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Reserving with Incomplete Exposure Information 

David R. Clark, FCAS, MAAA 

________________________________________________________________________ 
Abstract. This paper outlines a reserving method that allows the actuary to use exposure information, 
such as onlevel premium, even if that information is only available for a limited number of years.  The 
method is a simple blending of methods already in wide use, but can be shown to be based on a common 
underlying statistical model.  The paper provides an overview of the Over-Dispersed Poisson model, and 
how it relates to Multiplicative LDF, Cape Cod, and Bornhuetter-Ferguson methods. 
Motivation. The reserving actuary may have reliable exposure information (e.g., onlevel premium) for 
only a few recent years of data, rather than for the full historical period for which reserves need to be set. 
Method. This incomplete exposure information can still be used, by implementing a hybrid reserving 
method equivalent to the Cape Cod method for the recent years and the Multiplicative LDF method for 
older years. 
Results. We show how common reserving methods can be derived from a single statistical model, and 
then show how these methods are best combined when partial information is available. 
Conclusions. This is a practical solution to the problem of stabilizing loss projections for recent accident 
years, incorporating available rate change information, and being responsive to actual loss emergence. 
 
Keywords. Reserving, GLM, Chain ladder, Cape Cod, Bornhuetter-Ferguson. 

________________________________________________________________________ 

1. INTRODUCTION 

The purpose of this paper is to outline a method for estimating a stable reserve for immature 

years on long-tailed lines of business. 

In order to bring more stability to these reserve estimates, it is helpful to bring in an exposure 

base that is proportional to expected loss by year.  Optimally, this exposure base would be 

something like payroll or sales, but more commonly only historical premium is available.  Historical 

premium is not directly applicable because of significant changes in rate adequacy over time – a 

phenomenon called the “insurance cycle.”  Instead we need to adjust the historical premium to an 

“onlevel premium” basis that is truly proportional to the expected losses by year.  Unfortunately, the 

rate level indices required to make this adjustment may only be available for a limited number of 

years. 

We will propose that even this limited information can be used in the reserve review in a 

straightforward way, with a method that is a combination of the Multiplicative LDF (a.k.a. Chain 

ladder ) and Cape Cod (a.k.a. Stanard-Bühlmann) methods to form a single unified method.  This 

unified method can be shown to be a best use of the available data and to be consistent with the 

other methods because they are all relying on the same underlying statistical model. 
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1.1 Research Context 

There have been several past papers surveying statistical models applied to insurance loss 

development (payment or reporting) patterns.  Recent examples are the CAS Working Party on 

Reserve Variability (2005), and the classification paper by Schmidt (2006).  This prior research has 

aided greatly in viewing the loss development phenomenon from a statistical viewpoint; and 

showing connections between various models. 

1.2 Objective 

We will not intend to break new ground from a theoretical standpoint.  Instead, we will build on 

the theory already established and draw some important practical implications.  Specifically, we will 

show how best to incorporate limited exposure information into a reserve review in a consistent 

manner.  By grounding this method in sound theory, we can show how it is consistent with current 

models and how it is an improvement over some popular techniques such as the Bornhuetter-

Ferguson method. 

What is new in this paper is the demonstration that a single unified method, which combines a 

Multiplicative LDF for older years and Cape Cod for more recent years, is built upon a single 

statistical model.  The result is that limited exposure information can be incorporated for the years 

in which it is available. 

1.3 Outline 

The remainder of the paper proceeds as follows. 

Section 2.1 will provide a description of the reserving problem faced for long-tailed business.  We 

will introduce a numerical example to illustrate this problem. 

Section 2.2 will give some basic definitions to set the groundwork for addressing the problem. 

Section 3.1 will describe the Over-Dispersed Poisson (ODP) model as the basic structure 

underlying all of the methods to be discussed. 

Section 3.2 will look at three methods in common use; and how they relate to the ODP model. 
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 Section 3.2.1 The Multiplicative LDF method (a.k.a., Chain ladder ) 

 Section 3.2.2 The Cape Cod method (a.k.a. Stanard-Bühlmann) 

 Section 3.2.3 The Bornhuetter-Ferguson method 

Section 3.3 will look at a unified method that combines the Multiplicative LDF and Cape Cod 

methods to incorporate limited exposure information. 

Section 4 gives further discussion of practical issues of the Unified method, including issues in 

creating an appropriate exposure index. 

2. PRELIMINARIES:  THE RESERVING PROBLEM 

We now proceed to give a more detailed description of the reserving problem to be addressed.  

2.1  A Realistic Example 

You are a reserving actuary reviewing the medical malpractice line of business.  You will be 

working with an eight-year development triangle of cumulative paid loss data as shown below.1 

Cumulative Paid Loss Triangle
AY 12 24 36 48 60 72 84 96

1999 257 1,143 2,402 3,478 4,456 5,080 5,284 5,481
2000 266 1,167 2,604 3,897 4,522 5,299 5,464
2001 347 1,400 2,839 3,984 5,131 5,427
2002 279 1,186 2,450 3,858 4,417
2003 245 992 2,508 3,047
2004 220 1,269 1,714
2005 214 829
2006 215  

This data shows a development pattern in which relatively little loss is paid in the first year.  As a 

benchmark, you calculate standard chain ladder  development factors, which confirm that only 

about 5.4% (=1/18.520 as shown below) of the loss would be paid as of the first twelve months—
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assuming that there is no tail beyond the eighth year.  Based on this, accident year 2006 seems too 

immature to expect the loss development method to yield a reliable result. 

