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Stochastic Loss Reserving with the Collective Risk Model 
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Abstract 
This paper presents a Bayesian stochastic loss reserve model with the following features. 

1. The model for expected loss payments depends upon unknown parameters that determine the expected loss 
ratio for the given accident years and the expected payment for each settlement lag. 

2. The distribution of outcomes is given by the collective risk model in which the expected claim severity 
increases with the settlement lag.  The claim count distribution is given by a Poisson distribution with its mean 
determined by dividing the expected loss by the expected claim severity. 

3. The parameter sets that describe the posterior distribution of the parameters in (1) above are calculated with 
the Gibbs sampler. 

4. For each parameter set generated by the Gibbs sampler in (3), the predicted distribution of outcomes is 
calculated using a Fast Fourier Transform (FFT).  The Bayesian predictive distribution of outcomes is a 
mixture of the distributions of outcomes over all the parameter sets produced by the Gibbs sampler. 

This paper concludes by applying this model to the problem of calculating risk margins for loss reserves using a cost of 
capital formula. 

Keywords 
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Estimation 
_____________________________________________________________________________________ 

1. Introduction 

Over the years, there has been an increasing recognition that consideration of the random nature 

of the insurance loss process leads to better predictions of ultimate losses.  Some of the papers that 

led to this recognition include Stanard [11] and Barnett and Zehnwirth [1].  Another thread in the 

loss reserve literature has been to recognize outside information in the formulas that predict ultimate 

losses.  Bornhuetter and Ferguson [2] represents one of the early papers exemplifying this approach. 

More recently, papers by Meyers [7] and Verrall [12] have combined these two approaches with a 

Bayesian methodology.  This paper continues the development of the approach started by Meyers 

and draws from the methodology described by Verrall. 

As the actuarial profession improves its ability to describe the variability of its ultimate loss 

projections, there arises the question on how one should take this variability into account when 

setting loss reserves.  One proposal originated by the International Association of Insurance 

Supervisors (IAIS) calls for a risk margin to be added to the actuarial present value of the future loss 

payments.  This paper applies its loss reserve model to the calculation of risk margins. 
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A significant accomplishment of the Meyers paper cited above was that it made predictions of 

the distribution of future losses of real insurers, and successfully validated these predictions on 

subsequent reported losses.  To do this, it was necessary to draw upon data that, while generally 

available, comes at a price.  While this made a good case that the underlying model is realistic, it 

tended to inhibit future research on this methodology.  This paper uses simulated data so that 

readers can verify all calculations.  In addition, this paper includes the code that produced all results 

and, with minor modifications, it should be possible to use this code for other loss reserving 

applications. 

2. The Collective Risk Model 

This paper analyzes a 10 x 10 triangle of incremental paid losses organized by rows for accident 

years 1, 2, …, 10 and by columns for development lags 1, 2, …, 10.  We also have the premium 

associated with each accident year.  Table 1 gives the triangle that underlies the examples in this 

paper. 

Table 1 (000) 
 

AY Premium Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8 Lag 9 Lag 10
1 50,000 7,168 11,190 12,432 7,856 3,502 1,286 334 216 190 0
2 50,000 4,770 8,726 9,150 5,728 2,459 2,864 715 219 0
3 50,000 5,821 9,467 7,741 3,736 1,402 972 720 50 
4 50,000 5,228 7,050 6,577 2,890 1,600 2,156 592  
5 50,000 4,185 6,573 5,196 2,869 3,609 1,283  
6 50,000 4,930 8,034 5,315 5,549 1,891  
7 50,000 4,936 7,357 5,817 5,278  
8 50,000 4,762 8,383 6,568  
9 50,000 5,025 8,898  
10 50,000 4,824   

Our job is to predict the distribution of losses in the empty cells (AY + Lag >11) and to predict 

the distribution of the sum of losses in the empty cells. 
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Let us start by considering two models for the expected loss. 

Model 1 – The Cape Cod Model 

 ,E AY Lag AY AY LagLoss Premium ELR Dev⎡ ⎤ = ⋅ ⋅⎣ ⎦  (1) 

The unknown parameters in this model are ELRAY (AY = 1, 2, …, 10) and DevLag  (Lag = 1, 2, 

…, 10). The structure of the parameters is similar to the “Cape Cod” method discussed in Stanard 

[11] but, as we shall see, this paper’s method of parameterizing the model is different. 

Model 2 – The Beta Model 

In the Cape Cod model, set  

 ( ) ( )/10 | , ( 1) /10 | ,LagDev Lag a b Lag a b= β −β −  (2) 

where ( )| ,x a bβ is the cumulative probability of a beta distribution with unknown parameters a and 

b as parameterized in Appendix A of Klugman, Panjer and Willmot [5]. 

The Beta model replaces the ten unknown DevLag parameters in the Cape Cod model with the two 

unknown parameters a and b.  I chose these models as representatives of a multitude of possible 

models that can be used in this approach.  Other examples in this multitude include the models in 

Meyers [7], who uses a Cape Cod model with constraints on the DevLag parameters, and Clark [3], 

who uses the Loglogistic and Weibull distributions to project DevLag parameters into the future.  
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Let XAY,Lag be a random variable for the loss in the cell (AY,Lag).  We describe the distribution of 

XAY,Lag by the collective risk model, which can be described by the following simulation algorithm. 

