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Motivation. Esnmating trend rates of growth of severity and frequency is crucial to workers 
compensation ratemaking. Such trend rates can be estimated using unobserved components models 
and structural time series models. These two t3.~pes of models derive from parsimonious and 
transparent data-generating processes and, in the case of structural time series models, allow the 
researcher to incorporate economically meaningful explanatory variables into a t/me series framework. 
When specified in state-space form, unobserved components models and structural dine series models 
become available to the Kalman filter estimation technique. The Kalrnan filter explicitly accounts for 
possible measurement errors in the observed severit 3" and frequency data. 
Model. Structural time series models, which nest unobserved components models, are applied to 
state-level time series data for (on-leveled and wage-adjusted) indemnity and medical severities, and for 
frequency. Parameter estimates, hypothesis tests, and growth forecasts are provided for by the software 
package ST:U\IP. STAMP is especially designed for estimating unobserved components and structural 
time series models. 
Results. NCCI developed a production process that employs unobserved components and structural 
time series models to state-level data of indemnity and medical seventies, and frequency. Trend growth 
forecasts generated with such models were presented in state advisor3" forums and served as a 
consideration in rate filings. 
Conclusions. NCCI's experience with Kalman-fthered estimation of trend rates during the policy year 
2006 rate-filing season was encouraging. NCCI anticipates continued use of unobserved components 
models and structural time series models in furore rate filings. 
Availability. STAMP is an easy-to-use windows-driven software package that runs on the GiveWin 
platform. STAM'P and GiveWin are available from Timberlake Consultants Ltd. 
Keywords. Workers compensation, trend growth rates, Kalman filter, unobservecl components model, 
structural time series models, state-space modeling 

1. INTRODUCTION 

Forecas t ing f requency and severity is crucial to workers  c o m p e n s a t i o n  ratemaking.  Such 

forecast ing is p e r f o r m e d  us ing  t ime series models ,  which  are mode l s  that account  for the 

t ime dependence  in the obseta, ed data. In m a n y  t ime series models ,  this t ime dependence  is 

mode l ed  as a (potentially rather  complex)  autoregressive structure,  as is the case in ARIM.A 

(Auto-Regress ive  Integrated Moving  Average)  or  A R M A  (Auto-Regress ive  Mov ing  Average) 

models .  To  many,  such  autoregressive s t ructures  appear  mechanis t ic .  In search for more  

t ransparent  and  pa r s imonious  representa t ions  o f  the  under lying data-generat ing processes ,  

unobse rved  c o m p o n e n t s  (UC) mode l s  and,  as an  ex tens ion  to UC models ,  s tructural  t ime 

series (STS) mode l s  have  been  developed.  In UC models  the quantifies o f  m o s t  interest  are 

no t  directly observed  and m u s t  be es t imated  us ing  bo th  empirical  data and est imates  o f  
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underlying statistical parameters (sometimes called bype~arameters m this context). STS 

models are linear combinations of  UC models for the time series of  interest and standard 

linear regression models including explanatory variables that are exogenous to the time series 

of  interest. For example an STS model for stock market prices might combine a UC 

random walk with drift for the logarithm of stock prices and a standard linear regression for 

changes m the logarithm of stock market prices against recent changes in interest rates. 

Forecasting is a signal extraction and signal extrapolation exercise. Signal extraction is the 

process of  filtering out measurement errors from empirical data. Measurement errors 

include the total impact from all sources of  noise, deviations of  the empirical data from the 

underlying signal that do not affect the expected values of  future observations (such as 

medical or indemnity severities, and frequency). In forecasting, the signal is the quantity of  

interest, because it is the signal that determines the expected values of future observations. 

Specifically, it is the objective of  a forecasting model to elicit from historical observations the 

process that generates the unobservable signal. Because the forecasting model replicates the 

data-generating process of  the signal (instead of  fitting historical observations), the quality of  

these models cannot be judged by the (in-sample) fit to the observed data, as gauged, for 

instance, by the R2. In fact, good fit to heretofore observed data harbors the risk of  

overfitting. Such overfittmg implies that the (n-sample) fits and (out-of-sample) forecasts 

may not center on the signal, thus giving rise to potentially large forecasting errors. 

As an example, consider a game of dice, where each die has sLx faces, the number of  

spots ranging from 1 to 6. In any toss of a pair of  dice, the expected value of  the outcome is 

7. This expected value is the signal, which manifests itself as the mean outcome as the 

number of  tosses goes to infinity. The difference between the observations and the signal is 

noise. The signal offers an unbiased forecast for any future toss. Thus, among all possible 

forecasting models, the one that simply produces this time-mvariant signal as its forecast has 

the lowest expected root mean squared error. Yet, this model offers the worst m-sample fit 

possible, as the model has no explanatory power with regards to the variation of  the 

outcome around the expected value. Not surprisingly, a least-squares regression of  the 36 

possible outcomes on the time-mvariant signal reveals an R 2 equal to zero. 

