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________________________________________________________________________ 
Abstract 

In recent years several commentators have noted evidence for a “reserving cycle” linked to the underwriting 
cycle. It seems that in many classes of non-life insurance, when premium rates are relatively low, claim 
development patterns tend to be longer-tailed than when premium rates are high. If this is the case, then 
traditional reserving methods based on an assumption that the development pattern is the same for all origin 
years will tend to overstate reserves for periods where premium rates were high, and understate reserves for 
periods where premium rates were low. The present paper reviews the evidence for a reserving cycle and 
discusses possible causes. A mathematical model is then proposed that accommodates the main possible causes. 
The purpose of this model is three-fold: (a) to test for the existence of reserving cycle effects, (b) to help identify 
the causes, and (c) to produce improved reserve estimates. An example analysis is presented using the proposed 
model. The evidence for the existence of reserving cycles is now sufficiently strong that, in the author’s opinion, 
it is important for reserving actuaries to be aware of the possibility of cyclical effects, to investigate evidence for 
such effects in any reserving exercise, and (where there is strong evidence) to adjust reserve estimates 
accordingly. The model proposed in the present paper can be implemented in Excel and will often be a useful 
tool for these purposes.  
Keywords. Reserving cycle, underwriting cycle, development patterns, curve fitting, least squares, premium rate 
indices. 

             

1. INTRODUCTION 

1.1 Research Context 

1.1.1 Bob Conger’s presentation at GIRO 2002 

The idea of a “reserving cycle” was first given prominence by Bob Conger (then CAS President) 
in his keynote presentation to the 2002 GIRO Convention in the UK. For all classes of US 
property/casualty insurance combined, and for workers compensation alone, he showed the ratio of 
initial estimated ultimates (at end of the first development year) to the latest estimated ultimates (at 
end of 2001) for each of the previous 20 accident years. When plotted against time, this ratio 
appeared, in both cases, to show a cyclical pattern of under- and over-reserving. This cycle appeared 
to be in phase with the underwriting cycle over the nearly two complete cycles of the years 1980 to 
2001. Initial reserve estimates were consistently too low in both of the “soft market” periods when 
premium rates were relatively low (the mid 1980s and the late 1990s), and were consistently too high 
in the intervening “hard markets” (when premium rates were relatively high).  

The most obvious explanation is that when setting reserves soon after writing the business, 
insurers tend to under-estimate the magnitude of the underwriting cycle. History shows that at the 
lowest point of the underwriting cycle, insurers often write business at loss-making rates. But 
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presumably they don’t do this deliberately: it is only human to hope and believe that the business 
they recently wrote will ultimately prove profitable, and to set the initial reserves accordingly. At the 
other extreme of the underwriting cycle, when premium rates are buoyant, even relatively cautious 
(high) initial reserves may show a fairly good profit. Management might privately believe that they 
could reasonably set the initial reserves lower and show an even higher profit. But with a choice 
between declaring a very high profit now, with the possibility that this will deteriorate, and declaring 
a more moderate (but still healthy) profit now, with the expectation that this will allow further good 
news to be released as the claims run-off,  it is easy to see the attraction of the latter. 

If this were the whole explanation for the reserving cycle, then the actuarial profession could rest 
easy. If we as actuaries provide objective, unbiased estimates for the reserves, and senior 
management chooses to depart from these estimates for reasons such as those described above, then 
that is their responsibility not ours. 

However, we need to be sure that actuarial reserve estimates are as good as they can be. Could it 
be that actuarial reserving methods are partly to blame for the reserving cycle? 

1.1.2 Working party report at GIRO 2003 

Bob Conger’s presentation at GIRO 2002 prompted the formation of a working party tasked 
with investigating the existence and possible causes of a reserving cycle in the UK. This working 
party was chaired by Nick Line, and presented its report [3] at the 2003 GIRO convention. The 
working party concluded that: 

(a) A reserving cycle did also exist in the UK. 

(b) Standard actuarial reserving methods are probably a contributory cause of the reserving 
cycle. 

(c) There was some (inconclusive) evidence that development patterns vary with the 
underwriting cycle, tending to be longer-tailed when premium rates are low. 

(d) There was clear evidence that Lloyd’s premium rate indices had tended to understate the 
true magnitude of the underwriting cycle. 

Conclusion (a) is based on UK industry reserves (from regulatory returns) over the period 1985 
to 2001 inclusive. This is a shorter period than that considered by Bob Conger, and covers little 
more than one complete underwriting cycle (including the soft market of the mid to late 1980s and 
the next soft market of the late 1990s). The working party looked at the non-life insurance market as 
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a whole, and some individual classes, and concluded that the reserving cycle exists for several major 
classes (motor, property and liability) and that the cycles for these classes are in phase with one 
another.  

The reserves analyzed by the working party in support of conclusion (a) were obtained from 
regulatory returns, and as such show booked reserves as opposed to actuarial estimates. Conclusion 
(b) was based on an investigation of the extent to which standard actuarial reserving methods (chain 
ladder (CL) and Bornheutter-Ferguson (BF)) produce cyclical under- and over-reserving if applied 
mechanistically. This was investigated by applying these methods to the run-off data from regulatory 
returns, and comparing early estimates to actual ultimates. For some (but not all) classes of 
insurance, the results showed a clear cyclical pattern closely following that observed in the regulatory 
reserves. This was clearest for long-tail liability classes. 

The working party then tried to explain why these standard actuarial methods tend to give a 
cyclical pattern of under- and over-reserving. They postulated two main causes: the points labeled (c) 
and (d) above.  The apparent variation in development patterns with the underwriting cycle (point 
(c)) violates the basic assumption of the CL and BF methods: that the development pattern is the 
same for all origin periods. The working party found some evidence of more rapid paid 
development for origin years in the “hard” part of the underwriting cycle. The paid chain ladder 
method would clearly tend to overstate reserves at the top of the cycle and understate at the bottom 
of the cycle if this is the case. 

The tendency for premium-rate indices to understate the amplitude of the underwriting cycle 
(point (d) above) exacerbates the reserving error produced by the BF method: if the softness of a 
soft market is understated, then the prior expected loss ratio will also be understated, leading to an 
initial under-estimation of the ultimate.  

[Note that if both (c) and (d) apply, their effects on paid BF reserves will be in the same 
direction, rather than offsetting each other. The paid BF reserve is (1-F)*(prior ultimate), where F is 
the expected proportion of ultimate development obtained by the chain ladder method. The CL 
method gives a value for F that is an average for all origin years in the run-off array. If development 
is quicker than average when premium rates are high (point (c)), then this will be lower than the 
expected proportion developed for accident years where premium rates are high, so the factor (1-F) 
will be too high for these years. Assuming the other factor of the BF reserve (the prior ultimate) is 
calculated in the usual way (as premium multiplied by average ULR divided by premium index) this 
factor will be too high if the premium index is too low when premium rates are high (point (d)). 
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Conversely, both factors of the paid BF reserve will be too low for origin years where premium rates 
are low.]  

The 2003 GIRO working party also suggested some possible reasons why the run-off pattern 
might depend on the level of premiums (that is, possible explanations for point (c)). They came up 
with the following possible causes of longer paid development patterns in soft markets. (Note that 
the working party did not look for direct evidence that any of these actually occur: these points were 
merely suggested as possible causes.) 

• When premium rates are low, insurers might be more reluctant to pay claims, leading to more 
protracted negotiations and longer payment delays. 

• In soft markets, insurers might compete by including additional cover and relaxing terms and 
conditions (as well as by reducing premiums). This might result in more disputes over 
coverage, tending to lengthen development patterns. (Presumably tightening of terms and 
conditions in hard markets might equally lead to disputes, but the difference is that in this 
case, disputes are less likely to delay payments.) 

• If upper policy limits are increased in soft markets, this would also tend to lengthen 
development patterns. (On the other hand, if insurers reduce deductibles in soft markets, this 
would tend to shorten development patterns because deductibles would be exhausted 
sooner.)  

• If more multi-year policies are written in soft-markets, these would tend to lengthen 
development patterns of under-writing year cohorts (but this should not affect accident year 
run-off patterns).  

The above four points relate to paid development. In addition, the working party noted that 
incurred development patterns would be longer-tailed in soft markets if insurers adopt more 
optimistic case-reserving practices when premium rates are low.  

 

1.1.3 General Insurance Reserving Issues Taskforce (GRIT) 

At the beginning of 2004, the UK actuarial profession created the General Insurance Reserving 
Issues Taskforce (GRIT). Of five specific issues given in the terms of reference for GRIT, one was 
“to consider the actions which the profession should take in relation to the observations made in the 
Reserving Cycle Working Party paper presented at GIRO 2003.” GRIT produced its final report 
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(after a consultation process within the UK profession) in March 2006 [2]. Section 7 of the GRIT 
report, entitled “Improving our Methods,” is mostly concerned with reserving cycles. This topic is 
also mentioned in Sections 1.1.6, 1.1.7, 1.8.2-1.8.5, 2.6.4, 9.2 and 9.9 of the GRIT report. 

GRIT carried out basically the same analysis as the 2003 working party, but using Lloyd’s data 
where the previous working party had used insurance company data (from regulatory returns). Like 
the working party, GRIT applied the CL and BF methods mechanically to historical run-off triangles 
for different classes of business, and compared early forecasts produced by these methods to actual 
outcomes. Like the working party, GRIT concluded that these methods do produce a cyclical 
pattern of under and over reserving, and that this pattern is in phase with the underwriting cycle. 

As a possible way forward, GRIT suggested (Section 7.5 of [2]) fitting cumulative Weibull 
distribution curves to cumulative paid development data, and allowing the scale parameter to vary 
cyclically. The equation for the cumulative development pattern proposed in [2] is: 

Claims(t) = A * [ 1 – exp{-(b/t)c}] (1)
Here, t is development time, A is ultimate, b is a scale parameter, and c is a shape parameter. 

[Note that c has to be negative in order for this to be a valid cumulative development pattern: if c is 
positive, then Claims(t) tends to zero as t tends to infinity. The Weibull curve is usually specified 
using t/b instead of b/t so that the shape parameter c takes positive values: we then have Claims(t) 
tending to the ultimate A as t tends to infinity.]  

1.1.4 Other prior research on the reserving cycle 

In the UK, GRIT was replaced (following publication of its final report in 2006) by the General 
Insurance Reserving Oversight Committee (GI ROC). GI ROC initiated four working parties that 
would report to future GIRO conventions. One of these is the working party on “Implications of 
the underwriting and reserving cycles for reserving.” By the time of GIRO 2007 this working party 
had not made significant progress.  

Perhaps surprisingly, considering that it was Bob Conger (then president of the CAS) who first 
highlighted this issue, there seems to be no published research in this area by US actuaries. (At least, 
a search of the CAS Web Site yields nothing new.)  

1.2 Objectives of the Present Paper 

The present paper develops the idea (suggested in the 2006 GRIT report [2]) of fitting curves to 
cumulative development data in a way that allows for the possibility of cyclical variation of 
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development patterns.  

The GRIT paper suggested using a cumulative Weibull distribution function (see Equation 1) for 
this purpose. In the present paper, Weibull, Burr, and Inverse Burr distribution functions are used.  

Any distribution function is by definition an increasing function. In practice, cumulative incurred 
run-off patterns often do not increase at all stages of development, so cumulative probability 
distribution functions would not provide a good fit. The present paper develops a family of curves 
that does have the flexibility to accommodate typical cumulative incurred development patterns. 
This family of curves is derived by modeling both reporting and payment delays using cumulative 
probability distribution functions. This produces two linked families of cumulative curves: one for 
paid, the other for incurred. By fitting these simultaneously to paid and incurred run-off data, a 
single ultimate is estimated for each origin year from all available data. This avoids the common 
problem of having one ultimate estimated from paid data and another ultimate estimated from 
incurred data, then having to combine the two somehow. 

Parameters of the fitted curves are linked to a premium rating index so that both paid and 
incurred run-off curves are allowed to vary with the underwriting cycle. This is done in a way that 
allows for the possibility that the premium rating index might understate the true amplitude of the 
underwriting cycle (as found to be the case in [3]). 

The paper is not concerned with directly looking for evidence of each the possible causes of 
cyclically varying run-off patterns discussed in Section 1.1.2. Instead, the mathematical model is 
developed in such a way that it will accommodate these possible causes if they exist. The model also 
accommodates other possible factors, such as variation in reporting delay with the underwriting 
cycle. It will not always be possible to distinguish the true cause using the results of fitting the 
proposed model.  

