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Abstract: This three part paper addresses the task of modelling the right
hand tail of a severity distribution. In Part I the excess ratio function is
used to de�ne a discrete sequence of loss distributions with related moments and
similar tail behavior. Part II extends this to continuous one-parameter families
and provides some examples. Part III provides the main result: that under
some reasonable conditions, each such family has a limiting distribution which
is exponential. The paper then exploits this to 1) group loss distributions based
on tail behavior and 2) promote the choice of (mixed) exponentials to model tail
behavior.

1 Background

Even a large claim database may not su¢ ce to give an accurate picture of the
(far) right hand tail of the severity distribution of the expected losses. Con-
sider the approach in which a distribution is built from empirical data for the
more common loss amounts but is then truncated and a theoretical distribution
spliced on to model the tail, where there are few actual observations. This
approach has considerable appeal because most of the �bumps�of the expected
loss severity are (or are believed to be) at lower loss amounts where the behavior
is revealed in the observed losses. Conceptually, the expected tail should not
be subject to such bumps, but rather re�ect a stable pattern (i.e., if there are
still bumps, you have not gone far enough to enter the �tail�). A direct mea-
sure of �bumpiness� is the presence of local modal values, or points where the
derivative of the density function changes sign. �Higher order bumps�are where
higher order derivatives change sign. The mathematical concept of monotonal-
ity captures this. Ideally, the tail behavior should be less bumpy, i.e., more
monotone, than the overall severity distribution. The task arises, then, given
a severity distribution to �nd a related distribution with similar behavior but
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one that is more monotone. Here we describe such a related distribution,
what we call the �coderived� distribution. The process of constructing the
coderived distribution can be repeated, and this paper is especially interested
in describing the resulting sequence of distributions. These sequences emerge
as canonically related families of loss distributions. This suggests an organiza-
tional scheme for continuous loss distributions and provides an alternative to the
more conventional organization of loss distributions into �families�according to
the arithmetic form of the density function.
The ratio of losses in excess of a given loss limit x to total losses de�nes a

function R(x) that formally resembles a survival function. The loss distribution
de�ned by that survival function is the �coderived�distribution. Conceptually,
the coderived distribution provides a �preview� into the tail. The coderived
distribution is shown to exhibit (right hand) tail behavior and moments that
are very closely related to those of the original loss distribution. However,
the coderived distribution has a simpler, more �monotone�, shape than the
original, in a sense de�ned in the paper. There is no information lost, as
the coderived distribution completely determines the original. Repeating this
process of �coderiving� loss distributions yields (Part I) a discrete sequence
of loss distributions that are observed (Part II) to fall within a continuous
one-parameter collection of loss distributions. Such collections all have tails
of the same ultimate settlement rate, again as de�ned later. We then (Part
III) consider a simple approach to ordering loss distributions according to the
�thickness�of their tails. Finally, we use these concepts to relate thickness with
monotonality and ultimate settlement rate. A key �nding is that the asymptotic
behavior of the hazard rate function provides a natural bridge between these
two perspectives. Another �nding reveals a unique ��xed point� role played
by the exponential class of loss distributions. Assuming a tail behavior that
is su¢ ciently �simple�, we show that the (mixed) exponential distribution has
properties that favor it as a choice to �t the tail of the distribution.

2 Notation and Terminology

In this paper we consider �smooth loss distribution functions�or SLDFns, by
which we mean:

De�nition 1 A function F : [0;1)! [0; 1] is a loss distribution function,
or LDFn, provided that

� F (0) = 0

� lim
x!1

F (x) = 1

� F is nondecreasing.
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We often use the standard symbol �)�as an abbreviation for �implies�and
more generally:

) implies
, if and only if
)( contradiction.

De�nition 2 The minimum loss of F denoted �F 2 R is uniquely deter-
mined by

x < �F ) F (x) = 0 and x > �F ) F (x) > 0:

De�nition 3 The maximum loss of F denoted !F 2 R [ f1g is uniquely
determined by

x < !F ) F (x) < 1 and x > !F ) F (x) = 1:

De�nition 4 F is a smooth loss distribution function, or SLDFn, pro-
vided F is in�nitely di¤erentiable on (�F ; !F ); continuous on [0;1) and the
limit

lim
x!!F

� d (ln (1� F ))
dx

2 R [ f1g .

Notation 5 For any SLDFn F , we denote the corresponding density [PDF]
as f and have f(x) = dF (x)

dx for x 2 (�F ; !F ) and f(x) = 0 otherwise. We
occasionally denote the corresponding expectation of a real valued function g
de�ned on (�F ; !F ) as

E [g (X)] =

Z !F

�F

g (x) f(x)dx =

Z 1

0

g (y) f(y)dy:

The survival function of F is denoted S = 1� F and the mean as

� =

Z 1

0

ydF (y) =

Z 1

0

yf(y)dy = E [X] :

We say F has �nite mean provided � <1. For any c 2 R, we set

�(c) =

Z 1

0

ycf(y)dy = E [Xc] :

So �(0) = 1 and �(1) = � and we call �(c) the c-th moment of F: Provided
0 < � <1, the excess ratio function of F is given by

R(x) =

R1
x
(y � x)f(y)dy

�

and we denote by bS the function
bS(x) = R1x yf(y)dy

�
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for x � 0. We denote the hazard rate function by

�(x) =
f(x)

S(x)

for x 2 (0; !F ). We let

L(t) =

Z 1

0

e�tyf(y)dy =

Z !F

�F

e�tyf(y)dy = E
�
e�tX

�
denote the Laplace transform of F and M(t) = L(�t) the moment generating
function. When F has �nite mean we denote the standard deviation as

� =

sZ 1

0

(y � �)2f(y)dy =
p
�(2) � �2

and the coe¢ cient of variation as CV = �
� :We use subscripts on fF , EF , SF ,

�F , �
(c)
F , RF , bSF , �F , CVF , �F , LF , and MF when necessary to indicate

dependence on F .

Note that for any SLDFn F , the requirement that lim
x!1

F (x) = 1 forces

f(a) > 0 for some a > 0 and so �(c) > 0 for every c 2 R.

De�nition 6 For any SLDFn F , the ultimate settlement rate is

�F = lim
x!!F

�F (x).

Note that for any SLDFn F we have for all x 2 (0; !F ) that S(x) > 0 and
by the chain rule

�d (ln (1� F ))
dx

= �d(lnS(x))
dx

= � 1

S(x)

dS(x)

dx
=

1

S(x)

dF (x)

dx
=
f(x)

S(x)
= �(x)

and so, by our de�nition of SLDFn, �F is well de�ned.

Example 7 The function

F (x) =

(
1� e

x(x�2)
(x�1)2 0 � x � 1
1 1 � x

)

is an SLDFn that is in�nitely di¤erentiable on (0;1) with !F = 1 and �F =1:

We begin by noting that SLDFns are determined by their hazard rate func-
tions:

Proposition 8 For any SLDFn F :

SF (x) = e
�
R x
0
�F (t)dt for every x 2 [0; !F ):
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Proof. We have noted that for any z 2 (0; !F )
d(lnS(x))

dx
= ��(x)

holds for all x 2 (0; z). We see that �(x) is integrable on [0; z]. But then S(x)
and T (x) = e�

R x
0
�(t)dt are two continuous functions with the same logarithmic

derivative on (0; z). It follows that

0 =
d(lnT (x)� lnS(x))

dx
=
d(ln T (x)S(x) )

dx

) ln
T (x)

S(x)
= c is constant on (0; z)

) T (x)

S(x)
= ec is constant on (0; z)

) T (x) = ecS(x) for every x 2 (0; z):

But then

S(0) = 1 = e0 = e�
R 0
0
�(t)dt = T (0)) ec = 1

) S(x) = T (x) = e�
R x
0
�(t)dt for every x 2 [0; z):

Since z 2 [0; !F ) was arbitrary,

SF (x) = e�
R x
0
�F (t)dt

for every x 2
[

z2[0;!F )

[0; z) = [0; !F )

as required.
We will have occasion to consider the case when the hazard rate function is

increasing or decreasing. This can often be readily determined, as in:

Proposition 9 For any SLDFn F with �F di¤erentiable on (�F ; !F ) = (0;1) :

d�F
dx

= �2F +
dfF
dx

SF
= �F

�
�F +

d ln fF
dx

�
:

Proof. From the de�nition of � = �F

d�

dx
=

d

dx

�
f

S

�
=
S df
dx � f

dS
dx

S2

=
S df
dx � f (�f)

S2
=
S df
dx

S2
+
f2

S2

=

�
f

S

�2
+

df
dx

S
= �2 +

df
dx

S

= �2 +
df
dxf

fS
= �2 + �

df
dx

f

= �2 + �
d ln f

dx
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as required.
The following proposition expresses the excess ratio function in terms of S

and bS:
Proposition 10 For any SLDFn F with �F <1;

RF (x) = cSF (x)� xSF (x)
�F

; for every x � 0:

Proof. From the de�nition of R(x) we have

R(x) =
1

�

Z 1

x

(y � x)f(y)dy

=
1

�

�Z 1

x

yf(y)dy � x
Z 1

x

f(y)dy

�
=

1

�

�Z 1

x

yf(y)dy � xS(x)
�

= bS(x)� xS(x)
�

:

as required.