The risk of  overfitting awards parsimony a critical role m time series modeling. UC 

models are conducive to such parsimonious modeling as the underlying data-generating 

process is highly transparent. UC models, and their extension, STS models, can be written m 

state-space form (defined m section 2.2), which makes these models available to the Kalman 

filter estimation technique. The Kalman filter has been developed m engineering as a signal 

extraction algorithm and, as such, recommends itself for estimating forecasting models. In 

44 Casualty Actuarial Society Forum, Winter 2007 



Forecasting Workers Compensation Severities and 
Frequency Using the Kalman Filter 

fact, the Kalman filter is an estimation technique that explicitly accounts for possible 

measurement errors in the reported data. 

NCCI estimates UC and STS models using the software packages STAMP and SsfPack. 

SsfPack is a collection of functions for state-space modeling, including maximum 

likelihood-estimation ~iLE) and Kalman-filtered estimation and smoothing. This package 

runs in two alternative environments: the programming language Ox (Koopman et al. [11]) 

and the platform S-Plus (Zivot et a1.[17]). We use SsfPack within Ox Professional on the 

GiveWin platform. STAMP (Koopman et al. [10]) also runs on the GiveWin platform. Ox 

Professional, GiveWin, and STAMP are distributed by Timberlake Consultants Ltd. S-Plus 

is a commercial platform available from Insightful Corporation. The models presented here 

were estimated using STAMP. Due to the complexity of code development, practical 

implementation of the Kalman filter in actuarial applications generally requires the 

acquisition of a preexisting specialized statistical software package from an external vendor. 

NCCI developed a production process that employs unobserved components and 

structural time series models for indemnity and medical severities and for frequency for 

more than 30 U.S. states. Trend growth forecasts derived from these models were presented 

in state advisory forums and served as a consideration in rate filings. 

1.1 Research Context 

The material in this paper falls under CAS Research Categories II.G.12 Actuarial 

Applications and Methodologies/Ratemaking/Trend and Loss Development and III.H.15 

Financial and Statistical Models/Statistical Models and Models/Time Series. Econometric 

models for actuarial trends have been dealt with in Hartwig et al.[5], Lommele and 

Sturgis. [12], McGuinness[13], and Van Slyke[15]. Credibility adjusted trending has been 

discussed in Venter[16]. None of these sources utilize the Kalman filter. 

1.2 Objective 

Economic support for actuarial trending of workers compensation losses at NCCI 

currently includes UC and STS models for forecasting (on-leveled and wage-adjusted) 

medical and indemnity severities, and frequency (number of claims, divided by on-leveled 

and wage-adjusted premium). (Wage-adjusting brings past exposure, as gauged by payroll, 

up to current wage levels; on-leveling brings past loss experience up to current benefit 

levels.) This paper describes current practice at NCCI of estimating such models using the 

Kalman filter. In addition to this set of three single-equation models, NCCI operates a 

Bayesian five-equation state-space forecasting model for severities, frequency, and the 
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corresponding loss ratios--this multi-equation model, which accounts for add-up 

constraints and contemporaneous (cross-equation) covariances, is estimated using the 

Metropohs-Hastmgs algorithm. This paper is written from the perspective of  actuarial 

researchers using preexisting statistical software packages from external vendors and does 

not include algorithmic details for statistical methods. 

1.3 Outline 

In Section 2.1, we describe the data-generating processes that underlie UC and STS 

models, and we put these models in state-space form. In section 2.2, we discuss the Kalman 

filter estimation technique and show how ML estimates for the moments are obtained from 

the Kalman filter output. The authors caution that readers need not completely understand 

the formulaic details in section 2.2 to understand the rest of  this paper. Section 3 describes 

an implementation of  UC and STS models in indemnity and medical severities and frequency 

forecasting. Section 4 concludes. 

2. BACKGROUND AND MODELS 

2.1 Unobserved Components and Structural Time Series Models 

STS models are linear combinations of UC models and standard linear regression models. 

We start out by describing the data-generating processes of  UC models and then expand 

these models to the STS framework. 

UC models derive from the concept of  Gaussian innovations, as exemplified in Brownian 

motion. Unlike noise, innovations propagate forward in time and affect the expected values 

of  future observations. In their most basic (and, hence, most restrictive) form, these models 

postulate that innovations to the (unobserved) signal of  a given (observable) variable are 

draws from the normal distribution. Put differendy, the signal in question follows a random 

walk. Let Yt be the variable and 8 t the signal, then we can write the /oca/ /eve/ mode/ in 

Equations 2.1.1 through 2.1.3 as follows: 

Yt =~gt +£ t ,  £t  - N(O, a 2 ) ,  t = l  ..... T (2.1.1) 

8 t =/.l t (2.1.2) 
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/a t = l l  t_ l + r/ , , r/ t - N ( O , a 2 )  (2.1.3) 

The local level model is written in state-space form. The variable /2 t is the only state 

variable and, by definition, unobservable. The variable /a t describes the t i m e  t / e v e / o f  the 

unobsetaTable signal 8 t and is subject to the Guassian innovation r/t. The observed 

dependent variable Y t  is the sum of this signal and Gaussian noise e t . Inserting Equation 

(2.1.2) into Equation (2.1.1) delivers the measurement  equation. Equation (2.1.3) is the transit ion 

equation, which describes the trajectory of the state variable /a t. 

