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Hierarchical Growth Curve Models for Loss Reserving 

James Guszcza, FCAS, MAAA 
________________________________________________________________________ 
Abstract 

Hierarchical or multilevel modeling extends traditional GLM or non-linear models by giving certain of the model 
parameters their own probability sub-models.  Hierarchical modeling can be viewed as an extension of Bayesian 
credibility theory that allows one to build models for data that are grouped along a dimension containing multiple 
levels.  In particular, hierarchical modeling can be used to analyze longitudinal datasets containing multiple 
observations for each of several subjects.  A contention of this paper is that traditional loss reserving triangles are 
most naturally regarded as longitudinal datasets.  Non-linear hierarchical models – known also as non-linear 
mixed effects models – therefore provide a natural and flexible framework in which to model loss development 
across multiple accident years.  The use of non-linear growth curves together with multilevel modeling 
techniques allows one to build models that are at once parsimonious and easy to interpret.  Finally, because they 
incorporate growth curves, such models obviate the need to specify tail factors. 
 
Keywords: Stochastic loss reserving, hierarchical models, multilevel models, nonlinear mixed effects models, 
growth models, repeated measurements, longitudinal data, Bayesian credibility, shrinkage, R. 

             

1. INTRODUCTION 

Loss reserving theory and practice is undergoing a renaissance due to a recent proliferation of 
stochastic reserving techniques.  To cite but a few examples, recent authors have applied regression 
analysis (Barnett and Zehnwirth [1]), generalized linear models (England and Verrall [2]), loss 
development growth curves together with maximum likelihood estimation (Clark [3]), and Bayesian 
methods (Meyers [4]) to model loss development data.  Statistical modeling techniques are 
increasingly supplementing or supplanting spreadsheet-based projection methods for estimating 
ultimate losses. 

This paper will propose yet another statistical framework for modeling loss triangles:  nonlinear 
hierarchical models.  These models are also commonly known as nonlinear mixed effects [NLME] models.  
The contention of this paper is that this class of models provides a highly flexible and natural 
framework within which the loss development process can be analyzed.  The goals of this paper are 
twofold:  to introduce the concept of hierarchical models and to illustrate how hierarchical models 
can be used in loss reserving. 

Section 2 will sketch some of the basic theory of hierarchical models and also provide a 
hypothetical example illustrating how hierarchical modeling can be used to analyze longitudinal (or 
“repeated measurements”) data.  The relationship between hierarchical modeling and Bayesian 
credibility theory will also be discussed.  These topics are not specific to loss reserving in particular, 
but are discussed in order to set the stage for Section 3. 
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Section 3, the main section of the paper, will broaden the discussion of hierarchical models to 
include non-linear model forms.  Motivated by the very interesting presentation of Clark [3], our 
hierarchical models will incorporate the Weibull and Loglogistic “growth curve” functional forms.  
These models will be applied to the same loss triangle data analyzed by Clark and others.  Many such 
growth curves are possible, but the Weibull and Loglogistic are two natural options.  One way of 
understanding the loss reserving models proposed here is that they add “random effects” to the 
types of growth curve models introduced by Clark.   

No attempt will be made in this paper to estimate reserve variability, which is beyond the scope 
of this introductory paper.  This will be the subject of a future paper.  

2. HIERARCHICAL MODELS 

Generally speaking, hierarchical models are used when the data at hand are grouped in some 
important way.  Examples include: 

• The relationship between standardized test scores and prior grades of students from 
different high schools. 

• Performance of a state’s high schools, where schools are grouped into school districts. 

• Expected workers compensation claims for exposures with various NCCI class codes. 

• Expected loss ratio relativities for a personal auto carrier’s various state territories. 

• The growth of a collection of soybean plants, measured at various times since planting. 

The first two examples are typical of the examples discussed in the social science literature (e.g., 
Gelman and Hill [5]).  The third and fourth examples are classic problems of actuarial science, but 
are similar in form to the first two examples.   

The final example is typical of hierarchical modeling applications in such fields as biology (e.g., 
modeling the growth of plants and animals) and pharmacology (e.g., modeling the effect of a drug 
over time).  Many such examples are given in the book by Pinheiro and Bates [6].  In cases such as 
these, we have multiple measurements of each subject, performed at different points in time.  Such 
multilevel datasets are commonly referred to as “longitudinal,” “panel,” or “repeated measurements” 
datasets.  The primary goal of this paper is to convince the reader that loss reserving triangles can 
reasonably be regarded as longitudinal datasets, to which hierarchical modeling techniques naturally 
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apply. 

The central concept of hierarchical models is that certain model parameters are themselves 
modeled.  In other words, not all of the parameters in a hierarchical model are directly estimated 
from the data.  Rather, (some of) the model parameters are calculated from estimates of the model’s 
hyperparameters, which are in turn estimated from the data.  Model parameters that are themselves 
given models are sometimes referred to as “random effects.”  They are to be distinguished from 
“fixed effects,” which are not modeled, but are instead estimated directly from the data.  “Mixed 
effects models,” therefore, refer to models that contain both modeled and non-modeled parameters.   

A note on terminology:  this paper generally follows Gelman and Hill in favoring the language of 
hierarchical models over the “random/fixed/mixed effects” terminology.  However, the phrase 
“random effects” will occasionally be used as shorthand for model parameters that are given sub-
models.  Many authors, including Pinheiro and Bates [6], speak mainly in terms of “mixed effects 
models.”  Note that Pinheiro and Bates wrote the “nlme” R function that was used to fit the 
hierarchical models described in this paper. 

At this point an example might aid the discussion.  Consider a hypothetical company that sells 
personal auto insurance in each of eight roughly equal-sized regions.  We have data for the number 
of policies in force by region as of January 1, 2005, 2006, 2007, and 2008.  We thus have 8*4=32 
data points in all.  We would like to build a model that could be used to forecast the number of 
policies in force, by region, in the coming years. 

Using notation suggested by Gelman and Hill, let i denote the data point number and range from 
1 to 32; similarly let j denote the region number.  The term j[i] will denote the group to which data 
point i belongs. For example, j[5]=2 because the fifth data point is an observation from Region 2.  
Two modeling strategies immediately suggest themselves.   

Model 1 (complete pooling of data):  First, we could simply pool the data from all eight 
regions and regress PIF (policies in force) on time.   

εβα ++= tPIF  

where ε ~ N(0,σ2).  In this case the 32 data points would be used to estimate the three parameters 
{α, β, σ}.  Here we are effectively ignoring region. 