Proposition 11 For any SLDFn F and a; b; c 2 R with a � b � 0 and �(c)F <
1, and further provided either c � 0 or a > b, we have (with the convention
that 00 = 1):

c

Z 1

a

(y � b)c�1 SF (y)dy =
Z 1

a

(y � b)c fF (y)dy � (a� b)c SF (a):

Proof. The case c = 0 reduces to the identity

0 =

Z 1

a

f(y)dy � (1)S(a) = S(a)� S(a):

So assume c 6= 0. The result follows from integration by parts

u = S(y) v = (y � b)c

c

Z 1

a

(y � b)c�1 S(y)dy =

Z 1

a

S(y)
�
c (y � b)c�1

�
dy

=

Z 1

a

udv = uv]1a �
Z 1

a

vdu

= (y � b)c S(y)]1a �
Z 1

a

(y � b)c (�f(y)) dy

=

�
lim
y!1

(y � b)c S(y)
�
� (a� b)c S(a) +

Z 1

a

(y � b)c f(y)dy
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Now clearly
c < 0) lim

y!1
(y � b)c S(y) � lim

y!1
S(y) = 0

and for y > b+ 1 and c > 0

(y � b)c S(y) � ycS(y) = yc
Z 1

y

f(x)dx

=

Z 1

y

ycf(x)dx �
Z 1

y

xcf(x)dx

it follows that

0 � lim
y!1

(y � b)c S(y)

� lim
y!1

Z 1

y

xcf(x)dx = 0 since
Z 1

0

xcf(x)dx = E[Xc] <1

) 0 = lim
y!1

(y � b)c S(y)

and we conclude that

c

Z 1

a

(y � b)c�1 S(y)dy = � (a� b)c S(a) +
Z 1

a

(y � b)c f(y)dy

and the result follows.

Corollary 12 If either a > b or c > 0, then:Z 1

a

(y � b)c�1 SF (y)dy <1,
Z 1

a

(y � b)c fF (y)dy <1:

Proof. Clear since under the conditions we must have (a� b)c S(a) <1:

Corollary 13 For any SLDFn F and c 2 R with �(c)F <1 :

�
(c)
F =

8>>><>>>:
lim

a!0;a>0

�
acSF (a) + c

R1
a
yc�1SF (y)dy

�
c < 0

1
c = 0

c
R1
0
xc�1SF (x)dx c > 0

9>>>=>>>; :
Proof. Suppose �rst that c < 0. Letting a > b = 0 in Proposition 11

�(c) =

Z 1

0

ycf(y)dy

= lim
a!0;a>0

Z 1

a

ycf(y)dy

= lim
a!0;a>0

�
acS(a) + c

Z 1

a

yc�1S(y)dy

�
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as asserted. The result is apparent for c = 0. For c > 0 the result follows by
letting b = 0 and a > 0 go to 0 in Proposition 11

�(c) =

Z 1

0

ycf(y)dy = lim
a!0

Z 1

a

ycf(y)dy = lim
a!0

�
acS(a) + c

Z 1

a

yc�1S(y)dy

�
= lim

a!0
acS(a) + lim

a!0

�
c

Z 1

a

yc�1S(y)dy

�
= lim

a!0
ac + c lim

a!0

Z 1

a

yc�1S(y)dy

=
�
lim
a!0

a
�c
+ c

Z 1

0

yc�1S(y)dy

= c

Z 1

0

yc�1S(y)dy

as asserted.
The existence of �(c)F for large positive c is typically discussed in terms of

the existence of �(n)F for large n 2 N = f1; 2; : : :g and with �(n)F termed a higher
moment. And it is often noted that the existence of higher moments is suggestive
of a thin right hand tail. We will see how to make that mathematically precise
below. The above corollary suggests that the existence �(c)F for negative c is more
subtle and we will see later that this relates with the analytic character of the
distribution function, more speci�cally its degree of monotonality (alternating
sign of higher order derivatives).
To any SLDFn F we will associate other SLDFns whose moments are closely

related to those of F . The simplest case comes from the observation that the

function bS(x) = R1
x
yf(y)dy

� resembles a survival function.

De�nition 14 For any SLDFn F we set bF = 1� cSF :
Proposition 15 For any SLDFn F with �nite mean, bF is an SLDFn with

f bF (x) =
xf(x)

�
, � bF = �F , ! bF = !F ,

� bF = �F �
1

!F
for �nite !F

� bF = �F for !F =1

and �
(c)bF =

�
(c+1)
F

�F
for every c 2 R.

Proof. We have

bF (0) = 1� bS(0) = 1� R10 yf(y)dy

�
= 1� �

�
= 1� 1 = 0

and
d bF
dx

=
d
�
1� cSF�
dx

= �d
cSF
dx

=
�1
�

d
R1
x
yf(y)dy

dx
=
xf(x)

�
� 0
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which clearly implies that bF is in�nitely di¤erentiable on (�F ; !F ) and contin-
uous and nondecreasing on [0;1). Also

1 > � =

Z 1

0

yf(y)dy = lim
x!1

Z x

0

yf(y)dy +

Z 1

x

yf(y)dy

= lim
x!1

Z x

0

yf(y)dy + lim
x!1

Z 1

x

yf(y)dy = �+ lim
x!1

Z 1

x

yf(y)dy

) lim
x!1

Z 1

x

yf(y)dy = 0

whence

lim
x!1

bF (x) = 1 � lim
x!1

bS(x) = 1� 1
�
lim
x!1

Z 1

x

yf(y)dy

= 1� 0
�
= 1

and we see that bF is an SLDFn. It is clear that bF has PDF
f bF (x) = d bF

dx
= �d

bS
dx

= � d
dx

 R1
x
yf(y)dy

�

!
=
xf(x)

�

We will make frequent use of the observation that F being an SLDFn implies
that the PDF f = fF is continuous on (0; !F )[ (!F ;1). In particular, we have

x < !F ) F (x) < 1

)
Z 1

x

f(y)dy = S(x) > 0

) there exists some z > x; � > 0 such that fjw � zj < �) f(w) > 0g

) bS(x) = R1x yf(y)dy

�
> 0

) bF (x) < 1
moreover

x > !F ) F (x) = 1

)
Z 1

x

f(y)dy = S(x) = 0

) f(w) = 0 for every w > x

) bS(x) = R1x yf(y)dy

�
= 0

) bF (x) = 1
9
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which establishes ! bF = !F . Similarly
x < �F ) f(x) = 0

) bF (x) = R x0 yf(y)dy
�

=

R x
0
y(0)dy

�
= 0

moreover

x > �F )
Z x

0

f(y)dy = F (x) > 0

) there exist z; � 2 R such that 0 < z < x; � > 0 such that fjw � zj < �) f(w) > 0g

) bF (x) = R x0 yf(y)dy
�

> 0

which establishes � bF = �F . Alternatively, since f bF (x) > 0 , f(x) > 0 it is
clear that � bF = �F and ! bF = !F . Fist assume that !F is �nite, then by
l�Hbopital:

� bF = lim
x!!F

� bF (x) = lim
x!!F

xf(x)

�bS (x) = lim
x!!F

x dfdx + f(x)

�d
bS
dx

= � lim
x!!F

x dfdx + f(x)

�f bF (x) = � lim
x!!F

x dfdx + f(x)

xf(x)

= � lim
x!!F

 
df
dx

f(x)
+
1

x

!
= � lim

x!!F

 
df
dx

f(x)

!
� 1

!F

= � lim
x!!F

�
f(x)

�S(x)

�
� 1

!F
= lim

x!!F
(�F (x))�

1

!F

= �F �
1

!F

as required. The same argument shows that � bF = �F for !F =1. Finally
�
(c)bF =

Z 1

0

ycf bF (y)dy =
Z 1

0

yc
�
yf(y)

�

�
dy =

1

�

Z 1

0

yc+1f(y)dy =
�
(c+1)
F

�F

completing the proof.