Local level models apply when the signal follows a random walk. Variables that follow 

random walks exhibit high degrees of persistence, as all innovations are permanent. An 

example of such a highly" persistent variable is the rate of CPI (Consumer Price Index) 

inflation (see, for instance, Koopman et al.[11] and Green[4]). 

Signals may exhibit drift. If this drift is stochastic, we obtain the local l inear m o d d ,  which is 

described in Equations 2.1.4 through 2.1.7: 

y , = 8  t + e  t ,  e t - N ( O , a 2 e ) ,  t = l  ..... T (2.1.4) 

O, =/at (2.1.5) 

/at = / a , - I  + f l , - I  + r / t ,  1/t ~ N ( 0 , o ~ )  (2.1.6) 

fit = flt-I + ( t ,  ( t  - N(0,O'[) (2.1.7) 

The state variable /a t indicates the level of the signal, and the state variable f i t  describes 

the slope (or, synonymously, drift) of the signal. As with the level, the slope is governed by a 

Gaussian, permanent innovation ( t  • Because there are two state variables in the local linear 

model, there are two transition equations, which are Equations 2.1.6 and 2.1.7. 

An example of a variable the trajectory of which may be described using a local linear 

model is the logarithmic stock market total-return index, where f i t  indicates the expected 

log return (or, equivalently, the drift in the logarithmic stock price). For cr ~ = 0, the slope is 

non-stochastic. In the stock market example, non-stochastic drift implies constant expected 

r e t u r n .  
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A third model of interest follows from the local level model by means of  integration. 

Assume that the CPI rate of  inflation indeed describes a random walk, as empirical studies 

indicate, and measure the rate of  inflation by the first difference in the logarithmic price 

level. In this case then, the logarithmic price level follows an integrated random walk. For 

the integrated random walk (which sometimes is called smooth trent 0 model, we can write in 

Equations 2.1.8 through 2.1.11: 

Yt = S t  +e , ,  e t ~ N(0,cr2), t = l  ..... T (2.1.8) 

8t =/'/t (2.1.9) 

~ t  = ~ , - I  + f i t - I ,  (2.1.10) 

p, =/3,_, +( , ,  ( ,  - N(0,cr ~) (2.1.11) 

The integrated random walk model results from the local linear model for cr 2 = 0 

The described types of UC models rest on parsimonious data-generating processes, which 

makes them appealing for signal-extraction purposes. On the other hand, these models are 

not cognizant of  economic, causal relations that may exist between the dependent variable in 

question, Yt, and a vector of variables of  economic activity, (xl.e,x2,t ..... xn,e).  UC models 

can be expanded to STS models by adding a standard regression component, thus enabling 

such models to account for pertinent economic relations. When expanding the most general 

UC model-- the local linear model- - to  an STS model, we can write in Equations 2.1.12 

through 2.1.16: 

yt =O, +yt  "xt + e , ,  e t ~ N(0,a  2) (2.1.12) 

8 t =/,l t (2.1.13) 

T, = Yt-I + v t, v ,  - N ( O , a  o) (2.1.14) 
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/a t  = / a t - ,  + f l  t-I + t i t ,  t i t  ~ N (O,o" 2~ ) (2.1.15) 

fit = fit-, + ( , ,  ( ,  - N(0,o'~) (2.1.16) 

The STS model above has one explanatory variable, x e . The regression parameter of  this 

variable, r t ,  follows a random walk. Alternatively, this parameter may be specified as 

stationary ( Ye = Y + vt ) or time-invariant (or v 2 = 0). At NCCI, when employing time-variant 

parameters, we estimate such STS models using SsfPack. The software package STAMP (we 

use version 6.21) can handle currently only time-invariant parameters. For short data series, 

time invariance in Yt is an appropriate constraint to avoid over-parametrizadon. Such 

time-invariance presumes that the variable x t is measured without error and that the 

economic relation depicted in the above measurement equation is time-invariant--these are 

standard assumptions in ordinary linear regression models. 

In the next section, we describe the Kalman filter technique for estimating the state 

variables, and the accompanying ML estimation of  the moments. Further, we discuss the 

relation between the Kalman filter and the Biihlmann credibility criterion. 