Model 2 (separate models by region):  Second, we could run eight separate regression models, 
one for each region. 
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{ } 8,...,2,1=++= j
jjj tPIF εβα . 

Note that each of these eight regression models is fit using only four data points. 

These models are plotted in the figure below.  The dotted lines represent Model 1 and are the 
same across all regions.  The dashed lines represent Model 2 and vary from region to region.  This 
plot illustrates why neither option is entirely satisfactory.  At one extreme, the “pooled” model 
clearly provides poor fits in, for example, regions 1 and 4.  At the other extreme, one might doubt 
that the data is sufficiently credible to support the fitting of eight region-specific models.  For 
example, the first data point in region 3 appears to exert too much leverage on that model’s 
parameters.  A slope closer to that of the “pooled” model might be more believable. 

20
00

22
00

24
00

26
00

region1

year

pi
f

2005 2006 2007 2008

20
00

22
00

24
00

26
00

region2

year

pi
f

2005 2006 2007 2008

20
00

22
00

24
00

26
00

region3

year

pi
f

2005 2006 2007 2008

20
00

22
00

24
00

26
00

region4

year

pi
f

2005 2006 2007 2008

20
00

22
00

24
00

26
00

region5

year

pi
f

2005 2006 2007 2008

20
00

22
00

24
00

26
00

region6

year

pi
f

2005 2006 2007 2008

20
00

22
00

24
00

26
00

region7

year

pi
f

2005 2006 2007 2008

20
00

22
00

24
00

26
00

region8

year

pi
f

2005 2006 2007 2008

 
Model 3 (include region indicator variables):  Of course other conventional strategies are 

possible.  For example, one could fit a no-intercept model that includes a separate indicator variable 
for each of the eight regions: 

εβββ ++==++=== tregionregionPIF 981 )8(...)1( . 

This is a compromise between models 1 and 2.  Like Model 1, it is a single “pooled” model that is fit 
to all of the data.  Like Model 2, it allows us to capture region-specific aspects of the data.  This is an 
improvement, but perhaps is still not ideal.  We are still estimating 10 parameters – {β1, …, β8, β9, σ} 
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– using 32 data points.  We face the danger of building an over-parameterized model.  (Of course 
not all of the eight region indicators will necessarily be significant in the model.  One or more of the 
indicators might be dropped.)  The need to potentially add region/time interaction terms presents 
the possibility of further over-parameterization.  In the extreme case where we need a separate 
intercept term and interaction with time for each region, we would need to estimate a model eight 
different intercepts and eight different slopes.  This would essentially return us to Model 2.   

Model 4 (random intercepts):  Hierarchical modeling offers a different type of compromise.  
In this simple example, rather than estimate a separate “β” parameter for each region directly from 
the data, we specify a Gaussian sub-model of which eight region-specific intercept parameters {α1, …, 
α8} are random draws.  Therefore, unlike {β 1, …, β8} in Model 3, these so-called “random 
intercepts” {α1, …, α8} are not “estimated directly from the data.”  Rather, they are derived from the 
hyperparameters of the Gaussian sub-model.   

Explicitly, this “random intercepts” hierarchical model can be written: 

),0(~),(~... 22
81 σεσμαεβαα αα NandNwheretPIF j++++= . 

Or more compactly: 

),(~),(~ 22
][ αα σμασβα NwheretNPIF jiiji + . 

In some circles it is conventional to call such a model a “mixed effects” model.  The “slope” 
parameter β is called a “fixed effect,” while the {α1, …, α8} parameters are called “random effects.”  

This hierarchical model contains four hyperparameters which can be estimated using maximum 
likelihood or a related optimization technique: 

94.123ˆ13.81ˆ06.100ˆ0.2068ˆ ==== αα σσβμ . 

Compare this with the 10 parameters estimated from the non-hierarchical regression model with a 
separate indicator variable for each region. 

As noted above, the intercept “random effect” parameters {α1, …, α8} are derived using the 
model’s estimated hyperparameters.  Readers familiar with credibility theory might have anticipated 
that the formula used to do this is: 

2
2)1()(ˆ

α

α

σ
σ

μβα
+

=⋅−+−⋅=
j

j
jjjjjj

n

n
ZwhereZtyZ . 

In actuarial parlance, each random intercept αj is a credibility-weighted average of the region-
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specific intercept and the average (μα) of all of the region-specific intercepts.  The credibility factor 
Zj is determined in a familiar way using the number of observations for each region (nj), the variance 
of the region specific intercepts (σ2

α), and the residual variation σ2.   

Models 1 and 2, illustrated above, are special cases of this hierarchical model in a precise sense.  
As σ2

α  0, Z j  0 and the hierarchical model approaches Model 1.  As σ2
α  ∞, Zj  1 and the 

hierarchical model approaches Model 2 (Gelman and Hill [5] p. 258).   

As an aside, it should be apparent that Bühlmann’s credibility model is a specific instance of 
hierarchical models.  If we remove the time covariate t, Model 4 becomes 

),(~),(~ 22
][ αα σμασα NwhereNPIF jiji . 

And the credibility weighting expression becomes: 

2
2)1(ˆ

ασ
σ

μα
+

=⋅−+⋅≈
j

j
jjjjj

n

n
ZwhereZyZ . 

Frees [7 section 4.7] provides a helpful discussion of the ways in which several well-known 
credibility models are specific types of hierarchical models. 

In the figure below, the predicted values of Model 4 (solid line) are added to the predicted values 
of Models 1 and 2.  In certain cases (such as Regions 1 and 3) Model 4 appears to be an 
improvement over Model 2.  This is because the more parsimonious Model 4 is not seriously 
leveraged by these regions’ “2005” data points.  For regions 2 and 8, on the other hand, Model 2 
seems to fit the data better. 
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Model 5 (random slopes and intercepts):  Because of the seemingly suboptimal fit on the 

model in Regions 2 and 8, one might consider adding a “slope random effect” to model 4.  
Explicitly:  

( ) [ ]( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=ΣΣ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅+ 2

2
2

][][ ,,,~,~
βαβ

αβα
βα σσ

σσ
μμ

β
α

σβα NwheretNPIF
j

j
iijiji . 

Model 5 contains six hyperparameters: {μα,μβ,σα,σβ,σαβ,σ}, two more than Model 4.  Because 
Models 4 and 5 are nested models, we can compare their expected predictive accuracy by comparing 
their log-likelihoods and Akaike Information Criterion [AIC] statistics.   