Simulation Algorithm 1 
 

1. Select a random claim count, NAY,Lag from a Poisson distribution with mean ,AY Lagλ .   

2. For i = 1, 2, …, NAY,Lag, select a random claim amount, ZLag,i. 

3. Set
,

, ,
1

AY LagN

AY Lag Lag i
i

X Z
=

= ∑ , or if NAY,Lag = 0, then XAY,Lag = 0. 

This paper assumes that the claim severity distributions of ZLag are given.  In our example, we use 

the Pareto distribution with the cumulative distribution function: 

 ( ) 1F z
z

αθ⎛ ⎞= − ⎜ ⎟+ θ⎝ ⎠
. (3) 

We set α = 2 for all settlement lags.  θ will vary by settlement lag as noted in the following table. 

 Table 2 
 

Lag 1 2 3 4 5 6 7-10 

θ  (000) 10 25 50 75 100 125 150 

Note that the average severity increases with the settlement lag, which is consistent with the 

common observation that larger claims tend to take longer to settle. 

To summarize, we have two models (the Cape Cod and the Beta) that give E[XAY,Lag] in terms of 

the unknown parameters {ELRAY} and {DevLag}.  We also assume that the claim severity 

distributions of ZLag are known.  Then for any selected {ELRAY} and {DevLag}, we can describe the 

distribution of XAY,Lag by the following steps.  

1. Calculate   ,
,

E

E E
AY Lag AY AY Lag

AY Lag
Lag Lag

X Premium ELR Dev
Z Z

⎡ ⎤ ⋅ ⋅⎣ ⎦λ = =
⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

. 

2. Generate the distribution of XAY,Lag using Simulation Algorithm 1 above. 

3. The Posterior Distribution of Model Parameters 
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Let X denote the data in Table 1.  Let { } { }( )| ,AY LagELR DevXl  be the likelihood (or 

probability) of X given the parameters {ELRAY} and {DevLag}.  Note that defining a distribution in 

terms of a simulation algorithm does not lend itself to calculating the likelihood.  To do this we must 

resort to some math that is described in detail in Appendix B.  At this point, the reader should know 

that we are approximating the likelihood with something called the overdispersed negative binomial 

distribution.  

 The maximum likelihood estimator has been historically important and, as we shall see, will also 

be important in this paper.  Over the past decade or so, a number of popular software packages 

began to include flexible function-maximizing tools that will search over a space that includes a fairly 

large number of parameters.  Excel™ Solver is one such tool.  With such a tool, the software 

programs1 that accompany this paper calculate the maximum likelihood estimates for the Cape Cod 

and the Beta models. 

The Cape Cod program calculates the maximum likelihood estimate by searching over the space 

of {ELRAY} and {DevLag}, subject to a constraint that
10

1

1Lag
Lag

Dev
=

=∑ .  The Beta program feeds the 

results of Equation 2 into the likelihood function used in the Cape Cod program as it searches over 

the space of {ELRAY}, a and b.  Table 3 gives the maximum likelihood estimates for each model. 

                                                 
1 The programs are written in R, a freely downloadable statistical package.  See Meyers [6] for a review of this package. 
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Table 3 

 
 Cape Cod Beta 
 ELR Dev ELR Dev 

AY/Lag 
1 0.89090 0.16948 0.89205 0.15991 
2 0.65285 0.26864 0.65670 0.27295 
3 0.64448 0.23763 0.69949 0.24156 
4 0.55233 0.15539 0.51727 0.16661 
5 0.48569 0.07865 0.51696 0.09488 
6 0.57259 0.05524 0.53697 0.04410 
7 0.56411 0.01771 0.60935 0.01576 
8 0.58207 0.00581 0.53487 0.00378 
9 0.61922 0.00654 0.68940 0.00044 

10 0.52190 0.00491 0.63902 0.00001 
   a = 1.90742 
   b = 5.78613 

  

Let us now develop the framework for a Bayesian analysis.  The likelihood function 

{ } { }( )| ,AY LagELR DevXl  is the probability of X, given the parameters {ELRAY} and {DevLag}.  

Using Bayes’ Theorem, one can calculate the probability of the parameters {ELRAY} and {DevLag} 

given the data, X.   

 { } { }{ } { } { }( ) { } { }{ }Pr , , Pr ,AY Lag AY Lag AY LagELR Dev ELR Dev ELR Dev∝ ⋅X Xl . (4) 

A discussion of selecting the prior distribution { } { }{ }Pr ,AY LagELR Dev is in order.  This paper 

has the advantage that it is working with simulated (i.e., made up) “data” so it is editorially possible 

to select anything as a prior distribution.  However, I would like to spend some time to illustrate one 

way to approach the problem of selecting the prior distribution when working with real data. 

  Actuaries always stress the importance of judgment in setting reserves.  Actuarial consultants 

will stress the experience that they have gained by examining the losses of other insurers.  Meyers [7] 

formalizes this by examining the maximum likelihood estimates of the {DevLag} parameters from the 
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data of 40 large insurers.  In an effort to keep the examples in this paper as realistic as possible, I 

looked at the same data and selected the prior distribution as follows. 

Beta Model2: ( ), with 75 and 0.02a Γ α θ α = θ =�  (5) 

 ( ), with 25 and 0.20b Γ α θ α = θ =�  (6) 

Figure 1 shows the DevLag paths generated from a sample of fifty (a,b) pairs sampled from the 

prior distribution. 

 Figure 1 
 

 

 

 

 

 

 

For the Cape Cod model, I calculated the mean and variance of the DevLags simulated from a large 

sample of (a,b) pairs and selected the following parameters for the gamma distribution for each 

DevLag. 

