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Abstract 
This paper presents a framework for stochastically modeling the path of the ultimate loss ratio 
estimate through time from the inception of exposure to the payment of all claims. The framework is 
illustrated using Hayne's lognormai loss development model, but the approach can be used with other 
stochastic loss development models. The behavior of chain ladder and Bornhuetter-Ferguson 
estimates consistent with the assumptions of Hayne's model is examined. The general framework has 
application to the quantification of the uncertainty' in loss ratio estimates used in reserving and pricing 
as well as to the evaluation of risk-based capital requirements for solvency and underwriting analysis. 

Keywords: Stochastic model, diffusion process, loss development, loss ratio estimation, lognormal, 
Student's l, log t, parameter uncertainty" 

1. I N T R O D U C T I O N  

Ultimate loss ratio estimates change over time. The initial loss ratio estimate that emerges 

from the pricing analysis for a tranche of policies soon gives way to a new estimate as time 

passes and claims begin to emerge (or not). By the time all claims have been paid, the loss 

ratio is likely to have been re-estimated many times. The focus of this paper is on how to 

model the future revisions of these ultimate loss ratio estimates. We illustrate the approach 

using loss ratio estimates based on chain ladder and Bornhuetter-Ferguson methods 

underpinned by a simple stochastic model described by Hayne [1]. 

There appears to be little, if any, actuarial literature on the subject of  behavior of a 

ultimate loss ratio estimate behveen the time when it is made and the time when its final value 

becomes known, i.e., the point at which all claims have been paid. Various authors have 

sought to address uncertainty in the ultimate loss ratio estimate, but generally from the 

perspective of a single point in time. 

For example, Hayne [1] proposed a lognormal model of loss development that supports 

the construction of confidence intervals around the ultimate loss ratio estimate ~. Kelly [2] 

and Kreps [3] also used a lognormal framework to explore issues of parameter estimation 

and parameter uncertainty, respectively. Hodes, Feldblum and Blumsohn [4] used a slightly 

different lognormal development model to quantify the uncertainty in workers 

compensation reserves. Mack, Venter and Zehnwirth have all written extensively about 

1 Conscious that the confidence intervals he derived were dependent on the lognormal model being the correct 
choice, he cautiously described his results as providing a "range of reasonableness." 
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stochastic modeling of the loss development process:. Others, including Van Kampen [11], 

Wacek [12] and the American Academy of Actuaries Property & Casualty Risk-Based Capital 

Task Force [13], have sought to quantify the uncertainty in the ultimate loss ratio estimate 

used in pricing and reserving applications direcdy, without reference to the loss development 

process. The question on which all of these authors focused their attention is the potential 

variation in the final loss ratio at ultimate compared to the current ultimate loss ratio 

estimate, with no reference to how the ultimate loss ratio estimate might vary at intermediate 

points in time. 

In contrast, in his acclaimed paper on solvemy measurement Butsic [14] observed that 

loss estimates change in their march through time. He recognized that they, like stock 

prices, are governed by a diffusion process, a type of continuous stochastic process with a 

time-dependent probability structure. However, he did not propose a model of this 

stochastic process. 

How ultimate loss ratio estimates change in the future depends in part on the method 

used to make the estimates. In this paper we assume that loss ratio estimates are derived 

from a consistently applied estimation process with minimal subjective overriding of the 

indicated result. We model the behavior of loss ratio estimates using stochastic versions of 

two loss development methods: the chain ladder method and the Bornhuetter-Ferguson 

method, both using paid development data. To model chain ladder estimates, we combine 

Hayne's and Butsic's ideas to synthesize a lognormal diffusion model for the path of the 

ultimate loss ratio. Then we adapt that model to the Bornhuetter-Ferguson method. 

This conceptual framework, which could easily be adapted to handle other loss 

development models, provides actuaries with the means to give their clients more 

information about how much their loss ratio or reserve estimates may fluctuate from period 

to period. As such, it can be a useful tool for managing expectations about the variability of 

loss reserve estimates. It also has potential application in a number of other areas of 

actuarial analysis, as we will discuss later. 

1.1 O r g a n i z a t i o n  o f  t h e  P a p e r  

The paper comprises six sections, the first being this introduction. In Section 2 we 

outline Hayne's lognormal model of chain ladder loss development and illustrate its 

application using industry Private Passenger Auto Liability data from the 2004 Schedule P. 

We illustrate the main benefit of a stochastic model for loss development, namely, the ability 

2 For example, see Mack 151, 16], Venter 17], 18] and Zehnwirth [9], [10] (the last co-authored with Barnett). 
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to measure the uncertainty in loss development factors and in the ultimate loss ratio 

estimate. 

In Section 3 we discuss the effect of  future loss emergence on future ultimate loss ratio 

estimates. We show how to use information implicit in Hayne's model to determine the 

distribution of future estimates derived from our stochastic versions of the chain ladder and 

Bornhuetter-Ferguson methods, with particular attention to the loss ratio estimate one year 

out. We again use industry Private Passenger Auto Liability data to illustrate the process. 

In Section 4 we adjust Hayne's model to allow for parameter uncertainty, and illustrate 

the effect. Because the adjusted distribution does not have the multiplicative properties of 

the lognormal, we illustrate the use of Monte Carlo simulation to model the distribution of 

future ultimate loss ratio estimates. 

In Section 5 we conclude with an outline of potential applications of the framework for 

future ultimate loss ratio estimates in loss reserving and risk-based capital applications. 

2. HAYNE'S L OGNORMAL LOSS D E V E L O P M E N T  M O D E L  

Hayne presented two models of chain ladder loss development: one that assumed that 

development is independent from one period to the next, and a second one that relaxed the 

independence assumption. We will adopt the first model (and henceforth refer to it simply 

as "Hayne's model"). Kelly [2] argued that independence is more plausible for paid loss 

development than for case incurred development. Therefore, we will use paid losses as the 

basis of our framework. 

Hayne's model is quite simple. He assumed that age-to-age development factors are 

lognormally distributed. The product of independent lognormal random variables is also 

lognormal, which implies that age-to-ultimate loss development factors are lognormal. 

Because the product of a constant and a lognormal random variable is lognormal, if we are 

given the cumulative paid loss ratio at any age and the estimated parameters of the matching 

age-to-ultimate factor, we can determine the parameter estimates of the ultimate loss ratio. 

Using these parameters we can estimate the expected loss ratio (which we will take as the 

"best" estimate) as well as confidence intervals around that estimate. 