2.2 The Kalman Filter 

The Kalman filter was invented in 1960 by Rudolf Kalman (Kalrnan [7]) and saw almost 

immediate application in real-time signal processing for spacecraft. Up to the present, the 

Kalman filter is widely used in various aspects of aerospace operadons, such as radar. The 

filter acts on an observed time series by removing an estimate of  measurement noise. Thus, 

the filtered series represents an estimate for the underlying process of  the signal, that is, the 

observed variable, purged of  noise. The Kalman filter introduces into time series modeling 

the fundamental statistical philosophy that real-world observations are only shadows of ideal 

Platonic forms (Plato [14]). 

The Kalman filter works in the context of  time series models expressed in state-space 

form. The state-space form specifies a transition vector equadon (Equation 2.2.1) for 

unobserved state variables of  interest, and an associated measurement vector equadon 

(Equation 2.2.2) for the observed series (Harvey[6] and Durbin and Koopman[3]). The 

transition equations describe the transition of  the state variables from state t to state t + l .  

The measurement equations describe the relations between the signals and the state variables 

and, at the same time, account for measurement noise as the difference between the 

observed variables and the respective signals. 
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oct = T t a , _  I + c ,  + R t r l  t,  E(r/e)=0, V a r ( l ' l t ) = Q t  

y ,  = Z t o e  t + d r  + e , ,  E(~'t) =0, V a r ( e t ) = H  t 

(2.2.1) 

(2.2.2) 

The vector a" t contains the unobservable state variables. The matrices T,, R,, and Z,,  as 

well as the parameter vectors c,, and d, are assumed to be non-stochastic; t3qgicaUy, these 

variables and parameters are known and may (but need not) be time-invariant. In 

engineering applications, the matrices of  the variances of  the innovations and the 

measurement errors, Qt and H e , respectively, are often determined by actual physical 

calibration with instruments. In financial and economic analyses, these moments are 

estimated using the ML approach. This ML estimation can easily be obtained through a 

decomposition of  the prediction error of the Kalman filter (Kim and Nelson[8]). The 

Kalman filter is presented in Equations 2.2.3 through 2.2.7. 

a , l t - I  = T t a  t - I  + C t (2.2.3) 

, P o - I  = T t P t - I T t  '+ R t Q t R t '  (2.2.4) 

a t = atl,_ I + Pt l t_ lZ t  ' F t - l ( y ,  - Z t a t l t _  I - d , )  (2.2.5) 

P t = P tlt-I - P tlt-I Z t ' F t-  I z t P tlt-I (2.2.6) 

F t = Z t Ptl,-I Z t '+ H t (2.2.7) 

For initial values, it is assumed that P21t is very large and that a211 = 0. 

The coefficients atlr_ l and a t represent estimates for 6r, before and after yt is 

observed, respectively. 

The exists an analogy between the Kalman filter and the Biihlmann credibility criterion 

(Venter[18]); to make the analogy more apparent, assume Z, = 1 and d, = 0. Equation 2.2.5 

contains the Biihlmann credibility-like term: 

Ptlt-i 

Ptlt_ 1 "al- H, 
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If  Yt , a t l t - i ,  and a t are interpreted as the indication, the complement of  credibility, and 

the credibility-weighted estimate, respectively, then Equation 2.5 is effectively a Btihlmann 

credibility estimate since P, It-* and H t can be interpreted as estimates of  the variances of  

ate_ 1 and Yt, respectively. 

Note that the Kalman filter only estimates the series of  underlying states o~ t , given the 

observed series y, and assumed values for the variance parameters contained in Qt and H r . 

These variance parameters must still be estimated via ML. In general, likelihood functions 

for time series models based on prior estimates of  observations conditional on all previous 

observations can be stated as in Equation 2.2.8, where 0 represents the parameter values: 

T 

L(y  o)= l-I p( v , ] Y t-t ..... Y l) (2.2.8) 
t=l 

The Kaknan filter estimates can be used to derive prior means and variances of  not  yet 

observed points, conditional on the previous observations. Since the actual observations the 

are conditionally normally distributed, the log-likelihood function can be written as Equation 

2.2.9, where N is the number  of  scalar components  of  Yt : 

l (y 'O)  = - NT Iog(Zx) - 1  ~ l o g  I F t I - v t  'F t - i v ,  (2.2.9) 
' 2 2 t=l 

v, = y, - Z ,a ,  - d , ,  (2.2.10) 

The Kalman filter works reasonably well even for some time series shorter than 30 

points, although the filtered series may behave erratically on the first few data points. 

The filtered estimates are predictions for the t ime-t  vector of  state variables, based on 

information available at time t - 1. In the context of  economics, these filtered estimates may 

be interpreted as expectations for time t that economic agents formed based on the 

information available at time t - 1 .  Thus, the t ime-t filtered estimates of  the rate of  

inflation may serve as a gauge of  inflation expectations (Koopman et al. [101). 