Table 4 
 
Γ\Lag 1 2 3 4 5 6 7 8 9 10 

α 11.1010 64.6654 190.1538 34.9314 10.7284 4.4957 2.1298 1.0295 0.4574 0.1556
θ 0.0206 0.0041 0.0011 0.0040 0.0079 0.0101 0.0097 0.0073 0.0039 0.0009

 

                                                 
2 We will use the gamma (Γ) distribution as parameterized in Appendix A of Klugman, Panjer, and Willmot [5]. 
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Before discussing the prior distribution of each ELRAY, let us take a short side trip and look at 

the compound negative multinomial model3, described by the following simulation algorithm. 

Simulation Algorithm 2 

1. For each accident year, select χAY at random from a gamma distribution with mean 1 and 

variance c. 

2. For each accident year and settlement lag, select a claim count, NAY,Lag, at random from a 

Poisson with mean χAY⋅λAY,Lag.  (See the end of Section 2 for a description on how to 

determine the λAY,Lags.)  

3. For i = 1, 2, …, NAY,Lag, select a random claim amount, ZLag,i. 

4. For each accident year and settlement lag, set  
,

, ,
1

AY LagN

AY Lag Lag i
i

X Z
=

= ∑ . 

Note that for a given accident year, the XAY,Lags are correlated because of the common χAY that is 

in each Lag’s expected claim count.   

This paper uses the compound negative multinomial model for the losses XAY,Lag. At first glance, it 
might seem that this is different from the collective risk model described in Simulation Algorithm 1.  
But note that both the Cape Cod and the Beta models treat the ELRAYs as unknown parameters.  So 
by assigning a prior distribution to each ELRAY so that its coefficient of variation squared is equal to 
the c in the negative multinomial model, we are explicitly modeling a random accident-year effect.  
With this in mind I selected each   

 ELRAY  � Γ(α,θ) with α = 100 and θ = 0.007. (7) 

Note that the expected value of each ELRAY = α⋅θ = 0.70 and the coefficient of variation of 

each 1/ 0.1AYELR = α = .  

As we observe data points xAY,Lag in X, we gain information about the χAY in each accident year.  

As we shall see, treating each ELRAY as an unknown parameter allows us to use this information in 

predicting the outcomes of future lags. 

This paper uses the Gibbs sampler to generate random samples of the {ELRAY} and {DevLag} 

parameters that represent the posterior distribution.  Scollnik [10] introduced the Gibbs sampler to 

the CAS literature. Verrall [12] gives an application of it to a loss reserving problem.   

For the Cape Cod model, this paper implements the Gibbs sampler as follows. 
                                                 
3 The compound negative multinomial distribution was introduced to the CAS literature by Mildenhall [9]. 
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 Simulation Algorithm 3 

1. Given the data triangle X, calculate the maximum likelihood estimates Dev1,Lag for Lag = 1, 

…,10 and ELR1,AY for AY = 1,…,10.  Keep the maximum likelihood, ML, for future 

reference.  Set i = 1. 

2. Replace i by i+1, set Devi,Lag = Devi-1,Lag and set ELRi,AY = ELRi-1,AY. 

3. For Lag = 1 to 10: 

a. Replace Devi,Lag with a random number taken from the prior distribution of DevLag and 

calculate its likelihood L. 

b. Select a random number, u, from a uniform (0,1) distribution. 

c. If L/ML < u, then return to Step 3a, otherwise continue to the next step.  

4.  For AY = 1 to 10: 

a. Replace ELRi,AY with a random number taken from the prior distribution of ELRAY 

and calculate its likelihood L. 

b. Select a random number, u, from a uniform (0,1) distribution. 

c. If L/ML < u, then return to Step 4a, otherwise continue to the next step. 

5. Return to Step 2 until i is greater than a selected n.  

The intuition behind this algorithm is that a parameter “applies” to be included in the Gibbs 

sample in proportion to its prior probability.  Each applicant is “accepted” into the sample in 

proportion to its likelihood.  So the probability of a parameter being included in the sample is the 

product of the probability of applying times its likelihood, which in turn is equal to its posterior 

probability.  See Equation 4 above. 



Stochastic Loss Reserving with the Collective Risk Model 

Casualty Actuarial Society E-Forum, Fall 2008 249 

Figure 2 provides a graphic comparison between the prior distribution and the posterior 

distribution, as represented by the output of Simulation Algorithm 3.  The upper histograms are 

random samples of ELR1, taken from its prior and posterior distributions.  The lower graphs 

represent the paths taken from the prior and posterior {DevLag} distributions.  

Figure 2 
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For the Beta model, we implement the Gibbs sampler as follows. 

Simulation Algorithm 4 

1. Given the data triangle X, calculate the maximum likelihood estimates a1, b1 and ELR1,AY for 

AY = 1,…,10.  Keep the maximum likelihood, ML, for future reference.  Set i = 1. 

2. Replace i by i+1, set ai = ai-1, set bi = bi-1 and set ELRi,AY = ELRi-1,AY. 

3. For pi = ai and then bi: 

a. Replace pi with a random number taken from the prior distribution of p, calculate the 

associated Devi,Lags using Equation 2 and calculate the likelihood L. 

b. Select a random number, u, from a uniform (0,1) distribution. 

c. If L/ML < u, then return to Step 3a, otherwise continue to the next step.  

4.  For AY = 1 to 10: 

d. Replace ELRi,AY with a random number taken from the prior distribution of ELRAY 

and calculate the likelihood L. 

e. Select a random number, u, from a uniform (0,1) distribution. 

f. If L/ML < u, then return to Step 4a, otherwise continue to the next step. 