2. CYCLICAL CURVE-FITTING METHOD 

2.1 Principles of curve-fitting to claims development data 

In Section 2, a model is introduced that can be used to test for the presence of cyclical 
development patterns, to distinguish some of the main cyclical effects, and to estimate ultimates in 
the presence of these effects. Initially it is assumed that the only data available are the usual 
aggregate cumulative paid and incurred run-off arrays, and a premium rate index. Later (Section 2.4) 
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the use of premium or other exposure information is also considered.   

The method is basically a curve-fitting method as suggested in the GRIT report [2]. When curve-
fitting is used for reserving, it is common to assume that the run-off pattern is the same for all origin 
years. If this is not the case, origin years can sometimes be grouped so that it is approximately the 
case in each group. The GRIT paper suggested classifying origin years into two categories according 
to their position in the underwriting cycle (hard or soft). Instead of doing this, the method 
introduced in the present paper uses a premium rate index to allow continuous graduation between 
hard and soft market run-off curves.  

Reserving methods have previously been developed that allow run-off patterns to gradually 
change across origin years: for example, the method described in Wright [4]. That method allows for 
trend changes in development patterns but not for cyclical changes. It is also quite complex because 
it is a full stochastic method which gives predictive standard errors as well as best estimates. A 
limitation of that method is that it requires mainly positive increments in the run-off data, so it often 
cannot be applied directly to incurred data without first adjusting the data in some way. 

What we need now is a method that can be applied to both paid and incurred data, preferably 
making use of premium development data too, and which allows for cyclical changes in run-off 
patterns. The top priority is to develop such a method that gives good point estimates in the 
presence of underwriting and reserving cycles. A lower priority is rigorous assessment of standard 
errors: this is not considered in the present paper. 

If the run-off pattern is not assumed to be the same for all origin years, then the model 
necessarily has more parameters than where the run-off pattern is assumed to be constant. It is a 
well-established statistical principle that as the number of estimated parameters increases, their 
reliability (when estimated from a given volume of data) generally decreases. Therefore, it is 
advisable to use as much relevant data as possible when estimating parameters. For this reason, the 
proposed method fits run-off curves to both paid and incurred data simultaneously. This also avoids 
the problem (met with most other reserving methods) of having one set of reserve estimates 
obtained from paid data and a different set of estimates obtained from incurred data, then having to 
combine into a single set of final estimates. In order to allow fitting to incurred data as well as paid, 
the family of run-off curves must allow for negative increments as these often exist in incurred data. 
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2.2 Model for a single origin year 

2.2.1 Cumulative paid and incurred development curves 

In this sub-section we consider the run-off of a single origin year. The model is generalized for 
multiple origin years in later sub-sections. 

FP(t) is used to denote a cumulative paid run-off pattern (where t is continuous development 
time). This is a function that starts at 0 when t = 0, and increases to 1 as t tends to infinity. For paid 
data, although there may be occasional decreases due to salvage and subrogation, the underlying 
pattern is assumed to be strictly increasing. FP(t) is therefore a cumulative distribution function: its 
derivate fP(t) = dFP(t)/dt, can be regarded as the probability density function for the delay to payment 
of each dollar that is ultimately paid.  

For modeling incurred run-off patterns, we need to consider reporting delays. We use FR(t) to 
denote the cumulative distribution function of reporting delays (in respect of  each dollar that is 
ultimately paid). Since every claim must be reported before it is paid, we should have FR(t) ≥ FP(t) at 
all development times t. Exhibit 1 shows typical curves FR(t) and FP(t) for a single origin year. (The 
curves in Exhibit 1 are Weibull distributions with mean values of 1 year and 3.6 years respectively.)  

Note that FR(t) is not the cumulative incurred development pattern: it is the distribution function 
of reporting delays in respect of each dollar that is ultimately paid. For example, consider an accident 
year with an ultimate paid amount of $100,000. Suppose the first claim is reported mid-way through 
accident year zero (at time t = 0.5), and that this claim ultimately settles for $1,000. Since this is 1% 
of the total ultimate for the accident year, FR(t) increases from 0 to 0.01 at t = 0.5. The incurred 
development pattern will usually differ from this. For example, suppose that when this first claim is 
reported the initial case reserve is set at $2,000. Since this is 2% of the total ultimate for the accident 
year, the incurred development pattern increases from 0 to 0.02 at t = 0.5. (Of course, none of these 
development patterns is known with certainty until the accident year concerned is fully developed.)   

To model incurred development, we assume that when a claim is reported a case reserve is set up, 
and the amount of the case reserve (on average, in the period between reporting and eventual 
payment) is b-dollars for each dollar that is ultimately paid. If case reserves are set conservatively 
(perhaps more likely during hard markets) we will have b > 1. In soft markets, case reserves are more 
likely to be set optimistically so b may take lower values, and we might have b <1.  

Under the above assumptions, for each dollar of ultimate, the expected cumulative amount paid 
by development time t is FP(t) and the expected amount outstanding at time t is b.{FR(t) – FP(t)}. So 
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if we use FI(t) to denote the expected cumulative incurred run-off pattern then (from the definition 
of incurred as paid plus outstanding) we have: 

FI(t) = FP(t) + b.{ FR(t) – FP(t)} 
= b. FR(t) + (1- b). FP(t). 

(2)

This last equation can be interpreted by noting that incurred increases by the amount b when the 
claim is reported (and the case reserve set up), then increases by the amount (1- b) (which is usually 
negative) when the claim is paid.  

Because of the possibility that b > 1, the function FI(t) is not in general a probability distribution 
function because it is not strictly increasing. Both FR(t) and FP(t) are strictly increasing (from 0 to 1) 
but if b > 1, FI(t) will show the usual incurred run-off shape: increasing rapidly then decreasing 
towards ultimate. This is illustrated in Exhibit 2, which shows typical run-off patterns for the case b 
= 1.5 (that is, case reserves are on average 50% higher than what is ultimately paid in respect of the 
reported claims).  

Suppose we have cumulative paid and cumulative incurred run-off data. If we assume some 
parametric family of curves for FP(t) and FR(t), Equation 2 then implies a parametric family for FI(t). 
The parameters can be estimated by fitting the curve FP(t) to the cumulative paid data, and the curve 
FI(t) to the incurred data. Note that b is one of the parameters that will be estimated from the data. 
Some suitable parametric distributions for FP(t) and FR(t) are considered in the next sub-section.  

The bias factor b need not necessarily be assumed to take a constant value across development 
time (within each single origin year). It seems likely that the accuracy of case reserves might 
sometimes improve with time. This possibility can be allowed for by using a model of the form: 

bt = exp{β0 + β2.max(0, t0-t)}/ (2a)
Instead of a single constant parameter b, this form of model has three parameters β0, β2 and t0. (A 

further parameter, β1, is introduced in Section 2.3.2.) The exponentiation ensures that the bias factor 
bt is always positive. The expression max(0, t0-t) allows bt to change between development times t=0 
and t=t0. At later development times, max(0, t0-t) is zero so the bias factor  bt settles at exp{β0}.  

 2.2.2 Suitable parametric distribution families 

When selecting a family of curves to fit to paid claims development data, in principle any analytic 
family of probability distribution functions could be tried: for example Log-Normal, Pareto, 
Gamma, Weibull, etc. However, in this paper we restrict attention to distribution families that have 
the following properties: 
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• The cumulative distribution function is mathematically simple. This is desirable so that curve-
fitting can be carried out quickly and easily in a spreadsheet.   

• Ability to accommodate a wide range of values for the ratio of mode to mean. In particular, 
the distribution family should include distributions with mode equal to zero as well as 
distributions with mode greater than zero. [Recall that the mode of a distribution is the point 
where the density function takes its maximum value, or equivalently, where the slope of the 
cumulative distribution function is greatest.] This is desirable so that the same family of 
distributions can reasonably be used for reporting delays and for payment delays (which is 
merely convenient, not strictly necessary). In some classes of insurance, reporting delays tend 
to be very short for the majority of claims so that the mode is close to zero. For payment 
delays, the mode is invariably greater than zero.   

The Log-Normal distribution (for example) is not used in this paper because it does not satisfy 
either of these criteria. The Log-Normal cumulative distribution function can be calculated from the 
Normal distribution function (which is available in popular spreadsheet software) but it is relatively 
complex and slow to calculate compared to some simpler distribution functions. The mode and 
mean of a Log-Normal distribution (using the usual μ and σ parameterization) are respectively 
exp(μ) and exp(μ + σ2/2), so the ratio of mode to mean is exp(-σ2/2). Although this can take any 
value between zero and one, a mode of zero is not possible.   

Based on the above criteria, three distribution families have been selected for use in the present 
paper to model development patterns. Other distribution families could be used within the 
framework developed here, and some might prove to be more suitable than the selected three. 
These three distribution families have been chosen for convenience, on the basis that we have to 
start somewhere, and because they are probably as good as any for illustrating the principles of the 
proposed method.  

The three distribution families used in this paper are the Weibull, the Burr, and the Inverse Burr. 
Table 1 gives the cumulative distribution function F(t) and the mean and the mode of these 
distributions. (The penultimate column gives conditions for the mode to be greater than zero, and 
the final column gives the formula for the mode when it is greater than zero.) Г(.) denotes the 
Gamma function, which can be evaluated in Excel® as EXP(GAMMALN(x)). 
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Table 1: Formulas for analytic delay distributions 

 F(t) Mean Mode>0 if Mode (if > 0) 

Weibull 1 – exp{-(t/s)c} s.Г(1+1/c) c > 1 s.(1-1/c)1/c 

Burr 1 – 1/{1+(t/s)c}a s.Г(1+1/c).Г(a-1/c) / Г(a) c > 1  s.{(c-1).(ac+1)}1/c 

Inv Burr 1/{1+(s/t)c}a s.Г(a+1/c).Г(1-1/c) / Г(a) ac > 1 s.{(ac-1).(c+1)}1/c 

In all three cases, F(t) increases monotonically from 0 when t=0, towards 1 as t tends to infinity. 
The parameter s is a scale parameter; the parameters a and c are shape parameters. The Weibull 
family has just one shape parameter; the Burr and Inverse Burr families each have two shape 
parameters. The additional shape parameter means that the Burr and Inverse Burr families are much 
larger and more flexible then the Weibull family. The Burr and Inverse Burr families have some 
well-known sub-families. The Pareto is the sub-family of the Burr family obtained by setting c to 1. 
The Inverse Pareto is the sub-family of the Inverse Burr obtained by setting c to 1. The Log-Logistic 
is the sub-family of both Burr and Inverse Burr families obtained by setting a to 1. Each of these 
sub-families has one shape parameter, so in that sense, is as large as the Weibull family. 

Although we use all three of these distribution families in Section 3 of this paper, in the 
remainder of Section 2 we use the Weibull distribution for both payment delays and reporting 
delays. The Weibull is used because it is a relatively simple distribution, and it serves to illustrate the 
principles of the proposed modeling method. No implication is intended that the Weibull is superior 
to any other distribution family for this purpose. As already noted, any analytic distribution family 
could be used within the framework developed in Section 2.2.1, and using the same principles as are 
illustrated below using the Weibull distribution. There is also no reason in principle why two 
different distribution families should not be used; one to model reporting delays FR(t), and another 
to model payment delays FP(t), (provided FR(t) ≥ FP(t) for all values of t). 

2.2.3 Model for single origin year based on Weibull distributions 

Here the Weibull distribution is used to model both reporting and payment delays.  Subscripts R 
and P are used to distinguish parameters of the reporting and payment delay distributions. The 
symbol ^ is used to denote exponentiation, that is: (t/s)^c = (t/s)c.  

For the reporting and payment delay distributions we have: 

FR(t) = 1 – exp{-(t/sR)^cR} (3)
FP(t) = 1 – exp{-(t/sP)^cP} (4)
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So from Equation 2, the incurred development pattern is: 

FI(t) = 1 – b.exp{-(t/sR)^cR} – (1-b).exp{-(t/sP)^cP} (5)
The above equations for FP(t) and FI(t) specify a model for the paid and incurred run-off patterns 

for each dollar of ultimate. If U denotes the ultimate paid (which is what we aim to estimate), then 
the expected amounts paid and incurred by development time t are respectively U.FP(t) and U.FI(t). 