Typically, the researcher is not interested in t ime-t estimates for the state vector that are 

based on information available only at time t - 1 .  As in standard regression analysis, the 

researcher looks for time- t estimates of the state vector that use all information available as 

at the end of  the data series, that is, as at time T > t .  Such estimates can be obtained 

through a backward moment-smoothing algorithm (Bryson and Ho [1], de Jong [2], Kohn  
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and Ansley [9]). This algorithm is presented in Equations 2.2.11 through 2.2.16, where the 

initial conditions are set as N r = r r = 0 : 

K, = T,P~I,_,Z t 'F,- '  (2.2.11) 

e, = F,-'v, - K, 'r, (2.2.12) 

r,_, = Z t 'e, +T, 'r, (2.2.13) 

D, = F,,-' + K, ' N , K ,  (2.2.14) 

L, = T, - K ,Z ,  (2.2.15) 

N,_, = Z t  'F , - 'Z ,  +L ,  'N ,L ,  (2.2.16) 

Equations 2.2.17 through 2.2.20 present the moment -smoothed  estimates of  the 

stochastic elements and their associated variances: 

E[g, [{y, ..... Yr }] = H,e,  (2.2.17) 

Var[e, I{Yt ..... Yr }1 = H,D,H, (2.2.18) 

E[r/, {y~ ..... y r } ] =  R,'Q,R,r, (2.2.19) 

Var{r/t [{Y, ..... Yr 11 = R, ' Q , R , N  ,R, ' Q , g  (2.2.20) 

3. I M P L E M E N T A T I O N  

We now demonstrate  how to apply UC and STS models to state-level series of  

(on-leveled and wage-adjusted) indemnity, and medical severities and of  frequency (number 
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of claims, divided by on-leveled and wage-adjusted premium). The objective is to forecast 

the growth factor 1 + g T.r+3 for the indemnity and medical severities that applies to the 

3-year period between the last observed period T and the future period T + 3 .  (The 

number  of  years may not be an integer; for instance, the time interval may range from T to 

T + 3 + e, 0<c < 1, in which case the applicable growth factor reads 1 + g r,r+3+e .) 

There are several routes to arriving at such a 3-year growth factor. One approach is to 

estimate directly 3-year rates of  growth g r,r+3 from (successive and non-overlapping) 

3-year time periods. This method requires long data series (as the number  of  data points is, 

at maximum, one-third of  the number  of  annual observations) and, hence, is not an option 

at NCCI. An alternative route is to estimate annual rates of  growth and then tally up the 

annual forecasts for the time periods T + 1, T + 2, and T + 3 in order to obtain the 3-year 

rate of growth from T to T + 3. Tallying up forecast rates of growth is not straightforward 

as these forecasts are random variables and annual compounding involves nonlinear 

transformations. For instance, let ~ r+l, g T+2, and ~ T+3 be the forecasts for the annual 

rates of growth and calculate the forecast for the 3-year growth rate by means of  

compounding: ~ r,r+3 = (1 + ~ r+~) (1 + ~ r+2)" (1 + ~ r+3) - 1. In this case then, if the 3 annual 

forecasts ~ T+i are unbiased forecasts of  the actual annual rates of growth g r+f ( f  = 1,2,3), 

r.r+3 is a biased forecast for the pertinent future 3-year rate of  growth 

g r.r+3 =(l + g r+l)'(l + g r+2)'(l + g r+3) - l .  

We arrive at our forecast for the growth rate g r,r+3 by means of  estimating and tallying 

up logarithmic rates of g rowth- - tha t  is, first differences in natural logarithms. We choose 

this approach because, here, our interest is to estimate the geometric mean of  the 

(continuously compounded) annual rates of growth rather than the arithmetic mean. 
^ log ^ log ^ log ^ log Logarithmic rates of  growth are additive; thus we can write: g T.T+3 = g T+l + g T+2 + g T+3 • 

(When there is the fraction e of an incomplete fourth year, then the multi-year growth rate 
^ log ^ log ^ log ^ log ^ log \ 

a m o u n t s  t o  g T.T+3+e = g T+I  + g T + 2  + g T + 3  + E -  g T + 4  ") T h i s  additivity property implies t h a t  

the sum of the annual forecast growth rates is indeed an unbiased estimator of  the multi-year 

logarithmic rate of  growth. By means of  invoking normality, it is possible to calculate a 
log ^ log standard error for ~ tog from the variances of  the annual growth rates ~ r+l g r+2, and T,T+3 

^ log ^ log g r+3" These standard errors then enable us to compute confidence bounds around g T,T+3 • 

This provides valuable information, rarely if ever available from traditional actuarial trend 

analyses, about the uncertainty of  trend estimates. 

The pertinent severity series are on a "paid" basis. The severity and frequency data are 

from an anonymous U.S. state and refer to the policy year 2006 rate-filing season. These 

data series range from 1986 through 2004, thus affording 18 annual growth rate 
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observations. The model estimates presented below are for illustration purposes only and 

are not necessarily identical to the estimates used in the rate-filing for the anonymous state in 

question. 
i 

According to the NBER (National Bureau of Economic Research, www.nber.org), there 

are two economic recessions that fall into the analyzed 1986-2004 period. Both of these 

recessions lasted for 8 months, as measured from peak to trough. The 1990/91 recession 

lasted from July 1990 to March 1991, and the 2000 recession lasted from March to 

November. This fluctuation in economic activity is potentially important for frequency. For 

instance, it can be shown that the growth rate of BLS (Bureau of Labor Statistics, 

www.bls.gov) on-the-lob injury rates correlate with the change in the rate of unemployment. 