5. Return to Step 2 until i is greater than a selected n.  

  Each iteration is a step in a Markov chain of random transformations in the parameter space 

{ELRAY} and {DevLag}.  It is well know that Markov chains will converge to a limiting distribution 

and that, when executed as described in these simulation algorithms, the limiting distribution will be 

the posterior distribution.    

The random parameters generated by the first several iterations of the Gibbs sampler may not be 

distributed as the limiting distribution.  So it is a general practice to discard parameters that are 

generated early in the process.  By examining successive blocks of parameters in the examples in this 

paper, I concluded that using parameters generated after 250 iterations4 of Simulation Algorithms 3 

and 4 was sufficiently accurate for our purposes.  Table 5 shows some illustrative results that came 

out of Simulation Algorithm 4 being applied to the data in Table 1. 

 Table 5 

                                                 
4 One may find other sources that recommend thousands of iterations.  But these sources generally count one draw of a 
parameter from its prior distribution as one iteration.  When counting that way, 250 iterations of Simulation Algorithms 
3 and 4 represent 5,000 and 3,000 iterations respectively. 
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Iteration ELR1 ELR2 ELR3 ELR4 ELR5 ELR6 ELR7 ELR8 ELR9 ELR10 
251 0.75403 0.69942 0.62441 0.56447 0.51833 0.60362 0.61284 0.60487 0.66776 0.63434
252 0.84815 0.73598 0.64300 0.59662 0.50991 0.66961 0.63046 0.65861 0.78867 0.62436
253 0.82959 0.65535 0.62372 0.58285 0.54446 0.65939 0.62067 0.66337 0.77458 0.68514
254 0.82214 0.67833 0.72494 0.58108 0.59692 0.64186 0.64096 0.69660 0.63273 0.71884
255 0.85885 0.70338 0.65320 0.60643 0.57145 0.65768 0.74067 0.64207 0.61538 0.56273
256 0.82655 0.68402 0.71207 0.57685 0.50899 0.62291 0.68097 0.60459 0.73825 0.62867
257 0.86339 0.71486 0.62554 0.55949 0.54898 0.57494 0.63603 0.66952 0.68241 0.61616
258 0.81831 0.64761 0.73752 0.61186 0.63983 0.62646 0.61374 0.67133 0.64861 0.62245
259 0.80801 0.66089 0.70570 0.61823 0.57213 0.62688 0.58704 0.69212 0.62392 0.67231
260 0.81955 0.65917 0.61623 0.64292 0.56440 0.61969 0.61458 0.67270 0.74439 0.59132

           
           

Iteration Dev1 Dev2 Dev3 Dev4 Dev5 Dev6 Dev7 Dev8 Dev9 Dev10 
251 0.17353 0.26609 0.23075 0.16171 0.09592 0.04754 0.01863 0.00509 0.00072 0.00002
252 0.17373 0.26219 0.22815 0.16179 0.09773 0.04965 0.02012 0.00576 0.00087 0.00003
253 0.15662 0.25141 0.22857 0.16863 0.10601 0.05625 0.02396 0.00730 0.00119 0.00004
254 0.15514 0.24770 0.22656 0.16906 0.10796 0.05847 0.02559 0.00808 0.00139 0.00005
255 0.16275 0.25121 0.22557 0.16608 0.10487 0.05622 0.02435 0.00760 0.00130 0.00005
256 0.16274 0.24870 0.22378 0.16595 0.10596 0.05768 0.02550 0.00819 0.00145 0.00006
257 0.16549 0.25142 0.22449 0.16497 0.10422 0.05600 0.02436 0.00766 0.00132 0.00005
258 0.15983 0.24720 0.22401 0.16705 0.10721 0.05865 0.02607 0.00842 0.00151 0.00006
259 0.17049 0.25879 0.22734 0.16312 0.09993 0.05165 0.02138 0.00629 0.00099 0.00003
260 0.16584 0.26100 0.23092 0.16494 0.09979 0.05056 0.02034 0.00574 0.00085 0.00003
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One can often find interesting information about the uncertainty in the parameter estimates by 

examining tables of parameters generated by the Gibbs sampler.  Figure 3 below show the 

coefficients of variation (CV) of the loss ratio estimates taken from 2,500 additional iterations of the 

sample in Table 5.  This illustrates how we gain information about the ultimate loss ratio as we get 

more data from each accident year.  Wacek [13] gives another approach to estimating loss ratios as 

we gain information over time.  

Figure 3 
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4. The Predictive Distribution of Outcomes  

Now that we have the posterior distribution estimated from the data of Table 1, we now turn to 

the problem of predicting future outcomes, XAY,Lag, when AY + Lag > 11. 