From Equations 3 and 4, the requirement FR(t) ≥ FP(t) (for all values of t) is equivalent to 
(t/sR)^cR ≥ (t/sP)^cP, which in turn is equivalent to t^(cR- cP) ≥ (sR^cR)/(sP^cP). If cR is not equal to cP, 
then the left side of this inequality takes all values between zero and infinity as t varies between zero 
and infinity. So the only way this inequality can be true for all positive values of t is by having cR 
equal to cP (so the left side is equal to 1 for all t) and sR less than sP (so the right side is less than 1). 
However, in practice, it is of little consequence if FR(t) is less than FP(t) for high values of t (that is, 
where both FR(t) and FP(t) are very close to 1). So we will not insist on the constraint cR = cP. Instead, 
it is proposed to check that the fitted curves are reasonable by viewing them graphically. This is 
illustrated by Exhibit 1, in which both curves are Weibull distributions, with parameters sR = 1, cR = 
1, sP = 4, cP = 3. These parameters give FR(t) ≥ FP(t) for t ≤ 8, but FR(t) < FP(t) for t > 8. Since both 
curves reach 99.97% development at t = 8, it is of no practical consequence that FR(t) < FP(t) for t > 
8.  

2.3 Model for multiple origin years 

2.3.1 Variation of parameters across origin years 

In Section 2.2 we developed a model for paid and incurred development patterns of a single 
origin year. If the Weibull distribution is used for both reporting and payment delays (as in 2.2.3), 
then the model has six parameters for each origin year: U, b, sR, cR, sP, cP. This is clearly too many 
parameters to attempt to estimate separately for each origin year. For the latest origin year we usually 
have only two data values: one paid, one incurred (although there may be more if sub-annual 
development periods are used). 

The total number of parameters needs to be reduced. To achieve this, we could try assuming 
initially that some of the parameters take a single constant value across all origin years. For example, 
we might assume that sR, cR and cP take the same values for all origin years, so that only the 
parameters U, b and sP vary across origin years. Setting sR and cR to values that are constant across all 
origin years is appropriate if reporting delays have the same distribution FR(t) across all origin years. 
For some datasets this might turn out to be a reasonable assumption. (We discuss later how this 
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assumption can be tested. Applications of the model presented in this paper to actual datasets have 
shown evidence that reporting delays do sometimes vary with the underwriting cycle: possible causes 
are discussed in Section 4.1.3.) 

By allowing b to vary across origin years, we allow for the possibility that case reserves are set up 
more or less conservatively at different points in the underwriting cycle. This possibility is suggested 
in the existing literature discussed in Section 1. By allowing the scale parameter sP of the payment 
delay distribution to vary, we allow for variation in the speed of claim settlement. Previous research 
has found evidence that such variation does occur with the underwriting cycle (see Section 1). 
Clearly, the ultimate U must also be allowed to take a different value for each origin year as this is 
what we aim to estimate. 

In the remainder of this paper, parameters that are allowed to vary across origin years have a 
subscript j to label the origin year. So in the Weibull model, if parameters U, b and sP are allowed to 
vary, these are denoted Uj, bj, sPj. 

2.3.2 Allowing for cyclical development patterns 

To allow for underwriting cycle effects, parameters of the run-off curves that are not held 
constant across all origin years can be linked to a known premium rate index. Interpretation of 
model parameters is simplified if the premium rate index (denoted Qj for origin year j) is scaled so 
the mean value across all origin years is 1. We can then use equations of the form: 

bj = exp{β0 + β1.(Qj-1)} (6)
sPj = exp{σ0 + σ1.(Qj-1)} (7)

Here, β0, β1, σ0 and σ1 are parameters (to be estimated from the run-off data) that are assumed to 
take the same values for all origin years. The subtraction of 1 from the premium rate index further 
simplifies interpretation of the parameters: for example, exp{β0} represents the value of b for an 
average year in which Qj = 1. The exponentiation ensures that parameters bj and sPj are always 
positive (which is necessary to produce valid development curves). Note that this form of model for 
bj and sPj allows for the possibility that the known index Qj may understate the true amplitude of the 
underwriting cycle. Previous research (see Section 1) suggests that this is often the case with 
premium rate indices. If this is the case, the parameters β1 and σ1 estimated from the run-off data 
will simply take higher values than they would if Qj correctly reflected the amplitude of the reserving 
cycle. The number of parameters to be estimated from the paid and incurred run-off data is now 
reasonable. We have: 
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• Seven parameters each assumed to take a single constant value across all origin years (sR, cR, 
cP, β0, β1, σ0 and σ1), plus 

• One parameter taking a different value for each origin year (the ultimate Uj). 

If there are more than eight development periods, the basic chain ladder model has more 
parameters than this.  

If the possibility that bias factors change with development time is allowed for as described in 
Section 2.2.1 (Equation (2a)) then Equation (6) becomes: 

bt = exp{β0 + β1.(Qj-1) + β2.max(0, t0-t)} (6a)

2.3.3 Estimation of parameters by least squares 

The parameters of the paid and incurred development curves can be determined by the method 
of least-squares. The following notation is used in this section: 

• FPj(t) denotes the cumulative paid development curve for origin year j. Using the Weibull 
model, this is given by Equation 4, with scale parameter sP replaced by sPj from Equation 7. 

• FIj(t) denotes the cumulative incurred development curve for origin year j. Using the Weibull 
model, this is given by Equation 5, with scale parameter sP replaced by sPj from Equation 7, 
and the case-reserve redundancy-factor b replaced by bj from Equation 6 (or Equation 6a). 

• Pjd denotes the actual cumulative paid for origin year j and development period d. 

• Ijd denotes the actual cumulative incurred for origin year j and development period d.    

The residual sum of squares is defined as the sum of squared differences between actual and 
expected values. This can be calculated separately for paid and incurred: 

RSSP = Σ {Pjd – Uj.FPj(t)}2 
RSSI = Σ {Ijd – Uj.FIj(t)}2 (8)

Summation is over all origin years j and development periods d in the run-off arrays. In the case 
of annual development data, d denotes the development year. We use the convention that the origin 
year itself is development year 0, so d takes the values 0, 1, 2, etc. In the fitted curves (FPj(t) and 
FIj(t)), t denotes continuous development time. Ideally this would be the exact elapsed time from the 
date of loss occurrence. However, since claims in a particular origin year cohort do not usually all 
have exactly the same date of loss occurrence, t is set to an approximate average delay from the date 
of loss occurrence until the end of the corresponding development period d. Table 2 gives 
appropriate values of t for each development year d, for both accident year and underwriting year 
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cohorts. These approximations are based on assumptions that accidents occur uniformly in time and 
policies incept uniformly. Further details are given in Appendix B.  

Similar approximations can be used for sub-annual development periods. Approximations such 
as these tend to be relatively crude for early development periods: this is discussed further in Section 
2.5.3. 

 

Table 2: Approximate mean delay in each development year 

Development year (d) 0 1 2 3 4 5+ 

Accident year mean delay (t) 0.5 1.5 2.5 3.5 4.5 d+0.5

Underwriting year mean delay (t) 0.333 1 2 3 4 d 

Given values for the parameters of the development curves (in the case of the Weibull model: sR, 
cR, cP, β0, β1, σ0 and σ1) and a value for the ultimate Uj of each origin year, the “expected” values 
Uj.FPj(t) and Uj.FIj(t) can be calculated corresponding to each cell (j,d) of the run-off array. From 
these, the residual sums of squares RSSP and RSSI can be calculated (Equation 8). The least squares 
estimation method is to search for the values of the parameters (sR, cR, cP, β0, β1, σ0, σ1 and Uj for each 
origin year) that minimize the residual sums of squares. Note that ultimates Uj can be treated as 
parameters of the model and estimated by least squares along with the other parameters. However 
for early origin years, the ultimate may already be known with some precision. If, for a particular 
origin year all reported claims have been settled and further claims are considered unlikely, then 
there is no need to estimate the ultimate Uj by least squares, and a better model will usually be 
obtained by using the known value of this quantity. Usually this applies only for the earlier origin 
years: for origin years that are not fully developed the ultimate is estimated by least squares. 

2.3.4 Combining paid and incurred by weighted least squares 

It is clearly possible (provided the number of data-points exceeds the number of parameters) to 
carry out least squares estimation separately for paid and incurred. However, the paid and incurred 
models have parameters in common. (In the case of the Weibull model of Section 2.3.2, the 
following parameters feature in both the paid and incurred models: cp, σ0, σ1 and the ultimate Uj of 
each origin year.) If least squares estimation is carried out separately for paid and incurred, the paid 
data will yield one set of estimates for these parameters, and the incurred data will yield another set 
of values for the same parameters. This can be avoided by carrying out the least squares procedure 
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just once based on the total residual sum of squares RSSP + RSSI. 

This raises the question of relative weighting between paid and incurred: is it correct to give RSSP 
and RSSI equal weight by just adding them? An alternative would be to find the parameter values 
that minimize RSSP+w.RSSI where w is a predefined weighting factor. To increase the influence of 
the incurred data relative to the paid data, we would choose a value for w that is greater than 1, and 
to give more influence to the paid data we would choose a value less than 1.  

One way to justify a relative weighting on theoretical grounds would be to develop a full 
stochastic model that treats each value Pjd and Ijd as a random variable and gives an expression for 
the variance of each one. The basic theoretical justification for the least squares method is two-fold: 

• The Gauss-Markov theorem states that, in linear models, weighted least squares estimates 
have the smallest variance of all linear unbiased estimates. 

• Quasi-likelihood theory shows that weighted least squares estimates are asymptotically 
unbiased and efficient (that is, have minimum possible variance) even in non-linear models. 

In both Gauss-Markov and quasi-likelihood theory, the weights that give optimal least squares 
estimates are inversely proportional to the variances of the corresponding random variables. In 
addition, if some of the random variables are correlated, then the residual sum of squares that is 
minimized should include cross terms with weights depending on the covariance between the 
corresponding variables. 

In the present application, it is clear that the observations (Pjd and Ijd) are not all mutually 
independent. Since incurred is paid plus outstanding, any reasonable stochastic model would indicate 
a positive covariance between the values Pjd, Ijd with the same values of j and d. Furthermore, since 
these are cumulative values, it is likely that there is serial correlation between successive values of Pjd 
as the development period d increases in each fixed origin year j. For this reason, a full stochastic 
model would indicate that the optimum “residual sum of squares” to be minimized should include 
cross terms such as {Pjd – Uj.FPj(t)}.{Ijd – Uj.FIj(t)} as well as pure squared terms such as {Pjd – 
Uj.FPj(t)}2. A full stochastic model would also indicate the optimum relative weighting of every term 
in the residual sum of squares.  

Development of a full stochastic model is not attempted in this paper because it would be 
mathematically complex and probably contentious (as it would require many assumptions about the 
nature of the stochastic variation in paid and incurred run-off data). Instead, the aim is to produce a 
method that is simple enough to be widely useful if applied intelligently. To this end, it is proposed 
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to ignore the clear correlation that will exist between the observed values of Pjd and Ijd by including 
no cross-terms in the residual sum of squares. We also take no account of differing variances among 
the Pjd (and among the Ijd) by giving every term equal weight in RSSP (and in RSSI). The remaining 
question is: should we take this cavalier approach one step further by giving equal weight to both 
RSSP and RSSI ? 

2.3.5 Empirical determination of relative weighting of paid and incurred 

At this point, it is proposed to allow for the possibility that one of the two datasets (either paid or 
incurred) may appear to be more reliable than the other. The theory (Gauss-Markov and quasi-
likelihood) suggests that the two terms (RSSP and RSSI) should be weighted in inverse proportion to 
the mean variance of paid and incurred data-points. That is, instead of minimizing RSSP+RSSI we 
should minimize (RSSP/σ2

P)+(RSSI/σ2
I), where σ2

P and σ2
I are typical variances of individual paid and 

incurred observations. This is equivalent to minimizing the following total weighted sum of squares:  

 Weighted sum of squares = RSSP+ wI .RSSI  where wI = σ2
P/σ2

I. (9)
Instead of using a stochastic model to determine the relative magnitudes of σ2

P and σ2
I, a purely 

empirical approach can be used in which their relative magnitudes are estimated from the residuals. 
Standard theory suggests the variance of a paid observation be estimated as:  

σ2
P = RSSP/(nP – pP) (10)

where nP is the number of paid observations, and pP is the number of parameters estimated from 
these observations. If variances are estimated in this way we will have (RSSP/σ2

P) = (nP – pP) and 
(RSSI/σ2

I) = (nI – pI), so the total weighted sum of squares (RSSP/σ2
P)+(RSSI/σ2

I) will be (nP + nI) – 
(pP + pI).  An iterative fitting procedure is necessary to achieve this. It is also necessary to divide the 
total parameter count into the two components pP and pI. Each parameter that features in the fitted 
curves of both paid and incurred (for example, the ultimates Uj) makes a fractional contribution to 
both pP and pI. What is believed to be a reasonable pragmatic approach is proposed for this purpose. 
(This is discussed further in Section 2.5.1, but no rigorous theoretical justification is claimed.) 