Similarly, it is common for NCCI states that the growth rate of frequency correlates with the 

change in the state-level rate of unemployment. 

Chart 1 shows for the anonymous state in question the log growth rates for the 

on-leveled and wage-adjusted indemnity and medical severities. Chart 2 exhibits the log 

growth rate of frequency, along with the first difference in the percentage rate of 

unemployment (which has been divided by 10 in this exhibition, for scaling purposes). 

Chart 1 

Logarithmic Growth Rates of Indemnity and Medical Severities, State-Level Data, Accident 

Years 1987-2004 
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Visual inspection of Charts 1 and 2 suggests that the rates of growth of the indemnity and 

medical severities and of frequency follow random walks--thus, the local level model 

applies. A Unit-rootprocess includes an autoregressive AR(1) coefficient of unity. We do not 

employ unit-root tests, such as Dickey-Fuller (see, for instance, Greene [4]). This is because, 

for short time series, these tests have little power, that is, the test are deficient in their ability 

to reject the null hypothesis of the presence of a unit root. What complicates matters for the 

frequency series is that this variable is not a pure unit-root process but instead is the sum of 

a unit-root process and a cyclical (that is, business cycle) component. For instance, as 

Chart 2 shows, the two recessions seem to have depressed the growth rate of frequency, 

although the drop during the 1990/1991 recession appears to have been permanent (instead 

of cyclical). 

Chart 2 

Logarithmic Growth Rate of Frequency and First Difference in Rate of Unemployment, 

State-Level Data, Accident Years 1987-2004 
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Note: The Rate of Unemployment was measured in percent; for scaling purposes, the frtst 
difference was divided by 10 (in this exhibition only). 

Table 1 displays the regression results for the local-level UC (severities) and STS 

(frequency) models. This table shows the final state variable only--the level /~r. The 

t-statistic displayed alongside /~r pertains to this final, time T variable only. Put differently, 
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the t-statistic for /.t r does not afford statistical inference for /.t t in prior periods 

(t = I ..... T -1) .  For medical severity, we can reject the null hypotheses of zero growth as at 

time T (the time of the last observation). Most interestingly, we can reject the null 

hypothesis that there is no business cycle influence on the growth rate of frequency. 

Specifically, an increase in the rate of unemployment by 1 percentage point (for instance, 

from 4 percent to 5 percent) depresses the (logarithmic) rate of growth of frequency by 1.76 

percentage points. This finding supports the commonly held view that when the labor 

market softens, the least productive workers (which, frequently, are the last hired and thus 

least experienced) are the first to be laid off such layoffs leaves the remaining pool of 

employed workers more experienced, on average. Note that, for the purpose of forecasting, 

the lack of statistical significance of "baseline" growth (as at time T ) in indemnity severity 

and in frequency is irrelevant. 

Table 1 

Regression Results for Growth Rates of Indemnig- and Medical Severities, and Frequency 

Variable 
/ / r  (Level) 
Log Likelihood 

Variable 
f i t  (Level) 
Log Likelihood 

Variable 
/t r (Level) 
Unemployment 
Log Likelihood 

Panel A: Indemnity Severity 
Coefficient RMSE 
0.020474 0.015641 

54.3136 
Panel B: Medical Severity 

~stafistic Q-Ratio 
1.309 0.0455 

Coefficient RMSE ~statistic Q-Ratio 
0.081500 0.014593 5.585 0.4060 

59.8715 
Panel C: Frequency 

Coefficient RMSE ~statistic Q-Ratio 
0.0023129 0.0045367 0.50983 1.000 

-0.017635 0.0074340 -2.3722 --- 
52.8787 

The Q-ratio in the rightmost column of Table 1 is the ratio of the ML-estimated variance 

of the innovation in level (c~ ~ ) to the ML-estimated variance of the measurement error 

(6-~). For both severities and for frequency, this Q-ratio is positive. A positive Q-ratio 

indicates that the level /~I is time-variant or, equivalently, that the rate of growth of the 

severity in question (for frequency, this holds net of the cyclical influence) is non-stationary, 

as hypothesized. 