 
LL d.f. AIC

Model 4 -186.20 4 380.40
Model 5 -184.32 6 380.64  

 
Recall that AIC = -2*LL + 2*d.f., as can be confirmed from the above table.  In a phrase, AIC is 

log-likelihood penalized for the number of hyperparameters in the model.  The model with the 
lower AIC statistic is thought to make a better trade-off between complexity and goodness-of-fit, 
and is therefore expected to make more accurate predictions of future data. 

Adding the further “random effect” to vary the slopes (in addition to varying the intercepts) 
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results in an improved log-likelihood; but a slightly worse AIC.  This comparison suggests that it 
would be wise to favor the more parsimonious Model 4 above the slightly better fitting Model 5.  
The AIC comparison suggests that Model 5 might over-fit the data. 

General Observations:  Before turning to loss reserving, it is worth making a few general 
observations about the implications of hierarchical modeling for actuarial work.  First, the 
hierarchical/multilevel modeling framework is a generalization of current actuarial modeling practice 
in two important ways.   

• Actuaries often face a dilemma when faced with multilevel modeling situations.  For 
example, should one pool one’s data and build a single countrywide predictive model to 
be used in all states?  Or should one build separate models by state?  These options are 
analogous to Models 1 and 2 above.  In the light of the above discussion, it should be 
clear that these two options are extreme cases (as the variance of a hierarchical model’s 
random effects approach 0 and ∞, respectively) of a suitably specified hierarchical model. 

• Bayesian credibility models are specific types of hierarchical models.  Just as generalized 
linear models (GLMs) have provided a unifying framework for traditional minimum bias 
calculations, hierarchical modeling theory provides a unifying framework for Bayesian 
credibility modeling.  This is helpful both pedagogically and practically.  Pedagogically, it 
is helpful to understand the connection between Bayesian credibility and linear modeling.  
Practically, multilevel modeling packages can be used to perform Bayesian credibility 
calculations.  In the same way that GLM modeling is less cumbersome than performing 
minimum bias calculations, hierarchical modeling packages allow one to perform 
Bayesian credibility calculations with a minimum of ad hoc programming.  Furthermore, 
multilevel modeling packages make it easy to employ rigorous statistical methodology – 
such as graphical diagnostics and comparison of goodness-of-fit statistics – in one’s work.   

A second observation is that multilevel modeling potentially allows one to achieve a much better 
fit at the expense of adding only a few additional hyperparameters to a conventional GLM model.  
In the above example, Model 4 contains only one more hyperparameter than Model 1, but it 
provides a much better fit to the data.  This is because the “scoring equation” for Model 4 contains 
nine parameters {α1, …, α8, β} as opposed to Model 1’s insufficient {α, β} parameters.  In short, 
actuaries can consider specifying hierarchical GLM models (HGLMs) as an alternative to purely 
“fixed effects” GLM models. 
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A related point is that the hierarchical modeling framework works well even if one’s data contains 
a very large number of levels.  The above example could easily be modified to involve four years of 
PIF data in each of 1000 counties.  Model 4, with its four hyperparameters, or Model 5, with its six 
hyperparameters, would be no less applicable to this data.  By comparison a traditional, non-
hierarchical model would potentially need hundreds of indicator variables.  In short, the hierarchical 
modeling framework provides a natural way to handle “massively categorical” variables in one’s 
modeling work.  This is because hierarchical modeling implicitly allows one to perform Bayesian 
credibility weighting within a GLM model building context. 

These observations are not specific to loss reserving, but they set the stage for the hierarchical 
growth curve approach to loss reserving to be outlined in the next section. 

3. HIERARCHICAL MODELS FOR LOSS RESERVING 

The preceding section might have seemed like a long detour away from the topic of loss 
reserving.  But it reviewed some of the concepts needed to build a hierarchical model of the loss 
development process.  Consider a garden variety 10-by-10 loss triangle.  Each of the 55 non-missing 
cells contains cumulative losses (CL), indexed by accident year AY and development period dev.  
We will treat this loss triangle as a multilevel dataset, in which each of the 10 accident years is a 
separate level.  This will allow us to build a hierarchical model in which we “regress” cumulative 
losses CL on development period dev.  The major disanalogy with the illustrative example in the 
previous section is that we must replace the linear regression with a non-linear model.  

Pinheiro and Bates discuss three advantages of nonlinear hierarchical models, each of which 
apply in the context of loss reserving: 

• Interpretability.  The modeling approach to be outlined here requires that one explicitly 
model the loss development process in a specific functional form.  Judgment as well as 
background empirical or theoretical knowledge can be used to guide the choice of 
nonlinear functional form. 

• Parsimony.  A well-chosen nonlinear function can model a non-linear process with 
fewer parameters than  a linear model with multiple polynomial terms.  In addition, as 
illustrated in the previous section, the hierarchical modeling approach potentially allows 
one to replace a potentially large number of subject-specific indicator variables and 
interaction terms with a small number of hyperparameters. 
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• Validity beyond the observed range of the data.  Of course it is always dangerous to 
use a model to extrapolate beyond the data.  However, the approach to be outlined here 
at least offers a framework within which one can harness one’s background knowledge 
when specifying a model.  Such an approach is less likely to lead one astray than a less 
parsimonious or more atheoretical “curve-fitting” approach. 

 

Sample Dataset:  To illustrate, we will work with the sample loss reserving dataset analyzed by 
Clark [3].  For ease of viewing, the cumulative loss numbers in the table below numbers have been 
divided by 1,000.  These numbers are rounded only for the purpose of display; no rounding was 
done in performing the calculations.  