The lognormal parameters g. and ~ of the age-to-age factors can be estimated by a 

variety of methods. Hayne used (and we also prefer) the unbiased estimators 
1 n : n  - 2  

1,__~l =n,__ ~ ,  ~ ~1----[ f°r t* and ° - '  respectively' where ~;=n,= y' /n(:c ) and s 2 = y ( 3 " - Y )  
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"\~1~ "X'2' "X'3)"') ~'n 

estimator. 

are the, observed age-to-age factors 3. is also a m a ~ m u m  likelihood 

2.1 IUustration of  Model  Parameter Estimation 

We illustrate the parameter estimation for Hayne's model using the real loss 

development data presented in Exhibits 1 and 2. Exhibit 1 shows industry aggregate 

Schedule P net paid loss development data for Private Passenger Auto Liability- for accident 

years 1995 through 2004 from the 2004 Annual Statement 4 together with ~ e  associated paid 

loss age-to-age development factors. The paid loss ratios at age one year are also included in 

the development factor exhibit. Exhibit 2 shows the natural logarithms of  the age-to-age 

factors and the age one year paid loss ratios. The rows labeled "Mean" and "S.D." in 

Exhibit 2 show the unbiased estimators for p. and e ,  respectively, given the data in the 

body of  the column 5. 

For example, in Exhibit 2 the mean and standard deviation of  the natural logarithms of  

the observed age 1 to 2 development factors are 0.569 and 0.016, respectively. I f  we set 

bt = 0.569 and a = 0.0166, these parameter estimates for prospective age 1 to~2 development 

imply a lognormal mean, defined as E(x) = e ~+°s*~ , of 1.767, which matches the mean loss 

development factor calculated by the traditional method in Exhibit 1. The same is true for 

all of  the other age-to-age factors. Similarly, the parameter estimates for the age one paid 

loss ratio are -1.246 and 0.069 for ~t and or, respectively, which imply a lognormal mean of  

28.8%. This, too, matches the mean age one paid loss ratio shown in Exhibit 1. 

The parameter estimates for the prospective age-to-age factors can 'be  combined using 

the multiplicative property of  lognormal distributions to determine parameter estimates for 

prospective age-to-ultimate factors. The product of  n lognormal random variables with 

respective parameter sets (~q,%),  (~z,a2) ,  (~t3,a3),..., (bt,,,¢~,) is a lognormal random 
I 

variable with parameters ~ = ~, and ~ = o, . For example, treating age 10 as 

ultimate, in Exhibit 2 the ~. parameter estimate for the age 7 to ultimate development factor 

is the sum of  the mean age-to-age factors forages 7 to 8, 8 to 9 and 9 to 10:0.005 + 0.003 + 

3 We used unweightcd estimators throughout this paper. For formulas for estimators using unequal weights for 
the observations, see Section 5.5 of [12]. 

4 Source: Highline Data LLC as reported in the statutory filings (OneSource). 
5 Note that the standard deviation for the age 9 to 10 development factor, which is undefined, 'has been 

selected to be equal to that of the age 8 to 9 development factor in both Exhibit 1 and Exhibit 2. 
6 These parameters define the lognormal distribution that best fits the data, using unbiasedness as the criterion 

for "best." However, there is uncertain~" about whether those parameters are correct. We address the issue 
of parameter uncertainty later in the paper. 
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0.001 = 0.009. The corresponding o parameter is the square root of  the sum of  the 

variances of  the same age-to-age factors: ~/0.0002 + 0 .0012  + 0 .0012  = 0.001. Note  that the 

lognormal means (labeled "LN Fit LDFs"  in Exhibit 2) implied by these age-to-ultimate 

parameters match the age-to-ultimate development  factors shown in Exhibit  1. 

The ultimate chain ladder loss ratio estimates indicated by this analysis as of  the end of  

2004 for accident years 1995 through 2004 are summarized in Exhibit 3. In this example, 

the lognormal loss development  model produces the same loss ratio estimates as the 

traditional deterministic chain ladder loss development  method. I f  we were interested only 

in these mean estimates, the traditional approach would suffice. However, we also want to 

measure the uncertainty" in the loss ratio estimates, and for that purpose the richer lognormal 

model is superior. 

2.2 Measurement of Loss Development Uncertainty 

If  we assume ~t = ~ and G = s based on the data for each age-to-age development  period, 

we can calculate the lower and upper bounds of  a two-sided 95% confidence intetaTal for 

prospective age-to-age factors as  e J'-'\-*(97's%)* and e '}+N-~(97's'~'')'s, respectively, where 

N-1(97.5%) is the value of  the standard normal cdf  corresponding to a cumulative 

probability" of  97.5% v. Similarly, using the parameter estimates for the age-to-ultimate 

factors we can also determine confidence intervals for age-to-ultimate factors. We have 

tabulated these 95% confidence intervals based on the industry. Private Passenger Auto 

Liabilit T Schedule P data as of  the end of  2004 in Exhibit 48. 

Exhibit 4 indicates that the age 1 to 2 development  factor, which has an estimated mean 

of  1.767, should fall within a range of  1.710 to 1.824 95% of the time. The age 1 to ultimate 

development  factor, which has an estimated mean of  2.508, can be expected to fall within a 

range of  2.423 to 2.595 95% of the time. Given the accident year 2004 paid loss ratio of  

26.6% at age 1, these confidence intervals imply a paid loss ratio range at age 2 of  45.5% to 

48.5% (47.0% + 1.5%) and an ultimate loss ratio range of  64.4% to 69.0% (66.7% + 2.3%) 9. 

As we would expect, the development factors for more mature accident )'ears have tighter 

confidence intervals. For example, the age 5 to 6 factor, which in a year end 2004 analysis 

v N-I (97.5%) is replicated in Excel by NORAISIN[ r(0.975). 
Bear in mind that these confidence intervals, are premised on the parameter estimates being correct and are 
narrower than confidence inte~'als that incorporate parameter uncertainty. 

9 While the lognormal is a skewed distribution, the skewness is imperceptible for small values of G and the 
confidence intervals are, for most practical pt4rposes, symmetrical. In this example with G = 0.016 the 
skewness coefficient is 0.05. In contrast, m the case ofo = 1 it ts 6.18. 
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would be applicable to accident year 2000, has an estimated mean of  1.020 and a 95% 

confidence range of  1.018 to 1.022. That implies that, 95% of the time, the accident year 

2000 paid loss ratio of  76.7% as of  the end of  2004 will develop to a paid loss ratio of  78.1% 

to 78.4% by the end of  2005, a range of  0.3 points. The 95% confidence interval for the age 

5 to ultimate factor, which has an estimated mean of  1.039, is a range of  1.034 to 1.043. 