As mentioned, traditional measures of goodness of fit are of limited use for forecasting 

models. This impediment puts the emphasis on regression diagnostics. Chart 4 shows for 
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the indemnity severity UC model four diagnostic plots for the measurement error. The 

left-hand side plot in the top panel of Chart 3 presents autocorrelations in the residuals at lag 

lengths 1 through 3. These autocorrelations appear to be small on this plot, thus lending 

support to the assumption that the measurement errors are independently distributed. On 

the right-hand side of the top panel, there is a QQ-plot. This QQ-plot indicates that there 

are no fat tails. Specifically, there is neither statistically significant skewness (which equals 

0.8208) nor statistically significant excess kurtosis (which measures 0.1698). The bottom 

panel of Chart 2 displays the cumulative sum of residuals (left) and cumulative sum of 

squared residuals (right). The cumulative residuals signify no discernible positive serial 

correlation as these sums are well within the error cone. The cumulative sum of squared 

residuals indicates no material heteroskedasticity, thus suggesting that the assumption of a 

time-invariant variance of the measurement error is adequate. The corresponding residual 

diagnostics for the medical severity UC model and the frequency STS model are displayed in 

Charts 5 and 6. Here again, there is no statistically significant skewness (0.3505 and -0.4684, 

respectively) orexcess kurtosis (-0.8213 and -0.5680, respectively). 

Chart 3 

Regression Diagnostics (Local Level UC Model) for the Log Growth Rate of Indemnity 

Severity 
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A means of testing the performance of the forecasting model is to generate forecasts for 

a holdout period and then compare these forecasts with the actual, known observations. We 

estimate the two severity models for the time period 1987 through 2001 (that is, periods 

t = l  ..... T - 3 ) ,  assigning the years 2002 through 2004 (periods T - 2  through T) to the 

holdout window. Then, we generate multi-step logarithmic annual growth rate forecasts for 

this holdout window from the shortened (t = 1 ..... T -  3 ) time series. Multi-step forecasts, by 

definition, do not incorporate information that arrives during the holdout period; for 

instance, the forecast for T does not incorporate information that becomes available during 

periods T - 2  or T - 1 .  The concept of multi-step forecasting agrees with the actual 

forecasting problem at hand. However, there is one important difference between the 

holdout forecasting exercise and the actual forecasting situation. When we employ STS 

models in forecasting for the periods T + 1 through T + 3, we have to feed to the model for 

the first difference in the rate of unemployment historical observations or, if such 

observations haste not yet become available, forecasts. In the holdout forecasting exercise, 

the historical observations for the state-level rate of unemployment in periods T -  2 through 

T are available. Although using historical forecasts rather than historical observations in the 

holdout forecasting exercise would remedy this problem, the exercise would still be three 

observations short of the data series available in the actual forecasting situation. 
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Chart 4 .- 

R e g r e s s i o n  Diagnostics (Local Level UC Model) for the Log Growth Rate of Medical 
Severity 
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Chart 5 

Regression Diagnostics (Local Level STS Model) for the Log Growth Rate of Frequency 
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In the actual forecasting situation, the accuracy of  the forecasts for the frequency rate of  

growth is dependent on the accuracy of  the forecasts for the rate of  unemployment. (Note 

that our model does not account for the stochastic nature of  the unemployment rate 

forecasts.) Most importantly, an STS model will forecast recession-related dips in the 

growth rate of  frequency (as exhibited in the historical data of  Chart 2) only if the pertinent 

forecasts for rate of  unemployment describe such a recession. Unfortunately, economic 

recessions are next to impossible to forecast, because, if they were predictable, they would 

not occur as the Federal Reserve (or, possibly Congress, when it comes to fiscal policy) 

would act in a timely manner to prevent them. 

Chart 6 and Chart 7 exhibit for the mentioned 3-year holdout window multi-step 

forecasts for the annual logarithmic growth rates of  the indemnity and medical severities. 

Note that the displayed forecasts need to be multiplied by 100 to obtain percentage rates of  

growth. The confidence bounds around the forecasts range over 2 RMSE (root mean 

squared errors)--these confidence intervals are comparatively wide, which is due to the 

small number observations (14 by count). The forecasts of  interest--those for the year 

T + 3 (2004)--are quite accurate. 

Chart  6 

Holdout-Window Forecasts (Local Level UC Model) for the Growth Rate of  Indemnity 
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Chart 8 exhibits the hold-out window forecasts for the growth rate of frequency. The 

forecast of  interest--the one for the year T + 3 (2004)---clearly falls short of the observed 

value. Apparently, the regression coefficient that gauges influence of the first difference in 

the rate of unemployment underestimated the effect on the growth rate of frequency of the 

pronounced drop in the rate of unemployment rate during the economic recovery 

2002-2004. It bears to mention that the shortening of the period of observation for this 

hold-out window exercise leaves the remaining period of observations (1987-2001) with only 

one economic recovery (the one following the 1990/91 recession); thus, it comes at now 

surprise that the regression coefficient in question is poorly estimated. Yet, it bears to 

mention that even in this shortened time period of only 15 observations, the STS model 

forecast for the year T + 3 (2004) beats the benchmark forecast (the random walk), which 

equals -7.78 percent. 