 

Development Factors (age-to-age link ratios)
AY 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-Ult

1999 4.447 2.101 1.448 1.281 1.140 1.040 1.037
2000 4.387 2.231 1.497 1.160 1.172 1.031
2001 4.035 2.028 1.403 1.288 1.058
2002 4.251 2.066 1.575 1.145
2003 4.049 2.528 1.215
2004 5.768 1.351
2005 3.874

Wtd Avg 4.369 2.028 1.427 1.217 1.120 1.036 1.037
LDF 18.520 4.239 2.090 1.465 1.203 1.074 1.037 1.000  
In the past, reserves for immature years were often set using the Bornhuetter-Ferguson method, 

with a plan loss ratio used as the a priori expected value.  However, in researching old reserve 

reviews, you have found that the plan loss ratio has consistently been set at about a 60% ELR, plus 

or minus a few points.  By contrast, the actual experience has displayed a long-term cyclical pattern 

with a much wider range of loss ratios. 

 

Earned Latest Ultimate Loss
AY Premium Diagonal LDF Loss Ratio

1999 5,400 5,481 1.000 5,481 101.5%
2000 5,900 5,464 1.037 5,668 96.1%
2001 6,500 5,427 1.074 5,829 89.7%
2002 8,500 4,417 1.203 5,315 62.5%
2003 10,200 3,047 1.465 4,464 43.8%
2004 11,000 1,714 2.090 3,582 32.6%
2005 11,300 829 4.239 3,514 31.1%
2006 11,500 215 18.520 3,982 34.6%

Total 70,300 26,594 37,835 53.8%  
The 60% ELR might have been right for some periods (as Lewis Carroll observed: even a 

stopped clock is right twice a day…), but in general it has not proved to be an accurate number.  

                                                                                                                                                             
1 This triangle is based on a section of industrywide medical malpractice data, but has been modified.  The example is 
intended to be realistic, if somewhat better behaved than most accounts, but should not be used for any purpose other 
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Instead we have some evidence that the improving loss ratios from 1999 to 2006 were due in large 

part to significant rate increases.  We know that this information should be used in the analysis, but 

unfortunately we only have a reliable monitor for rate changes starting in 2002. 

 

What do we do? 

 

2.2  Laying the Groundwork for a Solution 

Before giving a detailed explanation of the models available to us and a proposed solution to the 

example above, it is worth carefully defining some key concepts.2 

Model =  A mathematical or empirical representation of a specified phenomenon 

Method =  A systematic procedure for estimating the unpaid claims 

The “Model” is a mathematical description of the form of the world that we are analyzing, 

though with simplifying assumptions, such as the assumption that all accident years have the same 

expected loss development pattern. 

The “Method” is the step-by-step procedure, or algorithm, that a person will follow to get from 

the original data to a final numerical result.  In our insurance example above, we applied the chain 

ladder  method to calculate our ultimate loss ratios. 

Some may ask: why bother defining a model at all?  Why not just select a method that seems 

reasonable and leave it there?  There are three reasons: 

1) A model gives criteria for deciding which of several possible methods is the “best” one 

(e.g., criteria of unbiasedness and minimum variance). 

2) A model forces us to make all of our assumptions explicit so that they can be tested (e.g., 

with residual plots and goodness-of-fit criteria). 

3) A model provides the theory for creating ranges around our reserve estimate (either 

                                                                                                                                                             
than illustrating the ideas in this paper. 
2 These two definitions come from Actuarial Standard of Practice No. 43; see Shapland (2007) for a more rigorous 
definition of these terms. 
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standard deviation or percentile distributions). 

 

The 2005 CAS Working Party on Reserve Variability gives a more complete explanation of these 

reasons for creating a model.  For the present paper, the primary purpose of introducing the 

mathematical model will be to show the “family relationship” of the methods presented. 

 

Two more concepts need to be introduced before we proceed with our model. 

Over-Parameterization  = when we have too few data points relative to the number of model 

parameters 

Model Constraints  = user-supplied information that sets parameters, or relationships 

between parameters, rather than having them  estimated from the 

data 

The concept of over-parameterization is sometimes referred to as over-fitting or responding to 

the noise in the data rather than the signal.  This can be a significant problem in the loss reserving 

context where we are working with data summarized into the triangle format.  Constraining the 

model parameters is one way of reducing the instability from over-parameterizing and will be key to 

understanding the differences in the methods that we discuss below. 

3. A FAMILY OF RESERVING MODELS AND METHODS 

We now turn to a model that provides a framework for all of the familiar reserving methods.  It 

points to a useful solution to our particular problem.  

3.1  The Over-Dispersed Poisson (ODP) Model 

The model presented here is derived from the theory of generalized linear models (GLM).  GLM 

theory is an expansion of the theory of linear regression that allows for a broader category of error 
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distributions beyond the normal Gaussian distribution, and also allows for the linear relationship of 

independent variables to be transformed by a “link function” in predicting the dependent variable.3 

The structure of our model will be a multiplicative combination of accident year ( y ) and 

development period ( d ) factors.  The dependent variable that we are attempting to fit will be the 

incremental loss for a given accident year in a given development period, and will be denoted dyc , .  

For our example, this will be referred to as incremental paid, but the theory could be equally applied 

to reported data. 