That implies an ultimate loss ratio range of  79.3% to 80.0%, or 0.7 points. 

All of  these development factor, loss ratio and confidence interval estimates are as of  the 

end of  2004. They are all subject to change as new information in the form'of  actual future 

loss emergence becomes available. In the next section we will show how to use information 

implicit in Hayne's approach to model the effect of  future loss emergence on these 

estimates. 

3. A M O D E L  FOR F U T U R E  ULTIMATE LOSS RATIO ESTIMATES 

Any estimate of  the ultimate loss ratio for a particular accident year is quickly made 

obsolete by subsequent actual loss emergence. Because of  this rapid obsolescence, the 

ultimate loss ratio must be re-estimated periodically in light of  the loss development in the 

period since the previous evaluation. That loss development affects the new estimate in two 

ways. 

3.1 Sources of  Variation in Future Loss Ratio Estimates 

First, the actual accident year loss emergence replaces the expected emergence in the loss 

ratio projection. For example, in Exhibit 3 the Private Passenger Auto Liability accident year 

2004 ultimate loss ratio of  66.7%, estimated as of  the end of  2004, was determined by 

applying an age-to-ultimate factor of  2.508 to the paid loss ratio of  26.6%. That age-to- 

ultimate factor reflected an exT~ected age 1 to 2 development factor of  1.767 combined with an 

age 2 to ultimate factor of  1.420. 

It is likely that actual age 1 to 2 loss development will vat 3, from the expected. If, for 

example, the actual accident year 2004 emergence during 2005 (from age 1 to 2) corresponds 

to a development factor of  1.75, then in the ultimate loss ratio analysis conducted at the end 

of  2005 this actual development factor will replace the expected development factor of  

1.767. If the age 2 to ultimate factor remains unchanged at 1.420, the revised chain ladder 

estimate of the ultimate loss ratio will become 26.6% x 1.75 x 1.42 = 66.1%. The revised 
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Bornhuetter-Ferguson loss ratio estimate will become 26.6%,.x:.(1.75 - 1.767) + 26.6% x 

1.767 x 1.42 = 66.1% 1°. 

O f  course, loss emergence with respect to older accident years might cause a revision in 

the prospective age 2 to ultimate factor. This potential for tail factor revision is a second 

source of  uncertainty. For example, suppose the actual age 2 to 3 development  on accident 

year 2003 during 2005 corresponds to a factor of  1.210. I f  that factor is averaged with the 

previous eight-point mean of  1.198 determined in Exhibit 1 (using loss development  data 

through 2004), the result is a revised age 2 to 3 development factor of  1.199. Assuming the 

same process is repeated for the other development periods, a revised age 2 to ultimate 

factor will be obtained. I f  the resulting age 2 to  ultimate factor is 1.425, the revised chain 

ladder ultimate loss ratio estimate is given by 26.6% x 1.75 x 1.425 = 66.3%, a reduction of  

0.4% from the year end 2004 ultimate loss ratio estimate of  66.7%. The revised 

Bornhuetter-Ferguson estimate in this case is given by 26.6% x (1.75 - 1.767) + 26.6% x 

1.767 x 1.425 = 66.5%. 

The foregoing is an illustration of  just one scenario of  the loss development that might 

occur in 2005 and its effect on the ultimate loss ratio estimate. We can use information 

developed in Hayne's  framework to model these two effects generally. 

3.2 M o d e l i n g  t h e  F i r s t  S o u r c e  o f  V a r i a t i o n  - A c c i d e n t  Y e a r  D e v e l o p m e n t  

The first effect is captured by the lognormal random variable estimated for the next year 

of  development with respect to the adcident year under review. For example, for accident 

year 2004, which at. the end of  2004 is age 1, the log, normal distribution with i ~ = 0.569 and 

o = 0.016 models age 1 to 2 paid development. Then, since the age 1 paid loss ratio is 

26.6%, the paid loss ratio distributioti at age 2 is lognormal with parameters bt = / n  26.6% + 

0.569 = - 0 J 5 6  and o = 0.016, implying a mean of'47.0%. 

I f  the mean age 2 to ultimate factor (the tail factor) of  1.42 does not change, then the 

distribution of  the revised chain ladder ultimate loss ratio estimate at age 2 (i.e., one ),ear out) 

has lognormal parameters ~ = /n 26.6% + 0.569 + /n 1.42 = -0.406 and c = 0.016. The 

random variable for this chain ladder estimate xc~ can be expressed as a function of  the 

paid loss ratio random variable xp and:the expected value of  the mean tail factor: 
I 

Xcl = xp " E (  tai/) (3.1) 

m Assume the Bornhuetter-Ferguson expected loss ratio is 66.7%. In general, we will assume the Bomhuetter- 
Ferguson expected loss ratio for each accident year as of the end of 2004 is equal to the chain ladder ultimate 
shown in Exhibit 3, allowing us to treat the year end 2004 loss ratio estimates as identical from both methods. 
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The random variable xm:,. for the comparable Bornhuetter-FergUson.estimate is a shifted 

version of  the random variable for the age 2 paid loss ratio: 

x m- = xp  - E( . , :p  ) + E ( x p  ) .  E ( t a i / )  (3.2) 

As defined by Formulas 3.1 and 3.2, both Xcl and xnF reflect the uncertain impact of  

accident year 2004 development during 2005 on the updated ultimate loss ratio estimate that 

will be made at the end of  2005, but do not reflect the potential impact of  tail factor revision. 

3.3 M o d e l i n g  t h e  S e c o n d  S o u r c e  o f  V a r i a t i o n  - T a i l  F a c t o r  R e v i s i o n  

The second effect, due to tail factor revision, is captured by measuring the effect of  the 

lognormal loss development modeled for the next year on the existing mean age-to-age and 

age-to-ultimate factors. For example, the mean age 2 to 3 development factor shown in 

Exhibit 1 is 1.198. This is a mean of  eight data points. What will b e  the effect on the mean 

of  adding a ninth data point (representing 2005 development on accident year 2003), given 

that it will arise from a lognormal distribution with parameters ta = 0.18l and o = 0.005 

(and mean of  1.198)? The uncertain ninth data point will contr ibute 'one-ninfh weight to the 

revised mean age-to-age factor. There is no uncertainty about the existing mean age 2 to 3 

factor - it is a constant. Therefore, the o parameter of  the distribution of  the revised mean 

age 2 to 3 factor one year out, given an additional year of  actual development, is given by 

~/(9-0)2 +(9 .0 .005)2 =0.001.  T h e ~  parameter is given by /t11.198-0.5-0.0012 =0.181. 