Remark 16 The distribution of bF is sometimes referred to as the time-biased
distribution. It has application to sampling theory when the probability of selec-
tion increases with time of exposure or attained age.

It is easy to generalize the time-biased distribution:

De�nition 17 For any SLDFn F and c 2 R with �(c)F <1, we denote by bF [c]
the SLDFn with PDF

f bF [c] (x) =
xcf(x)

�(c)
.
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Proposition 18 For any SLDFn F and c; d 2 R with �(c)F <1:

! bF [c] = !F and �(d)bF [c]
=
�
(c+d)
F

�
(c)
F

:

Proof. As before we see that

x < !F ) F (x) < 1

)
Z 1

x

f(y)dy = S(x) > 0

) there exist z > x; � > 0 such that fjw � zj < �) f(w) > 0g

) S bF [c](x) =

R1
x
ycf(y)dy

�(c)
> 0

) bF [c](x) < 1
and we have

x > !F ) F (x) = 1

)
Z 1

x

f(y)dy = S(x) = 0

) f(w) = 0 for every w > x

) S bF [c](x) =

R1
x
ycf(y)dy

�(c)
= 0

) bF [c](x) = 1
whence ! bF [c] = !F and also

�
(d)bF [c]

=

Z 1

0

ydf bF [c](y)dy =

Z 1

0

yd
�
ycf(y)

�(c)

�
dy

=
�(c+d)

�(c)

Z 1

0

yc+df(y)

�(c+d)
dy =

�
(c+d)
F

�
(c)
F

as asserted.
Analogous to this construction (actually �dual�in a sense to be made precise

below), we observe that the mean of any SLDFn F with �nite mean can be
expressed in terms of its survival function as � =

R1
0
S(x)dx. Therefore the

function ef(x) = S(x)
� is the PDF of another related SLDFn, which we denote aseF .

De�nition 19 For any SLDFn F with �nite mean, the coderived distribu-
tion of F , which we denote by eF , is the distribution function with PDF

ef(x) = f eF (x) = S(x)

�
.
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Remark 20 Observe that

d ef(x)
dx

=
1

�

dS(x)

dx
=
�f(x)
�

) f(x) = ��d
ef(x)
dx

and the PDF of the SLDFn F is obtained by di¤erentiation, or �derived�, from
that of eF . Back in the days of category theory, mathematicians liked to assign
the �co-� pre�x when reversing arrows. So eF is �coderived� from F , which
prompts the name assigned to eF .
Klugman [5] relates the right hand tail behavior of the original distribution

with that of the coderived distribution, which he terms the �equilibrium distri-
bution�. In particular, he considers the asymptotic behavior of the hazard rate
functions of the two distributions. We will pursue that somewhat further in
this paper. We begin with the observation that the excess ratio is the survival
function of the coderived distribution:

Proposition 21 If F is an SLDFn with �nite mean, survival function S and
excess ratio function R, then:

� eF = 0; ! eF = !F and R(x) =

R1
x
S(y)dyR1

0
S(y)dy

=

Z 1

x

ef(y)dy = S eF (x); for x � 0:
Proof. Let F have PDF f = fF , since ef(0) = 1

� > 0 is continuous at 0, clearly
� eF = 0. We also have

x < !F ) F (x) < 1

) � ef(x) = Z 1

x

f(y)dy = S(x) > 0

) eS(x) = Z 1

x

ef(y)dy > 0
) eF (x) < 1

and moreover
x > !F ) F (x) = 1

)
Z 1

x

f(y)dy = S(x) = 0

) ef(w) = S(w)

�
= 0 for every w > x

) eS(x) = Z 1

x

ef(w)dw = 0
) eF (x) = 1
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which establishes ! eF = !F . Now from Proposition 11 we haveZ 1

x

S(y)dy =

Z 1

x

yf(y)dy � xS(x)

= �x
Z 1

x

f(y)dy +

Z 1

x

yf(y)dy

=

Z 1

x

(y � x)f(y)dy;

Thus

R(x) =

R1
x
(y � x)f(y)dy

�
=

R1
x
S(y)dyR1

0
S(y)dy

=

Z 1

x

S(y)

�
dy =

Z 1

x

ef(y)dy:
as required.

Corollary 22 Under the assumptions of the Proposition:

dR

dx
(x) =

�S(x)
�

= � ef(x), for every x � 0.
Proof. By the Fundamental Theorem of Calculus

dR

dx
=
d

dx

 R1
x
S(y)dy

�

!
=
�S(x)
�

= � ef(x):
as required.
Let F be an SLDFn with �nite mean. Observe that eF is again an SLDFn

and so provided � eF < 1 we can repeat the process to get eeF . More precisely,
we can recursively construct the sequence of LDFns

eF [0] = FeF [1] = eFeF [n] = êF [n�1] for n = 2; 3; 4; ::.provided � eF [n�1] <1.

and refer to eF [n] as the n-th forward coderived LDFn of F . It is clear that
! eF [n] = !F for n = 2; 3; 4; ::.provided � eF [n�1] <1.
We will soon see (Proposition 27) that quite generally the existence of an

n-th forward coderived LDFn is equivalent to having a �nite n-th moment

eF [n] exists , �(n) <1:

The PDF of the coderived loss distribution is continuous and nonincreasing and
so a mode of any such coderived distribution is at x = 0 where its PDF takes
its maximum value of 1� . Conversely, if F is an SLDFn with nonincreasing PDF

f , then it is easy to verify that G (x) = f(0)�f(x)
f(0) is an SLDFn with coderived
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distribution eG = F . It is also worth noting that because the survival curve
completely determines the distribution, the coderived distribution completely
determines the original distribution. And indeed for any n, the n-th forward
coderived LDFn, should there be one, completely determines the original LDFn.
We conclude this section with a rather general observation on the existence of
moments.

Proposition 23 If F is an SLDFn with �nite mean, then there exist unique
a; c 2 R [ f1g such that:

(0; 1) � (a; c) =
n
b 2 R� fa; cg j�(b)F <1

o
:

Proof. Set A =
n
b 2 Rj�(b)F <1

o
. We claim that A is a connected subset of

R. To see this, note that

a; c 2 A)
Z 1

0

yaf(y)dy;

Z 1

0

ycf(y)dy <1

)
Z 1

0

yaf(y)dy;

Z 1

1

yaf(y)dy;

Z 1

0

ycf(y)dy;

Z 1

1

ycf(y)dy <1:

So suppose a < b < c with a; c 2 A, then we have

0 < y < 1) ya > yb > yc )1 >

Z 1

0

yaf(y)dy >

Z 1

0

ybf(y)dy

1 < y ) ya < yb < yc )
Z 1

1

ybf(y)dy <

Z 1

1

ycf(y)dy <1

) �(b) =

Z 1

0

ybf(y)dy =

Z 1

0

ybf(y)dy +

Z 1

1

ybf(y)dy <1

) b 2 A:

And it follows that A is connected, as claimed. Now since F has �nite mean,
we clearly have

�(0) =

Z 1

0

y0f(y)dy =

Z 1

0

1f(y)dy = 1 <1) 0 2 A

�(1) =

Z 1

0

y1f(y)dy =

Z 1

0

yf(y)dy = � <1) 1 2 A

and since the connected subsets of R are exactly the intervals, the result follows.