( ) dydydy ELRvcE βμ ⋅⋅== ,,  (3.1.1)

 

Within this formula, the parameter yv  is an exposure or volume measure by accident year that is 

proportional to ultimate loss.  This can be thought of as onlevel premium, though Section 4 of this 

paper will give a more detailed discussion as to how to create the measure.  The ELR  is an expected 

loss ratio, which represents the ratio of expected ultimate loss to the exposure measure.  Because the 

exposures yv  already vary by accident year in proportion to expected loss, we only need a single 

value for ELR.  The last parameter dβ  is the development period relativity and may be thought of 

as the percent paid during a given calendar year. 

This type of multiplicative combination of independent parameters indicates a log-link within 

GLM.  That is, we would need to take logarithms of each side of the equation in order to transform 

the problem into a linear form. 

Next, we will assume that the expected variance of an actual point from the expected value is in 

proportion to the expected value.  The variance-to-mean ratio is represented as a dispersion 

parameter φ . 

( ) ( ) dydydy cEc ,,,Var μφφ ⋅=⋅=  (3.1.2)

The GLM framework makes use of distributions within the exponential family for the error 

                                                           
3 See Mildenhall (1999) for a good introduction to GLM in general, or Renshaw & Verrall (1998) for the GLM directly 
corresponding to this reserving application. 
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function.  The assumption that the variance is proportional to the mean uniquely identifies the 

distribution as Poisson.  The Poisson distribution is defined on the positive integers, { }L,3,2,1,0 , 

with variance equal to its mean, but this is generalized to the over-dispersed Poisson (ODP) model 

to be defined on multiples of the dispersion parameter, { }L,3,2,1,0 φφφφ .4 

With this model defined, the maximum likelihood estimates for the parameters can be found.  

We can actually do this by maximizing the quasi-log-likelihood (QLL) function,5 a simplified version 

of the log-likelihood that does not depend on the dispersion parameter φ . 
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(3.1.3)

We maximize the quasi-log-likelihood by solving for the parameters that set all of the derivatives 

equal to zero.  For example: 

0=
∂
∂

d

QLL
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      d∀  
(3.1.4)

Taking these derivatives guarantees that totals of the fitted losses in each column (development 

age) are equal to the actual losses.  The model may therefore be described as unbiased.6 

∑∑
−+

=

−+

=

⋅⋅=
dn

y
dy

dn

y
dy vc

1

1

1

1
, ELR β       d∀  

(3.1.5)

 

                                                           
4 Venter (2007) prefers to call this the Poisson-constant-severity (PCS) model rather than ODP, because it can be 
interpreted as a collective risk model in which the number of claims follows a Poisson distribution, and every claim 
amount is the same value.  However, there is no need to force this interpretation; we can simply view it as a discretized 
aggregate loss model for a given mean and variance. 
5 See Renshaw and Verrall (1998) for the full detail on this.  They also note “We find it easiest to retain the assumption 
that the data have a Poisson distribution at the moment, although in all that follows in this section it is only the form of 
the likelihood which is important.” 
6 The unbiasedness of row and column parameters as seen in “balancing” their totals may be familiar from the problem 
of classification ratemaking as described in Mildenhall (1999).  More rigorously, we define unbiasedness as a 
characteristic of an estimator whose expected value is equal to the expected value of the random variable.  That is, 
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ˆRL̂E β .  This means that the total of the fitted values corresponding to the 

observed payments will be unbiased; this does not mean that the estimated reserve for the future periods will also be 
unbiased (cf. Taylor 2003). 
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Depending on the further constraints on yv  and ELR, certain row totals will also have fitted 

values that equal the actual values.  Our choice of reserving method will depend on how we define 

these constraints. 

3.2  Common Methods – Based on Constraining the ODP Model 

Having defined the basic ODP model, we proceed to show how it is related to three familiar 

reserving methods. 

3.2.1 The Multiplicative LDF Method 

We begin with a fully unconstrained model, for which we assume that the vector of exposure 

measures  is not available and must be estimated from the data in the development triangle.  The 

exposure values yv  and ELR are therefore considered parameters to be estimated by the model.  We 

start by defining: 

ELR⋅= yy vα        (3.2.1)

Then we need to add a fitting criterion that the derivative of the QLL with respect to each yα  is 

set equal to zero. 

0QLL
=

∂
∂

yα
      y∀  

(3.2.2)

Taking these derivatives guarantees that the row totals of fitted and actual values are equal for 

every accident year. 
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An easy way of estimating the α  and β  parameters for this model is to use the chain-ladder 

method of loss development factors.  The parameters yα  represent the ultimate loss by year; the 

parameters dβ  are a function of the weighted average LDFs. 
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AY Ult. Loss Incremental %
y (alpha) LDF % of Ult (beta)

1999 5,481 1.000 100.00% 3.59%
2000 5,668 1.037 96.41% 3.31%
2001 5,829 1.074 93.10% 10.00%
2002 5,315 1.203 83.10% 14.84%
2003 4,464 1.465 68.26% 20.41%
2004 3,582 2.090 47.85% 24.26%
2005 3,514 4.239 23.59% 18.19%
2006 3,982 18.520 5.40% 5.40%

Total of Betas: 100.00%  

A simple inspection of the actual and fitted incremental triangles will confirm that both the row 

and column totals are equal. 