 Table 1 (000)  (Repeated)  

AY Premium Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8 Lag 9 Lag 10
1 50,000 7,168 11,190 12,432 7,856 3,502 1,286 334 216 190 0
2 50,000 4,770 8,726 9,150 5,728 2,459 2,864 715 219 0 X2,10

3 50,000 5,821 9,467 7,741 3,736 1,402 972 720 50 X3,9 X3.10

4 50,000 5,228 7,050 6,577 2,890 1,600 2,156 592 X4,8 X4,9 X4,10

5 50,000 4,185 6,573 5,196 2,869 3,609 1,283 X5,7 X5,8 X5,9 X5,10

6 50,000 4,930 8,034 5,315 5,549 1,891 X6,6 X6,7 X6,8 X6,9 X6,10

7 50,000 4,936 7,357 5,817 5,278 X7,5 X7,6 X7,7 X7,8 X7,9 X7,10

8 50,000 4,762 8,383 6,568 X8,4 X8,5 X8,6 X8,7 X8,8 X8,9 X8,10

9 50,000 5,025 8,898 X9,3 X9,4 X9,5 X9,6 X9,7 X9,8 X9,9 X9,10

10 50,000 4,824 X10,2 X10,3 X10,4 X10,5 X10,6 X10,7 X10,8 X10,9 X10,10

 

While there are many statistics of interest that one could examine, I chose to examine the 

predictive distribution of the total reserve: 

 
10 10

,
2 12

AY Lag
AY Lag AY

R X
= = −

= ∑ ∑ . (8) 

Suppose we have a set of parameters {ELRAY} and {DevLag} calculated from several iterations of 

the Gibbs sampler.  Conceptually, the easiest way to calculate the distribution of outcomes is by 

repeated use of the following simulation algorithm. 
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Simulation Algorithm 5 
 
1. Select the parameters {ELRAY} and {DevLag} from a randomly selected iteration. 

2. For AY = 2, …, 10, do: 

a. For Lag = 12 – AY to 10, do: 

i. Set , E
AY AY Lag

AY Lag
Lag

Premium ELR Dev
Z

⋅ ⋅
λ =

⎡ ⎤⎣ ⎦
  

ii. Select N at random from a Poisson distribution with mean λAY,Lag. 

iii. If N > 0, for i = 1, …, N  select claim amounts, Zi,Lag, at random from the claim 

severity distribution for the Lag. 

iv. If N > 0, set , ,
1

N

AY Lag i Lag
i

X Z
=

= ∑ , otherwise set XAY,Lag = 0. 

3. Set 
10 10

,
2 12

AY Lag
AY Lag AY

R X
= = −

= ∑ ∑ . 

I expect that many actuaries will be satisfied with using this simulation algorithm to calculate the 

predictive distribution.  However, this paper uses a Fast Fourier Transform (FFT) to calculate the 

predictive distribution.  While it is very technical and harder to implement, it is faster and it 

produces more accurate results (relative to the model assumptions).  Appendix A describes how to 

implement the FFT for this paper’s application.  

Figure 4 plots the density functions for the predictive distributions derived from the data in Table 

1.  For each model, I ran 500 iterations of the Gibbs sampler and discarded the first 250 because 

they are less likely to represent the posterior distributions. 
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Figure 4 

  

The predictive means and standard deviations are: 

• 60,871,000 and 5,487,000 for the Cape Cod model; and  

• 67,183,000 and 5,605,000 for the Beta model. 

The difference in the predictive means for the two models is 5,982,000, illustrating the fact that 

we do face “model risk.”  If one wants to reflect model risk, one could modify Simulation Algorithm 
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5 by randomly selecting parameters from the {ELRAY} and {DevLag} lists provided by the Gibbs 

samples for each model. 

5. Risk Margins in Loss Reserves 

Now that we have demonstrated a method that quantifies the uncertainty in the estimates of 

future loss payments, we now turn to exploring how this information might be used to post a loss 

reserve on a financial statement.  The art of accounting has always had difficulty in dealing with 

uncertainty.  A common practice, when possible, is to value a liability at its market value.  When 

there is no active market, as is typically the case for loss reserves, the fallback position is to use a 

model to calculate the cost that an insurance market would “theoretically” charge to transfer the 

risky reserve.   

As this paper is being written, there is still active debate on whether and how to do this.  Meyers 

[8] provides some background and references on this subject.  This section only addresses the 

“how.”  

I should add that in preparing this section I immeasurably benefited from the discussions that led 

to the paper jointly written by Kaufman, Broughton, Buchanan, and Meyers [4].  That paper 

discusses a variety of methods to calculate risk margins for loss reserves, whereas this paper 

illustrates only one of those methods.    

The formula discussed here is called the Capital Cash Flow (CCF) risk margin.  In words, this 

formula assumes that investors in a reinsurer would need to put up (or allocate) capital to take on 

the loss reserve risk by a ceding insurer.  As claims are settled, the reinsurer expects to be able to 

release the capital over time.  The CCF risk margin is the profit that the reinsurer would need to be 

persuaded to take on this risky venture. 

We will now discuss the details.  Let: 

• i = Risk-free rate of return on investments. 

• r = Total rate of return demanded by the reinsurer for taking additional insurance risk. 

• Ct = Amount of capital required to (or allocated to) support an insurance portfolio at time t. 
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First look at the cash flow of the insurance transaction. 

• At the beginning of the first year, at time t = 0, investors contribute a sum of C0 to the reinsurer, 

which earns a risk-free rate of return, i, over the next year. 

• At time t = 0, the reinsurer collects MCCF from the ceding insurer and immediately transfers it to 

its investors.  Equivalently, one could say that the investor contributes C0 – MCCF to the 

reinsurer. 

• At time t = 1, the investors expect to keep C1 invested in the reinsurer, and they expect to 

receive a cash flow C0(1+i) – C1 at the end of year 1.  Since the loss the reinsurer is required to 

pay and C1 are uncertain, they discount the value of the amount returned at the risky rate of 

return r > i. 

• Continuing on to time t, the investors expect to keep Ct invested in the reinsurer, and they 

expect a cash flow of Ct-1(1+i) – Ct at the end of year t.  