We can use the same process to estimate ~ and cr parameters for the comparable 

distributions of  mean age-to-age factors one year out for all such factors comprising the 

development tail". We can then combine the revised mean age-to-age factor parameters to 

determine the parameters of the revised mean age-to-ultimate factor distributions. See 

Exhibit 5 for a tabulation of  the parameters of  these revised mean age-to-age and age-to- 

ultimate distributions for all ages. The a of  the distributions of revised factors for age 3 to 

4 and beyond is less than 0.0005 (and thus displayed as 0.000 in Exhibit 5), indicating that 

for Private Passenger Auto Liability, the uncertainty arising from the potential for tail factor 

revision is very small. This is confirmed by the veq, narrow confidences intervals. 

t l Bear in mind that these parameters refer to distributions of the mean age-to-age development factor one year 
out and not to distributions of the development factor itself. We are interested in the distribution of the 
mean development factor because changes in the mean directl)7 affect the ultimate loss ratio estimate (which 
is also a mean). 
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3.4 Modeling the Revised Loss R a t i o  E s t i m a t e  O n e  Y e a r  O u t  

We can now combine these two effects to determine the distribution of  the revised 

ultimate loss ratio estimate that will be determined in one year's time based on the updated 

loss development  experience that will then be available. 

To determine the distribution of  the revised chain ladder estimate, we start with the actual 

accident year paid loss ratio, which we then multiply by the lognormal random variables for 

l) the age-to-age factor for the next year of  development (obtaining the random variable xp 

of  the paid loss .ratio one year out) and 2) the revised age-to-ultimate factor beyond the next 

year of  development.  Using accident year 2004 as an example, as of  the end of  2004 the 

ultimate loss ratio estimate is 66.7%, which has been determined by multiplying the paid loss 

ratio of  26.6% first by an age 1 to 2 factor of  1.767 and then by an age 2 to ultimate factor of  

1.420. In order to model the ultimate loss ratio estimate one year later, at the end of  2005, 

we replace the constant age 1 to 2 factor of  1.767 with the lognormal random variable with 

parameters I~1 = 0:569 and o I = 0.016. In addition, we replace the constant age-to-ultimate 

factor of  1.420 with the lognormal random variable with parameters bt2 = 0.350 and 02 = 

0.001. The expected values of  these two lognormal random variables are 1.767 and 1.420, 

respectively. The product of  the paid loss ratio (a constant) and these two lognormal 

random variables is lognormal with parameters p. = / n P  + bt~ + g-2 and o = ~ 7  + 022 , where 

P represents the actual paid loss ratio at the end of  2004, which in this example, implies I* = 

-1.325 + 0.569 + 0.350 = -0.406 and o = ~/1.0162 + 0.0012 = 0.017. 

Generally, we can express the random variable XcL as the product  of  the two lognormal 

random variables x I, and tai/, representing the paid loss ratio one year out and the mean tail 

factor: 

x c l  = x l , .  tail (3.3) 

Now we are in a position to determine confidence intervals for the revised chain ladder 

ultimate loss ratio estimate at the end of  2005. The endpoints of  the two-sided 95% 
la+N-I (97.5%p~ confidence interval are given by e "-'\-~(vTs%;° and e , which imply an estimated 

loss ratio range one year out for accident year 2004 of  64.5% to 68.8%, or approximately 

66.7% + 2.1%. Confidence intervals for ultimate loss ratio estimates one year out for the 

other accident years can be estimated in the same way, and are tabulated together with those 

for accident year 2004 in Exhibit 6. 

To determine the distribution of  tl~e comparable revised Bornhuetter-Ferguson estimate, 

we replace the constant E( ta i l )  in Formula 3.2 with the random variable tail'. 
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x~r  = xp  - E (  x v  ) + E (  x p  ) . tail (3.4) 

We can also determine confidence intervals for the revised Bornhuetter-Ferguson loss 

ratio estimate at the end of 2005. However, because the sum of two lognormal random 

variables, in this case xp and tail, is not expressible in closed distributional form, the 

confidence intervals must be estimated using Monte Carlo simulation. The results of  a 

simulation involving 10,000 trials are shown in Exhibit 7. For each of  the trials we randomly 

selected observations from the distributions of  x v and tail, assuming independence, and 

combined them according to Formula 3.4 to arrive at a simulated Bomhuetter-Ferguson 

estimate. After tabulating the results of  10,000 such trials, we determined the lower and 

upper bounds of  the 95% confidence interval of  the loss ratio estimate by identifying the 2.5 

percentile and the 97.5 percentile of  the trial values. Not  surprisingly, the 95% confidence 

intervals for the revised Bornhuetter-Ferguson estimates are narrower in every case than the 

revised chain ladder estimates. 

3.5 M o d e l i n g  the R ev i s ed  Loss  Ratio  E s t i m a t e  - Other  T i m e  H o r i z o n s  

We can extend this process to longer time horizons and determine the distribution of  the 

ultimate loss ratio estimate two years out, three years out and so on, until the time horizon 

encompasses the point when all claims are expected to have been setded. The modeling is 

conducted in essentially the same way as for the one year time horizon. For example, in the 

case of  a two-year horizon, the first source of  uncertainty (accident year development) is 

modeled using the distribution of the agej  t o /  + 2 development factor, where j  is the age in 

years of  the accident year under review. The second source of  uncertainty (potential tail 

factor revision) is modeled by reference to the potential effect of  two additional 

development data points on the mean tail factor for a g e j  + 2 to ultimate development. The 

analysis of  a three year time horizon focuses on accident year development from age j 

to j + 3 and the tail factor from j + 3 to ultimate, but is otherwise identical to that for the 

one year and two year time horizons. The analysis of  the ultimate loss ratio estimate at 

points further in the future proceeds in the same way. 

Alternatively, we can model the path of  the ultimate loss ratio estimate as a succession of  

annual revaluations. Exhibit 8 illustrates this by plotting the results of  one simulation of  the 

path of  the accident year 2004 loss ratio estimates through time for estimates determined 

from both chain ladder and Bornhuetter-Ferguson methods. It represents just one path 

among many possibilities. The simulation was performed from the vantage point of  the end 

of  2004. As such it incorporates everything we know about actual loss development through 

that time as well as what we can infer about the structure of  future development. We started 
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with the accident year 2004 loss ratio estimate as of  the end of  2004, which was 66.7%. 