Actual Incremental Payments
AY 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96

1999 257 886 1,259 1,076 978 624 204 197
2000 266 901 1,437 1,293 625 777 165
2001 347 1,053 1,439 1,145 1,147 296
2002 279 907 1,264 1,408 559
2003 245 747 1,516 539
2004 220 1,049 445
2005 214 615
2006 215

Total: 2,043 6,158 7,360 5,461 3,309 1,697 369 197  

Fitted Incremental Payments
AY 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96

1999 296 997 1,330 1,119 814 548 181 197
2000 306 1,031 1,375 1,157 841 566 188
2001 315 1,060 1,414 1,190 865 583
2002 287 967 1,289 1,085 789
2003 241 812 1,083 911
2004 193 652 869
2005 190 639
2006 215

Total: 2,043 6,158 7,360 5,461 3,309 1,697 369 197  

An important observation from this exercise is that we have set the tail factor at age 96  months 

equal to 1.000.  That is, we are assuming that there is no further development beyond the eighth 
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year.  In fact, this is merely done by convention – we can include any tail factor that we would like 

beyond the eighth year.  We include a tail factor by dividing all of our β  parameters by the selected 

96-ultimate LDF, and then also multiplying all of the α  parameters by the same amount.  The 

cross-product will produce fitted values equal to the model above. 

What this tells us is that the fully unconstrained model provides us with no information about 

development beyond the periods in the historical data.7 

A second observation from this unconstrained model is that, while we usually think of it in 

multiplicative terms, it can equivalently be considered an additive model: 

Ultimate Loss = (Paid Loss) × LDF 

Ultimate Loss = (Paid Loss) + (Expected Ultimate)×(1-1/LDF) 

   where Expected Ultimate = (Paid Loss)×LDF 

A final observation is that our example includes 36 actual data points, but those 36 data points 

are estimating 15 parameters (eight accident year factors plus seven development factors).  This 

gives us few data points per parameter and, therefore, should be described as an over-parameterized 

model. 

3.2.2 The Cape Cod Method 

As noted above, the fully unconstrained model that produces the chain-ladder method has a 

problem with over-parameterization.  We therefore move to a model that adds more constraints, by 

introducing an exposure measure that forces a relationship between the accident year ultimates. 

      ji
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j

i

j

i ,
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Year in  Loss  UltimateExpected

∀==
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α

 
(3.2.4)

Because the exposure or volume measures are supplied by the user, we only need to estimate the 

parameter ELR instead of the full vector of yα .  The Maximum Likelihood Estimator (MLE) for 

                                                           
7 One way to fit a tail factor to the data is to constrain the model by assuming that all of the β s follow a known 
development pattern form.  This is the model outlined in Clark (2003), but will not be addressed here. 
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the ELR is found by setting the derivative of the quasi-log-likelihood function (QLL) equal to zero. 
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This criterion results in a requirement that the sum of all the losses in the entire triangle is the 

same for fitted and actual values. 

∑ ∑∑ ∑
=

−+

==

−+

=

⋅⋅=
n

y

yn

d
dy

n

y

yn

d
dy vc

1

1

11

1

1
, ELR β  

(3.2.6)

This does not add anything to our MLE criteria, since we had already required that column totals 

would be equal. 

The method for estimating model parameters is: 

1)  Estimate an incremental loss ratio dIncrLR  for each development period: 
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2)  Set the ELR as the sum of the incremental loss ratios:  
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3)  Set the development pattern parameters such that 1
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With this procedure, we accomplish the goal of having all of the column totals for the fitted 
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triangle match those of the actual triangle; therefore the results are the maximum likelihood 

estimates. 

We have been again assuming that there is no “tail” beyond the last age represented in the 

triangle.  As with the Multiplicative LDF method, this is only by convention, and we can introduce 

any tail factor we wish by re-scaling the β and ELR parameters. 

n

d
d LDF

β
β → so that

∑
=

= n

d
d

n

1

1LDF
β

 
(3.2.10)

 

The original ELR is then multiplied by the selected tail nLDF  to produce a final ELR. 

( ) nOriginal LDFELRELR ⋅=  (3.2.11)

 

The key concept to note is that the ELR and tail nLDF  are interdependent.  If we change one of 

them, then the other will also need to change.  This concept will be critical when we examine the 

Bornhuetter-Ferguson method. 

In order to perform these calculations, we must first create an exposure index covering all of the 

accident years in the experience period.  We saw above that the ultimate loss ratios were not 

constant by year, and so we cannot assume that historical premium is a good measure of exposure.  

We will instead make use of an onlevel factor to adjust for changes in rate adequacy.  This way we 

can create a surrogate exposure base. 
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AY Earned Onlevel Exposures
y Premium Factor v y

1999 5,400 2.200 11,880
2000 5,900 2.050 12,095
2001 6,500 1.850 12,025
2002 8,500 1.400 11,900
2003 10,200 1.200 12,240
2004 11,000 1.100 12,100
2005 11,300 1.050 11,865
2006 11,500 1.050 12,075

Total 70,300 96,180  

The exposures yv  are estimated as the historical earned premium times the onlevel factor.  These 

exposures are now assumed to be proportional to the ultimate expected losses by accident year and 

can be used in formula 3.2.7 to estimate the preliminary development parameters. 