Since the cash flows are uncertain, it is appropriate to discount the cash flow at the risky rate of 

return, r.  This leads to the following expression. 

 
( )
( )

1
0

1

1
1

t t
CCF t

t

C i C
C M

r

∞
−

=

+ −
= +

+
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This equation implies 
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 (10) 

The following table shows how to calculate Ct for the example in this paper fit with the Beta 

model. 
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 Table 6 (000) 
 

(1) (2) (3) (4) (5) (6) (7) (8) 
t Nom

tL  Nom
tLΔ  Disc

tL  TVaR Nom
t  TVaR Nom

tΔ  TVaR Disc
t  Ct 

0 67,183 27,103 61,224 80,617 28,086 72,373 11,149
1 40,080 18,847 36,993 52,531 21,984 47,799 10,805
2 21,233 11,391 19,809 30,547 14,167 28,033 8,224
3 9,843 5,978 9,270 16,380 8,224 15,129 5,859
4 3,864 2,653 3,671 8,156 4,315 7,570 3,899
5 1,211 940 1,160 3,841 2,075 3,581 2,422
6 271 237 261 1,766 856 1,659 1,398
7 34 33 33 909 803 877 845
8 1 1 1 106 106 103 102

 
 
(1) The time, t, after the liability is set. 

(2) The nominal expected value of future payments, 
10 10

,
2

E
t

Nom
AY Lag

AY t Lag AY

L X
= + =

⎡ ⎤= ⎣ ⎦∑ ∑ . 

(3) 1
Nom Nom Nom
t t tL L L +Δ = − . 

(4)  The discounted liability, 
( )

8

0.51 − +
=

Δ
=

+
∑t

Nom
Disc k

k t
k t

LL
i

, where i = 6%. 

(5) The nominal Tail-Value-at-Risk, i.e., the conditional expected value of the nominal random 

losses, 
10 10

,
2

AY Lag
AY t Lag AY

X
= + =
∑ ∑ , given that they exceed their 99th percentile.  The density functions 

for the nominal losses are plotted on Figure 5 for each t.  

(6) 1TVaR TVaR TVaRNom Nom Nom
t t t+Δ = − . 

(7) The discounted 
( )

8

0.5

TVaRTVaR
1 − +

=

Δ
=

+
∑

Nom
Disc k
t k t

k t i
. 

(8) The needed capital at time t is expected to be TVaR= −Disc Disc
t t tC L .  

Now that we have the Cts, we can then use Equation 10, with r = 10%, to calculate MCFF = 

1,368,000, which is 2.2% of the discounted liability, 61,224,000. 
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 Figure 5 (000) 

 Density Functions for the Nominal Losses as They Run Off 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• In the latter stages of the runoff, there are a small number of potentially large claims 

(limited to 1,000,000) that occasionally are paid.  Thus, you see the spikes at zero.  The 

density function was plotted for those loss amounts for which the cumulative distribution 

function was less than 0.999999.  
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The risk margin calculation above was based on the nominal TVaR for the insurer’s own 

losses.  This is tantamount to assuming that the reinsurer has no other business to diversify the 

losses.  If the liability is ever transferred, it will almost surely be transferred to a sizeable reinsurer 

with a diverse portfolio of losses.  Rather than specify the characteristics of the reinsurer, a good 

approximation to the reinsurer’s cost of capital would be to base the calculation of the distribution 

of the insurer’s uncertainty in the expected values, as generated by the {ELR} and the {Dev} 

parameters in the Gibbs sampler.  Table 7 calculates the risk margin under this assumption. 

 Table 7 (000) 
 

(1) (2) (3) (4) (5) (6) (7) (8) 
t Nom

tL  Nom
tLΔ  Disc

tL  TVaR Nom
t  TVaR Nom

tΔ  TVaR Disc
t  Ct 

0 67,183 27,103 61,224 76,583 29,581 69,488 8,264
1 40,080 18,847 36,993 47,002 21,079 43,202 6,208
2 21,233 11,391 19,809 25,923 13,294 24,092 4,283
3 9,843 5,978 9,270 12,629 7,270 11,850 2,580
4 3,864 2,653 3,671 5,359 3,514 5,076 1,405
5 1,211 940 1,160 1,845 1,381 1,763 603
6 271 237 261 464 397 447 186
7 34 33 33 67 65 65 33
8 1 1 1 3 3 3 2

 

The explanation of the columns is the same as for Table 6 except for Column 5. 

(5) The nominal Tail-Value-at-Risk at the 99% level, where the random element is the expected 

value of the Gibbs sample,  
10 10

2
AY AY Lag

AY t Lag AY

Premium ELR Dev
= + =

⋅ ⋅∑ ∑ .  The histograms of the 

sums calculated from the Gibbs sample are plotted on Figure 6 for each t. 

Now that we have the Cts, we can then use Equation 10, with r = 10%, to calculate MCFF = 

758,000 which is 1.2% of the discounted liability, 61,224,000. 



Stochastic Loss Reserving with the Collective Risk Model 

Casualty Actuarial Society E-Forum, Fall 2008 261 

 Figure 6 

 Histograms of the Expected Runoff Scenarios Taken from the Gibbs Sample   
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With the exception of workers compensation insurance, it is standard statutory accounting 

practice in the USA to post loss reserves at nominal, not discounted values.  A common justification 

for this practice is that it provides a cushion for the risk in the posted reserve.  In the above 

examples, the difference between the nominal and discounted expected values of the liability is 

67,183,000 – 61,224,000 = 5,959,000.  This difference is noticeably larger than the 1,368,000 and 

758,000 risk margins calculated in the examples above. 

