arrays to calculate simulated means 
ttoi=array(c(outer(spar[,n+2],1:m,"^")),c(nsim,m,n)) 
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alph=aperm(array(c(spar[,1:n]),c(nsim,n,m)),c(1,3,2)) 
esim=alph*ttoi 
 
# Arrays to calculate simulated variances 
ksim=array(exp(outer(spar[,n+1],log(dnom),"-")),c(nsim,m,n)) 
psim=array(spar[,n+3],c(nsim,m,n)) 
vsim=ksim*(esim^2)^psim 
 
# Randomly simulate future averages 
temp=array(rnorm(nsim*m*n,c(esim),sqrt(c(vsim))),c(nsim,m,n)) 
 
# Combine to total by exposure period and in aggregate 
# notice separate array with name ending in "n" to capture 
# forecast for next accounting period 
sdnm=t(matrix(dnom,m,nsim)) 
fore=sdnm*rowSums(temp*!smsk,dims=2) 
forn=sdnm*rowSums(temp*smsn,dims=2) 
 
# Cumulate and return for another 5,000 
sim=rbind(sim,cbind(fore,rowSums(fore))) 
smn=rbind(smn,cbind(forn,rowSums(forn))) 
} 
 
summary(sim) 
summary(smn) 
 
# Scatter plots of residuals & Distribution of Forecasts 
windows() 
par(mfrow=c(2,2)) 
plot(na.omit(cbind(c(r+c-1),c(stres))), 
  main="Standardized Residuals by CY",xlab="CY", 
  ylab="Standardized Residual",pch=18) 
plot(na.omit(cbind(c(r),c(stres))), 
  main="Standardized Residuals by AY",xlab="AY", 
  ylab="Standardized Residual",pch=18) 
plot(na.omit(cbind(c(c),c(stres))), 
  main="Standardized Residuals by Lag",xlab="Lag", 
  ylab="Standardized Residual",pch=18) 
proc=list(x=(density(sim[,m+1]))$x, 
    y=dnorm((density(sim[,m+1]))$x, 
      sum(matrix(c(dnom),m,n)*mean*!msk), 
      sqrt(sum(matrix(c(dnom),m,n)^2*var*!msk)))) 
truehist(sim[,m+1],ymax=max(proc$y), 
  main="All Years Combined Future Amounts",xlab="Aggregate") 
lines(proc) 
 
# Summary of mean, standard deviation, and 90% confidence interval from  
# simulation, similar for one-period forecast 
sumr=matrix(0,0,4) 
sumn=matrix(0,0,4) 
 
for (i in 1:(m+1)) { 

sumr=rbind(sumr,c(mean(sim[,i]),sd(sim[,i]),quantile(sim[,i],c(.05,.95))))  
sumn=rbind(sumn,c(mean(smn[,i]),sd(smn[,i]),quantile(smn[,i],c(.05,.95)))) 
  } 
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Exhibit 1

Incremental Adjusted Average Paid Losses Per Ultimate Claim
Berquist & Sherman Automobile Liability Data

Accident Months of Development Forecast
Year 12 24 36 48 60 72 84 96 Counts
1969 178.73 361.03 283.69 264.00 137.94 61.49 15.47 8.82 7,822
1970 196.56 393.24 314.62 266.89 132.46 49.57 33.66 8,674
1971 194.77 425.13 342.91 269.45 131.66 66.73 9,950
1972 226.11 509.39 403.20 289.89 158.93 9,690
1973973 263.0963.09 559.85559.85 44 .22.42 347.764 347.76 9,5909,590
1974 286.81 633.67 586.68 7,810
1975 329.96 804.75 8,092
1976 368.84 7,594

Estimates

α1 α2 α3 α4 α5 α6 α7 α8
Parameter 143.78 316.77 251.78 197.68 102.53 46.23 21.36 7.36
Std. Error 6.20 11.54 9.16 7.62 5.25 3.75 3.07 2.41

κ τ p
Parameter 8.5871 1.1265 0.5782
Std. Error 0.2321 0.0077 0.0303
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Exhibit 3

Incremental Adjusted Average Paid Losses Per Ultimate Claim
Berquist & Sherman Automobile Liability Data

Forecast Expected

Accident Months of Development
Year 24 36 48 60 72 84 96 Total
1969
1970 9.34 9.34
1971 30.54 10.52 41.06
1972 74.43 34.40 11.85 120.68
1973 185.96 83.84 38.75 13.34 321.90
1974 403.89 209.48 94.45 43.65 15.03 766.50
1975 579.48 454.96 235.97 106.39 49.17 16.93 1,442.91
1976 821.26 652.77 512.50 265.81 119.84 55.39 19.07 2,446.64

Forecast Variance

Accident Months of Development
Year 24 36 48 60 72 84 96 Total
1969
1970 8.19 8.19
1971 28.10 8.19 36.29
1972 80.84 33.11 9.65 123.60
1973 235.51 93.74 38.40 11.19 378.84
1974 709.12 331.88 132.10 54.11 15.77 1,242.97
1975 1,039.02 785.45 367.61 146.32 59.93 17.47 2,415.80
1976 1,657.07 1,270.62 960.54 449.55 178.93 73.29 21.36 4,611.37

A Stochastic Framework for Incremental Average Reserve Models

Casualty Actuarial Society E-Forum, Fall 2008 194



5 5 5 6

Exhibit 4

Incremental Adjusted Average Paid Losses Per Ultimate Claim
Berquist & Sherman Automobile Liability Data

Estimates of Accident Year Future Loss Forecasts

Process Only Including Parameter Uncertainty
Accident Standard Standard Percentile

Year Mean Deviation Mean Deviation 5% 95%
1969 0 0 0 0 0 0
1970 80,981 26,503 80,551 36,442 24,148 144,035
1971 408,500 63,754 407,019 82,070 274,928 545,616
1972 1,169,365 106,448 1,169,765 137,850 945,662 1,399,015
1973 3,087,023 172,060 3,086,394 233,709 2,702,457 3,476,160
19741974 5 986,986,335 216 225335 216,225 5,984 922984,922 344 212344,212 5 425 005 6 551 203,425,005 ,551,203
1975 11,676,044 307,380 11,671,230 549,685 10,783,705 12,583,860
1976 18,579,788 375,626 18,581,701 808,465 17,258,898 19,916,569
Total 40,988,036 572,742 40,981,581 1,513,557 38,528,696 43,485,373

Forecasts for Next Calendar Year

Process Only Including Parameter Uncertainty
Accident Standard Standard Percentile

Year Mean Deviation Mean Deviation 5% 95%
1969 0 0 0 0 0 0
1970 80,981 24,817 80,551 36,442 24,148 144,035
1971 303,859 52,742 302,553 68,934 192,431 418,164
1972 721,230 87,122 721,793 105,826 551,032 898,662
1973 1,783,372 147,171 1,783,236 172,967 1,502,286 2,075,631
1974 3,154,365 207,974 3,154,597 240,834 2,764,684 3,559,245
1975 4,689,180 260,836 4,686,348 309,909 4,179,644 5,204,351
1976 6,236,615 309,130 6,236,267 372,667 5,629,261 6,854,599
Total 16,969,602 489,384 16,965,345 652,968 15,893,889 18,045,385
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