Actual Incremental Payments divided by Exposure
AY 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96

1999 2.16% 7.46% 10.60% 9.06% 8.23% 5.25% 1.72% 1.66%
2000 2.20% 7.45% 11.88% 10.69% 5.17% 6.42% 1.36%
2001 2.89% 8.76% 11.97% 9.52% 9.54% 2.46%
2002 2.34% 7.62% 10.62% 11.83% 4.70%
2003 2.00% 6.10% 12.39% 4.40%
2004 1.82% 8.67% 3.68%
2005 1.80% 5.18%
2006 1.78%

IncrLR: 2.12% 7.32% 10.19% 9.08% 6.91% 4.71% 1.54% 1.66%
Cumul: 2.12% 9.45% 19.63% 28.71% 35.62% 40.34% 41.88% 43.53%
Beta 4.88% 16.82% 23.40% 20.86% 15.87% 10.83% 3.54% 3.81%

Cumul: 4.88% 21.70% 45.10% 65.96% 81.83% 92.66% 96.19% 100.00%
LDF 20.495 4.609 2.217 1.516 1.222 1.079 1.040 1.000  

These numbers are calculated additively rather than via chain ladder link ratios but the 

calculations are still very straightforward.  The ELR to onlevel premium is calculated directly as 

43.53% by summing the preliminary incremental loss ratios.   

We can also calculate an LDF from the β s.  However, this development pattern is not exactly 

equal to that produced by the chain ladder  method.  The key reason for this difference is that we are 

now making use of more information.  For example, the 2006 year has loss as of 12 months of $215, 
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which would not affect the chain ladder  calculation (no link ratio is calculated from the 2006 year), 

whereas it does affect the result for the constrained model. 

The next step is to use these parameters to project the ultimate losses by year.  This is done with 

an additive formula. 

  Ultimate Loss   =   (Paid Loss) + (Expected Ultimate)×(1-1/LDF) 

    where Expected Ultimate = Exposure × ELR 

 

AY Exposures Expected IBNR% Latest Final Final
y v y ELR Ultimate LDF 1-1/LDF Diagonal Ultimate L / R

1999 11,880 43.53% 5,172 1.000 0.00% 5,481 5,481 46.14%
2000 12,095 43.53% 5,265 1.040 3.81% 5,464 5,665 46.83%
2001 12,025 43.53% 5,235 1.079 7.34% 5,427 5,811 48.33%
2002 11,900 43.53% 5,181 1.222 18.17% 4,417 5,358 45.03%
2003 12,240 43.53% 5,329 1.516 34.04% 3,047 4,861 39.71%
2004 12,100 43.53% 5,268 2.217 54.90% 1,714 4,606 38.07%
2005 11,865 43.53% 5,165 4.609 78.30% 829 4,874 41.08%
2006 12,075 43.53% 5,257 20.495 95.12% 215 5,215 43.19%

Total 96,180 43.53% 41,871 26,594 41,871 43.53%  

We may note that this is the same calculation that is often thought of as the Bornhuetter-

Ferguson method, except that the ELR has been estimated from the data rather than from some a 

priori input. 

This method can be equivalently applied by showing the ELR as the ratio of the latest diagonal of 

loss divided by the exposure corresponding to the expected loss-to-date.  This is the format typically 

seen in the Cape Cod method, as shown below. 
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AY Exposures Expos Latest Ultimate
y v y LDF / LDF Diagonal L / R

1999 11,880 1.000 11,880 5,481 46.14%
2000 12,095 1.040 11,634 5,464 46.96%
2001 12,025 1.079 11,142 5,427 48.71%
2002 11,900 1.222 9,737 4,417 45.36%
2003 12,240 1.516 8,073 3,047 37.74%
2004 12,100 2.217 5,457 1,714 31.41%
2005 11,865 4.609 2,574 829 32.20%
2006 12,075 20.495 589 215 36.49%

Total 96,180 61,088 26,594 43.53% = 26,594 / 61,088  

This result is significant because it derives from the same underlying ODP model as we used for 

the Multiplicative LDF method.  The only difference is that we have added a constraint that forces a 

certain behavior in the expected ultimate losses. 

As with the Multiplicative LDF method, this Cape Cod method tells us nothing about 

development beyond the eight years in the historical data.  We can again introduce a tail factor to 

change all of our β  parameters, with an exact offsetting change to the ELR. 

3.2.3 The Bornhuetter-Ferguson (BF) Method 

As noted in the previous section, the Cape Cod method looks very much like a traditional 

Bornhuetter-Ferguson (BF) method, except that in the Cape Cod method the ELR is estimated 

from the data itself instead of being supplied by the analyst. 

The BF method was originally created as a means of enforcing stability in the IBNR loss reserve 

estimate.  As was stated in the original 1972 paper: 

The decision as to whether to develop the reserve as a direct function of case 
incurred losses or as a function of expected losses turns on the expected volatility of 
the data.  If the data are extremely thin, the presence or absence of several large 
losses will impact greatly on the IBNR reserves if the reserve is a function of the case 
incurred. 

This original quote implies an either/or decision: the IBNR reserve is either a function of case 

incurred losses or a function of expected losses.  The GLM framework allows us to incorporate 

both sources of information in a single consistent model.   We will start with the more general 
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model, which incorporates the ELR into a GLM, and then move on to how the BF method is 

traditionally applied in practice. 

For our example, let us suppose that the analyst has selected a 50% ELR for use in the BF 

method.  To calculate the β  parameters in this constrained model, we perform the same calculation 

as we used in the Cape Cod method, except that the denominator is the exposures times our 

selected 50% ELR. 

d
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ELR
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(3.2.12)

The form shown in formula 3.2.12 is the same as the pattern recommended in Mack (2006) as 

most consistent with the BF method. 