For example, suppose we have annual paid and incurred run-off arrays for 10 origin years, so that 
nP = nI = 55. Suppose we are using the Weibull model described in Section 2.3.2. The paid 
development curves depend on 13 parameters: cP, σ0, σ1 and U1, U2…U10. The incurred development 
curves depend on 17 parameters: the same 13 as in the paid model, plus sR, cR, β0 and β1. If we count 
a parameter that features in both paid and incurred models as half a parameter in each model, we 
have: pP = 6.5 and pI = 10.5, which gives the correct total number of distinct parameters: pP + pI = 
17. (A more refined method of counting parameters is discussed in Section 2.5.1.)   
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On the first iteration, we estimate the parameters by minimizing RSSP+RSSI (that is, using equal 
weights initially). Suppose this produces parameter values that give RSSP = 100 and RSSI = 300, so 
the total minimized residual sum of squares is 400. Initial estimates of the mean variances for paid 
and incurred are then: σ2

P = 100/(55–6.5) = 2.06 and σ2
I = 300/(55–10.5) = 6.74  (If we had reason 

to believe that σ2
P and σ2

I were equal, we would estimate the value as 400/(110–17) = 4.30.) σ2
I being 

so much higher than σ2
P indicates that the model does not fit the incurred data as closely as it fits the 

paid data. The incurred data are therefore less reliable than the paid for the purpose of projecting 
run-off patterns, and so should be given less weight than paid in fitting the model. So for the next 
iteration, instead of minimizing RSSP+RSSI, we minimize (RSSP/2.06)+(RSSI/6.74). Multiplying by 
2.06, we see that this is equivalent to minimizing RSSP + 0.31 * RSSI. Minimizing this might result in 
RSSP = 95 (that is, a closer fit to the paid data than on the first iteration) and RSSI = 350 (a poorer 
fit to the incurred data than on the first iteration). These figures give the following revised estimates 
of variances: σ2

P = 95/(55–6.5) = 1.96 and σ2
I = 305/(55–10.5) = 7.87. So on the third iteration, we 

minimize RSSP + 0.25 * RSSI. Continuing in this way, convergence usually occurs after a few 
iterations.  

If the model is set up in Excel®, the Excel solver can be used to search for the parameter values 
that minimize the required weighted sum of squares in each iteration. Note however, that since the 
fitted curves are non-linear functions of the parameters, solver does not guarantee to find the global 
minimum. It is advisable to try several sets of starting values if there is any doubt about the solution 
found by the Excel solver.   

2.4 Use of premium and exposure data 

2.4.1 Estimated ultimate for latest origin year 

In the model described so far, no use has been made of premium or other exposure data. For the 
latest origin year (j = J say), the ultimate UJ is estimated purely by fitting curves to development 
patterns, and assuming that changes in the parameters of these curves from one origin year to the 
next are linked to changes in the underwriting cycle (through equations such as 6 and 7). The latest 
origin year has one free parameter of its own (the ultimate UJ), and (assuming annual paid and 
incurred development data) two data-values: the actual paid and incurred amounts at the end of the 
zeroth development year PJ0 and IJ0. 

This latest origin year contributes just two terms to the weighted sum of squares: 

{PJ0 – UJ.FPJ(t)}2 + w.{IJ0 – UJ.FIJ(t)}2
   (11)
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 Here, t = ½ for accident year cohorts, or 1/3 for underwriting year cohorts: see Table 2. 

Since UJ does not appear in any other terms of the total sum of squares, it can be adjusted to 
minimize the sum of the above two terms. Elementary calculus shows that this gives: 

UJ = {PJ0.FPJ(t) + w.IJ0.FIJ(t)}/ {FPJ(t)2 + w.FIJ(t)2} (12)
 If we write UPJ and UIJ for the ultimates projected from the latest paid or incurred separately 

(that is UPJ = PJ0 / FPJ(t) and UIJ = IJ0 / FIJ(t) ), then we have: 

UJ = {UPJ.FPJ(t)2 + w.UIJ.FIJ(t)2}/ {FPJ(t)2 + w.FIJ(t)2} (13)
This shows that UJ is a weighted average of UPJ and UIJ with weights FPJ(t)2 and w.FIJ(t)2.  

For example, suppose paid and incurred amounts for the latest origin year are PJ0 = $200 and IJ0 
= $1000, and suppose the fitted development curves imply that these figures are respectively 20% 
and 110% of ultimate, that is: FPJ(t) = 0.2 and FIJ(t) = 1.1. Then projecting paid and incurred 
separately to ultimate gives the estimates: UPJ = $200/0.2 = $1000 and UIJ = $1000 / 1.1 = $909. 
Suppose further that the analysis described in Section 2.3.3 indicates that incurred sums of squares 
should receive a weight of 0.2 relative to paid (that is, w = 0.2), then we have : FPJ(t)2 = 0.04 and 
w.FIJ(t)2 = 0.24. Equation 13 then gives a combined estimated ultimate:  UJ = (0.04 * $1000 + 0.24 * 
$909) / 0.28 = $922. 

Note that in practice, the model can be set up in Excel, and least-squares estimation carried out 
using the Excel solver. It is not necessary to evaluate the formulas given above: the estimated 
ultimates are parameters of the model that are found by the Excel solver. 

2.4.2 Model for ultimate in terms of premium or other exposure information 

From Equation 12, it is clear that the estimated ultimate for the final origin year will be sensitive 
to the values of the two observations PJ0 and IJ0. The sensitivity of the estimate to these values can be 
reduced (hence the reliability of the estimated ultimate increased) if total premium or some other 
measure of exposure can be obtained. A measure of exposure other than premium is more valuable 
than premium, because to make use of premium, we also have to use the estimated premium rate 
index for the latest year (QJ) and this is already used in FPJ(t) and FIJ(t) (through equations such as 6 
and 7). Premium and exposure data will clearly also be useful for other origin years, but it is for the 
latest few origin years that this additional information is most valuable. 

First we consider using a measure of exposure other than premium. This might be, for example, 
gross tonnage in a marine account, or total payroll in workers compensation. The exposure for 
origin year j is denoted Xj. If there are no cycles or trends in the ultimate loss per unit of exposure, 
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then we have: 

Uj = r.Xj + random error. (14)
Here, the parameter r represents the mean ultimate loss per unit of exposure. 

However, it could be that there is a trend in ultimate loss per unit of exposure. We should at least 
expect an inflationary trend if the exposure measure is not in dollars. In this case, we could try a 
model of the form rj = exp(ρ0 + ρ1.j) (where ρ0 and ρ1 are parameters assumed to take constant 
values across all origin years). We can also allow for the possibility that the ultimate loss per unit of 
exposure varies with the underwriting cycle: 

rj = exp(ρ0 + ρ1.j + ρ2.Qj ). (15)
Using this model, Equation 14 becomes: 

Uj = Xj.exp(ρ0 + ρ1.j + ρ2.Qj ) + random error. (16)
In the event that the only measure of exposure available is premium (denoted Premj) then 

underwriting cycle effects need to be removed from this by using Xj = Premj / Qj in the above. The 
possibility that the premium rate index understates the true amplitude of the underwriting cycle is 
accommodated (approximately) by the inclusion of Qj in the exponential factor: in this case the 
parameter ρ2 will be lower than it would be if Qj correctly reflected the amplitude.  

Another possibility is to remove the exponentiation from Equation 16 (so any inflationary trend 
is approximated as linear) to give: 

Uj = Premj.( ρ2 + ρ1.j/Qj + ρ0/Qj ) + random error. (17)
If premium takes several years to develop to ultimate (as is often the case in London market 

business because of profit-sharing, reinstatement premiums, retrospective experience rating, end-of-
term exposure adjustments, etc.), then Premj could be obtained by applying a simple projection 
method (such as chain ladder) to the premium development array.  

In all the above equations the “random error” term reflects real variation in loss experience from 
one origin year to another. As a first approximation, it is probably reasonable most of the time to 
assume that the variance of this is proportional to the expected ultimate Uj and to approximate this 
as being proportional to Premj/Qj. Proportionality of variance to expected value implies that the 
coefficient of variation is inversely proportional to the square-root of the expected ultimate, 
reflecting the diversification benefit of large portfolios.  

2.4.3 Use of exposure information in curve-fitting 

To make use of the premium (or other exposure) information in curve-fitting by least-squares, we 
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need to add a further term to the sum of squares that is minimized (see Section 2.3.3). From 
Equation 17, and the above assumption on the approximate variance of the random error term, the 
additional sum of squares in respect of exposure is given by: 

RSSX = Prem0.Σj {Uj - Premj.( ρ2 + ρ1.j/Qj + ρ0/Qj ) }2 .Qj / Premj. (18)
Here, summation is over all origin years j. Prem0 represents the mean value of Premj across all 

origin years (or some other suitable value, e.g., Prem0 = PremJ). This factor is included to offset the 
factor Qj/Premj applied to each term in the sum: it ensures that RSSX is in units of “dollars-squared” 
and of the same order of magnitude as RSSP and RSSI. The total sum of squares to be minimized 
becomes RSSP + wI.RSSI + wX.RSSX, where RSSP and RSSI are given by Equations 8 and 9, and 
appropriate values for the weights wI and wX can be determined iteratively using the principles 
described in Section 2.3.3. 

For example, consider again the case of annual paid and incurred run-off arrays for 10 origin 
years, so that nP = nI = 55. We now have ten additional pieces of information: the estimated ultimate 
premiums Premj, denoted by nX = 10. Once again using the Weibull model described in Section 
2.3.2: the paid development curves depend on 13 parameters (cP, σ0, σ1 and U1, U2…U10), the 
incurred development curves depend on 17 parameters (the same 13 as in the paid model plus sR, cR, 
β0 and β1) and the exposure model depends on 13 parameters (the ten ultimates and the three rho-
parameters of Equation 17). Parameters that feature in more than one of the three components can 
be counted in proportion to the number of data-points in each component. For example, as the 
parameter U1 is determined using all 120 data-points, it is counted as 55/120 of a parameter in the 
paid model, 55/120 of a parameter in the incurred model, and 10/120 of a parameter in the 
exposure model. On this basis we have: pP = 10 * 55/120 + 3 * 55/110 = 6.08, pI = 10 * 55/120 + 3 
* 55/110 + 4 = 10.08, and pX = 10 * 10 / 120 + 3 = 3.83, which gives the correct total number of 
distinct parameters: pP + pI + pX = 20. (A more refined method of counting parameters is proposed 
and discussed in Section 2.5.1.)  

On the first iteration, we estimate the parameters by minimizing RSSP+RSSI+RSSX (that is, using 
equal weights initially). Suppose this produces parameter values that give RSSP = 102 and RSSI = 
308 and RSSX = 50, so the total minimized residual sum of squares is 460. (Note that RSSP and RSSI 
are necessarily higher than they were when RSSX was not considered.) Initial estimates of the 
variances are then: σ2

P = 102/(55–6.08) = 2.09 and σ2
I = 308/(55–10.08) = 6.86  and σ2

x = 50 / (10 
– 3.83) = 8.1. 

For the second iteration, we minimize (RSSP/2.09)+(RSSI/6.86)+(RSSX/8.1), which is equivalent 
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to minimizing: RSSP + 0.304 * RSSI + 0.258 * RSSX. The values of RSSP, RSSI and RSSX given by 
minimizing this weighted sum are then used to calculate revised estimates of σ2

P, σ2
I and σ2

X, and the 
weights for the third iteration calculated using wI = σ2

P/σ2
I and wX = σ2

P/σ2
X. Convergence usually 

occurs after a few iterations.  

2.4.4 Effect of exposure information on projected ultimate for latest origin year 

In Section 2.4.1 we considered the estimated ultimate for the latest origin year (UJ) obtained using 
just two pieces of information for that origin year: PJ and IJ. We now consider the estimate of UJ 

obtained by, in addition, using the premium data as described in 2.4.3.  

This latest origin year now contributes three terms to the weighted sum of squares: 

{PJ0 – UJ.FPJ(t)}2 + wI.{IJ0 – UJ.FIJ(t)}2 + wX.{UJ – PremJ.RJ}2 .QJ.Prem0 /PremJ   (19)
 (Here RJ denotes (ρ2 + ρ1.J/QJ + ρ0/QJ), which can be regarded as the expected ultimate loss 

ratio for the latest origin year.)  