 
Cumulative Losses in 1000's

AY 12 24 36 48 60 72 84 96 108 120 reported est ult reserve
1991 358 1,125 1,735 2,183 2,746 3,320 3,466 3,606 3,834 3,901 3,901 3,901 0
1992 352 1,236 2,170 3,353 3,799 4,120 4,648 4,914 5,339 5,339 5,434 95
1993 291 1,292 2,219 3,235 3,986 4,133 4,629 4,909 4,909 5,379 470
1994 311 1,419 2,195 3,757 4,030 4,382 4,588 4,588 5,298 710
1995 443 1,136 2,128 2,898 3,403 3,873 3,873 4,858 985
1996 396 1,333 2,181 2,986 3,692 3,692 5,111 1,419
1997 441 1,288 2,420 3,483 3,483 5,672 2,189
1998 359 1,421 2,864 2,864 6,787 3,922
1999 377 1,363 1,363 5,644 4,281
2000 344 344 4,971 4,627

chain link 3.491 1.747 1.455 1.176 1.104 1.086 1.054 1.077 1.018 1.000 34,358 53,055 18,697
chain ldf 14.451 4.140 2.369 1.628 1.384 1.254 1.155 1.096 1.018 1.000
growth curve 6.9% 24.2% 42.2% 61.4% 72.2% 79.7% 86.6% 91.3% 98.3% 100.0%  

To provide a baseline for comparison, the results of a simple chain ladder calculation are 
displayed along with the raw data.  All data was used to calculate each of the link ratios; and the 
120 ultimate “tail factor” is assumed to be 1.0.  According to this calculation, the expected total 
outstanding losses are approximately $18.7M.  The implied “growth curve” is simply the reciprocal 
of the sequence of loss development factors.   

Clark’s Models:  The nine “growth curve” numbers resulting from the simple chain ladder 
exercise can be viewed as a piecewise linear approximation to a continuous growth curve.  Clark 
considers two such growth curves, the Weilbull and Loglogistic,  and integrates each of them into 
two models of the loss triangle data.  The Weilbull growth curve has the form: 

( )ωθθω )/(exp1),|( xxG −−= . 

The Loglogistic curve has the form: 
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Purely for illustration, we can fit each of these curves to the reciprocal of the chain ladder loss 

development factors (LDFs) displayed above.  The resulting curves are displayed below, together 
with the reciprocal of the nine chain ladder LDFs. 
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This plot confirms that both the Weibull and Loglogistic growth curves are plausible candidates 

for modeling the loss development process.  Each of the curves fits the reciprocal LDF pattern 
reasonably well.  Note that the Loglogistic growth curve has a “heavier tail” than the Weibull, 
implying a longer loss development process and higher estimated ultimate losses.  Note also that 
neither of the curves fits empirical development pattern perfectly.  The Loglogistic curve fits the 
earlier data points better; whereas the Weibull curve is a bit closer to the final data point.  In 
practice, one’s background knowledge of the likely length of the loss development process would be 
used to decide between these, or other, growth curves.  Following Clark, we fit sample models 
incorporating each of these growth curves and compare the results. 

Clark proposes two models of the loss data.  The first is called the “Loss Development Factor” 
(LDF) model, and can be expressed: 
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[ ]),|(1, θωdevGULTCL AYdevAY −= . 

The function G can be the Weibull, the Loglogistic, or any other suitable growth function.  The 
LDF model contains 12 parameters:  {ULT1991,…, ULT2000, ω, θ}.   

(Note that Clark in fact models incremental rather than cumulative losses, and therefore specifies 
a formula that differs accordingly.  Specifically, Clark’s formula is 

[ ]),|(),|(,; θωθω xGyULTIL AYyxAY −=  

where ILAY;x,y denotes the incremental losses in accident year AY between ages x and y.  This is 
advantageous in that random noise at age x will not be propagated through ages x+1, x+2, and so 
on.  For readability and ease of exposition, the models discussed in this paper are cast in terms of 
cumulative, rather than incremental, losses.  However, it is a simple exercise to recast these models, 
as done above, in terms of incremental losses.)   

Clark’s calls his second model a “Cape Cod” model.  Here the unknown parameters ULTAY are 
replaced with PREMAY·ELR:   

[ ]),|(1, θωdevGELRPREMCL AYdevAY −⋅= . 

PREMAY denotes on-leveled premium for accident AY (a known quantity).  This model incorporates 
the Cape Cod assumption of a constant expected loss ratio (ELR) across all accident years.  As a 
result, this model contains only three unknown parameters, {ELR,ω,θ}, as opposed to the LDF 
model’s 12.  The Cape Cod model is therefore less prone to overfitting the available data (in this 
illustration, 55 data points) than the LDF model.  Clark points out that the less parsimonious LDF 
model results in more parameter variance, in turn resulting in more variance around the estimated 
reserves. 

Baseline Hierarchical Model:  It is possible to build hierarchical counterparts to each of 
Clark’s models.  Let us begin with Clark’s LDF model.  Rather than estimate the 10 parameters 
{ULT1991,…, ULT2000} directly from the data, we can model them in hierarchical fashion.  Explicitly: 

( )[ ]

devAYdevAY

ULTULTAY

devAYAYdevAY

LCVar
NULT

xULTCL

,
2

,

2
,,

ˆ)(
),(~

)/(exp1

σε
σμ

εθ ω

=

+−−=
 

This will be our baseline model.  All of the alternate models to be discussed subsequently will be 
modifications of this baseline.  The baseline model contains five unknown hyperparameters that 
must be estimated from the data: {μULT, ω, θ, σULT, σ}. Specifying a sub-model of ULTAY in the 
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above fashion is analogous to replacing the region-specific indicator variables in the previous 
section’s PIF example with the “random intercepts” αj.   

Note that rather than assuming constant variance for each loss amount, we are assuming that the 
within-variance is proportional to the fitted value, where σ2 is the proportionality constant.  This 
corresponds to the over-dispersed Poisson assumption found in both England and Verrall [2] and 
Clark.  We will relax this assumption shortly. 

This model can easily be fit using the “nlme” (“non-linear mixed effects”) function in R.  (Please 
refer to the note at the end of this paper for information on how to obtain R and the nlme 
function.)   The R code needed to do this is quite straightforward:  

 
start.vals <- c(ult=5000, omega=1.4, theta=45) 
w1 <- nlme(cum ~ ult*(1 - exp(-(dev/theta)^omega)) 
  , fixed = list(ult~1, omega~1, theta ~ 1) 
            , random = ult ~ 1 | AY 
  , weights = varPower(fixed=.5) 
      , data=dat, start = start.vals) 
 

Note most stochastic reserving techniques, this one included, require that one organize one’s data 
in matrix rather than triangular form.  The appendix to this paper displays the data in the form that 
it is read in prior to submitting the above R code. 