Actual Incremental Payments divided by Exposure times ELR of 50%
AY 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96

1999 4.33% 14.92% 21.20% 18.11% 16.46% 10.51% 3.43% 3.32%
2000 4.40% 14.90% 23.76% 21.38% 10.33% 12.85% 2.73%
2001 5.77% 17.51% 23.93% 19.04% 19.08% 4.92%
2002 4.69% 15.24% 21.24% 23.66% 9.39%
2003 4.00% 12.21% 24.77% 8.81%
2004 3.64% 17.34% 7.36%
2005 3.61% 10.37%
2006 3.56%

Beta 4.25% 14.64% 20.38% 18.16% 13.82% 9.43% 3.08% 3.32%
Cumul: 4.25% 18.89% 39.27% 57.43% 71.25% 80.67% 83.75% 87.07%

LDF 23.539 5.293 2.547 1.741 1.404 1.240 1.194 1.149  

The β  parameters will all be in the same proportion to those estimated for the Cape Cod 

method.  However, we no longer have the freedom to introduce a tail factor to go from the 96-

month age to ultimate.  Instead, the data and our selected ELR have forced a tail factor upon us 

(again formula 3.2.10). 
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AY Exposures Expected IBNR% Latest Final Final
y v y ELR Ultimate LDF 1-1/LDF Diagonal Ultimate L / R

1999 11,880 50.00% 5,940 1.149 12.93% 5,481 6,249 52.60%
2000 12,095 50.00% 6,048 1.194 16.25% 5,464 6,447 53.30%
2001 12,025 50.00% 6,013 1.240 19.33% 5,427 6,589 54.79%
2002 11,900 50.00% 5,950 1.404 28.75% 4,417 6,128 51.49%
2003 12,240 50.00% 6,120 1.741 42.57% 3,047 5,652 46.18%
2004 12,100 50.00% 6,050 2.547 60.73% 1,714 5,388 44.53%
2005 11,865 50.00% 5,933 5.293 81.11% 829 5,641 47.54%
2006 12,075 50.00% 6,038 23.539 95.75% 215 5,996 49.66%

Total 96,180 50.00% 48,090 26,594 48,090 50.00%  

This format is the same as for the Cape Cod method, except that the ELR has been fixed by the 

model user.  We may again note that the final ultimate loss ratio (relative to onlevel premium) is 

equal to the selected ELR.   

In this BF example, the selection of the 50% ELR results in an implied tail factor of 1.149.  We 

could have used the Cape Cod method instead, including a 1.149 tail factor, and produced the same 

results as the BF method.  The two methods are algebraically equivalent: either the ELR determines 

the tail factor or the tail factor determines the ELR. 

Method Values Supplied by User Estimated Parameters 
Multiplicative LDF 

nLDF  87654321 ,,,,,,, vvvvvvvv  

87654321 ,,,,,,, ββββββββ  
ELR  

Cape Cod 
87654321 ,,,,,,, vvvvvvvv  

nLDF  
87654321 ,,,,,,, ββββββββ  

ELR  
Bornhuetter-Ferguson 
         as a GLM 

87654321 ,,,,,,, vvvvvvvv  
ELR  

87654321 ,,,,,,, ββββββββ  

nLDF  
 

There may be objections at this point that we are not presenting the traditional BF method as 

found in the original 1972 paper.  In that paper, the development pattern (including the tail factor) is 

selected prior to and independent of the ELR; the ELR implied by the data is ignored and implicitly 

overwritten by user. 
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When model parameters are overwritten by the user, bias is introduced:  the fitted values for the 

triangle will no longer balance to the actual values.  This bias may remain unrecognized because the 

model assumptions underlying the BF selections are never made explicit and are therefore left 

untested. 

For this reason, we seek a method that keeps the stability of the traditional BF method, but is 

more responsive to the loss experience by balancing to the historical paid loss values. 

3.3  A Unified Method 

Having reviewed the three traditional methods used in a reserve review, we may note some 

limitations in each. 

• The Multiplicative LDF method is clearly over-parameterized. 

• The Cape Cod method is attractive but requires an exposure for every AY. 

• The traditional Bornhuetter-Ferguson method involves user-intervention, making it less 

responsive to the actual loss experience. 

Given these limitations, the most attractive option would be the Cape Cod method.  

Unfortunately, we may not have the full data to implement it.  This is where a combination  or 

unified method becomes most useful. 

We begin by slightly modifying our original model to have the ELR apply to a subset of years.  

For example, the most recent four years may be grouped together under the same ELR, with the 

older years being estimated separately.   We begin again with the general model. 

( ) dydydy vcE βμ ⋅⋅== ELR,,  (3.3.1)

The key concept is that the exposure values, yv , are not available for the older years and so must 

be estimated in the model just as was done for the Multiplicative LDF method.  We define a group 

of years, g , in which the exposures are available as containing the  indices for the more recent years 

2003-2006: { }8,7,6,5=g . 

If all of the years are part of the group, { }ng ,,2,1 L= , then the Unified method is equivalent to 
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the Cape Cod method.  On the other extreme, if only the most recent year is included in the group, 

{ }ng = , then the Unified method is equivalent to the Multiplicative LDF method. 