Since UJ does not appear in any other terms of the total sum of squares, it can be adjusted to 
minimize the sum of the above three terms. It is easily proved that this gives: 

UJ = {PJ0.FPJ(t) + wI.IJ0.FIJ(t) + wX.RJ.QJ.Prem0}/ {FPJ(t)2 + wI.FIJ(t)2 + wX.QJ.Prem0/PremJ}. (20)
 If we write UPJ, UIJ and UXJ for ultimates estimated respectively from paid, incurred and 

premium data separately (that is UPJ = PJ0 / FPJ(t), UIJ = IJ0 / FIJ(t) and UXJ = PremJ.RJ), then we have: 

UJ = {UPJ.FPJ(t)2 + wI.UIJ.FIJ(t)2
 + wX.UXJ.QJ.Prem0/PremJ}  

/{FPJ(t)2 + wI.FIJ(t)2 + wX.QJ.Prem0/PremJ}. 
(21)

This shows that UJ is now a weighted average of UPJ, UIJ and UxJ. 

For example, suppose paid and incurred amounts for the latest origin year are PJ0 = $200 and IJ0 
= $1000, and suppose the fitted development curves imply that these figures are respectively 20% 
and 110% of ultimate, that is: FPJ(t) = 0.2 and FIJ(t) = 1.1. Then projecting paid and incurred 
separately to ultimate gives the estimates: UPJ = $200/0.2 = $1000 and UIJ = $1000 / 1.1 = $909. In 
addition, suppose we have PremJ = $1100 and, from the fitted loss-ratio model, RJ = 104%, so that 
UXJ = $1144. Suppose further that the analysis described in the previous section converges to wI = 
0.29 and wX = 0.24. If the latest origin year is believed to be at the mid-point of the underwriting 
cycle (so QJ = 1) and we have used the normalizing factor Prem0 = PremJ, then we have: FPJ(t)2 = 
0.04, wI.FIJ(t)2 = 0.35 and wX.QJ.Prem0/PremJ = 0.24. The above formula then gives a final estimate:  
UJ = (0.04 * $1000 + 0.35 * $909 + 0.24 * $1144) / 0.63 = $1004. 

For earlier origin years, the influence of the exposure information will be lower because the 
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number of terms in the sum of squares relating to paid and incurred development data is higher for 
earlier years, while the number of terms relating to exposure data remains at one for each origin year.  

2.5 Parameter Counts and Significance Tests 

2.5.1 Parameter counts 

In the examples of Sections 2.3.3 and 2.4.3, the total parameter count was apportioned between 
the different sub-sets of data (paid, incurred and exposure data) in proportion to the number of 
data-points. The example of Section 2.3.3 has an equal volume of paid and incurred data (55 paid 
and 55 incurred observations) and no exposure data, so each parameter that features in both paid 
and incurred models was counted as half a parameter in each of these models. The example of 
Section 2.4.3 has 10 exposure observations in addition to the 55 paid and 55 incurred observations. 
Each parameter that contributes to all three parts of the model was counted as 10/120 of a 
parameter in the exposure part, and 55/120 in each of the paid and incurred parts.  

The rationale for splitting parameter counts in this way is that it approximately reflects the 
relative influence of each type of data in determining the value of the parameter. This can be further 
refined by taking account of the relative weights used in the total weighted sum of squares that is 
minimized. For example, if we have just 55 paid and 55 incurred observations (no exposure data), 
and the incurred data is given a weight of 0.5 relative to the paid data (that is, wI = 0.5), then each 
incurred observation has (on average) only half the influence of each paid observation in 
determining parameter values. On this basis, a parameter whose value is determined from both paid 
and incurred data would be counted as 2/3 determined from paid data and 1/3 from incurred data.  

In general using this method, each parameter contributes to pP, pI, and pX in proportion to nP, 
wI.nI, and wX.nX. Each parameter must have a total count of one, so for a parameter estimated from 
all three data sources, the contributions to pP, pI, and pX are respectively: 

   nP / (nP + wI.nI + wX.nX),   wI.nI / (nP + wI.nI + wX.nX),   wX.nX /(nP + wI.nI + wX.nX). 

For a parameter that is not estimated from all three sources, the corresponding term(s) must be 
omitted from the denominator of these expressions so that the total is always one for each 
parameter. No rigorous theoretical justification is claimed for this method of counting parameters: it 
is proposed as a reasonable pragmatic approach. 

The method for counting parameters used in Sections 2.3.3 and 2.4.3 is as above but with the 
weights wI and wX omitted. Including these weights in the parameter counts slightly complicates the 
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fitting process because the relative weights (estimated from the residual sums of squares as described 
in Sections 2.3.3 and 2.4.3) change at each iteration, so the parameter counts will also change at each 
iteration.   

To illustrate this, consider again the example of Section 2.4.3. For the first iteration, we use wI = 
wX = 1. Therefore the parameter counts are initially as in Section 2.4.3: pP = 6.08, pI = 10.08, pX = 
3.83 (giving a total parameter count of 20). Estimates of variances obtained from the first iteration 
are then (exactly as in Section 2.4.3): σ2

P = 102/(55–6.08) = 2.09 and σ2
I = 308/(55–10.08) = 6.86  

and σ2
x = 50/(10–3.83) = 8.1. 

For the second iteration, the relative weights become wI = 2.09 / 6.86 = 0.304, and wX = 2.09 / 
8.1 = 0.258, so we minimize RSSP + 0.304 * RSSI + 0.258 * RSSX (which again, is exactly as in 
Section 2.4.3). However, unlike in Section 2.4.3, the parameter counts used in estimating variances 
from the results of the second iteration should now factor in the weights used in the second 
iteration. Parameter counts that factor in these weights are: 

pP = 3 * {55 / (55 + 0.304 * 55)} + 10 * {55 / (55 + 0.304 * 55 + 0.258 * 10)}, 

pI = 0.304 * pP + 4, 

pX = 10 * {0.258 * 10 / (55 + 0.304 * 55 + 0.258 * 10)} + 3. 

These evaluate to pP = 9.70, pI = 6.95, pX = 3.35. (As a check, we see that the total of these 
parameter counts is still 20.) Estimates of variances from the second iteration are then: 
σ2

P = RSSP/(55 – 9.70),  σ2
I = RSSI/(55 – 6.95) and σ2

x = RSSX / (10 – 3.35).  
These give weights wI and wX for the third iteration, and hence parameter counts used in estimating 
variances from the results of the third iteration.  

2.5.2 Statistical significance tests 

When an additional parameter is introduced into a model, the minimized residual sum of squares 
is inevitably smaller than it was before the new parameter was introduced. (This is because the 
model without the additional parameter is equivalent to a model in which the additional parameter is 
set to zero. When the new parameter is introduced, it is no longer constrained to take the value zero. 
When non-zero values are allowed in minimizing the residual sum of squares, it is extremely unlikely 
that the minimum will occur at exactly the value zero.) So by introducing an increasing number of 
parameters, the quality of fit (as measured by the residual sum of squares) can be progressively 
improved until the number of parameters is equal to the number of observations: when this occurs a 
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perfect fit is possible and the residual sum of squares becomes zero.  

Clearly we should try to avoid over-fitting: that is, we should try to avoid including parameters 
that reflect only the random variation of the particular dataset rather than genuine underlying effects. 
The purpose of statistical significance tests is to avoid over-fitting: parameters are included in a 
model only if they are statistically significant.  

In least squares estimation, an appropriate significance test is based on the size of the decrease in 
the minimized residual sum of squares (RSS) when a new parameter is introduced. If the minimized 
RSS reduces only slightly, then the new parameter may not be statistically significant. To judge 
whether a decrease in the minimized RSS is statistically significant, it should be compared to the 
mean RSS per “degree of freedom.”   

To illustrate, consider again the example of Section 2.3.3 based on 55 paid observations and 55 
incurred observations. Suppose that initially we fit a model with 17 parameters and that we give 
equal weight to incurred and paid data so parameters are estimated by minimizing RSSP + RSSI. 
Suppose (as in Section 2.3.3) that the minimized value is 400.0. Now suppose that an additional 
parameter is introduced into the model (this might, for example, be the parameter β1 of Equation 6), 
and that the minimized RSS with this new parameter included is 397.0.  Is the new parameter 
statistically significant?  

To answer this, we note that the new parameter caused a decrease of 3.0 in the minimized RSS. If 
this is judged to be a large decrease, then we conclude that it is unlikely to have been caused purely 
by chance and therefore that the new parameter is statistically significant. To judge whether the 
decrease of 3.0 is large (statistically significant) or small (insignificant) we need to compare it to 
something else. At first sight, it might seem that a suitable quantity to compare this decrease to is the 
mean-squared residual. There are 110 residuals in total (equal to the number of data-points) so the 
mean-squared residual is 397/110 (= 3.61) when the new parameter is included, and 400/110 
(=3.64) when it is not included. Clearly the mean-squared residual decreases as the number of 
parameters increases. To allow for this, the denominator used in calculating the mean needs to be 
adjusted for the number of parameters in the model. Instead of dividing by the number of 
observations, we should divide by the number of “degrees of freedom”, which is defined as the 
number of observations less the number of fitted parameters. The number of parameters was 17 
before then new parameter was introduced and 18 afterwards, so the numbers of degrees of 
freedom are respectively 93 and 92. The mean-squared residual per degree of freedom is therefore 
400/93 (= 4.30) before the new parameter is introduced and 397/92 (=4.32) after. To judge whether 
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the new parameter is statistically significant, we should compare the change in the RSS of 3.0 to the 
mean value 4.32. Since the change in the RSS is less than the mean RSS per degree of freedom, the 
new parameter is not statistically significant.  

Note that the change in the RSS is compared to the mean obtained from the more general model 
(4.32 in this example) not the mean obtained from the model excluding the parameter (4.30 in this 
example). This is because, if a parameter is statistically significant, the mean RSS from the model 
with the parameter excluded would be wrongly inflated by the exclusion.  

If the decrease in the RSS obtained by introducing an additional parameter is less than the mean 
RSS per degree of freedom after the parameter has been introduced (as in the above example), then 
the additional parameter is not statistically significant. However, a change in the RSS that exceeds 
the mean RSS per degree of freedom is not necessarily conclusive evidence of statistical significance. 
Clearly, the greater the ratio of change in RSS to RSS per degree of freedom, the greater the 
statistical significance of the new parameter. (In the above example, this ratio is 3.0/4.32 = 0.69.) 
This ratio is known as the “F-ratio” and, to help judge its statistical significance, it can be compared 
to a theoretical F-distribution. In idealized circumstances, the theoretical F-distribution is the 
probability distribution of an F-ratio under the hypothesis that the additional parameter is equal to 
zero. Although this is not exactly the case in practice, the theoretical F-distribution remains a useful 
tool in judging the statistical significance of F-ratios. If an F-ratio is in the extreme right tail of the 
theoretical F-distribution, this is evidence against the hypothesis that the true value of the parameter 
is zero. In other words, the parameter is statistically significant. In our example, the appropriate 
theoretical F-distribution is that with 1 and 92 degrees of freedom (1 because one additional 
parameter has been introduced, 92 because after introducing the additional parameter, the RSS has 
92 degrees of freedom, that is, 110 - 18). The 95th percentile of the theoretical F distribution with 1 
and 92 degrees of freedom is 3.95. This means that if the true value of the new parameter is zero, 
there is only a 5% chance that the F-ratio would be as high as 3.95. So an F-ratio in excess of 3.95 is 
strong evidence that the true value of the parameter is non-zero. An F-ratio above the 95th percentile 
is usually judged to be statistically significant. A value above the 90th percentile (2.77 in this example) 
would also usually be regarded as statistically significant, but with a lower degree of confidence. Any 
F-ratio greater than 1 provides some evidence that the parameter is in fact non-zero, but clearly the 
lower the F-ratio, the weaker the evidence.  

In carrying out F-tests on weighted sums of squares, it is important to ensure that the weights are 
the same in both the numerator and denominator of the F-ratio. It would be wrong to compare a 
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change in RSSP + wI.RSSI to a mean value of RSSP + wI'.RSSI  unless  wI' is equal to wI. If the weights 
are not equal, then we are not comparing like with like and the F-ratio is meaningless.  

In the present paper, a model is fitted iteratively (with the number of parameters fixed) until the 
relative weight wI converges (as described in 2.3.3). Additional parameters should then be 
introduced, initially with no change in wI in order to carry out a valid F-test. If the F-test shows the 
additional parameters to be statistically significant, further iterations can then be carried out with the 
additional parameters included until wI converges to a new value. 