Example 24 For the usual families of loss distributions (beta, Pareto, burr,
Weibull, gamma,...) the set

�
c 2 Rj�(c) <1

	
is an open interval. The fol-

lowing example, provided by Derek Scha¤, shows that is not always the case for

14
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loss distributions. De�ne

g(x) =

�
0 x � 2�
1

x ln x

�2
x > 2

�
)

Z 1

0

ycg(y)dy =

Z 1

2

ycg(y)dy

=

Z 1

ln 2

e(c�1)u

u2
du

�
<1 c � 1
1 c > 1

�
where we used the change of variable u = ln y, noting that for c � 1 the integral
is dominated by the convergent integral

R1
0

du
u2 while for c > 1 l�Hbopital shows

that the integrand does not even go to 0 as u!1:We see that

fF (x) =
g(x)R1

0
g(y)dy

) fc 2 RjE [Xc] <1g = (�1; 1]:

3 Moments and the Coderived Distribution

The discussion leading to the de�nition of a coderived loss distribution together
with Proposition 10 gives the �rst two Items of:

Proposition 25 For any SLDFn F with �nite mean � and all x � 0 :

1. f eF (x) = SF (x)
�

2. S eF (x) = RF (x) = bSF (x)� xf eF (x)
3. SF (x) > 0) � eF (x) =

�
�
bSF (x)
SF (x)

� x
��1

> 0

4. SF (x) > 0) � eF (x) =
R1
0
f(x+z)dzR1

0
zf(x+z)dz

:

Proof. Items 1 and 2 have been established. For Item 3, we have seen that

SF (x) > 0

) S eF (x) > 0 and f eF (x) = SF (x)

�
> 0

and so by Items 1 and 2

0 < � eF (x) = f eF (x)
S eF (x) =

�
S eF (x)
f eF (x)

��1
=

 bSF (x)� xf eF (x)
f eF (x)

!�1

=

 bSF (x)
f eF (x) � x

!�1
=

 bSF (x)
SF (x)
�

� x
!�1

=

 
�
bSF (x)
SF (x)

� x
!�1
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as required. And then Item 4 follows from de�nitions and the change of variable
z = y � x

� eF (x) =
 
�bSF (x)
SF (x)

� x
!�1

=

 R1
x
yf(y)dyR1

x
f(y)dy

� x
!�1

=

 R1
x
yf(y)dy � x

R1
x
f(y)dyR1

x
f(y)dy

!�1
=

R1
x
f(y)dyR1

x
yf(y)dy �

R1
x
xf(y)dy

=

R1
x
f(y)dyR1

x
(y � x) f(y)dy

=

R1
0
f(x+ z)dzR1

0
zf(x+ z)dz

completing the proof.
As was noted, the coderived distribution determines the original:

Proposition 26 For any two SLDFns with �nite means F and G

F = G , eF = eG:
Proof. Trivially, F = G) eF = eG. Conversely

eF = eG) SF (x)

�F
= f eF (x) = f eG(x) = SG(x)

�G

and letting x = 0 we have

1

�F
=

SF (0)

�F
=
SG(0)

�G
=

1

�G
) �F = �G

) 1� F = SF = SG = 1�G
) F = G

as asserted.
The moments of coderived distributions are readily obtained from those of

the original distribution:

Proposition 27 If F is an SLDFn and n 2 N, then:

�
(n)
F <1) �

(k)eF =
�
(k+1)
F

(k + 1)�F
<1 for k = 0; 1; 2; :::; n� 1:

Proof. For k = 0 we have �(0)eF = 1 = �
� =

�
(1)
F

(1)�F
. More generally, from

Proposition 23 we know that

�
(n)
F <1) �

(k)
F <1 for k = 0; 1; 2; :::; n
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and from Corollary 13

�
(k)eF =

Z 1

0

xkf eF (x)dx =
Z 1

0

xk
S(x)

�
dx =

1

(k + 1)�

Z 1

0

xk+1f(x)dx =
�
(k+1)
F

(k + 1)�F

as required.
We see that

F has n �nite moments �(k)F , k = 1; 2; 3; :::; n

, eF has n� 1 �nite moments �(k)eF , k = 1; 2; 3; :::; n� 1:

Taking the coderived distribution can remove the existence of a higher moment.
The ultimate settlement rate �F is a useful measure of the tail behavior

of a loss distribution. Our �rst signi�cant result is that the tail behavior of
the coderived loss variables has �F in common with the original, i.e., �F is a
�invariant:

Proposition 28 If F is an SLDFn with �(n)F <1 , then:

�F = � eF [k] ; 0 � k � n:

Proof. Note that by Proposition 25 and Corollary 22

� eF = lim
x!!F

� eF (x)
= lim

x!!F

f eF (x)
S eF (x)

=
1

�
lim
x!!F

S(x)

R(x)

and since lim
x!!F

S(x) = 0 = lim
x!!F

R(x) we may invoke l�Hbopital
� eF =

1

�
lim
x!!F

dS
dx
dR
dx

=
1

�
lim
x!!F

�f(x)
�S(x)
�

=
�

�
lim
x!!F

f(x)

S(x)

= lim
x!!F

�F (x) = �F

and since �(n)F < 1 ) �
(k)
F < 1, 1 � k � n, the result for n � 2 follows by

repeated application

�F = � eF = � eF [1] = � eF [2] = � � � = � eF [n]
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Coderived Hazard Functions

0.5

0.55

0.6

0.65

0.7

0.75

0 1 2 3 4 5 6 7 8 9 10

h h1 h2 h3 h4 h5 h6 h7 h8 h9

completing the proof.
Perhaps the easiest way to understand coderived distributions is to look at

their hazard rate functions. In the chart below

h = �F with �F =
1

2
and hx = � eF [x] ; 1 � x � 10:

The chart illustrates how the higher coderived distributions �anticipate the tail�,
converging faster to the constant �F :

Another way to see that the coderived variable shares tail behavior is to
compare the survival curve of the coderived variable with that of conditional
survival excess of a particular loss amount c. More precisely, we make the:

De�nition 29 Let F be an SLDFn and c be a positive constant such that
F (c) < 1. The over c residual loss variable, denoted F>c is the SLDFn
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determined from

F>c(x) = 1� SF (x+ c)
SF (c)

for every x � 0

() SF>c =
SF (x+ c)

SF (c)
for every x � 0.

The following shows that the tail behavior of a residual variable is also akin to
that of the original loss variable and that there is a simple relationship between
this residual and the coderived variables:

Proposition 30 If F is an SLDFn and c is a positive constant such that
SF (c) > 0 ,then:

1. !F>c = !F � c

2. fF>c(x) = fF (x+c)
SF (c)

for every x � 0

3. d � 0 such that SF (c+ d) > 0) (F>c)
>d
= F>c+d

4. �F>c(x) = �F (x+ c) for every x � 0

5. �F>c = �F

6. eF>c = gF>c
7. �F <1) �F>c = �F

S eF (c)
SF (c)

=
S eF (c)
f eF (c) =

1
� eF (c)

8.
� eF [n]�>c = gF>c[n] for every n 2 N:

Proof. Note that SF (c) > 0 ) F (c) < 1 ) c � !F ) !F � c � 0. Item 1 is
obvious

x < !F � c) x+ c < !F ) F (x+ c) < 1

) S(x+ c) > 0

) F>c(x) = 1� SF (x+ c)
SF (c)

< 1

and
x > !F � c) x+ c > !F ) F (x+ c) = 1

) S(x+ c) = 0

) F>c(x) = 1� SF (x+ c)
SF (c)

= 1:
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Item 2 follows from the chain rule

fF>c(x) =
d

dx

�
F>c(x)

�
=
d

dx

�
�SF (x+ c)
SF (c)

�
=

�1
SF (c)

d

dx
(SF (x+ c)) =

�1
SF (c)

d (SF (x+ c))

d (x+ c)

d (x+ c)

dx

=
�1
SF (c)

(�fF (x+ c)) =
fF (x+ c)

SF (c)
:

For Item 3

S(F>c)>d(x) =
SF>c(x+ d)

SF>c(d)
=

SF ((x+d)+c)
SF (c)

SF (d+c)
SF (c)

=
SF (x+ (c+ d))

SF (c+ d)
= SF>c+d(x)

)
�
F>c

�>d
= F>c+d

Item 4 is immediate from Item 2

�F>c(x) =
fF>c(x)

SF>c(x)
=

fF (x+c)
SF (c)

SF (x+c)
SF (c)

=
fF (x+ c)

SF (x+ c)
= �F (x+ c)

and Item 5 is immediate from Item 4

�F>c = lim
x!1

�F>c(x) = lim
x!1

�F (x+ c) = lim
x!1

�F (x) = �F :

Observe next that letting G = F>c we have the PDF

f eG(x) = SG(x)

�G
=
SF>c(x)

�G
=

SF (x+c)
SF (c)

�G
=
SF (x+ c)

�GSF (c)

while by Item 2 we also have the PDF

f eF>c(x) =
f eF (x+ c)
S eF (c) =

SF (x+c)
�F

S eF (c) =
SF (x+ c)

�FS eF (c)
which implies that the two PDFs are proportional, whence equal

SF (x+ c)

�GSF (c)
= f eG(x) = f eF>c(x) =

SF (x+ c)

�FS eF (c)
) gF>c = eG = eF>c

which proves Item 6. For Item 7 just note that from the above equation with
x = 0

SF (0 + c)

�GSF (c)
=

SF (0 + c)

�FS eF (c)
) �F>c = �G = �F

S eF (c)
SF (c)

=
S eF (c)
SF (c)
�F

=
S eF (c)
f eF (c) =

1
f eF (c)
S eF (c)

=
1

� eF (c) :
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Finally, Item 8 is a straightforward induction on n using Item 6; indeed, case
n = 1 is Item 6, and then