To solve for the Maximum Likelihood Estimates (MLE) of this model, we again have the 

condition that the fitted column totals must equal the actual column totals.  We also have a 

condition that the sum of all the rows in the subset of years, g, must balance between fitted and 

actual values.  This can be written using an indicator function, ( )gy∈δ , which is equal to unity for 

years in the group and zero otherwise. 
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For our eight-year example, this implies: 
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(3.3.3)

 

This method requires an iteration to solve for the maximum likelihood values, but it is not 

difficult.  The iteration finds the values for the dβ  and ELR parameters such that the column total 

and the grouped-row totals match the actual values. 

The result is the “best” model in that it uses all of the available information, produces an 

unbiased fit, and satisfies the maximum likelihood criteria. 

The concept of the Unified method may sound abstract at first, but a numerical example will 

show that the application is actually quite simple.8 

We first assume that the rate adequacy index is only available for the second half of the 

experience period.  The exposures for the earlier years are just placeholders and do not affect the 

                                                           
8 For an alternative discussion of this approach to reducing the number of parameters, see Venter (2007).  While he is 
reducing the number of development period parameters rather than the number of accident year parameters, the 
technique is the same. 
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final result. 

AY Earned Onlevel Exposures
y Premium Factor v y

1999 5,400 na 5,400
2000 5,900 na 5,900
2001 6,500 na 6,500
2002 8,500 na 8,500
2003 10,200 1.200 12,240
2004 11,000 1.100 12,100
2005 11,300 1.050 11,865
2006 11,500 1.050 12,075

Total 70,300

Separate Years

Grouped Years

 

The results of the Unified method can be displayed in the same format as was used for the other 

methods.9  The difference in this final version is that the ELR is the same for the recent years but 

different for the earlier years.  The expected loss for the earlier years is simply the result from the 

Multiplicative LDF method. 

AY Exposures Expected IBNR% Latest Final Final
y v y ELR Loss LDF 1-1/LDF Diagonal Ultimate L / R

1999 5,400 1.000 0.00% 5,481 5,481 101.50%
2000 5,900 1.037 3.59% 5,464 5,668 96.06%
2001 6,500 1.074 6.90% 5,427 5,829 89.68%
2002 8,500 1.203 16.90% 4,417 5,315 62.53%
2003 12,240 33.14% 4,057 1.465 31.74% 3,047 4,335 35.41%
2004 12,100 33.14% 4,011 2.104 52.47% 1,714 3,818 31.56%
2005 11,865 33.14% 3,933 4.293 76.71% 829 3,846 32.41%
2006 12,075 33.14% 4,002 18.745 94.67% 215 4,004 33.16%

Total 74,580 na na 26,594 38,296 51.35%

2003-2006 48,280 33.14% 16,002 2.757 5,805 16,002 33.14%  

As can be seen in this example, the Unified method is the Multiplicative LDF applied to the old 

years and the Cape Cod applied to the more recent years.  In order for this to be the maximum 

likelihood estimate, the development pattern and the ELR should be calculated simultaneously.  This 

                                                           
9 The results shown require a numerical iteration to find the MLE parameters, so the reader can verify that the numbers 
satisfy the balance for row and column totals but cannot easily re-derive the parameters.  A practical compromise is 
given in section 4.1. 
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requirement can be relaxed in practice, by having the analyst separately select the loss development 

pattern (see Section 4.1). 

This example also shows that the group of years for which the exposure base is available can be 

treated as a unit with an average LDF applied multiplicatively.  The average LDF is calculated as a 

harmonic average using the exposures as weights. 

⎟
⎠
⎞

⎜
⎝
⎛ +++

=

18.745
12,075

4.293
11,865

2.104
12,100

1.465
12,240

48,280      2.757  

We may summarize the relationship of this Unified method to the Multiplicative LDF and Cape 

Cod cases in the following chart. 

Method Values Supplied by User Estimated Parameters 
Multiplicative LDF 

nLDF  87654321 ,,,,,,, vvvvvvvv  

87654321 ,,,,,,, ββββββββ  
ELR  

Cape Cod 
87654321 ,,,,,,, vvvvvvvv  

nLDF  
87654321 ,,,,,,, ββββββββ  

ELR  
Unified 

8765 ,,, vvvv  

nLDF  
 

4321 ,,, vvvv  

87654321 ,,,,,,, ββββββββ  
ELR  

 

4. PRACTICAL ISSUES FOR THE “UNIFIED” METHOD 

Having outlined the general approach for applying a Unified method that combines 
Multiplicative LDF and Cape Cod methods, we now wish to address two practical issues. 

4.1  Separating the Selection of the Development Pattern 

As was noted in the description of the theory underlying the Unified method, it is necessary that 
the development pattern (viewed either as β s or LDFs) must be estimated simultaneously with the 
other parameters in order to have the maximum likelihood estimate for the reserves.  This may be 
unrealistic in practice, because the reserving actuary will often choose to smooth out the 
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development pattern by removing outlier points or giving more weight to more recent diagonals. 

All of these methods allow this step to be done separately.  What results is a model that is further 
constrained by the selection of the β  parameters.  For example, the Multiplicative LDF method 
now seeks to find the “best” (MLE) α  parameters, representing ultimate losses by accident year, 
given a selected development pattern.  Within the ODP model, the maximum likelihood estimate is 
found by applying the selected LDF to the latest diagonal of the cumulative loss triangle.  Likewise, 
for the Unified method, we simply apply the same method as outlined in section 3.3, using the 
selected LDFs. 