2.5.3 Extra parameters for first few development years 

When fitting theoretical run-off curves to discrete aggregate development data, it often happens 
that the fit is relatively poor for the first one or two development years. This occurs because the first 
development year contains a mixture of actual delays from the accident date to the end of the 
development year (depending on the distribution of accident occurrence dates in the accident year). 
In the case of underwriting year cohorts, the situation is further complicated by the range of possible 
policy inception dates within the underwriting year. These effects are approximately taken into 
account by using the average values of t given in Table 2 (Section 2.3.3). These approximations are 
often poor for the first one or two development years. The accuracy of these approximations 
increases in later development years because the variation in accident dates within the first year is 
proportionately a smaller part of the total delay.  

This phenomenon was observed in Wright (1989) where it was accommodated by introducing 
some additional parameters for the first few development periods. The same refinement can easily 
be introduced in the present model. It is usually only the first two development years that are 
significantly affected. To allow for these, up to four additional parameters are required: two for paid 
development and two for incurred development.   

In the model of Section 2.3.2 (Equations 8 and 9) the paid and incurred expected values are 
modeled respectively as Uj.FPj(t) and Uj.FIj(t).  Here, j is the origin year, t is the average development 
delay (given by the approximations in Table 2), FPj(t) and FIj(t) are the run-off curves given by 
Equations 4, 5, 6, and 7, and Uj is the ultimate for origin year j. 

We now introduce additional parameters θP0, θP1, θI0, θI1. The subscripts 0 and 1 indicate that these 
parameters apply to development years 0 and 1. For these two development years, the expected 
cumulative paid values are modeled as exp(θP0).Uj.FPj(t) (where t = 0.5 for accident years, 0.333 for 
underwriting years) and exp(θP1).Uj.FPj(t) (where t = 1.5 for accident years, 1.0 for underwriting 
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years), and similarly for cumulative incurred. Note that with this form of model: 

• Each θ-parameter may take any real value (positive or negative). 

• The value zero for a θ-parameter corresponds to the case where no adjustment is 
necessary (the factor exp(θ) is then one so can be omitted). 

• The θ-parameters can be determined in the same was as any other parameter of the 
model: by least squares estimation.  

• Statistical hypothesis tests can be carried out (as described in 2.5.2) to determine whether 
or not these additional parameters are necessary. 

3. EXAMPLE ANALYSIS 

3.1 Data 

To illustrate the methods described in Section 2, they are applied to the development data given 
in Appendix A. This is based on actual data, covering underwriting years 1993 to 2006. The class of 
business and other details are not given here to preserve confidentiality. The numbers of paid and 
incurred data-points are nP = nI = 105, giving a total of 210. The premium rate index (given in 
Section A.1.4. of the appendix) is an estimate obtained by applying conventional projection methods 
to the triangles to find estimated ultimate premiums and claims. The premium rate index was then 
calculated as the ratio of estimated ultimate premiums to estimated ultimate claims. This was 
adjusted by a constant factor so the mean value of the index Qj over the 14 underwriting years is 
one. (The reliability of this method of calculating a premium rate index is discussed in Section 4.2.)   

3.2 Weibull model 

3.2.1 Constant development pattern 

First we fit the Weibull model with all parameters fixed at constant values across all origin years. 
In other words, we assume initially that the run-off pattern is the same for all origin years with no 
dependence on the underwriting cycle. This model has a total of 19 parameters: sP, cP, sR, cR, b, and 
U1…U14. First estimates of the parameters are given by minimizing the un-weighted total residual 
sum of squares RSSP+RSSI. (This is Equation 9 in the case wI = 1, where RSSP and RSSI are given by 
Equation 8.) Allocating the 19 parameters between paid and incurred data as described in Section 
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2.5.1 gives pP = 8, pI = 11.  

Results are shown in the second column (iteration number 1) of Table 3. The residual sums of 
squares are in millions. Initial estimates of typical paid and incurred variances from Equation 10 are: 
σ2

P = 276.7/97 = 2.85 and σ2
I = 351.3/94 = 3.74. The fact that σ2

I is higher than σ2
P indicates that 

the Weibull curve does not fit as closely to the incurred data as to the paid data. This gives a weight 
for the second iteration of wI = 2.85/3.74 = 0.763. Parameter counts (using the method described in 
2.5.1) are then: 

pP = 16 * 105 / (105 + 0.763 * 105) = 9.07  and  pI = 3 + 0.763 * pP = 9.93.  

Results of minimizing the weighted residual sum of squares are given in the corresponding 
column (iteration number 2) of Table 3. These results give new estimates: σ2

P = 263.4/95.93 = 2.75, 
σ2

I = 366.6/95.07 = 3.86 hence wI = 2.75 / 3.86 = 0.712 for the third iteration. Continuing in this 
way, convergence occurs in five iterations. Using the formula for the mean of a Weibull distribution 
(see Section 2.2.2), the final values of the Weibull parameters imply a mean reporting delay of 1.8 
years and a mean payment delay of 2.7 years. The final column of Table 3 shows the ratio of the 
ultimates from the converged Weibull model to the basic chain ladder ultimates obtained from just 
the incurred data. 



A Model to Test for and Accommodate Reserving Cycles 
 

Casualty Actuarial Society Forum, Fall 2008  429 

Table 3:  Weibull curves with constant parameters 

Iteration 1 2 3 4 5 Uj as % of ICL 
wI 1 0.763 0.712 0.699 0.700  
pP 8 9.07 9.35 9.42 9.41  
pI 11 9.93 9.65 9.58 9.59  
RSSP 276.7 263.4 260.2 260.2 260.2  
RSSI 351.3 366.6 370.9 370.9 370.9  
RSSP+wI.RSSI 628.0 543.2 524.3 519.6 520.0  
sP 3.00 3.01 3.02 3.02 3.02  
cP 1.41 1.40 1.40 1.40 1.40  
sR 2.01 1.93 1.91 1.91 1.91  
cR 1.24 1.24 1.24 1.24 1.24  

b 0.98 0.89 0.87 0.87 0.87  
U1     13,913      13,927     13,930     13,930     13,930 102.7% 
U2     19,130      19,165     19,174     19,174     19,174 101.2% 
U3     11,200      11,217     11,221     11,221     11,221 99.6% 
U4     10,995      10,980     10,976     10,976     10,976 101.8% 
U5     12,982      12,960     12,954     12,954     12,954 93.8% 
U6     26,159      25,838     25,755     25,755     25,755 89.2% 
U7     68,255      68,256     68,257     68,257     68,257 94.8% 
U8   142,745    143,104   143,197   143,197   143,197 98.1% 
U9   128,173    128,703   128,841   128,841   128,841 101.6% 

U10     65,742      65,949     66,003     66,003     66,003 92.4% 
U11       4,445        4,377       4,359       4,359       4,359 92.0% 
U12       4,440        4,458       4,463       4,463       4,463 103.1% 
U13       7,422        7,180       7,112       7,112       7,112 86.5% 
U14     24,784      24,252     24,093     24,093     24,093 81.2% 
ΣUj 540,385 540,365 540,334 540,334 540,334 96.4% 

 

3.2.2 Varying bias factor 

Next some of the parameters are allowed to vary with the underwriting cycle using the model of 
Equations 6 and 7. First we allow just the parameter b to vary, so instead of a single parameter b, we 
now have two parameters β0 and β1 (see Equation 6). The additional parameter relates to incurred 
data only so pI increases by 1 giving: pP = 9.41, pI = 10.59.    
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Table 4: Weibull curves with varying b-parameter 

 Iteration 1 2 

wI 
0.700 

 
0.697 

pP 9.41 9.43 
pI 10.59 10.57 
RSSP 260.3 260.3 
RSSI 368.7 368.7 
RSSP+wI.RSSI 518.5 517.4 
sP 3.02 3.02 
cP 1.40 1.40 
sR 1.90 1.90 
cR 1.24 1.24 
β0 -0.053 -0.053 
β1 0.191 0.191 
ΣUj 537,411 537,411 

 

The second column (iteration 1) of Table 4 shows least squares results obtained using the same 
value wI = 0.700 as used in the model with b constant. The additional parameter β1 causes the 
weighted RSS to fall from 520.0 to 518.5. An approximate test of statistical significance of the 
additional parameter is the F-test described in Section 2.5.2. This is based on the ratio of the 
decrease in the weighted RSS per additional parameter (which is 1.5 in this case, as there is only one 
additional parameter) to the mean RSS per degree of freedom in the model with 20 parameters, 
which is 518.5 / (210 – 20) = 2.7. If the additional parameter (β1) is actually zero, then this ratio has 
approximately an F-distribution with 1 and 190 degrees of freedom, so a value in the extreme right-
tail of the F-distribution would be evidence against the hypothesis that β1 is zero. In this case, the 
ratio (1.5/2.7) is less than 0.5, which is not an extreme value compared to an F-distribution, so the 
parameter β1 is not statistically significant. Nevertheless, β1 being positive (0.191) is weak evidence 
that case estimates are strengthened in harder markets. 

3.2.2 Varying paid development time-scale parameter 

Since the F-test indicates no strong evidence that b varies with the underwriting cycle, we next try 
a model in which b is constant, but the paid-development scale parameter (sP) is allowed to vary as in 
Equation 7. We start (iteration 1) with wI = 0.700 as in Table 3, so the additional parameter 
contributes 1/1.700 to pP and 0.700/1.700 to pI, to give pP = 10.00, pI = 10.00. The weighted RSS 
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becomes 510.3, which is a decrease of 9.7. This gives the F-ratio 9.7/(510.3/190) = 3.6, which is 
high, indicating that the additional parameter is statistically significant this time. σ1 being less than 
zero (-0.199) indicates that sPj decreases as the premium index Qj increases, that is, payment delays 
tend to be shorter in harder markets. Three further iterations are necessary for convergence as 
shown in Table 5.  

Table 5: Weibull curves with varying payment delay parameter 

Iteration 1 2 3 4
wI 0.700 0.665 0.656 0.653
pP 10.00 10.21 10.27 10.28
pI 10.00 9.79 9.73 9.72
RSSP 248.5 246.2 245.6 245.6
RSSI 373.8 377.2 378.1 378.1
RSSP+wI.RSSI 510.3 497.0 493.5 492.6
σ0 1.015 1.015 1.015 1.015
σ1 -0.199 -0.201 -0.201 -0.201
cP 1.40 1.39 1.39 1.39
sR 1.63 1.63 1.62 1.62
cR 1.26 1.26 1.26 1.26
b 0.66 0.65 0.65 0.65

 

Next we try a model in which both b and sP are allowed to vary (as in Equations 6 and 7). 
Although it seemed that β1 was not statistically significant when sP was held constant, it is possible 
that when both b and sP are allowed to vary, both are statistically significant. With the weight wI fixed 
at 0.653, the additional parameter (β1) causes a decrease in the weighted RSS from 492.6 to 485.7, a 
decrease of 6.9.  The F-ratio is 6.9 / (485.7/189) = 2.7, which is close to the 89th percentile of the 
corresponding F-distribution. Since this is not an extremely high percentile, the statistical 
significance of the parameter is not clear. In this case, we continue with this model for now, and re-
test the significance of the β1 parameter at a later stage. Note that the final column of Table 6 (ratio 
of cyclical ultimates to incurred CL ultimates) now shows a fairly clear cyclical pattern. 
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Table 6: Weibull curves with varying payment delay and b parameters 

Iteration 1 2 Uj as % of incurred CL
wI 0.653 0.655 
pP  10.27 
pI  10.73 
RSSP 243.8 243.9 
RSSI 370.4 370.2 
RSSP+wI.RSSI 485.7 486.4 
σ0 0.986 0.986 
σ1 -0.251 -0.251 
cP 1.40 1.40 
sR 1.70 1.70 
cR 1.25 1.25 
β0 -0.098 -0.097 
β1 0.513 0.513 
U1     13,598      13,598 100.2%
U2     19,057      19,056 100.6%
U3     11,056      11,056 98.2%
U4     10,792      10,793 100.1%
U5     12,804      12,804 92.7%
U6     25,661      25,664 88.9%
U7     68,454      68,455 95.1%
U8   145,666    145,662 99.8%
U9   128,080    128,076 101.0%
U10     63,611      63,610 89.1%
U11       3,343        3,344 70.6%
U12       3,223        3,224 74.5%
U13       5,815        5,817 70.7%
U14     18,283      18,284 61.6%
ΣUj 529,443 529,444 94.5%

 

Table 7 shows the implied variation of sP and b across the origin years: these values are calculated 
from Equations 6 and 7 using the parameter estimates given in Table 6. Comparing the hard market 
of 2003-2004 to the soft market of 1998-2001 these results imply: 

• Approximately a one-third reduction in payment delays in the hard market (sP decreases from 
about three in the soft market to about two in the hard market). 