Then,  based on one random simulation of  loss development during calendar year 2005, we 

made new chain ladder and Bornhuetter-Ferguson estimates of  the ultimate loss ratio as of  

the end of  2005. We repeated the process for calendar years 2006 through 2013 using the 

simulated cumulative loss development through each valuation date. Exhibit  8 is a plot of  

the results. A complete description of  the probability structure of  the path can be built up 

from a simulation involving a large number  of  random trials, or in the chain ladder case, 

directly from the properties of  the lognormal distribution. 

In practice, there might not be much benefit in determining the distribution of  the chain 

ladder ultimate loss ratio estimate for time horizons between one },ear and the ultimate 

horizon (when all claims have been settled), at least for Private Passenger Auto Liabilit3/2. 

We see this in Exhibit: 9, the top half of  which compares the 95% confidence intervals for 

the accident year 1995 through 2004 chain ladder loss ratio estimates one year out with 

confidence intervals for the accident year loss ratio estimates over the ultimate time horizon. 

I f  we contrast  the 95% confidence interval for accident year 2004 for the one year horizon 

with the 95% confidence interval for the chain ladder loss ratio estimate over the ultimate 

time horizon, we can see that the contribution from the out  years is dwarfed by the 

contribution from the next twelve months.  The 95% confidence interval for the ultimate 

time horizon indicates a range for the accident year 2004 loss ratio of  66.7%_+ 2.3%, which 

is barely wider than the range for just one year out. This is true not  only for accident year 

2004, but  also holds for accident years 1995 through 2003. 

For example, the accident year 2003 confidence interval of  approximately 67.8% + 0.7% 

for a one year time horizon is almost as wide as that for the time horizon to ultimate of  

67.8%_+0.8%. For all of  the older accident years, the first year of  future development 

accounts for more than half of  the variation associated with the ultimate time horizon. 

This phenomenon  is not confined to loss ratio estimates over short vs. longer time 

horizons. The same effect is also seen in other situations not  related to insurance, where 

variability" is a function of  time. For example, given the common assumption that future 

stock price movements  are lognormally distributed and independent, the 95% confidence 

interval for a stock price one year out, given constant annualized volatilit3T of  o = 20% and an 

expected value of  $66.70, is $45.07 to $98.71, a range of  $53.64. Assuming the same 

expected value of  $66.70, the 95% confidence interval for the stock price two years out is 

$38.22 to $116.11, a range of  $77.80. The confidence interval range for the one-year time 

12 There might be value in doing so for other lines that display more loss development variability. 
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horizon stock price is 69% of  the price range for the two-year time horizon. The reason for 

the disproportionate impact of  the first period is that the confidence interval is not a linear 

function of  a but rather of  off7,  where t represents the time lag in years. In the case of  

chain ladder ultimate loss ratio estimation, where the age-to-age a typically declines as the 

accident year ages, this effect can be even more pronounced. 

Turning now to the Bornhuetter-Ferguson estimates, which are inherently less variable, 

the effect is smaller but still evident. The bot tom half of  Exhibit 9 compares the 95% 

confidence intervals for accident year 1995 through 2005 loss ratio estimates one ),ear out 

with the confidence intervals for the loss ratio estimates over the ultimate time horizon. In 

the Private Passenger Auto Liability example considered here, the 95% confidence interval 

for the accident year 2004 loss ratio estimate is appro:dmately 66.7%_ 1.6%, which is about 

two-thirds of  the range of  the confidence interval for estimates at the ultimate time horizon. 

For all of  the older accident years, as in the case of  the chain ladder estimates, the first ),ear 

of future development accounts for more than half of  the variation associated with the 

ultimate time horizon. 

3 .6  M o d e l i n g  t h e  L o s s  R a t i o  E s t i m a t e  a t  Inception 
Up to this point we have focused on modeling the distribution of  the ultimate loss ratio 

after losses have begun to emerge. However, there is no reason why we cannot extend 

essentially the same procedure backward to the inception of  loss exposure at age 0. Indeed, 

the benefit of  doing so is that we can obtain a complete model of  the path of  the ultimate 

loss ratio from inception to ultimate. 

The main difference in the procedure is that the lognormal model for loss emergence 

between age 0 and 1 describes the behavior of  the paid loss ratio rather than an age-to-age 

factor. The rest of  the analysis is merely an application of  Formula 3.3. 

For example, assume for the sake of  illustration that the age 1 paid loss ratios in Exhibit 1 

are lognormally distributed and reflect "on  level" adjustments to the accident ),ear 2005 level. 

The mean age 1 paid loss ratio is 28.8%, which we can take as an estimate of  the 2005 "on 

level" age 1 paid loss ratio. The unbiased estimates of  the parameters of  the lognormal 

distribution representing the paid loss ratio at age 1 arc ~ = - 1 . 2 4 6  and ~ -- 0.069. These 

parameters imply a lognormal mean paid loss ratio of  28.8% that matches the sample mean. 

The age l to ultimate development factor of  2.508 implies an ultimate loss ratio estimate at 

inception of  72.3%. 
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Applying the lognormal multiplicative rule described in Section 2, the parameters of  the 

lognormally distributed ultimate loss ratio (at the ultimate time horizon) are 

~. = -1.246 + 0.919 = -0.327 and o = x/0.0692 + 0.0182 = 0.071, implying a 95% confidence 

interval of  62.8% to 82.9%, a range of  20.1%. The parameters of  the ultimate loss ratio one 

year out are ~t = -1.246 + 0.919 = -0.327 and o = ff0.0692 + 0.0022 = 0.069. The indicated 

95% confidence interval is 63.0% to 82.6%, a range of  19.6%. These calculations are 

summarized in Exhibit 6. 

The comparable Bornhuetter-Ferguson estimate can be determined by applying Formula 

3.4. Exhibit 7 shows that the 95% confidence interval for the revised Bornhuetter-Ferguson 

estimate of  the accident year 2005 loss ratio one year out  is 68.6% to 76.4%, a range of  7.8%. 