� eF [n+1]�>c = �geF [n]�>c = ^� eF [n]�>c = ĝF>c[n] = gF>c[n+1]
which completes the induction and the proof.
This provides a perspective on the coderived survival curve of an SLDFn,

inasmuch as the coderived survival is to the original survival probability in the
same proportion as the mean residual life is to the overall mean lifetime

S eF (c)
SF (c)

=
�F>c

�F
:

And the hazard rate function for the coderived distribution is the reciprocal of
the mean residual life

� eF (c) = 1

�F>c

:

This perspective leads to a relationship between �F and � eF :
Proposition 31 If F is an SLDFn with �nite mean, then whenever �F is in-
creasing (nondecreasing, decreasing, nonincreasing) on (0; !F ) =

�
0; ! eF �, then

so too is � eF :
Proof. Suppose � is increasing and �x any z > 0, then for y + z < !F

d

dy

�
S (y + z)

S (y)

�
=
S (y) d

dy (S (y + z))� S (y + z)
d
dy (S (y))

S (y)
2

=
S (y) (�f (y + z)) + S (y + z) f(y)

S (y)
2

=
S (y + z) f(y)� S (y) (f (y + z))

S (y)
2

=
S (y + z)

S(y)
�(y)� S (y + z)

S(y)

f (y + z)

S (y + z)

=
S (y + z)

S(y)
�(y)� S (y + z)

S(y)
�(y + z)

=
S (y + z)

S(y)
(�(y)� �(y + z)) < 0:

And so S(y+z)
S(y) is a a decreasing function of y. It follows that

x < y ) S (x+ z)

S (x)
>
S (y + z)

S (y)
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) �F>x =

1Z
0

SF>x (z) dz =

1Z
0

S (x+ z)

S (x)
dz >

1Z
0

S (y + z)

S (y)
dz =

1Z
0

SF>y (z) dz = �F>y

) � eF (x) = 1

�F>x

<
1

�F>y

= � eF (y)
and � eF is also increasing, as required. The case of � nondecreasing follows
similarly, simply by changing strict inequalities to inequalities. The cases of �
decreasing and nonincreasing follow by reversing inequalities.

Proposition 32 If F is an SLDFn with �nite mean and c ia a positive constant
such that �F (c) > 0 ,then:

�F nondecreasing ) � eF (c) � �F (c)
�F increasing ) � eF (c) > �F (c)

�F nonincreasing ) � eF (c) � �F (c)
�F decreasing ) � eF (c) < �F (c) :

Proof. Suppose � is nondecreasing. For any z > 0

S (c+ z) = e

�

c+zZ
0

�(t)dt

S (c+ z)

S (c)
= e

cZ
0

�(t)dt�

c+zZ
0

�(t)dt

= e

�

c+zZ
c

�(t)dt

:

And since � is nondecreasing

t 2 (c; c+ z)) � (t) � � (c)

)
c+zZ
c

�(t)dt �
c+zZ
c

�(c)dt = � (c) z

) �
c+zZ
c

�(t)dt � �� (c) z

) S (c+ z)

S (c)
= e

�

c+zZ
c

�(t)dt

� e��(c)z:

And we have

0 <
1

� eF (c) =
1Z
0

S (c+ z)

S (c)
dz �

1Z
0

e��(c)zdz =

�
e��(c)z

��(c)

�1
0

=
1

� (c)

) � eF (c) � � (c)
22
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as required. The case of � increasing follows by making the inequalities strict.
The case of � nonincreasing/decreasing follows similarly, reversing inequalities.

Proposition 33 If F is an SLDFn with �nite mean and �F > 0, then �
(n)
F <1

for every n 2 N:

Proof. We �rst show that �F > 0) � eF <1: Observe that f eF (x) = S(x)
� > 0

for every x < !F = ! eF . By Proposition 28
lim
x!!F

f eF (x)
S eF (x) = lim

x!!F
� eF (x) = � eF = �F > 0

) 0 < lim
x!!F

S eF (x)
f eF (x) =

1

�F
<1:

This entails that there exist constants M and b > 0 such that

S eF (x)
f eF (x) � b for every x 2 (M;!F )

) S eF (x) � bf eF (x) for every x 2 (M;!F ) :
Whence

� eF =

Z 1

0

S eF (x)dx
=

Z M

0

S eF (x)dx+
Z !F

M

S eF (x)dx
�

Z M

0

1dx+

Z 1

M

bf eF (x)dx
� M + b <1

as claimed. But then, again by Proposition 28, we must have that � eF [n] < 1
for every n 2 N. The proof is completed by induction on n, the case n = 1 being
clear. So assume the result holds for k � n. Note that � eF = �F > 0:Then we
have, by induction applied to eF and Proposition 27

�
(n+1)
F = (n+ 1)�

(n)eF �F <1

completing the induction and the proof.

Remark 34 The lognormal density shows that the converse does not hold.

Proposition 35 If F is an SLDFn with 0 < �F <1 , then lim
c!!F

�F>c = 1
�F
:

Proof. We have from l�Hbopital
lim
c!!F

�F>c = lim
c!!F

Z 1

0

SF>c(x)dx = lim
c!!F

Z 1

0

SF (x+ c)

SF (c)
dx
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= lim
c!!F

R1
0
SF (x+ c)dx

SF (c)
= lim

c!!F

R1
c
SF (x)dx

SF (c)

= lim
c!!F

d
dc

R1
c
SF (x)dx

d
dcSF (c)

= lim
c!!F

�SF (c)
�fF (c)

= lim
c!!F

1

�F (c)
=

1

lim
c!!F

�F (c)
=

1

�F

as claimed.

Proposition 36 If F is an SLDFn with �nite mean and 0 < �F <1 , then:

lim
x!!F

S eF (x)
SF (x)

=
1

�F �F
:

Proof. From the above propositions

lim
x!!F

S eF (x)
SF (x)

= lim
x!!F

�F>x

�F
=

lim
x!!F

�F>x

�F
=

1
�F

�F
=

1

�F �F

as claimed.

Proposition 37 If F is an SLDFn with �nite mean and 0 < �F <1 , then:

lim
x;c!!F

SgF>c(x)

SF>c(x)
= 1:

Proof. From the above

lim
c;x!!F

SgF>c(x)

SF>c(x)
= lim

c!!F

�
lim
x!!F

SgF>c(x)

SF>c(x)

�

= lim
c!!F

1

�F>c�F>c

= lim
c!!F

1

�F>c�F

=
1

�F
lim
c!!F

1

�F>c

=
1

�F

1

lim
c!!F

�F>c

=
1

�F

1
1
�F

=
1

1
= 1

as claimed.

Proposition 38 For any SLDFn F such that �(n)F <1 for every n 2 N:

L eF (t) = 1� LF (t)
�t

for t > 0

and if F has a moment generating function, then so does eF with

M eF (t) = MF (t)� 1
�t

for t > 0.
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Proof. We have, from Proposition 27, for every t > 0

L eF (t) =
1X
k=0

(�1)k�(k)eF tk

k!

=
1X
k=0

(�1)k
�
�
(k+1)
F

(k+1)�

�
tk

k!

=
1

�

1X
k=0

(�1)k�(k+1)F tk

(k + 1)!

=
1

�t

1X
k=0

(�1)k�(k+1)F tk+1

(k + 1)!

) ��tL eF (t) =
1X
k=0

(�1)k+1�(k+1)F tk+1

(k + 1)!

=

1X
j=1

(�1)j�(j)F tj
j!