• More than doubling of case estimates in the hard market (b increased from 0.7 in the soft 
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market to about 1.7 in the hard market conditions). However, the statistical significance of 
the β1 parameter was questionable so that this apparent cyclical effect might in fact be caused 
by random variation: results presented in the next sub-section suggest that this is in fact the 
case. 

 

Table 7:  Weibull curves with varying payment delay and b parameters 

Origin year (j) Qj - 1 sP b
1993 0.17 2.57 0.99
1994 -0.32 2.90 0.77
1995 -0.18 2.81 0.83
1996 -0.19 2.81 0.82
1997 -0.32 2.90 0.77
1998 -0.47 3.01 0.71
1999 -0.49 3.03 0.70
2000 -0.60 3.11 0.67
2001 -0.42 2.98 0.73
2002 -0.25 2.86 0.80
2003 1.14 2.02 1.63
2004 1.34 1.92 1.81
2005 0.18 2.56 1.00
2006 0.41 2.42 1.12

 

3.2.2 Use of Premium data 

We could now test whether there is any evidence that reporting delays also vary with the cycle by 
using a model like Equation 7, but for the scale parameter of reporting delay sR. However, before 
doing this, we test the effect of using premium data as described in Section 2.4.3. The number of 
ultimate premium data-points is 14 so the total number of data-points increases to 224. First we try 
just one additional parameter, ρ0 (that is, we use Equation 17 with parameters ρ1 and ρ2 set to zero). 
Convergence occurs in four iterations as shown in Table 8. The value 1.066 (or 106.6%) for ρ0 
represents the mean ultimate loss ratio on the assumption that, after on-leveling premiums using the 
premium rate index Qj, the mean ultimate loss ratio is the same for all origin years.   
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Table 8: Weibull curves with varying payment delay and b parameters, using premium data 

Iteration 1 2 3 4
wI 0.655 0.701 0.726 0.737
wX 1 1.606 1.884 2.005
 9.64 9.08 8.82 8.71
 10.32 10.36 10.40 10.42
 2.04 2.57 2.78 2.87
RSSP 255.6 263.0 266.4 266.4
RSSI 362.3 357.5 355.6 355.6
RSSX 19.9 16.6 15.5 15.5
RSSP+wI.RSSI + wx.RSSx 512.9 540.2 553.7 559.6
σ0 1.029 1.038 1.041 1.041
σ1 -0.155 -0.132 -0.125 -0.124
cP 1.40 1.41 1.41 1.41
sR 1.85 1.90 1.92 1.92
cR 1.24 1.24 1.24 1.24
β0 -0.048 -0.016 0.000 0.000
β1 0.310 0.261 0.246 0.246
ρ0 1.065 1.066 1.066 1.066
ΣUj 535,711 535,997 536,064 536,064

 

Since the statistical significance of the β1 parameter was unclear when the model was calibrated 
using just the paid and incurred claims data, we next test the significance of this parameter when the 
premium data is also used in calibration. If the β1 parameter is set to zero and least squares 
estimation carried out using the same weights as above (wI = 0.737, wX = 2.005), the effect is to 
increase the minimized RSS from 559.6 to 561.3. This increase is not statistically significant (F-ratio 
= 1.7 / (559.6 / (224 -22)) = 0.61), implying there is no clear evidence that β1 is non-zero. Table 9 
shows results for the model in which payment scale parameter sP varies with the underwriting cycle, 
but the parameter b is the same across all underwriting years. 

Including parameters ρ1 and ρ2 (with weights wI = 0.751 and wX = 2.294 as in Table 9) causes the 
weighted RSS to reduce from 570.4 to 569.7, which is clearly not a statistically significant reduction. 
Including a parameter that allows the reporting delay to vary with the underwriting cycle reduces the 
weighted RSS from 570.4 to 568.7, which again is not statistically significant (F-ratio = (570.4 – 
568.7) / (568.7 / 202) = 0.60). 
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Table 9: Weibull curves with varying payment delay parameter only, using premium data 

Iteration 1 2 3 4 Uj as % of ICL 
wI 0.737 0.743 0.749 0.751  
wX 2.005 2.199 2.268 2.295  
pP 8.71 8.60 8.54 8.52  
pI 9.42 9.39 9.40 9.40  
pX 2.87 3.02 3.06 3.08  
RSSP 268.6 270.3 271.0 271.3  
RSSI 358.8 358.0 357.6 357.4  
RSSX 14.1 13.6 13.4 13.3  
RSSP+wI.RSSI + wx.RSSx 561.3 566.2 569.2 570.4  
σ0 1.054 1.056 1.056 1.056  
σ1 -0.106 -0.102 -0.101 -0.101  
cP 1.40 1.40 1.40 1.40  
sR 1.79 1.80 1.81 1.81  
cR 1.24 1.24 1.24 1.24  
b 0.77 0.78 0.78 0.78  
ρ0 1.070 1.070 1.070 1.070  
U1     13,734      13,730     13,729     13,728 101.2% 
U2     19,064      19,058     19,056     19,055 100.5% 
U3     11,128      11,126     11,125     11,125 98.8% 
U4     10,823      10,818     10,816     10,816 100.4% 
U5     13,109      13,122     13,127     13,129 95.0% 
U6     25,984      26,002     26,013     26,017 90.2% 
U7     68,561      68,568     68,572     68,573 95.3% 
U8   143,808    143,746   143,723   143,713 98.5% 
U9   128,143    128,080   128,056   128,046 101.0% 
U10     66,568      66,659     66,687     66,698 93.4% 
U11       4,513        4,520       4,523       4,524 95.5% 
U12       3,839        3,839       3,839       3,839 88.7% 
U13       7,969        7,971       7,971       7,972 96.9% 
U14     20,748      20,747     20,747     20,747 69.9% 
ΣUj 537,993 537,987 537,984 537,982 96.0% 

 

The results now show a smaller (and more plausible) amount of variation in mean payment delays 
with the underwriting cycle: compare Table 10 to Table 7. Table 10 also shows the implied mean 
payment delay in years (from the formula given in Table 1). The mean reporting delay is 1.63 years 
(the same for all origin years). 
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Table 10: Weibull curves with varying payment delay parameter only, using premium data 

Origin year (j) Qj - 1 sP mean (years)
1993 0.17 2.83 2.57
1994 -0.32 2.97 2.70
1995 -0.18 2.93 2.67
1996 -0.19 2.93 2.67
1997 -0.32 2.97 2.70
1998 -0.47 3.01 2.75
1999 -0.49 3.02 2.75
2000 -0.60 3.05 2.78
2001 -0.42 3.00 2.73
2002 -0.25 2.95 2.69
2003 1.14 2.56 2.34
2004 1.34 2.51 2.29
2005 0.18 2.82 2.57
2006 0.41 2.76 2.51

 

3.3 Burr model 

Using Burr distributions for both paid and reporting delays gives higher residual sums of squares 
than using the Weibull model, indicating that Burr curves provide a poorer fit to this particular 
dataset.  

3.4 Inverse Burr model 

To compare the quality of fit of the Inverse Burr and Weibull models, we fit an Inverse Burr 
model using the same values of the weights as in Table 8: wI = 0.737 and wX = 2.005. The minimized 
weighted RSS is 538.7 (see Table 11) which is 20.9 lower than obtained using the Weibull model 
(Table 8). The Inverse Burr model has two additional parameters (there are two shape parameters 
instead of one for both reporting and payment delays), so the decrease is 10.5 for each additional 
parameter. Comparing this to the RSS per degree of freedom (538.0 / 200 = 2.7) the decrease 
appears to be statistically significant. (Note that a formal F-test is not strictly valid here because the 
two models are not nested.) We conclude that the Inverse Burr model fits this particular dataset 
better than the Weibull model. Convergence occurs in six iterations as shown in Table 11 
(intermediate results are not shown for all six iterations).  
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Table 11: Inverse Burr curves with varying payment delay and b parameters, using premium data 

Iteration 1 6
wI 0.737 0.544
wX 2.005 1.520
pP 9.29 10.60
pI 11.85 10.77
pX 2.87 2.62
RSSP 230.0 215.8
RSSI 379.1 395.8
RSSX 15.1 17.1
RSSP+wI.RSSI + wx.RSSx 538.7 457.3
σ0 1.406 1.405
σ1 -0.141 -0.148
aP 0.27 0.26
cP 4.00 4.12
sR 2.76 2.82
aR 0.31 0.29
cR 3.29 3.44
β0 -0.035 -0.011
β1 0.237 0.257
ρ0 1.063 1.056

 

If the β1 parameter is set to zero and least squares estimation carried out using the same weights 
as above (wI = 0.544, wX = 1.520), the minimized RSS increases from 457.3 to 459.0. This increase is 
not statistically significant (F-ratio = 1.7 / (457.3 / 200) = 0.74), implying (as for the Weibull model) 
that there is no clear evidence that β1 is non-zero. After convergence, the final parameter values 
imply (using the formula for the mean of an Inverse Burr distribution from Section 2.2.2) that the 
mean reporting delay is 1.72 years. The mean payment delay varies with the underwriting cycle as 
shown in Table 13. 

Including parameters ρ1 and ρ2 (with wI and wX as in Table 12) causes the weighted RSS to reduce 
from 461.2 to 460.3, which is clearly not a statistically significant reduction. Including a parameter 
that allows the reporting delay to vary with the underwriting cycle reduces the weighted RSS from 
461.2 to 459.3, which again is not statistically significant (F-ratio = 1.9 / (459.3 / 200) = 0.83). 
Including additional parameters as described in Section 2.5.3 shows that these are statistically 
significant for this dataset, but for reasons of space, further results are not given here.  
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Table 13: Inverse Burr curves with varying payment delay parameter only, using premium data 

Origin year (j) Qj - 1 sP mean (years)
1993 0.17 4.03 2.51
1994 -0.32 4.29 2.67
1995 -0.18 4.22 2.62
1996 -0.19 4.22 2.63
1997 -0.32 4.29 2.67
1998 -0.47 4.37 2.72
1999 -0.49 4.39 2.73
2000 -0.60 4.45 2.77
2001 -0.42 4.35 2.70
2002 -0.25 4.26 2.65
2003 1.14 3.56 2.22
2004 1.34 3.47 2.16
2005 0.18 4.02 2.50
2006 0.41 3.91 2.43

 

4. CONCLUSIONS 

4.1 Commonly seen cycle dependencies 

4.1.1 Variation of payment delays with the underwriting cycle 

The example analysis of Section 3 shows evidence of payment delays lengthening in soft market 
origin years. The model described in this paper has been applied to several actual datasets for 
different classes of business and the finding that payment delays are longer in soft markets occurs 
consistently. This concurs with the findings of previous research described in Section 1 of the 
present paper. Possible causes are listed in Section 1.1.2. 

4.1.2 Variation of case reserve strength with the underwriting cycle 

Although there is no clear evidence that the case estimate bias factor varies with the underwriting 
cycle in the example analysis of Section 3, application of the model to other datasets has in many 
cases shown clear evidence that case reserves are set at higher levels in origin years with higher 
premium rates.  
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4.1.3 Variation of reporting delays with the underwriting cycle 

Applications of the model to other datasets have shown, in some cases, evidence that reporting 
delays tend to be shorter in hard markets. This is not something that has been explicitly suggested in 
previous research. Some possible reasons why reporting delays might be extended in soft markets 
are discussed here. First we should note that what we actually measure as “reporting delay” is the 
time between the accident date and a case reserve being created on the insurer’s claim administration 
system. This is the sum of two main components: (a) the true reporting delay (between loss 
occurrence and time when the insured, or broker, reports the loss to the insurer), and (b) the time 
between the claim being reported to the insurer and the initial case reserve being created. It is 
possible that the second component becomes longer in soft markets. Indeed there has been a recent 
high profile case in the UK in which senior insurance company executives were jailed for concealing 
reported claims. Having acknowledged that increased delays in this second component are possible, 
we now focus on reasons why the true reporting delay might increase in soft markets. There are 
several possibilities: 

• In soft markets, insureds (and/or brokers) might be aware that they got a good deal on their 
insurance, and be concerned that on renewal the premium is likely to increase. For this 
reason, they might deliberately delay reporting valid claims until after renewal negotiations 
have been completed. This would border on fraudulent behavior by the insureds, but 
nevertheless is clearly possible. 

• If cover is extended by relaxing terms and conditions in a soft market, insureds might 
genuinely fail to realize initially that they can claim for certain types of loss. 