4. A D J U S T I N G  T H E  M O D E L  F O R  P A R A M E T E R  U N C E R T A I N T Y  

In Section 2 we explained that, given the observations x~, x 2, x 3,..., x arising from a 

lognormal process and the natural logarithms of  the same observations 

Y~,Y2,Y3,...,Y, (wherey,  =lnx), the mean .~ and standard deviation s of  the log- 

transformed sample are unbiased estimators of  the lognormal process parameters ~. and 0 ,  

respectively. The parameter selections 8 = )  and cr = s define the lognormal distribution 

f ( x  I ~t, o) that best fits the data, using unbiasedness as the criterion for "best." 

However, while these are good estimates of  the parameters, there is uncertaint T about 

their true values. Fortunately, by combining information contained in the sample with 

results from sampling theory, it is possible to determine the mixed d i s t r ibu t ion f (x )  that 

reflects the probability weighted contribution of  all of  the potential parameter values. Wacek 

[12] showed that f (x)  defines a "log t '  distribution t3 and, in particular that the random 

variable y = / n  x is Student's t with n - 1  degrees of  freedom, mean 3' and variance 

2 n + l  n - 1  
.f 

rl ,l--3" 

4.1 L o g  t C o n f i d e n c e  I n t e r v a l s  

The bounds of  the two-sided log t 95% confidence interval are given by 

e ~-7;~'(97"5"/')'s'~ and e ' % 1 " - ' - ' ' ( 9 7 ' 5 ' ; " 3 ' ~ ' ~  , respectively, where T,-__t~(97.5%) is the value of  

the standard Student's t cdf  with n - 1  degrees of  freedom corresponding to a cumulative 

probabilit T of  97.5% ~4. Two-sided 95% confidence intervals for Private Passenger Auto 

ts The log t bears the same relafonship to the Student's t distribution that the lognormal bears to the normal. 

14 T,711(97.5%) is replicated in Excel by T/NV(0.05, n-l). 
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Liability, age-to-age factors, based on the log t distribution, are shown in Exhibit 10. 

Unfortunately, the log t distribution does not share the multiplicative property of  the 

lognormal. As a result, we cannot specify the distribution of  age-to-ultimate development 

factors in closed form. Instead the age-to-ultimate factor distributions and related 

confidence intervals must be estimated using a Monte Carlo simulation procedure that 

determines the age-to-ultimate factor from the underlying age-to-age factors for each 

random trial. 

In the top section of  Exhibit 10, we have tabulated the indicated log t 95% confidence 

intervals for age-to-age factors based on the industi 3, Private Passenger Auto Lability 2004 

Schedule P data, together with the ratios of  these confidence interval bounds to the 

lognormal confidence interval bounds given in Exhibit 4. In addition, we have tabulated the 

sample size for each development period as well as T~-11 (97.5%) and the degrees of  freedom 

used in the calculations. At the risk of  being seen as statistically less than rigorous, we set a 

minimum degrees of  freedom value of  3 for purposes of  calculating the confidence intervals 

to avoid using log t distributions with an undefined variance. 

The log t confidence intervals shown in Exhibit 10 for age-to-age factors are very close to 

the lognormal confidence intervals given in Exhibit 4. The largest difference is in the age 1 

to 2 factor, where upper bound of  the log t interval is 1.839, which is only, 0.8% larger than 

the lognormal upper bound of  1.824. The percentage differences for the other age-to-age 

factors are smaller. 

In the lower section of  Exhibit 10, we have tabulated the 95% confidence intervals for 

age-to-ultimate factors indicated by a Monte Carlo simulation involving 10,000 trials. As was 

the case with the age-to-age factors, the differences between the log t confidence intervals 

and lognormal confidences intervals for the age-to-ultimate factors are quite small. For 

example, the largest difference is in the age 1 to ultimate confidence interval, where the 

upper bound of the log t interval is 2.619. This is only 0.9% larger than the lognormal upper 

bound of  2.595. The percentage differences for the other age-to-ultimate factors are smaller. 

This suggests that, at least for Private Passenger Auto Liability., the effect of  parameter 

uncertainty is small enough that it can be ignored. However, it is important to bear in mind 

that this might not be the case for other lines of  business. 

4.2 Log t Simulation of Development Factors 

in the Monte Carlo simulation of  age-to-ultimate factors, for each trial we randomly 

selected one age-to-age factor from each of  the log t distributions representing development 
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from age 1 to 2, age 2 to 3, ..., age 9 to 10. Treating age 10 as ultimate, we then multiplied 

these age-to-age factors in the usual way to determine a set of  age-to-ultimate factors for that 

trial. After the results of  the 10,000 trials were tabulated, we determined the lower and 

upper bounds of  the 95% confidence interval for each age-to-ultimate factor (age 1 to 

ultimate, age 2 to ultimate, etc.) by identifying the 2.5 percentile and the 97.5 percentile of  

the 10,000 trial values. 

To make the random age-to-age factor selections, we started with a random draw R from 

the uniform distribution defined on the interval [0, l]. Because R has a value between 0 and 

1, it can be treated as though it is a cumulative probability. The number T-_I~(R) that 

corresponds to a standard Student's t cumulative probability of  R is a random number from 

the standard Student's t distribution with pi- 1 degrees of  freedom, which has a mean of  zero 

and a variance of  n - l .  More generally, the corresponding random number from the 
n - - 3  

Student's t distribution with n -  1 degrees of freedom, mean M and variance C 2 n -  1 is 
n - - 3  

given by M + T~<,(R) • C ,  which corresponds to a random number of  e al+~7'-~(R)'c from the 

related log t distribution. Substituting the appropriate values o f )  for M and s f f~  + 1) / n 

for C, we obtain e > ~ 2 ' ~ 8 ~ ' ~  as the value of  a randomly selected age-to-age factor. 

Putting some numbers to it, a draw of R = 0.873 implies a random age 1 to 2 

development factor from the corresponding log I with 8 degrees of  freedom of 

ea, p(0.569 + 1.229.0.016ffT079) = 1.803 ~s. If  the next draw is R = 0.239, then the random 

age 2 to 3 factor, drawn from the corresponding log t with 7 degrees of  freedom, is 

exp(0.181+ ( - 0 . 7 4 9 ) . 0 . 0 0 5 " ~ ) = 1 . 1 9 4 .  Random numbers corresponding to the other 

development periods are similarly obtained. Then the age 1 to ultimate factor, the age 2 to 

ultimate factor, age 3 to ultimate factor, and so on, are obtained by multiplication. 

Tabulation of  these results completes the first trial. The process is repeated in the same way 

for 10,000 trials. 