Chart 7 

Holdout-Window Forecasts (Local Level UC Model) for the Growth Rate of Medical 

Severity 
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Charts 9 through 11 exhibit forecasts for the annual logarithmic rates of growth of the 

indemnity and medical severities and for frequency for the periods T +1 through T +3 ,  

based on the full ( t = l  ..... T)  model. The top panels of these charts exhibit recent 

observations (at the dashed vertical bar and to the left of it) and forecasts with error bars 

ranging over 2 RMSE (solid vertical bars). Remember that the forecasts for frequency 
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(unlike those for the severities) are linear combinations of  the trend rate of  growth (~  r ) and 

a business cycle component. The bottom panels of  Charts 9 through 11 display, the 

estimated (at the dashed vertical bar and to the left of  it) and forecast values for the level/~ e" 

Note that these forecasts for the level---the annual trend rate of  growth of  the indemnity 

severity, medical severity, or frequency--are equal to the respective final state vector/~ r for 

all T + f ,  f = 1 ..... ~ .  Again, the presented forecasts need to be multiplied by 100 to obtain 

percentage rates of growth. 

Chart  8 

Holdout-Window Forecasts (Local Level STS Model) for the Growth Rate of  Frequency 

0.075 

O.(XcJO 

0.025 

0.000 

-OA~.5 

-0.050 

42.075 

-O.lOO 

-0.125 ~ 

-0. I.~0 ~ 

-0.175 ~ 

I m ~ -°-o-  F~eimsls I 

I 
I 

J 

2001 2¢112 20138 2004 
Aocide~t Year 

As mentioned, the sought-a•r growth factor 1 + g r.r+3 is the exponentiated sum of the 

^ log ( f  =1,2,3) 3 forecasts for the annual logarithmic rates of  growth g r+f 

Finally, it is of interest how the Kalman filter technique compares with less sophisticated 

approaches to forecasting logarithmic rates of  growth from past realizations. For simplicity, 

we focus on medical severity as this variable is, unlike frequency, not (hypothesized to be) 

subject to the business cycle. 

In general, if a time series is stationary (here, is the sum of a constant and a Gaussian 

error term), then the mean of the series renders unbiased forecasts for any future value of  

this series. Although any past value of  the series renders such an unbiased forecast, the 

more past realizations are averaged over, the lower is the expected RMSE of this forecast. 
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Hence, if the log rate of growth of indemnity severity-were stationary (which it is not, we 

hypothesize), then taking the mean over all available historical observations is desirable when 

forecasting this variable. 

Chart 9 

Forecasts (Local Level UC Model) for the Log Growth Rate of Indemnity Severity 
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Chart 10 

Forecasts (Local Level UC Model) for the Log Growth Rate of Medical Severity 
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Chart 11 

Forecasts (Local Level UC Model) for the Log Growth Rate of Indemnity Severity 
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If the growth rate of  medical severity follows a random walk, as hypothesized above, then 

no averaging should be done. In general, if a time series follows a random walk, then the 

last (that is, the time T)  realization serves as an unbiased forecast for any future value of  this 

series, given the information available at time T.  Hence, the last, time T observed log rate 

of  growth for medial severity--the reading for the 2004 accident year i,; 7.74 percent is an 

unbiased forecast for the log growth rates of  periods T + f ,  (f = 1,2,3) (that is, accident 

years 2005 through 2007). Yet, as shown in Table 1, the final state vector and, hence, the 

Kalman-filtered forecast for the annual log rate of  growth equals 8.15 percent. This 41 basis 

point annual difference is due to the measurement error in the observed data. Although 

both the last observed rate of  growth (0.0774 in this realization) and the final state vector 

(0.0815 in this realization) reflect an unbiased forecast for any future period, these forecasts 

differ in precision. The Kalman-filtered forecast of  8.15 percent is likely to be much closer 

to the actual future outcome. 

As a demonstration of  the difference in typical outcome accuracy between the 

Kalman-filtered forecasts and forecasts that disregard a potential measurement error in the 

observed data, consider the holdout forecast for medical severity presented above. For the 

Kalman-filtered forecasts of  the annual log rates of  growth, the sum of the absolute forecast 

errors (for periods T + 1, T + 2, and T + 3 ) equals 0.0387, and the RMSE amounts to 0.0090. 

When the last observed rates of  growth are used, these gauges of  forecast inaccuracy are as 

high as 0.1154 and 0.0234, respectively. 

4. C O N C L U S I O N S  

The experience of  NCCI with Kalman filtered esti adon of  trend rates during the policy 

year 2006 rate filing season was encouraging. NCCI anticipate,', continued use of  

unobserved components models and structural time series models in future rate filings and 

the Kalman filter estimation technique. Current research at NCCI focuses on testing a 

B~ryesian five-equation state-space forecasting model for severities, frequency, and the 

corresponding loss ratios--this multi-equation model, which accounts for add-up 

constraints and contemporaneous (cross-equation) covariances, is estimated using the 

Metropolis-Hastings algorithm. 
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