We must supply starting values in order to estimate the parameters of a non-linear hierarchical 
model (starting values are not needed for linear hierarchical models).  Choosing the appropriate 
starting values is something of an art.  Still, in this particular case the model converges to the correct 
solution for a wide range of starting values.  For example, replacing the above starting values with 
{10000, 2.0, 100} does not change the resulting model.  However further changing the starting value 
of “ult” to 15000 causes the model not to converge.  Changing the starting value for “omega” to 3.0, 
on the other hand, causes the model to converge to an incorrect solution.  (A quick glance at a 
residual plot makes it clear that the solution is incorrect.)  In most cases it should be possible to 
select a workable set of starting values using the estimated ultimate losses and implied growth curve 
from a simple chain ladder analysis. 

Submitting the above R code yields the following estimates of the model’s five hyperparameters.  
The model runs in seconds. 

955.203.54364.46306.16.5306 ===== σσθωμ ULTULT  

This model’s AIC statistic is 725.76.  Also, the p-values associated with μ, ω, and θ are all less than 
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.0001. The parameter error associated with this model is therefore fairly low. 

We note in passing that the ω and θ parameter estimates for Clark’s Weilbull LDF model are 
1.297 and 48.885, respectively.  These are reasonably consistent with our results. 

The parameters and estimated ultimate losses and loss reserves resulting from the baseline model 
are displayed in the table below.  The model’s parameters (not hyperparameters) are listed in the 
omega, theta, and ULT columns.  Because they were not given “random effects,” omega and theta 
are the same for each accident year.  We will shortly investigate the effect of adding random effects 
to the ω and θ parameters.   

The key difference between this model and Clark’s LDF model, is that here the estimated 
ultimate losses in the ULT column are not estimated directly from the data.  Rather, they are derived 
from the estimates of the model’s hyperparameters.  Note that the average value of the ULT column 
is 5306.6, which is the same as the estimate of μULT.   

 
Parameters and Estimated Reserves - Baseline Model 

AY dev omega theta growth reported eval120 eval240 ULT reserves
1991 114 1.306 46.638 96.0% 3,901 3,943 4,073 4,074 172
1992 102 1.306 46.638 93.8% 5,339 5,239 5,412 5,413 74
1993 90 1.306 46.638 90.6% 4,909 5,207 5,379 5,380 470
1994 78 1.306 46.638 85.9% 4,588 5,423 5,602 5,603 1,015
1995 66 1.306 46.638 79.3% 3,873 4,777 4,935 4,936 1,062
1996 54 1.306 46.638 70.2% 3,692 5,052 5,219 5,220 1,528
1997 42 1.306 46.638 58.2% 3,483 5,512 5,694 5,695 2,212
1998 30 1.306 46.638 43.0% 2,864 5,850 6,043 6,044 3,180
1999 18 1.306 46.638 25.0% 1,363 5,255 5,429 5,430 4,067
2000 6 1.306 46.638 6.6% 344 5,101 5,270 5,271 4,927
total 53,066 18,708  

The baseline model’s estimate of the total outstanding losses is roughly $18.7M.  This is virtually 
identical to the chain ladder’s outstanding loss estimate displayed above.  However, this similarity is 
a coincidence.  The two models’ reserve estimates differ considerably by accident year.  For example, 
the chain ladder model’s estimate of accident year 1998’s outstanding losses is $3.92M, in contrast 
with the baseline hierarchical model’s estimate of $3.18M.   

Next we can inspect the standardized residuals and fitted values: 
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These diagnostic plots together indicate that the model fits the data reasonably well.  However, 

the model is not perfect.  The upper left two plots indicate that the standardized residuals are not 
quite normally distributed.  Still, the deviation from normality is perhaps within the realm of 
acceptability.  The “actual vs predicted” plot indicates a good fit.  Consistent with this, the “residuals 
vs predicted” plot indicates that most of the standardized residuals are less than 2.0 in absolute 
value.  A close inspection of this plot reveals an undulating pattern in the residuals:  the model has a 
slight but systematic tendency for the model to under-estimate cumulative losses in the range of 
$1M-$3M and over-estimate cumulative losses in the $3M-$4M range.  This suggests that the 
Weibull curve does not perfectly characterize the development of cumulative losses.   

The general conclusion while the model could perhaps be improved upon, the overall fit is good.  
Four points are worth emphasizing: 

• The model fits the data well despite the fact that it contains only five hyperparameters.  In 
contrast, Clark’s non-hierarchical LDF model contains 12 parameters; and the chain 
ladder analysis requires us to estimate nine link ratios (not including the arbitrary tail 
factor that must be added). 

• Unlike Cape Cod-type models (to be described below), it is not necessary to bring in 
premium data or assume a constant expected loss ratio across accident years. 
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• This five-parameter model can be used to project losses to their ultimate values (or any 
intermediate value) without the need for a tail factor. 

• The model’s parsimony is made possible both by the hierarchical modeling methodology 
as well as the use of a non-linear growth function G. 

Relating to this last point, another way to evaluate the model’s fit is to superimpose each accident 
year’s estimated growth curve on top of the cumulative loss observations.  In the plot below, the 
(identical) dotted curves represent the “fixed” Weibull curve implied by the hyperparameters {ω, θ, 
μULT}.  The solid curves are the accident year-specific Weibull curves implied by ω and θ as well as 
the derived parameters {ULT1991,…,ULT2000}. 

Weibull Growth Curve Loss Development Model
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These plots further support the conclusion that our baseline hierarchical growth model fits the data 
well.  In addition, they illustrate the basic intuition motivating the approach.  Following Clark, we are 
modeling loss development as a growth process, in much the same way that a biostatistician would 
model the growth of a group of trees or soybean plants.  In the latter cases, each “subject” is an 
individual tree or soybean plant and each observation is a measurement of size at various ages.  In 
loss reserving, each “subject” is the aggregate claims from an accident year and each observation is 
the aggregate cumulative losses at various development ages. 

Before continuing, it is worth commenting on the growth curve plots for accident years 1991 and 
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1998.  Note that the 1991 growth curve is different from the other year’s growth curves.  This is 
reflected the ULT1991 parameter of 4.074M, which is more than 20% lower than the average 
μULT=5.3066M.  However, we have 10 AY 1991 observations, all of which fall squarely on the 1991-
specific growth curve.  This suggests that the low value of ULT1991 is justified.   