4.3 Log t Simulation of  Future Loss Ratio Estimates 

Under conditions of  parameter uncertainty the distribution of  future loss ratio estimates 

must also be modeled using Monte Carlo simulation. Each of  the lognormal age-to-age 

15 T,~_~l (R) is replicated in Excel by TIN[ "(2(1 - R), n - 1) if R > 0.5, and - ' / 7 N [ Z ( 2 R ,  n - I ) ,  if  R _< 0.5. T I N V  

assumes users are interested in two-tailed applications and therefore takes as its first a rgument  the total two- 
tail probability. It  returns values only from the right half o f  the distribution. 
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development components  identified in Section 3 must be replaced with corresponding log t 

components.  

For example, to estimate the distribution of  the updated chain ladder estimate of  the 

accident year 2004 ultimate loss ratio at the end of  2005, given the year end 2004 estimate of  

66.7%, we tabulated 10,000 randomly obtained year end 2005 loss ratio estimates. To 

determine each loss ratio estimate, we randomly selected from the log t distributions that 

represent the factors that contribute to the uncertainty in that estimate. For each trial we 

randomly selected one factor from the distribution of  accident year 2004 development 

during 2005 and one factor from each of  the age-to-age factor distributions that contribute 

to the revised tail factor. Then we multiplied all of  these factors and the paid loss ratio as of  

year end 2004 to arrive at the ultimate loss ratio estimate for that trial. 

This is illustrated in detail in Exhibit 1l for one trial, where the simulated actual accident 

year 2004 age 1 to 2 development factor is 1.727 (compared to an expected factor of  1.767) 

and the revised tail factor is 1.418 (compared to an expected 1.420). The product of  the year 

end 2004 paid loss ratio and these two factors is the revised estimated ultimate loss ratio for 

accident year 2004 as of  the end of  2005. 

To arrive at approximate distributions of  revised chain ladder ultimate loss ratio estimates 

for all of  the accident }'ears 1995 through 2004 as of  the end of  2005, the process described 

in the preceding paragraph was repeated 10,000 times for each accident }rear. The results of  

this process are summarized in Exhibit 12, which, as the log l version of  Exhibit 9, compares 

the 95% confidence intervals for the accident },ear 1995-2004 loss ratio estimates one year 

out with the confidence intervals for the estimates over the ultimate time horizon. The 

chain ladder estimates are summarized in the top half of  the exhibit and the Bornhuetter- 

Ferguson estimates in the bot tom half. As we observed in the lognormal case, much of  the 

potential variation in the ultimate loss ratio estimates that is expected over the time horizon 

to ultimate is encompassed in the variation expected over a one-year time horizon. For 

example, the log t 95% confidence interval for the chain ladder estimate of  the accident }Tear 

2004 loss ratio one year out of 66.7%_+ 2.7% is nearly as wide as the 95% confidence 

interval of  66.7% + 2.9% for the same loss ratio over the ultimate time horizon. Similarly, 

the accident year 2003 confidence interval for the chain ladder estimate of  approximately 

66.7% + 0.9% for a one )'ear time horizon is also nearly as wide as that for the time horizon 

to ultimate of  67.8%_+ 1.1%. For the older accident years, the proportion of  the variation 

associated with the ultimate time horizon accounted for by the first }'ear of  future 

development is somewhat smaller, but the absolute size and significance of  the confidence 

intervals for those years is much smaller. 
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Note that the log l confidence intetwals are at least as wide in ever), case as the 

comparable lognormal confidence intervals shown in Exhibit 7.. In fact, in the case of  the 

chain ladder estimates, for every accident year 1995-2004 the log l confidence intervals for 

the one-year time horizon are at least as wide as the lognormal confidence intervals for the 

ultimate time horizon! 

5. C O N C L U S I O N S  

There are a number of  potential applications of  the framework we have described for 

modeling future estimates of  the ultimate loss ratio, ranging from loss reserving to pricing to 

analysis of  risk-based capital. While a detailed discussion of  these applications is beyond the 

scope of  this paper, we will touch briefly on some examples. 

5.1 Loss Reserving 

The framework presented in this paper gives reserve actuaries a way to manage their 

clients' expectations. Reserve clients don't like surprises and often express frustration that 

loss ratio or reserve estimates change significantly from one period to the next. We have 

shown in this paper that a large proportion of  the potential variation in ultimate estimates 

can be present in the first year of  future development. As we saw in the Private Passenger 

Auto Liabili~, example we presented, this phenomenon is particularly pronounced when the 

estimates are determined using the chain ladder method, but it can also be present if the 

estimates are derived from the Bornhuetter-Ferguson approach. It seems likely that most 

reserve clients do not understand this phenomenon. Actuaries have done a good job in 

getting clients to understand that ultimate loss estimates are subject to large potential 

variation, but many clients seem to expect that variation to emerge only in the distant future, 

if at all. 

We suggest that the uncertainty in loss ratio and reserve estima.tes be framed in terms of  

how these estimates might change at the next valuation by presenting the ultimate estimates 

together with confidence intervals consistent with the valuation time horizon. For example, 

if the next valuation will be in one year, then the results would be presented with one-year 

time horizon confidence intervals. Then, because the potential variation has been explained 

to them in advance, clients might be better able to accept the revised estimates produced at 

the next valuation. This framework also naturally facilitates the explanation of  the reasons 

for estimate revisions in terms of  the sources of  variation. For example, how much of the 
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revision is due to actual accident },ear development and how much is due to a tail factor 

revision caused by loss emergence on the older accident years? 

While we have focused much of  our discussion on historical accident years and thus 

implicitly on reserving, we can easily extend this framework to encompass certain aspects of  

the pricing and underwriting, which can be used to assess risk load requirements, reinsurance 

risk transfer characteristics as well as to establish expectations for paid loss emergence 

during the first year after inception. 

5.2 R i s k - B a s e d  C a p i t a l  

The framework described can also be applied to analysis of  the issues outlined by Butsic 

[14] in his paper on solvency measurement in risk-based capital applications. He advocated 

the use of  a common time horizon for measurement of  all kinds of  risks on both sides of  the 

balance sheet. He showed how long term solvency protection could be achieved by periodic 

assessment and adjustment of  risk-based capital using a short time horizon, e.g., one },ear. In 

particular, 13utsic proposed that the risk-based capital charge at the beginning of  each period 

be calibrated to a suitably small Expected Policyholder Deficit (EPD) 16 expressed as a ratio 

to expected unpaid losses. The capital charge would be reset at the be~nning of  each new 

period based on asset and/or  liability changes during the period just ended. While he 

illustrated his approach with numerical examples, he did not describe a model for how claim 

liabilities change from one period to the next. The model presented in this paper, using 

parameters determined from Schedule P data, could be used together with Butsic's approach 

to test and refine the capital charges employed in the NAIC and rating agency risk-based 

capital models tT. Moreover, to the extent that these risk-based capital charges imply the 

minimum amount of  capital needed by an underwriter to assume risk, the model potentially 

has application to the problem of capital allocation for pricing applications as well. 