Note that the CCF risk margin is sensitive to three factors that many consider when accessing 

risk: 

1. The volatility of the future payouts as quantified by Ct.  If desired, one can consider only 

parameter risk. 

2. How long the insurer is exposed to the risk, as quantified by how Ct decreases over time.   

3. The premium the market places on risk, as quantified by r – i. 

Note that proposals for risk margins based solely on statistics taken from a predictive 

distribution, such as percentiles, do not address (2) and (3) above.  The American practice of posting 

reserves at their nominal value does not address (1) and (3) above.   
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Appendix A. Collective Risk Model Mathematics with Fast Fourier Transforms 

This paper describes the collective risk model in terms of a simulation algorithm.  Given the 

speed of today’s personal computers, it is practical to actually do the simulations in a reasonable 

amount of time.  This appendix describes how to do many of the calculations to a higher degree of 

accuracy in a significantly shorter time using FFTs. 

The advantage to using FFTs is that the time-consuming task of calculating the distribution of 

the sum of random variables is transformed into the much faster task of multiplying the FFTs of the 

distributions.  Simulation Algorithms 1, 2, and 5 show that the collective risk model requires the 

calculation of the distribution of the sum of random claim amounts.  Furthermore, Simulation 

Algorithm 5 requires the calculation of the distribution of the sum of losses over different accident 

years and settlement lags. 

This appendix has three sections.  Since the FFTs work on discrete random variables, the first 

section shows how to discretize the claim severity distribution in such a way that the limited average 

severities of the continuous severity distribution are preserved.  The second section will show how 

to calculate the probabilities associated with the collective risk model.  The third section will show 

how to calculate the predictive distribution for the outstanding losses. 

A.1 Discretizing the Claim Severity Distributions 

The first step is to determine the discretization interval length h. Variable h, which depended on 

the size of the insurer, was chosen so the 214 (16,384) values spanned the probable range of annual 

losses for the insurer.  Specifically, let h1 be the sum of the insurer’s ten-year premium divided by 214.  

The h was set equal to 1,000 times the smallest number from the set 

{5, 10, 20, 25, 40, 50, 100, 125, 200, 250, 500, 1000} that was greater than h1/1000.  This last step 

guarantees that a multiple, m, of h would be equal to the policy limit of 1,000,000.     

The next step is to use the mean-preserving method (described in Klugman [5, p. 656] to 

discretize the claim severity distribution for each settlement lag.  Let pi,Lag represent the probability of 

a claim with severity h·i for each settlement lag.  Using the limited average severity (LASLag) function 

determined from claim severity distributions, the method proceeds in the following steps. 

1.  p0,Lag = 1 – LASLag(h)/h. 

2.  pi,Lag = (2·LASLag (h·i) – LASLag (h·(i – 1)) – LASLag (h·(i + 1)))/h for i = 1, 2, ..., m-1. 
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3. 
1

, ,
0

1
m

m Lag i Lag
i

p p
−

=

= − ∑ . 

4.  pik = 0 for i = m + 1, ..., 214 – 1. 

A.2 Calculating Probabilities for the Compound Poisson Distribution 

The purpose of this section is to show how to calculate the probabilities of losses defined by the 

collective risk model as defined in Simulation Algorithm 1.  The math described in this section is 

derived in Klugman [5, Section 6.91].  The calculation proceeds in the following steps. 

1. Set { }140, 2 1,
, ...Lag Lag Lag

p p
−

=p
r . 

2. Calculate the expected claim count, λAY,Lag, for each accident year and settlement lag using 

Equation 2, , ,E / EAY Lag AY Lag LagPaid Loss Z⎡ ⎤ ⎡ ⎤λ ≡ ⎣ ⎦ ⎣ ⎦ . 

3. Calculate the Fast Fourier Transform (FFT) of ( ), .Lag LagΦp p
r r  

4. Calculate the FFT of each aggregate loss random variable, XAY,Lag, using the formula 

( ) ( )( )1
,

Lag

AY Lag e Φ −
Φ =

pq
rr . 

This formula is derived in Klugman[5, Section 6.91]. 

5. Calculate ( )( )1
, ,AY Lag AY Lag

−= Φ Φq q
r r , the inverse FFT of the expression in Step 4 above. 

The vector , r ,AY Lagq , contains the probabilities of the discretized compound Poisson distribution 

defined by Simulation Algorithm 1.   
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A.3 Calculating Probabilities for the Predictive Distribution 

To calculate the predictive distribution of the reserve outcomes by the methods in this paper, one 

needs the {ELRAY,DevLag} parameter set that was simulated by the Gibbs sampler as described in 

Section 3 above.   

1. For each parameter set, denoted by i, and AY+Lag > 11, do the following. 

a. Calculate the expected loss, PremiumAY,i⋅ELRAY,i⋅DevLag,i. 

b. Calculate the FFT of the aggregate loss XAY,Lag,i, ( ), ,AY Lag iΦ qr as described in Step 4 in 

section A.2 above. 

2. For each parameter set, i, calculate the product ( ) ( )
10 10

, ,
2 12

i AY Lag i
AY Lag AY= = −

Φ ≡ Φ∏ ∏q qr r . 

3. Calculate the FFT of the mixture over all i, ( )
( )i

i

n

Φ
Φ =

∑ q
q

r

r , where n is the number of Gibbs 

samples. 

4. Invert the FFT, ( )Φ qr , to obtain the vector,qr , which describes the distribution of the of the 

reserve outcomes. 