• If periods of cover have been extended beyond the usual one year in soft markets, it is 
possible that this is not correctly allowed for when compiling the aggregate run-off arrays. 
For example, when all policies run for one year, it would be correct to assume that if the 
accident date does not fall in the year the policy was written, then the loss should be 
allocated to the following accident year. However, if this method of allocating losses to 
accident years is continued when some policies run for more than one year, then 
development delays will appear (wrongly) to be extended.  

 

4.2 Accuracy of premium rate index 

In the example analysis, we used the reciprocal of estimated ULRs instead of a premium index. 
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Clearly this is not ideal. The ultimate ULR varies with claims experience, not just premium rate 
variation. A high ULR is not necessarily indicative of a soft market: it might occur simply because of 
unusually high loss experience. Although the results appear to show longer development tails in 
softer markets, could it be that in fact all we are seeing is longer development patterns when losses 
are exceptionally high? The results could partly reflect this, but the fact that the estimated ULRs do 
broadly follow a cyclical pattern (rather than just random variation) suggests that most of the 
variation in ULRs reflects variation in premium rates with the underwriting cycle.  

Where the models show significant cyclical variation in run-off patterns, the estimated reserve for 
the latest year will clearly be sensitive to the value of the premium rate index for that year, and this is 
the most difficult year to get an accurate fix on. A worthwhile area for future research would be to 
predict premium rate variation of the underwriting cycle. For example, we might expect premium 
rates next year to be related to measurable quantities such as the number of new insurance company 
start-ups this year, or the amount of new capital in the insurance industry. If the underwriting cycle 
can be predicted from such quantities (even if only one year ahead), then the accuracy of reserves 
could be improved by using these quantities directly in the reserving model instead of (or as well as) 
the estimated premium rate index Qj. There is a substantial literature on the underwriting cycle and 
its causes: this could point to suitable alternative variables to use instead of Qj. 
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APPENDIX A – DATA FOR EXAMPLE 

A.1.1 Paid claims 
1993 1,051 3,093 6,251 9,490 12,341 12,738 13,246 13,267 13,319 13,346 13,412 13,441 13,443 13,551
1994 1,102 6,112 10,284 14,047 15,690 16,505 17,539 18,071 18,457 18,729 18,676 18,679 18,917
1995 824 2,467 3,938 7,311 8,538 9,537 10,849 11,016 11,078 11,111 11,117 11,132 
1996 726 2,876 4,817 7,279 8,783 9,694 9,782 10,006 10,283 10,508 10,548  
1997 443 2,293 5,113 7,381 10,016 10,684 11,102 12,453 12,868 13,084   
1998 383 5,169 12,181 16,846 17,852 19,817 20,974 21,331 22,193   
1999 3,705 17,901 27,656 40,224 51,593 61,108 62,227 63,858   
2000 6,839 30,329 55,327 86,931 112,799 127,208 133,792   
2001 5,048 29,082 56,406 83,434 101,096 111,152   
2002 2,936 10,127 22,969 42,236 54,467   
2003 73 517 1,593 2,328   
2004 127 747 2,012    
2005 115 711     
2006 559      

 

A.1.2 Incurred claims 
1993 2,609 6,730 9,659 12,084 12,801 13,458 13,569 13,552 13,414 13,461 13,471 13,481 13,584 13,569
1994 5,556 10,517 13,594 15,635 16,988 17,436 18,065 18,204 18,571 18,799 18,747 18,751 18,973
1995 1,461 5,481 7,258 8,731 9,739 10,478 11,006 11,056 11,088 11,121 11,121 11,161 
1996 1,697 5,772 7,496 9,178 10,080 10,846 11,011 11,127 10,700 10,670 10,668  
1997 1,474 4,189 7,621 10,210 11,752 12,657 13,011 13,314 13,640 13,684   
1998 1,664 12,524 22,283 24,423 24,959 25,788 26,771 26,844 28,454   
1999 4,633 28,059 45,391 51,533 62,706 64,962 67,509 69,657   
2000 13,853 49,104 82,185 117,950 129,088 137,329 138,833   
2001 10,311 47,971 80,236 103,794 113,943 117,873   
2002 4,602 18,402 36,267 53,627 63,363   
2003 231 1,659 3,323 3,757   
2004 582 1,690 2,634    
2005 543 3,024     
2006 2,752      

 

A.1.3 Premium 
1993 9,206 12,421 14,247 14,591 14,401 14,572 14,628 14,634 14,634 14,634 14,616 14,616 14,617 14,618
1994 4,966 9,290 11,293 11,593 11,491 11,812 11,967 11,967 11,967 11,968 11,968 11,968 11,913
1995 4,023 8,167 9,164 8,358 8,259 8,281 8,285 8,286 8,286 8,286 8,288 8,419 
1996 3,513 8,283 8,208 8,015 8,029 8,028 8,044 8,041 8,041 8,046 8,045  
1997 2,956 6,897 8,586 8,677 8,609 8,646 8,656 8,674 8,661 8,668   
1998 3,935 8,984 13,778 13,757 13,366 13,381 13,378 13,381 13,281   
1999 14,593 29,079 32,777 33,364 33,268 33,307 33,266 33,316   
2000 16,428 47,209 52,678 53,624 53,673 53,541 53,499   
2001 28,913 63,532 65,714 66,977 66,763 67,086   
2002 22,951 46,264 48,791 48,835 48,814   
2003 5,563 8,918 9,394 9,143   
2004 3,889 6,630 8,301    
2005 4,893 7,919     
2006 11,643      
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A.1.4 Premium rate index 
  Basic Chain Ladder Ultimates

Year Q Paid Incurred Premium
1993 1.170 13,551 13,569 14,618
1994 0.682 19,069 18,952 11,914
1995 0.816 11,305 11,261 8,402
1996 0.814 10,724 10,777 8,059
1997 0.684 13,317 13,813 8,680
1998 0.533 22,852 28,859 13,303
1999 0.507 67,323 71,977 33,313
2000 0.402 145,197 145,963 53,535
2001 0.581 126,142 126,812 67,199
2002 0.745 69,064 71,432 49,075
2003 2.136 3,682 4,737 9,153
2004 2.341 4,893 4,328 8,380
2005 1.184 3,257 8,225 8,847
2006 1.405 12,207 29,675 27,248
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APPENDIX B – MEAN DELAYS BY DEVELOPMENT YEAR 

This appendix derives the approximations given in Table 2 (Section 2.3.3) which is reproduced 
below for convenience.  The values in the table are approximate mean delays (in years) from loss 
occurrence to end of development year. For accident year cohorts, development year 0 is the year in 
which the loss occurs. For underwriting year cohorts, development year 0 is the year of policy 
inception (that is, the year in which the cover provided by a policy commences).   

Table 2: Approximate mean delay in each development year 

Development year (d) 0 1 2 3 4 5+ 

Accident year mean delay (t) 0.5 1.5 2.5 3.5 4.5 d+0.5

Underwriting year mean delay (t) 0.333 1 2 3 4 d 

 

The figures in Table 2 for accident year cohorts follow immediately from an assumption that 
losses occur uniformly throughout the accident year. The mean delay until the end of development 
year zero (which is the accident year itself) is then obviously half a year. The other values in the table 
are equally obvious for accident years.  

For underwriting years it is assumed that: 

(a) Policies incept uniformly throughout the year. 

(b) Policies are in force for one year. 

(c) Accidents occur uniformly throughout the year of cover provided by each policy. 

For development year 1 we aim to find the mean delay between the accident date and the end of 
development year 1. Development year 1 is the year following the underwriting year. By 
assumptions (a) and (b) policies expire uniformly throughout development year 1, and all covered 
losses will have occurred by end of development year 1. By assumptions (b) and (c) the mean 
accident date on a policy is half a year after policy inception. By assumption (a) the mean point of 
policy inception is midway through the underwriting year. Therefore, over all policies, the mean 
accident date is one year after the start of the underwriting year, that is, at the end of development 
year zero. So the mean delay since accident occurrence at the end of development year 1 is t = 1. 
Clearly, for all later development years (d > 1) the mean delay to end of development year d is t = d.   
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For development year 0 the situation is more complex because only half of all covered losses are 
expected to have occurred by the end of development year 0 (because, by assumption (a), the mean 
policy inception date is 0.5 years before the end of development year zero). Because of this, the 
expected proportion of ultimate U that will be paid by end of development year zero is 
approximately 0.5 * FP(t) (instead of FP(t) for other development years) where t is the mean delay 
between accident date and end of development year 0 for the 50% accidents that occur before the 
end of development year 0.  

Instead of explicitly including the factor 0.5 in the model for underwriting year cohorts, a factor 
is estimated by least squares as described in Section 2.5.3. 

To find the mean delay t for the 50% of accidents expected to occur before the end of 
development year 0, we use s to denote the inception date of a policy: s = 0 corresponds to an 
inception date at the start of the underwriting year, and s = 1 corresponds to an inception date at the 
end of the underwriting year.  

Since all policies are in force immediately before the end of the underwriting year, a delay t = 0 is 
possible on all policies regardless of the value of s. At the other extreme, a delay t = 1 is possible 
only on policies incepting at the start of the underwriting year (that is, on policies with s = 0). In 
general, for t between 0 and 1, a delay t is possible only on policies with s < (1-t). So the mean delay 
is the weighted average of all values of t from 0 and 1, with weights proportional to (1-t). That is:  

Mean(t) = ∫ t.(1-t).dt / ∫ (1-t).dt     where both integrals are from t = 0 to t = 1. 

Evaluating these integrals gives: Mean(t) = (1/6)/(1/2) = 1/3. 
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Abbreviations and notations 
The table below gives an alphabetical list of all abbreviations and notation used in the paper. Items marked * in the 
second column are items of data. All other quantities are calculated from the data items. The final column shows 
subscripts that are sometimes applied to the symbol given in the first column:  

• P/R means a subscript is used to distinguish parameters relating to payment and reporting delays. 
• I/P/X means a subscript is used to distinguish quantities relating to incurred, paid, and exposure data. 
• j means this subscript is sometimes applied to distinguish values relating to different origin years. 

 
Symbol Data Represents Subscripts 
a  shape parameter of cumulative development curve P/R and j 
α0, α1  parameters linking a to Qj (as in Equations 6 and 7) P/R 
b  mean case reserve bias factor  j 
β0, β1  parameters linking b to Qj (see Equation 6)  
β2  parameter linking b to development time (see Equation 6a)  
BF  abbreviation for Bornheutter-Fergusson  
c  shape parameter of cumulative development curve P/R and j 
γ0, γ1  parameters linking c to Qj (as in Equations 6 and 7) P/R 
CL  abbreviation for chain ladder  
d * development period in run-off array: d = 0, 1, 2…  
FI(t)  cumulative incurred run-off curve j 
FP(t)  cumulative paid run-off curve j 
FR(t)  cumulative distribution of reporting delays j 
θ0, θ1   adjustments to cumulative development in years 0 and 1 (Section 2.5.3) I/P 
Г(.)  the Gamma function of mathematics  
Ijd * cumulative incurred development data  
j * origin year: j = 1, 2, …J  
J * number of origin years in run-off array  
nI * number of observations in incurred run-off array (Ijd)  
nP * number of observations in paid run-off array (Pjd)  
nX * number of origin years with known exposure (Xj or Premj)  
pI  number of parameters estimated from incurred data (Iid)  
pP  number of parameters estimated from paid data (Pid)  
pX  number of parameters estimated from exposure data (Xj or Premj)  
Pjd * cumulative paid development data  
Premj * ultimate premium for origin year j  
Qj * premium rate index for origin year j  
r  expected ultimate loss per unit of exposure j 
R  expected ultimate loss ratio (i.e., ultimate loss per unit of premium) j 
ρ0, ρ1, ρ2  parameters in model for r and R (see Equation 14)  
RSS  residual sum of squares (that is, sum of squared residuals) I/P/X 
s  scale parameter of cumulative development curve P/R and j 
σ0, σ1  parameters linking s to Qj (see Equation 7) P/R 
σI

2  typical variance of a cumulative incurred observation (Ijd)  
σP

2  typical variance of a cumulative paid observation (Pjd)  
σX

2  ratio of variance to mean for an ultimate loss amount (Uj)  
t  continuous development time  
Uj  ultimate cumulative loss for origin year j  
ULR  abbreviation for ultimate loss ratio  
wI  weight of incurred RSS relative to paid RSS in least squares estimation  
wX  weight of exposure RSS relative to paid RSS in least squares estimation  
Xj * exposure for origin year j  
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