= LF (t)� 1

) L eF (t) = 1� LF (t)
�t

:

And so if MF (t) exists, it follows that

M eF (t) = L eF (�t) = 1� LF (�t)
��t =

LF (�t)� 1
�t

=
MF (t)� 1

�t

as required.
A straightforward integration by parts, however, provides the stronger result:

Proposition 39 For any SLDFn F :

L eF (t) = 1� LF (t)
�t

for t > 0:
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Proof. Fix t > 0, we have

L eF (t) =

Z 1

0

e�txf eF (x)dx
=

Z 1

0

e�tx
S(x)

�
dx

=
1

�

Z 1

0

udv where u = S(x) and v = �e
�tx

t

=
1

�

�
[uv]

1
0 �

Z 1

0

vdu

�
=

1

�

��
�e

�txS(x)

t

�x!1

x=0

�
Z 1

0

�
�e

�tx

t

�
(�f(x)) dx

�
=

1

�t

�
1�

Z 1

0

e�txf(x)dx

�
=

1

�t
(1� LF (t))

as required.
Another relationship between the moments of the original and the coderived

distributions is:

Proposition 40 For any SLDFn F

�
(n)
F <1) � eF [k] =

�
(k+1)
F

(k + 1)�
(k)
F

for k = 0; 1; 2; :::; n� 1:

Proof. Note that by Proposition 23

�
(n)
F <1) �

(k)
F <1 for k = 0; 1; 2; :::; n

so our assumption is inductive. For k = 0 the assertion is

�F = � eF [0] =
�
(1)
F

(1)�
(0)
F

=
�F
1 � 1

which is vacuous. For k = 1 the assertion is just

� eF = � eF [1] =
�
(2)
F

2�
(1)
F

which holds by Proposition 27. We proceed by induction, invoking the case n�1
for G = eF , which is indeed an SLDFn with �(n�1)eF <1. Invoking Proposition
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27 twice more

� eF [k] = � eG[k�1]

=
�
(k)
G

k�
(k�1)
G

=
�
(k)eF

k�
(k�1)eF

=

 
�
(k+1)
F

(k + 1)�F

!
�
 
k

 
�
(k)
F

k�F

!!

=
�
(k+1)
F

(k + 1)�
(k)
F

completing the induction and the proof.

Corollary 41 For any SLDFn F and positive constant c with SF (c) > 0 :

�
(n)
F <1)

S eF [k](c)

SF (c)
=
�
(k)
F>c

�
(k)
F

for k = 0; 1; 2; :::; n:

Proof. The proof is by induction. Case k = 1 follows from Item 7 of Proposition
30. Combining Items 7 and 8 of that same Proposition, together with Proposition
40 and the induction hypothesis

S eF [k+1](c)

SF (c)
=

SgeF [k]
(c)

S eF [k](c)

S eF [k](c)

SF (c)
=
�( eF [k])

>c

� eF [k]

�
(k)
F>c

�
(k)
F

=
�gF>c

[k]

� eF [k]

�
(k)
F>c

�
(k)
F

=

�
(k+1)

F>c

k+1

�
(k+1)
F

k+1

=
�
(k+1)
F>c

�
(k+1)
F

completing the induction and the proof.
The following result will come in handy later when we relate the concept of

coderived distribution with ultimate settlement rates and tail �thickness�.

Proposition 42 If F is an SLDFn and n 2 N with �(n)F <1 , then:

lim
x!!F

fF (x)

f eF [m](x)
=
�mF �

(m)
F

m!
for m = 0; 1; 2; :::; n:

Proof. Note that

x < !F = ! eF [m�1] ) f eF [m](x) =
S eF [m�1](x)

� eF [m�1]
> 0
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assures that we are not dividing by 0. For m = 0; 1 we have

lim
x!!F

fF (x)

f eF [0](x)
= lim

x!!F

fF (x)

fF (x)
= lim

x!!F
1 = 1 = �

(0)
F (�F )

0

lim
x!!F

fF (x)

f eF [1](x)
= lim

x!!F

fF (x)

f eF (x) = lim
x!!F

fF (x)
SF (x)
�F

= �F lim
x!!F

fF (x)

SF (x)
= �F lim

x!!F
�F (x) = �

(1)
F �F

and the formula holds for m = 0; 1. Proceed by induction on m noting that
Proposition 23 assures that our hypothesis is inductive. Invoking the casem = 1
and the induction hypothesis

lim
x!!F

fF (x)

f eF [m+1](x)
= lim

x!!F

fF (x)

f eF [m](x)

f eF [m](x)

fgeF [m]
(x)

= lim
x!!F

fF (x)

f eF [m](x)
lim
x!!F

f eF [m](x)

fgeF [m]
(x)

=
�mF �

(m)
F

m!
� eF [m]� eF [m]

And then by Propositions 40 and 28

lim
x!!F

fF (x)

f eF (m+1)(x)
=
�mF �

(m)
F

m!

�
(m+1)
F

(m+ 1)�
(m)
F

�F =
�m+1F �

(m+1)
F

(m+ 1)!

completing the induction and the proof.

Corollary 43 If F is a non-vanishing SLDFn with 0 < �F <1 , then:

for every m;n 2 N, lim
x!1

f eF [n](x)

f eF [m](x)
=
�m�nF n!�

(m)
F

m!�
(n)
F

:

Proof. By Proposition 33 �(k)F < 1 for every k 2 N and so the proposition
gives

lim
x!1

f eF [n](x)

f eF [m](x)
= lim

x!1

f eF [n](x)

fF (x)
lim
x!1

fF (x)

f eF [m](x)

=
n!

�nF�
(n)
F

�mF �
(m)
F

m!
=
�m�nF n!�

(m)
F

m!�
(n)
F

as asserted.
Proposition 42 suggests that the series of higher coderived SLDFns F; eF ; eF [2]; eF [3]; :::

share a similar right hand tail behavior and that it may sometimes be viable to
approximate the right hand tail of an SLDFn F with that of a higher coderived

loss distribution eF [m], adjusted by the scalar �mF �(m)
F

m! . Generalizing Proposition
40 yet one step further, we see that all the moments of all coderived distributions
are readily obtained from those of F :
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Proposition 44 If F is a non-vanishing SLDFn such that for every n 2 N we
have �(n)F <1 , then:�

j + k

k

�
�
(k)eF [j]

=
�
(j+k)
F

�
(j)
F

for every j; k 2 N [ f0g:

Proof. The case j = 0 is just
�
k
k

�
�
(k)
F = �

(k)
F =

�
(k)
F

�
(0)
F

which is certainly true for

all integers k � 0. For the case j = 1, Proposition 27 gives�
k + 1

k

�
�
(k)eF [1]

= (k + 1)�
(k)eF = (k + 1)

 
�
(k+1)
F

(k + 1)�F

!
=
�
(k+1)
F

�
(1)
F

and so the result again holds for all integers k � 0. The proof is by induction
on j. Let G = eF [j�1]. By Proposition 27

�
(k)eF [j]

= �
(k)eG

=
�
(k+1)
G

(k + 1)�G

=
�
(k+1)eF [j�1]

(k + 1)� eF [j�1]
:

Invoking induction on the numerator and Proposition 40 on the denominator,
we have

�
(k)eF [j]

=

�
(j�1+k+1)
F

�
(j�1)
F�

j�1+k+1
k+1

�
(k + 1)

�
�
(j�1+1)
F

(j�1+1)�(j�1)F

�

=

�
(j+k)
F

�
(j�1)
F�

j+k
k+1

�
(k + 1)

�
�
(j)
F

j�
(j�1)
F

�
=

(k + 1)!(j + k � (k + 1))!j�(j+k)F

(j + k)! (k + 1)�
(j)
F

=
(k + 1)! (j � 1)!j�(j+k)F

(j + k)!(k + 1)�
(j)
F

=
k!j!�

(j+k)
F

(j + k)!�
(j)
F

=

�
j + k

k

��1
�
(j+k)
F

�
(j)
F

completing the induction and the proof.
We next present a series of straightforward results on coderived loss distri-

butions.
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Proposition 45 If F is an SLDFn such that for every n 2 N we have �(n)F <
1, then

for every n 2 N; and t > 0; L eF [n](t) =
n!

�
(n)
F

1X
k=0

(�1)k�(n+k)F tk

(n+ k)!
:

And if F has a moment generating function, then so does eF [n] with
M eF [n](t) =

n!

�
(n)
F

1X
k=0

�
(n+k)
F tk

(n+ k)!
.

Proof. We need only verify the assertion for the Laplace transform, since that
clearly implies the formula for the moment generating function. For n = 1 the
assertion becomes

L eF (t) = 1

�

1X
k=0

(�1)k�(k+1)F tk

(k + 1)!
=
�1
�t

1X
k=0

(�1)k+1�(k+1)F tk+1

(k + 1)!

=
�1
�t

1X
j=1

(�1)j�(j)F tj
j!

=
�1
�t

0@ 1X
j=0

(�1)j�(j)F tj
j!

� 1

1A
=
�1
�t
(LF (t)� 1) =

1� LF (t)
�t

which is known to hold by Proposition 38. The proof is by induction on n. For
n > 1 we again have by Proposition 38, induction, and Proposition 40

L eF [n](t) =
1� L eF [n�1](t)

� eF [n�1]t

=
1

� eF [n�1]t

 
1� (n� 1)!

�
(n�1)
F

1X
k=0

(�1)k�(n+k�1)F tk

(n+ k � 1)!

!

=
1

�
(n�1+1)
F

(n�1+1)�(n�1)F

t

 
� (n� 1)!
�
(n�1)
F

1X
k=1

(�1)k�(n+k�1)F tk

(n+ k � 1)!