Having selected a loss pattern of β  parameters, either from the triangle or from external 
information, we apply this to the latest diagonal of account data: multiplicatively for the old years 
and additively (via Cape Cod) for the more recent years.  This is equivalent to a GLM with the β  
parameters constrained by the user and the ELR fit via MLE. 

 

Method Values Supplied by User Estimated Parameters 
Multiplicative LDF LDFn 87654321 ,,,,,,, vvvvvvvv  

87654321 ,,,,,,, ββββββββ  
ELR 

Cape Cod 
87654321 ,,,,,,, vvvvvvvv  

nLDF  
87654321 ,,,,,,, ββββββββ  

ELR 
Unified 

8765 ,,, vvvv  
LDFn 
 

4321 ,,, vvvv  

87654321 ,,,,,,, ββββββββ  
ELR  

Unified method with 
development pattern 
selected by user. 

8765 ,,, vvvv  

87654321 ,,,,,,, ββββββββ
LDFn 

4321 ,,, vvvv  
ELR 

 

Because of this result, we can also interpret the Unified method as a purely multiplicative 
approach.  In our example, we have grouped the latest four years together to apply the Cape Cod 
method.  The ultimate for that group of years can also be calculated by applying a single average 
LDF to the four-year block. 
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In other words, we take a weighted harmonic average of the development patterns for each year 
in the block, using the exposures as the weights.  This average factor then is applied to the four-year 
block itself.  The IBNR can be allocated back down to the individual years using the same Cape Cod 
method. 

The averaging approach accomplishes the same stabilizing goal that is the reason that many 
people now use the Bornhuetter-Ferguson method, but it better responds to the actual experience. 

We should also note that this concept is not original with this paper.  This averaging method is 
the same as would be used if you had a development pattern from accident quarters (AQ) and 
needed to estimate an accident year (AY) development factor.  You would perform an average as 
below. 
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+++
=  

(4.1.2)

 

This is the same as our Unified group, with the assumption that exposures are uniform across 

quarters. 

4.2  Creating the Exposure Index 

A second practical problem is the need to create an appropriate onlevel factor.  As stated 

previously, the resulting exposure measure yv  should be proportional to the expected loss for 

accident year “y.” 

The starting point for this calculation should be changes in the underlying pricing, including the 

key components: 

• Changes to base rates and increased limits factors 

• Changes to discretionary pricing modifications 
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• Changes to terms and conditions (e.g., removal of exclusions) 

• Enforcement of underwriting standards (e.g., correct classifications, audits) 

We want to adjust for these components so as to remove the effects of the “insurance cycle.” 

The second component for the onlevel factor is an adjustment for inflation trend.  That is, we 

want to have each year’s premium adjusted to a common rate level, but at the loss cost level for the 

specific year.  We do this by adjusting the premium to a projected future level, reflecting rate 

changes and increases due to exposure inflation.  That adjusted premium is then de-trended based 

on loss inflation. 

Rate Exposure Loss Final
AY Earned Onlevel Trend Onlevel Trend Exposures Onlevel
y Premium Factor at 3.0% Premium at 6.0% v y Factor

A B C D E=B*C*D F G=E/F H=G/B

1999 5,400 2.690 1.230 17,863 1.504 11,880 2.200
2000 5,900 2.435 1.194 17,157 1.419 12,095 2.050
2001 6,500 2.136 1.159 16,092 1.338 12,025 1.850
2002 8,500 1.570 1.126 15,023 1.262 11,900 1.400
2003 10,200 1.308 1.093 14,578 1.191 12,240 1.200
2004 11,000 1.165 1.061 13,596 1.124 12,100 1.100
2005 11,300 1.081 1.030 12,577 1.060 11,865 1.050
2006 11,500 1.050 1.000 12,075 1.000 12,075 1.050  

Because this index involves estimates of inflation, as well as components of price adequacy that 

may be difficult to quantify, it is not an easy task to estimate it reliably for a long historical period.  

This is a practical argument for the Unified method to be applied rather than Cape Cod method. 

5. CONCLUSIONS 

This paper has outlined a “Unified” reserving method that is a combination of familiar 

Multiplicative LDF and Cape Cod methods.  This Unified method allows the reserving actuary to 

make use of exposure information even if it can only be compiled for a few recent periods.  This 

Unified method is based on the same statistical model that is common to both of these other 

methods. 
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This Unified method achieves the goal of stabilizing the reserves for immature periods, while also 

being more responsive to the actual loss payments than the traditional Bornhuetter-Ferguson 

method. 
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Abbreviations: 
BF Bornhuetter-Ferguson 
CL Chain ladder 
GLM Generalized Linear Model 
IBNR Incurred But Not Reported loss (all loss beyond the amounts in the historical triangle) 
LDF Loss Development Factor, also known as an “age-to-ultimate” factor 
ODP Over-Dispersed Poisson 
 
Reserving Model Notation: 

dyc ,    Actual incremental losses in accident year “y” and development period “d” 

dβ     Parameter for development period “d”;  can be thought of as the percent of ultimate loss paid during a 
given development period 

ELR  Expected Loss Ratio 

yv   Exposures or volume measure for accident year “y”; can be thought of as onlevel premium 

φ  Dispersion parameter for ODP model, φ = ratio of variance to mean 
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