In contrast, the estimated ultimate losses for 1998 are approximately 6.044M, 14% higher than 
average.  This is of course driven by only three data points, which have greater 12 24 and 24 36 
developments than their counterparts in other accident years.  The chain ladder method produces an 
even higher estimate of 1998 ultimate losses:  6.787M.  The hierarchical model’s estimate therefore 
falls between the global average μULT and the chain ladder estimate.  This is illustrative of the way in 
which the hierarchical model implicitly uses a type of “credibility weighting” to “shrink” the 
accident-year specific estimates towards the global mean.  The amount of “shrinkage” is more 
pronounced for more recent accident years.  The most extreme amount of shrinkage occurs for 
accident year 2000:  the estimated ultimate losses for this year are $5.271M, only a fraction of a 
percent lower than the global mean of $5.3066M.  Little credibility is given to the single data point 
for accident year 2000.        

Relaxing the Process Variance Assumption:  Recall that the baseline model contains the 
assumption that the within-variance is proportional to the fitted value.  We can replace this with the 
weaker assumption that: 

ςσε 2
,

2
, )ˆ()( devAYdevAY LCVar = . 

In other words, rather than pre-specify that ζ=0.5, we can introduce ζ as a further model 
hyperparameter to be estimated.  This means that our model will contain six, rather than five, 
hyperparameters.  (In R, this is achieved by simply removing the “fixed=0.5” from inside the 
“varPower” expression.) 

The resulting estimate is ζ≈0.37. Although not displayed here, the estimated loss reserves of this 
model are, in aggregate, only $100,000 (or 0.5%) less than that of the baseline model.  The residual 
plot indicated an improved residual histogram, but otherwise little difference in the goodness of fit.  
For simplicity we will therefore continue with the baseline model. 
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Random Shape Effect:  The baseline model incorporates the assumption that the different 
accident years’ ultimate losses vary randomly about a mean value:  ULTAY ~ N(μULT, σ2

ULT).  It also 
incorporates the assumption that the shape (ω) and scale (θ) characterizing the loss development 
process do not vary by accident year.  Just as we were able to vary slope – in addition to intercept – 
by region in the previous section’s PIF example, here we have the option of allowing ω and/or θ to 
vary by accident year.   

To illustrate, we expand our model to include varying shape parameters {ω1991,…, ω2000} by 
accident year.  Specifically: 
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This model contains the two new hyperparameters σω and σω,ULT in addition to the baseline 
model’s five hyperparameters.  The resulting model parameters and associated loss reserve estimates 
are displayed below: 
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Model Parameters and Estimated Reserves
AY dev omega theta growth reported eval120 eval240 ULT reserves

1991 114 1.189 47.202 95.8% 3,901 3,907 4,101 4,105 203
1992 102 1.313 47.202 93.5% 5,339 5,281 5,462 5,463 124
1993 90 1.311 47.202 90.2% 4,909 5,259 5,440 5,441 532
1994 78 1.332 47.202 85.5% 4,588 5,491 5,667 5,668 1,080
1995 66 1.265 47.202 78.8% 3,873 4,744 4,933 4,935 1,061
1996 54 1.292 47.202 69.7% 3,692 5,052 5,236 5,238 1,546
1997 42 1.347 47.202 57.6% 3,483 5,662 5,835 5,835 2,352
1998 30 1.410 47.202 42.5% 2,864 6,368 6,525 6,525 3,661
1999 18 1.317 47.202 24.7% 1,363 5,325 5,504 5,505 4,142
2000 6 1.308 47.202 6.5% 344 5,229 5,410 5,411 5,067
total 54,126 19,768  

Note that the parameters in the “omega” column now vary by accident year.  The expected ultimate 
reserves are approximately $1M (5%) higher than those of the more parsimonious baseline model.  
It is interesting to note that nearly half of this increase comes from the increase in AY 1998 reserves 
from $3.18M in the baseline model to $3.661M here.  At the same time the ω shape parameter for 
AY 1998 is 1.410 – the highest of all accident years.  Allowing the shape parameter to vary by 
accident year therefore results in an accident year 1998 reserve estimate that is nearly as high as that 
of the chain ladder model’s estimate.   

 
Weibull Growth Curve Loss Development Model - Including Random Warp Effect
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The AY 1998 component of the above plot suggests that adding the random shape effect gives the 
most recent observation from AY 1998 more leverage over that accident year’s growth curve.  This 
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might be appropriate – perhaps accident year 1998’s claims are expected to be of higher ultimate 
severity.  We can also note that the random shape model’s AIC is 720.79, down from the baseline 
model’s 725.76.  This suggests that the random shape model offers a better tradeoff between 
complexity and goodness of fit. 

Of course, it is equally possible that the most recent 1998 observation is an outlier, in which case 
we would want to mitigate its leverage on the ultimate loss estimate.  Assuming the latter is correct, 
we would favor the baseline model over the random shape alternative model.  For simplicity, we will 
continue to work with the baseline model. 

Random Scale Effect:  We can similarly allow the scale parameter θ to vary by accident year.  
Doing so causes the AIC measure to deteriorate from 725.76 to 729.76.  Therefore on this dataset, 
allowing θ to vary by accident year does not offer a sufficient improvement in fit to justify the 
additional complexity.  It is interesting to note that the (θ, σθ) hyperparameters of this model are 
46.6375 and 0.0000094, respectively.  In other words the estimate of θ is nearly identical in the 
baseline and random scale models; and the estimated size of the random scale effect is negligible.   

To summarize, where Clark’s LDF model requires a separate ultimate loss parameter for each 
accident year, we allow ultimate loss (ULT) to randomly vary by accident year using a Gaussian sub-
model.  In addition, there is perhaps some justification for allowing the shape parameter (ω) to 
similarly vary by accident year.  But doing so heightens the danger of overfitting the data.  In the 
absence of compelling prior knowledge in support of including a random shape effect, one might be 
inclined to exclude it.  Finally, the data indicates that the scale parameter (θ) does not vary by 
accident year.  There is therefore no justification for including a random scale effect. 

Loglogistic Growth Curves:  Next, we can test the effect of replacing the Weibull growth curve 
with a Loglogistic growth curve:  G(x|ω,θ)=xω/(xω +θω).  This is achieved by changing a single line 
of our R code:  
start.vals <- c(ult=5000, omega=1.4, theta=45) 
l1 <- nlme(cum ~ ult*(dev^omega)/((dev^omega) + (theta^omega)) 
  , fixed = list(ult~1, omega~1, theta ~ 1) 
            , random = ult ~ 1 | AY 
  , weights = varPower(fixed=.5) 
      , data=dat, start = start.vals) 
 

As with the baseline Weibull model, we allow only the ULT parameter to vary by accident year – 
no random shape or scale effects are included.  The resulting hyperparameter estimates are:   

109.38.70214.49403.13.6898 ===== σσθωμ ULTULT . 
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Note in passing that Clark reports ω and θ parameter estimates of 1.434 and 48.63, respectively 
for his Loglogistic LDF model.   