!

=
1

�
(n)
F

n�
(n�1)
F

t

 
� (n� 1)!
�
(n�1)
F

1X
k=1

(�1)k�(n+k�1)F tk

(n+ k � 1)!

!

=
n�

(n�1)
F

�
(n)
F

 
(n� 1)!
�
(n�1)
F

1X
k=1

(�1)k�1�(n+(k�1))F tk�1

(n+ (k � 1))!

!

=
n!

�
(n)
F

0@ 1X
j=0

(�1)j�(n+j)F tj

(n+ j)!

1A
completing the induction and the proof.
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Proposition 46 For any SLDFn F and for every n 2 N:

1. �(n)F <1) f eF [n](x) =
n
R1
x
(y�x)n�1fF (y)dy

�
(n)
F

2. �(n)F <1) S eF [n](x) =
R1
x
(y�x)nfF (y)dy

�
(n)
F

3. �(n)F <1) � eF [n](x) =
n
R1
x
(y�x)n�1fF (y)dyR1

x
(y�x)nfF (y)dy for every x < !F

4. m;n 2 N; �(n)F <1; 0 � m � n) dmS eF [n]
dxm =

(�1)mn!�(n�m)
F S eF [n�m]

(n�m)!�(n)F

5. (CVF )
2
= 2

�
� eF
�F

�
� 1

6. CVF = 1, �F = � eF
7. CVF < 1, �F > � eF
8. CVF > 1, �F < � eF

Proof. The proof of Item 1 is by induction on n. For n = 1 the assertion
reduces to

f eF (x) =
R1
x
(y � x)0 fF (y)dy

�F
=

R1
x
fF (y)dy

�
=
SF (x)

�

and for n = 2 the assertion is

f eF [2](x) =
2
R1
x
(y � x)fF (y)dy
�
(2)
F

=

1
�

R1
x
(y � x)fF (y)dy

�
(2)
F

2�

=
RF (x)

�
(2)
F

2�

=
S eF (x)
� eF

and both hold by Proposition 25. Then we have, for n > 1, from Propositions
25 and 40, and induction

f eF [n](x) =
S eF [n�1](x)

� eF [n�1]

=

R1
x
f eF [n�1](z)dz

�
(n)
F

n�
(n�1)
F

=
n�

(n�1)
F

�
(n)
F

Z 1

x

(n� 1)
R1
z
(y � z)n�2 fF (y)dy
�
(n�1)
F

dz

=
n (n� 1)
�
(n)
F

Z 1

x

Z 1

z

(y � z)n�2 fF (y)dydz
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=
n (n� 1)
�
(n)
F

Z 1

x

Z y

x

(y � z)n�2 fF (y)dzdy

=
n (n� 1)
�
(n)
F

Z 1

x

fF (y)

Z y

x

(y � z)n�2 dzdy

=
n (n� 1)
�
(n)
F

Z 1

x

fF (y)

"
� (y � z)

n�1

n� 1

#z=y
z=x

dy

=
n (n� 1)
�
(n)
F

Z 1

x

fF (y)

 
(y � x)n�1

n� 1

!
dy

=
n
R1
x
(y � x)n�1 fF (y)dy

�
(n)
F

completing the proof of Item 1. Item 2 follows from Item 1. Indeed, for n = 1
the assertion reduces to

S eF (x) =
R1
x
(y � x) fF (y)dy

�
= RF (x)

which holds by Proposition 25. Then we have from Item 1

S eF [n](x) =

Z 1

x

f eF [n](z)dz

=

Z 1

x

 
n
R1
z
(y � z)n�1 fF (y)dy

�
(n)
F

!
dz

=
n

�
(n)
F

Z 1

x

Z 1

z

(y � z)n�1 fF (y)dydz

=
n

�
(n)
F

Z 1

x

Z y

x

(y � z)n�1 fF (y)dzdy

=
n

�
(n)
F

Z 1

x

fF (y)

Z y

x

(y � z)n�1 dzdy

=
n

�
(n)
F

Z 1

x

fF (y)

�
� (y � z)

n

n

�z=y
z=x

dzdy

=
1

�
(n)
F

Z 1

x

fF (y) (y � x)n dy

completing the proof of Item 2. Item 3 follows from Items 1 and 2 and the
fact that ! eF [n] = !F . Item 4 follows from Item 2 by di¤erentiating under the
integral

dmS eF [n]

dxm
(x) =

dm
� R1

x
(y�x)nfF (y)dy

�
(n)
F

�
dxm
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=
1

�
(n)
F

�Z 1

x

dm

dxm
((y � x)n fF (y)) dy

�
=

1

�
(n)
F

�Z 1

x

(�1)m n!
(n�m)! (y � x)

n�m
fF (y)dy

�

=
(�1)m n!

(n�m)!�(n)F

�Z 1

x

(y � x)n�m fF (y)dy
�

=
(�1)m n!�(n�m)F

(n�m)!�(n)F

 R1
x
(y � x)n�m fF (y)dy

�
(n�m)
F

!

=
(�1)m n!�(n�m)F S eF [n�m] (x)

(n�m)!�(n)F

which establishes Item 4. Note that

(CVF )
2
=

�
(2)
F � �2F
�2F

=
�
(2)
F

�2F
� 1

=
2

�F

 
�
(2)
F

2�F

!
� 1 = 2

�F

�
� eF �� 1

which establishes Item 5. Since Items 6, 7 and 8 follow immediately from Item
5, this completes the proof.
A simple but useful observation is that taking the coderived distribution

commutes with a change of scale:

De�nition 47 Let F be a SLDFn and a > 0 be any positive constant; the
SLDFn Fa is de�ned as

Fa(x) = F (ax):

Proposition 48 For every a; c > 0 and for every n 2 N [ f0g :

1. !Fa = a!F

2. SFa(x) = SF (ax)

3. fFa(x) = afF (ax)

4. �Fa(x) = a�F (ax)

5. �(c)Fa =
�
(c)
F

ac

6. d(Fa)[c] = � bF [c]�
a

7. g(Fa)[n] = � eF [n]�
a
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8. S(ac) > 0) (Fa)
>c
= (F>ac)a

Proof. Items 1 and 2 are obvious, Item 3 follows from the chain rule

fFa(x) =
dFa
dx

=

�
dF

dz
jz=ax

�
dz

dx
= (fF (z)jz=ax) a = afF (ax):

and Item 4 is then an immediate consequence

�Fa(x) =
fFa(x)

SFa(x)
=
afF (ax)

SF (ax)
= a�F (ax):

For Item 5, use Item 3 and the change of variable z = ay

�
(c)
Fa

=

Z 1

0

ycfFa(y)dy =

Z 1

0

ycafF (ay)dy

=

Z 1

0

�z
a

�c
fF (z)dz =

R1
0
zcfF (z)dz

ac

=
�
(c)
F

ac
:

Item 6 now follows from

fd(Fa)[c](x) =
xcfFa(x)

�
(c)
Fa

=
xcafF (ax)

�
(c)
F

ac

= a

 
(ax)

c
fF (ax)

�
(c)
F

!
= af bF [c](ax)

= f( bF [c])
a

(x):

For item 7, note �rst that this holds vacuously for n = 0

g(Fa)[0] = Fa = � eF [0]�
a

and for n = 1

ffFa(x) =
SFa(x)

�Fa
=
SF (ax)
�F
a

= af eF (ax) = f eFa(x)
) g(Fa)[1] = fFa = eFa = � eF [1]�

a

and now Item 7 follows by induction

g(Fa)[n+1] = ĝ(Fa)[n] = ^� eF [n]�
a
=
�̂ eF [n]�

a

=
� eF [n+1]�

a
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Finally, from Item 2 we have

S(Fa)>c(x) =
SFa(x+ c)

SFa(c)
=
SF (a (x+ c))

SF (ac)

=
SF (ax+ ac)

SF (ac)
= SF>ac(ax) = S(F>ac)a

(x)

completing the proof.
Since the coderived distribution relates with the excess ratio, the following

result for mixed distributions is no surprise:

Proposition 49 Given m 2 N, SLDFns F1; :::; Fm all with �nite means, and
any real weights wi � 0 with 1 =

Pm
i=1 wi, for the weighted mixture SLDFn

F =
Pm

i=1 wiFi with PDF fF =
Pm

i=1 wifFi , we have:

f eF =
mX
i=1

uiffFi and eF = mX
i=1

ui eFi,
where ui =

wi�Fi
�F

and 1 =
mX
i=1

ui:

Proof. This is again a straightforward veri�cation, from Proposition 25

f eF (x) =
SF (x)

�F
=

Pm
i=1 wiSFi(x)

�F

=

Pm
i=1 wi�Fi

�
SFi (x)

�Fi

�
�F

=
mX
i=1

uiffFi(x)

) S eF (x) =
mX
i=1

uiSfFi(x)
and since clearly

�F =

mX
i=1

wi�Fi

)
mX
i=1

ui =
mX
i=1

wi�Fi
�F

=

Pm
i=1 wi�Fi
�F

=
�F
�F

= 1

the result follows fromeF (x) = 1� S eF (x)
= 1�

mX
i=1

uiSfFi (x) =
mX
i=1

ui �
mX
i=1

uiSfFi (x)

=
mX
i=1

ui

�
1� SfFi (x)

�
=

mX
i=1

ui eFi (x) :
35

Grouping Loss Distributions by Tail Behavior Part I: Discrete Families

Casualty Actuarial Society E-Forum, Fall 2008 482



So while taking the coderived distribution does not �commute�with con-
structing a mixture, the coderived distribution of a mixture is nevertheless a
mixture of the coderived distributions, but one in which the frequency weights
of the original mix are replaced with loss weights for the coderived mix. We will
�nd that this simple observation can prove surprisingly instructive. We will
also require the:

Corollary 50 With the notation and assumptions of Proposition 49

�Fi � �fFi 1 � i � m) �F � � eF .
Proof. Proceed by induction on m. Withou tloss of generality we may order
so that:

�F1 � �F2 � �F3 � ::: � �Fm :

The case m = 1 is clear. Let G be the mixture of F2; :::; Fm in which:

Fi has weight
wiPm
i=2 wi

.

Then G has PDF

fG =

Pm
i=2 wifFiPm
i=2 wi

=

Pm
i=2 wifFi
1� w1

and we have:

�F1 � �F2 � �G � �Fm
) �G � �F1 .

Then by induction � eG � �G and so
�F = w1�F1 + (1� w1)�G

� eF =
w1�F1�fF1 + (1� w1)�G� eG

�F

�
w1�

2
F1
+ (1� w1)�2G
�F

=

�
w1�F1
�F

�
�F1 +

�
(1� w1)�G

�F

�
�G

= (w1 � �)�F1 + (1� w1 + �)�G

in which w1�F1
�F

= w1 � �
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and we �nd that

� = w1 �
w1�F1
�F

= w1

�
1�

�F1
�F

�
= w1

�
�F � �F1
�F

�
= w1

�
w1�F1 + (1� w1)�G � �F1

�F

�
= w1

 
(1� w1)

�
�G � �F1

�
�F

!
� 0

) � � 0:
We see that

� eF � (w1 � �)�F1 + (1� w1 + �)�G
= w1�F1 + (1� w1)�G + �

�
�G � �F1

�
= �F + �

�
�G � �F1

�
� �F

completing the proof

Corollary 51 With the notation and assumptions of Proposition 49

CVFi � 1; 1 � i � m) CVF � 1.

Proof. Clear from Corollary 50 and Proposition 46.
We next show how the coderived distributions of an SLDFn F �make up a

part of the tail�of F . We begin with

Lemma 52 For any two SLDFns F and G with w 2 [0; 1] and c � 0 with
SF (c)SG(c) > 0 :

(wF + (1� w)G)>c = vF>c + (1� v)G>c

where v =
wSF (c)

wSF (c) + (1� w)SG(c)
:

Proof. We have

1� (wF + (1� w)G)>c (x) =
SwF+(1�w)G(x+ c)

SwF+(1�w)G(c)

=
wSF (x+ c) + (1� w)SG(x+ c)

wSF (c) + (1� w)SG(c)

=
wSF (c)

SF (x+c)
SF (c)

+ (1� w)SG(c)SG(x+c)SG(c)

wSF (c) + (1� w)SG(c)

= v
SF (x+ c)

SF (c)
+ (1� v)SG(x+ c)

SG(c)

= vSF>c(x) + (1� v)SG>c(x)
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and it follows that

(wF + (1� w)G)>c = 1�
�
1� (wF + (1� w)G)>c

�
= 1� (vSF>c + (1� v)SG>c)

= v � vSF>c + (1� v)� (1� v)SG>c

= v (1� SF>c) + (1� v) (1� SG>c)

= vF>c + (1� v)G>c

as asserted.

Lemma 53 For any SLDFn F with �nite mean and 0 < �F , there exists c � 0
and w 2 (0; 1) and SLDFn G with !G = !F>c and

F>c = w
� eF�>c + (1� w)G

= wgF>c + (1� w)G:
Proof. We have

0 < �F = lim
x!!F

�F (x)

which implies that

there exist c; � with � > 0; 0 � c < !F

and f�F>c(x) = �F (x+ c)jx 2 (0; !F � c)g � (�;1) :
Let w =Min

�
1
2 ; ��F>c

�
. Then we have �F>c > 0 and

w

�F>c

� �

) w

�F>c

< �F>c(x) for every x 2 (0; !F � c)

) w

�F>c

<
fF>c(x)

SF>c(x)
for every x 2 (0; !F � c)

) wfgF>c(x) =
wSF>c(x)

�F>c

< fF>c(x) for every x 2 (0; !F � c)

Make the de�nition

g(x) =
fF>c(x)� wfgF>c(x)

1� w > 0 for x 2 (0; !F � c) ;

then
fF>c(x) = wfgF>c(x) + (1� w) g(x) for every x 2 (0; !F � c)

whence g is a C1 PDF on (0; !F � c) and the result follows by setting G(x) =
xZ
0

g(z)dz:
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Proposition 54 If n 2 N and F is an SLDFn with �(n)F < 1 and 0 < �F ,
then there exist c � 0, w 2 (0; 1), and an SLDFn G with

!G = !F>c and

F>c = w
� eF [n]�>c + (1� w)G = wgF>c[n] + (1� w)G:

Proof. The proof is by induction on n, the case n = 1 being covered by the
second lemma. By induction there exists c1 � 0 and w1 2 (0; 1) and SLDFn G1
so that

F>c1 = w1

� eF [n]�>c1 + (1� w1)G1:
Again by the second lemma there exists c2 � 0 and w2 2 (0; 1) and SLDFn G2
so that� eF [n]�>c2 = w2�geF [n]�>c2 + (1� w2)G2 = w2 � eF [n+1]�>c2 + (1� w2)G2:
It now follows from the �rst lemma that there exist u; v 2 (0; 1)

F>c1+c2 =
�
F>c1

�>c2
=

�
w1

� eF [n]�>c1 + (1� w1)G1�>c2 =
= u

�� eF [n]�>c1�>c2 + (1� u)G>c21

= u
� eF [n]�>c1+c2 + (1� u)G>c21

= u

�� eF [n]�>c2�>c1 + (1� u)G>c21

= u

�
w2

� eF [n+1]�>c2 + (1� w2)G2�>c1 + (1� u)G>c21

= u

�
v
� eF [n+1]�>c1+c2 + (1� v)G>c12

�
+ (1� u)G>c21

= uv
� eF [n+1]�>c1+c2 + (1� uv)G3

and setting w = uv 2 (0; 1) and c = c1 + c2 completes the induction and the
proof.
We have seen, Proposition 26, that the coderived distribution determines

the original. So it makes sense to ask, given an SLDFn F , is there an SLDFn
G (necessarily uniquely determined with �nite mean) such that eG = F . This
prompts:

De�nition 55 Let G be an SLDFn with �nite mean and F= eG. The SLDFn G
is called the backward coderived loss distribution function of F . We set,
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recursively

eF [�1] = GeF [�n] = êF [�n+1][�1] , êF [�n] = eF [�n+1]for n = 2; 3; 4; ::..
If the LDFn eF [�n] exists for some integer n > 0, then eF [�n] is called the n-th
backward coderived loss distribution of F .

Quite generally, for any loss distribution F with di¤erentiable PDF f(x)
such that dfdx � 0, we could de�ne the backward coderived loss distribution
to be the distribution with survival function equal to T (y) = f(y)

f(0) . Suppose F

and G are loss variables with G = eF [�1]the backward coderived distribution of
F . Of course, the mean of G is

�G =

Z 1

0

SG(y)dy =

Z 1

0

T (y)dy =

R1
0
fF (y)dy

fF (0)
=

1

fF (0)

and for the PDF of eG we have, as one would expect

f eG(y) =
SG(y)

�G
=

fF (y)
fF (0)

1
fF (0)

= fF (y)

) eG = F:
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