Here are the formulas to calculate the mean and standard deviation of the reserve outcomes: 

• Expected Value = 
142 1

0
j

j
h j

−

=

⋅ ⋅∑ qr .       

• Second Moment = 
142 1

2 2

0
j

j

h j
−

=

⋅ ⋅∑ qr . 

• Standard Deviation = ( )2Second Moment First Moment− . 

Figure 4 has plots of the qr ’s for the Cape Cod and the Beta models. 
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Appendix B.  An Approximate Likelihood Calculation for the Collective Risk Model  

The goal of this appendix is to show how to calculate approximate likelihoods 

{ } { }( )| ,AY LagELR DevXl  for the Cape Cod model and { }( )| , ,AYELR a bXl for the Beta Model, 

where the distribution of each XAY,Lag is defined by Simulation Algorithm 1 above.   

This paper does not follow Meyers [7], which uses FFTs, as described in Appendix A to calculate 

the likelihood.  The reason for this is the speed of calculation.  While today’s computers can 

calculate a likelihood with the FFT in a fraction of a second, the use of the Gibbs sampler can 

require the calculation of millions of likelihoods.  My experience is that the approximate likelihood 

calculation described below cuts the computing time by a factor of 60. 

The general strategy for calculating the likelihood is to start by calculating the first two moments 

of the aggregate loss for each accident year and settlement lag in terms of the expected loss and the 

first two moments of the claim severity distribution.  The next step is to find an overdispersed 

negative binomial (ODNB) distribution that has the same first two moments. We then approximate 

the probability of the observed loss with its probability indicated by the ODNB distribution.  

The log-likelihood for a given triangle of data is then given by: 

( )( )
10 11

,
1 1

log ODNB
AY

AY Lag
AY Lag

x
−

= =
∑ ∑ . 

Here are the steps for calculating each ( )( ),log ODNB AY Lagx : 
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Step 1 – Calculate the first two moments of XAY,Lag. 

Let 2 and Lag lagμ σ  be the mean and variance of claim severity distribution for the given settlement 

lag.  Formulas for these moments are in Klugman [5].  Next calculate the expected claim count, 

, E
AY AY Lag

AY Lag
Lag

Premium ELR Dev
Z

⋅ ⋅
λ =

⎡ ⎤⎣ ⎦
. 

Then the variance of the compound Poisson distribution for XAY,Lag is given by 

( )2 2
, , AY Lag AY Lag Lag LagVar X⎡ ⎤ = λ ⋅ μ + σ⎣ ⎦ . 

Step 2 – Find an ODNB distribution with the same moments as that of XAY,Lag. 

We parameterize the negative binomial distribution so that the variance is equal to: 

2
,

,
,

AY Lag
AY Lag

AY Lag

λ
λ +

κ
. 

If each claim has a constant size of μAY,Lag, its variance is then equal to:  

2
,2

, ,
,

AY Lag
AY Lag AY Lag

AY Lag

⎛ ⎞λ
μ λ +⎜ ⎟⎜ ⎟κ⎝ ⎠

. 

Equating the variance from Step 1 with the above variance and solving for κ yields: 

2
,

, 2
AY Lag Lag

AY Lag
Lag

λ ⋅μ
κ =

σ
. 

Given the parameters ELRAY and DevLag, we approximate the log-likelihood of an observation 

xAY,Lag follows. 

1. Set nAY,Lag = xAY,Lag/μLag rounded to the nearest integer. 

2. Set ( )( ) ( )( ), , , ,log ODNB log Pr | ,AY Lag AY Lag AY Lag AY Lagx N n= = λ κ . 
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Appendix C.  Computer Code for the Algorithms. 

This appendix describes the code that implements the algorithms in this paper.  The code is 

written in R, a computer language that can be downloaded for free at www.R-Project.org5.  The code 

itself will be posted in a zip folder that accompanies this paper on the CAS Web Site. 

There is one feature of the code that is not described above.  Occasionally the Gibbs sampler 

admits a set of parameters with low likelihood.  The presence of such parameters causes subsequent 

parameters to have a high rejection rate with the result that the algorithm is “trapped.”  When this 

happens, the algorithm returns to a randomly selected parameter set that had been accepted earlier.  

Here is a description of the files in the zip folder. 

1. The Rectangle.csv – This is the triangle in Table 1 expressed in rectangular form so it fits into 

an R data frame. 

2. CRM CCod Posterior.r – This code reads The Rectangle.csv and implements the Gibbs 

sampler to produce an output file containing sampled {ELRAY} and {DevLag} parameters 

from the Cape Cod model.  

3. CRM CCod Posterior.csv – The output from a run of CRM CCod Posterior.r 

4. CRM Beta Posterior.r – This code reads The Rectangle.csv and implements the Gibbs 

sampler to produce an output file containing sampled {ELRAY} and {DevLag} parameters 

from the Beta model.  

5. CRM Beta Posterior.csv – The output from a run of CRM Beta Posterior.r.  Some of the 

records in this dataset are in Table 5. 

6. Predict Outcomes.r – This code takes the output from Files 3 and 5 above and calculates the 

predictive distribution.  It creates graphs like those in Figure 4. 

7. Risk Margin.r – This code takes File 5 and calculates the expected losses and TVaRs needed 

for the risk margin calculation. 

                                                 
5 Meyers [6] provides more information about the R programming language. 
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8. Risk Margin.xls – This spreadsheet takes the output of File 7 and produces Tables 6 and 7. 
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