Immediately we can see that the Loglogistic model will result in considerably higher loss reserve 
estimates than the Weibull model:  the μULT hyperparameter was 5306.6 for the Weibull model, 
compared with 6898.3 for the Loglogistic model.   

The residual plots suggest that the Loglogistic model also fits the data fairly well.  It is not clear 
from these plots that the Loglogistic model fits the data substantially better or worse than the 
baseline Weibull model.     
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The model parameters and expected loss reserves are displayed below: 
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Model Parameters and Estimated Reserves
AY dev omega theta growth reported eval120 eval240 ULT reserves

1991 114 1.404 49.135 76.5% 3,901 4,099 4,756 5,269 1,368
1992 102 1.404 49.135 73.6% 5,339 5,471 6,348 7,034 1,694
1993 90 1.404 49.135 70.0% 4,909 5,458 6,333 7,017 2,107
1994 78 1.404 49.135 65.7% 4,588 5,696 6,609 7,322 2,734
1995 66 1.404 49.135 60.2% 3,873 5,020 5,825 6,454 2,580
1996 54 1.404 49.135 53.3% 3,692 5,294 6,142 6,805 3,113
1997 42 1.404 49.135 44.5% 3,483 5,742 6,662 7,381 3,898
1998 30 1.404 49.135 33.3% 2,864 6,055 7,026 7,784 4,920
1999 18 1.404 49.135 19.6% 1,363 5,454 6,329 7,012 5,648
2000 6 1.404 49.135 5.0% 344 5,372 6,234 6,906 6,562
total 68,984 34,626  
 

Again, these results are broadly consistent with those reported by Clark.  As anticipated, the 
estimated reserve amount – $34.6M – is quite a bit higher than the $18.7 estimated by the baseline 
Weibull model.  But as Clark points out, one should be careful using a heavy-tailed model such as 
the Loglogistic to extrapolate too many years beyond the data.  If, following Clark, we compute the 
reserves using losses projected to 240 months (the “eval240” column in the table above), the 
resulting reserve estimate is $27.9M.  Again, this is broadly consistent with Clark’s result ($28.9M).  
This is more realistic than using the Loglogistic model to extrapolate the results “to infinity.”  
However, the result is still somewhat disconcerting:  the reserve estimate after arbitrarily truncating 
the Loglogistic growth curve at 240 months is still nearly 50% higher than the corresponding 
Weibull models’ reserve estimate. 

The moral is that much hinges on the form of the growth curve one chooses for one’s model.  
The advantage discussed by Pinheiro and Bates – validity of the model beyond the observed range 
of the data – is meaningful only to the extent that the model has been chosen wisely.   In practice 
the considerations one would use to choose a growth curve are similar to considerations that are 
used in choosing a tail factor.  The above display shows that, according to the Loglogistic model, the 
losses are only 76.5% developed as of 120 months. In contrast, the baseline Weibull model implies 
that the losses are 96% developed as of 120 months.  One’s general knowledge of how rapidly the 
types of claims being modeled develop should be considered when deciding which is the more 
appropriate growth curve, or whether additional growth curves should be investigated. 

“Cape Cod” Models:  If we have access to exposure information in addition to loss 
development data, it is easy to recast our hierarchical growth model into what might be called “Cape 
Cod” form.  In the Cape Cod method, one assumes that expected ultimate loss ratio is constant 
across accident years and either estimates it from the data or simply introduces it as a model 
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assumption.  In the hierarchical modeling framework, we can dispense with the assumption that loss 
ratio is common across accident years.  Rather, we can provide a sub-model for the various accident 
years’ loss ratios, just as we provided a sub-model for the various accident years’ ultimate losses in 
the baseline model.  Still, we are acting in the original spirit of the Cape Cod method in the sense 
that we include the average loss ratio across all accident years as a model hyperparameter.   

We will modify our original baseline Weibull model: 
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The “Cape Cod” counterpart is: 
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In other words, we replace the hyperparameters {μULT, σULT} with {μLR, σLR}. 

The corresponding modification of our R code is equally minor: 
 
prem <- seq(from=0, length=10, by=400) + 10000  
prem <- rep(prem, 10:1)   
start.vals <- c(lr=.5, omega=1.4, theta=45) 
cc.w1 <- nlme(cum ~ prem*lr*(1 - exp(-(dev/theta)^omega)) 
  , fixed = list(lr~1, omega~1, theta ~ 1) 
            , random = lr ~ 1 | AY 
  , weights = varPower(fixed=.5)  
      , data=dat, start = start.vals) 

 

(Note that the loss triangle analyzed by Clark and others was originally not accompanied by 
premium information.  Clark therefore assumed that the premium was $10M in 1991 and increased 
by $400,000 in each subsequent year.  This is done in the first two lines of code above.) 

Recall that the parameter estimates for the baseline Weibull model are: 

955.203.54364.46306.16.5306 ===== σσθωμ ULTULT . 

In contrast the parameter estimates for the “Cape Cod” Weibull model are: 

977.20383.091.49317.14634.0 ===== σσθωμ LRLR . 
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It is comforting to note that the estimates of both process error (σ) and of the parameters 
determining the average shape of the loss development curve ({ω,θ}) are fairly consistent across 
both of these models.   

Although it will not be reproduced here, the residual plot for the “Cape Cod” model is virtually 
identical to that of the baseline model.  The various parameters and resulting loss reserve estimates 
for the Cape Cod Weibull model are displayed below: 

 
Model Parameters and Estimated Reserves -- Cape Cod Weibull Model

AY dev prem omega theta lr growth reported eval120 lr*prem reserves
1991 114 10,000 1.317 46.910 0.408 96.0% 3,901 3,952 4,082 181
1992 102 10,400 1.317 46.910 0.519 93.8% 5,339 5,229 5,401 62
1993 90 10,800 1.317 46.910 0.498 90.5% 4,909 5,208 5,380 470
1994 78 11,200 1.317 46.910 0.501 85.8% 4,588 5,433 5,611 1,023
1995 66 11,600 1.317 46.910 0.429 79.1% 3,873 4,818 4,977 1,103
1996 54 12,000 1.317 46.910 0.440 70.0% 3,692 5,114 5,283 1,591
1997 42 12,400 1.317 46.910 0.467 57.9% 3,483 5,608 5,792 2,309
1998 30 12,800 1.317 46.910 0.486 42.6% 2,864 6,016 6,215 3,350
1999 18 13,200 1.317 46.910 0.439 24.7% 1,363 5,613 5,798 4,435
2000 6 13,600 1.317 46.910 0.446 6.4% 344 5,871 6,064 5,720
total 54,604 20,245  
The total reserves estimate by this model is $20.2M:  about 8% higher than the baseline Weibull 

result.  Most of the additional $1.5M of estimated reserves come the increased reserve estimates for 
accident years 1998-2000.  This is an expected and sensible result.  The ultimate loss estimates for 
the earlier accident years, where more loss development information is available, are less affected by 
the premium information.  Conversely, the more recent the accident year, the less loss development 
data is available.  Therefore, the ultimate loss estimates depend more heavily on the model’s LR 
hyperparameter (the “Cape Cod” loss ratio estimate) together with the premium information.   

Recall that Clark’s Cape Cod model contains only three parameters (ω, θ, ELR) in contrast with 
his LDF model’s 11 parameters.  Because we are building hierarchical models there is not such a 
dramatic difference between our baseline model and its “Cape Cod” counterpart.  Each of these 
models contains five hyperparameters.   

Each of these models – the baseline and the Cape Cod variant – offers an advantage over its non-
hierarchical counterpart: 

• The hierarchical baseline model is less prone to overparameterization because it does 
require not a separate ultimate loss parameter for each accident year.  The parameters 
{ULT1991, …, ULT2000} are replaced with the {μULT,σULT} hyperparameters. 
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• The “Cape Cod” hierarchical model does not require one to assume a constant loss ratio 
across all accident years.  This hierarchical model approaches the Clark Cape Cod model 
as the hyperparameter σLR 0. 

We are not arguing that the hierarchical Cape Cod model is not an improvement on its baseline 
counterpart.  On the contrary, the Cape Cod hierarchical model is preferable because adding 
exposure information will typically yield improved ultimate loss estimates, especially for more the 
recent, data-sparse, accident years.  This, not greater parsimony, is the benefit it offers over the 
baseline hierarchical model. 

Reserve Variability:  Estimating the variability around a hierarchical growth model’s loss reserve 
estimates (reserve variability) will be the topic of a future paper.  For now a few brief comments 
must suffice.  The problem of estimating reserve variability is twofold:  we must estimate the 
variability resulting from the stochastic nature of the loss development process (process variance); 
and we must also estimate the variability resulting from the uncertainty around our models’ 
hyperparameters (parameter variance).  The future paper will outline a simulation-based approach to 
estimate the variability arising from both of these sources.  In particular, Markov Chain Monte Carlo 
(MCMC) simulation, a technique widely used in contemporary Bayesian statistics, will be used to 
estimate parameter variance. 

Of course, model risk – illustrated above by the dramatic effect that the choice of growth 
functions has on one’s ultimate loss estimate – will remain a serious issue even after process and 
parameter variance have been accounted for. 

4. CONCLUSION 

Hierarchical modeling in actuarial science is an idea whose time has come.  Hierarchical models 
encompass Bayesian credibility theory and therefore allow actuaries to perform credibility 
calculations within a statistical modeling framework.  Moreover, hierarchical models allow one to 
easily integrate credibility concepts into one’s GLM or non-linear modeling activities.  By 
incorporating sub-models of various model parameters, hierarchical models allow one to strengthen 
an estimate for a sparsely populated segment of one’s data by appropriately weighting it with the 
overall average estimate for the population as a whole.  This integrates the fundamental insight of 
Bayesian credibility into a statistical modeling framework.  For classification ratemaking and 
predictive modeling applications, actuaries can consider adding hierarchical structure to their 
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generalized linear models in order to account for the variation along such “massively categorical” 
dimensions as territory or class code. 

Turning to loss reserving, hierarchical modeling is useful in that it provides a natural way to 
analyze longitudinal (or “repeated measures”) datasets.  The point of view of this paper is that 
traditional loss reserving triangles can be viewed as longitudinal datasets in which each accident year 
is a “subject” and the cumulative or incremental losses at various development times constitute a 
series of repeated observations.   

Unlike ratemaking and other general insurance predictive modeling applications, loss reserving is 
best approached using non-linear models.  Following Clark, we have explored the use of the Weibull 
and Loglogistic growth curves for modeling the loss development process.  We have done this in a 
non-linear hierarchical modeling (or “non-linear mixed effects models” – NLME) context.  
Hierarchical modeling allows us to specify sub-models for one or more of the parameters that 
determine the loss development process.  The result is a natural and flexible framework in which to 
build parsimonious loss reserving models.  Furthermore, the use of growth curves eliminates the 
need to specify arbitrary tail factors. 

 

A Note Regarding Software 
All models discussed in this paper were fit using the freely available R statistical computing package.  R is available at 

http://www.r-project.org.  Once the base R package has been installed, the multilevel modeling packages “lmer” and 
“lme” can easily be added.  
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Appendix:  Raw Loss Triangle Data, as Imported into R 

 
AY dev cum
1991 6 357.848
1991 18 1124.788
1991 30 1735.33
1991 42 2182.708
1991 54 2745.596
1991 66 3319.994
1991 78 3466.336
1991 90 3606.286
1991 102 3833.515
1991 114 3901.463
1992 6 352.118
1992 18 1236.139
1992 30 2170.033
1992 42 3353.322
1992 54 3799.067
1992 66 4120.063
1992 78 4647.867
1992 90 4914.039
1992 102 5339.085
1993 6 290.507
1993 18 1292.306
1993 30 2218.525
1993 42 3235.179
1993 54 3985.995
1993 66 4132.918
1993 78 4628.91
1993 90 4909.315
1994 6 310.608
1994 18 1418.858
1994 30 2195.047
1994 42 3757.447
1994 54 4029.929
1994 66 4381.982
1994 78 4588.268
1995 6 443.16
1995 18 1136.35
1995 30 2128.333
1995 42 2897.821
1995 54 3402.672
1995 66 3873.311
1996 6 396.132
1996 18 1333.217
1996 30 2180.715
1996 42 2985.752
1996 54 3691.712
1997 6 440.832
1997 18 1288.463
1997 30 2419.861
1997 42 3483.13
1998 6 359.48
1998 18 1421.128
1998 30 2864.498
1999 6 376.686
1999 18 1363.294
2000 6 344.014  
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