5.3 O t h e r  S t o c h a s t i c  L o s s  D e v e l o p m e n t  M o d e l s  

We have used Hayne's simple lognormal model to illustrate how to model the future 

behavior of  loss ratio estimates. However, the same conceptual approach can be used with 

other stochastic models. If  ultimate loss ratios are estimated using a different stochastic 

model, the path of  future revisions to those ultimate loss ratio estimates can be determined 

using the ideas presented in this paper. 

16 The EPD is defined as the expectation of losses exceeding available assets. It can be viewed as the expected 
value of the proportion of pohcyholder claims that will be unrecoverable because of insurer insolvency. 

~v For stress testing these solvency models it may make sense to use the chain ladder model, which produces 
more variable loss ratio estimates, rather than the Bornhuetter-Ferguson model. 
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Abbreviations and notations 

gt, first parameter oflognormal, E(.~,)=~1 

O, second parameter of lognormal, E(s 2 ) = o2 
EPD, expected policyholder deficit 
f ( x  I hi,o), distribution of x, given known parameters ~1,~ 
f ( x ) ,  distribution of x (unknown parameters) 
n, number of points in sample 

N -1 (,prob), standard normal inverse distribution function 
P, actual paid loss ratio 
R, random number from unit uniform distribution 
s, standard deviation of log-transformed sample 

T~-ll (prob), standard normal inverse distribution function 
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t a i l ,  random variable for mean tail factor one 3"car out 

x t , . \~, N 3 ,..., . \ ' , ,  lognormal sample 

\ 'm: ,  Bornhuetter-Ferguson estimate o f  ultimate loss ratio 

"\'c.t., chain ladder estimate o f  ultimate loss ratio 

&'p, cumulative paid loss ratio 

Y l  , .Y2 , Y:s . . . . . .  y ,  log-transformed sample 
~,,, mean o f  log-transformed sample 
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EXHIBIT  1 

A N N U A L  S T A T E M E N T  F O R  T H E  Y E A R  2004 OF  T H E  * INDUSTRY A G G R E G A T E  * 
S C H E D U L E  P - P A R T  3B - PR IVATE P A S S E N G E R  A U T O  L IABIL ITY /MEDICAL 

CUMULATIVE PAID NET LOSSES AND DEFENSE AND COST CONTAINMENT EXPENSES REPORTED AT ANNUAL INTERVALS ($000,000 OMITTED) 

A_XY 1 2 3 4 
1995 17.674 32 ,062  3 8 , 6 1 9  42,035 
1996 18,315 32,791 3 9 , 2 7 1  42,933 
1997 18,606 32 ,942  3 9 , 6 3 4  43,411 
1998 18,816 33 ,667  4 0 , 5 7 5  44,446 
1999 20,649 36 ,515  4 3 , 7 2 4  47,684 
2000 22,327 39 ,312  4 6 , 8 4 8  51,065 
2001 23,141 40 ,527  4 8 , 2 8 4  52,661 
2002 24,301 4 2 , 1 6 8  50,356 
2003 24,210 41,640 
2004 24,468 

5 . m E  7 8 9 10 
43,829 4 4 , 7 2 3  4 5 , 1 6 2  4 5 , 3 7 5  45 ,483  45,540 
44,950 4 5 , 9 1 7  4 6 , 3 9 2  4 6 , 6 0 0  46,753 
45,428 4 6 , 3 5 7  46 ,681  46,921 
46,476 4 7 , 3 5 0  47,809 
49,753 50,716 
53,242 

PAID AGE-TO-AGE LOSS DEVELOPMENT FACTORS 

1 1-2 2-3 3-4 
AY Loss Ratio LDF LDF LDF 

1995 28.0% 1.814 1.205 1.088 
1996 27.7% 1.790 1.198 1.093 
1997 27.1% 1.771 1.203 1.095 
1998 27.1% 1.789 1.205 1.095 
1999 29.8% 1.768 1.197 1.091 
2000 32.2% 1.761 1.192 1.090 
2001 31.6% 1.751 1.191 1,091 
2002 30.4% 1.735 1.194 
2003 27.7% 1.720 
2004 26.6% 

Mean 28.8% 1.767 1.198 1.092 
S.D. 2.0% 0.029 0.006 0.003 
C.V. 7.0% 0.016 0.005 0.002 
Cum Mean 2.508 1.420 1.185 

4-5 5-6 6-7 7-8 8-9 9-10 
LDF LDF LDF LDF LDF LDF 

1.043 1.020 1.010 1.005 1.002 1.001 
1.047 1.022 1.010 1.00A 1.003 
1.046 1.020 1.007 1.005 
1.046 1.019 1.010 
1.043 1.019 
1.043 

1.045 1.020 1.009 1.005 1.003 1.001 
0.002 0,001 0.002 0.000 0.001 0.000 
0.002 0.001 0.002 0.000 0.001 0.000 
1.085 1.039 1.018 1.009 1.004 1.001 

r'~ 

¢3 

Source: Highline Data LLC as reported in the statutory filings (OneSource) 



G~ EXHIB IT  2 

A N N U A L  S T A T E M E N T  FOR THE Y E A R  2004  OF T H E  * I N D U S T R Y  A G G R E G A T E  * 
S C H E D U L E  P - PART  3B - P R I V A T E  P A S S E N G E R  A U T O  L IABIL ITY/MEDICAL 

NATURAL LOGARITHMS OF PAID AGE-TO-AGE LOSS DEVELOPMENT FACTORS IN EXHIBIT 1 

P- 

O 

t~ 

-.,j 

1 1-2 2-3 
AY Loss Ratio LDF LDF 

1995 -1.274 0.596 0.186 
1996 -1.282 0.582 0.180 
1997 -1.307 0.571 0.185 
1998 -1.304 0.582 0,187 
1999 -1.210 0.570 0.180 
2000 -1.135 0.566 0.175 
2001 -1.151 0.560 0.175 
2002 -1.191 0.551 0.177 
2003 -1.282 0.542 
2004 -1.325 

3-4 4-5 5-6 6-7 7-8 8-9 9-10 
LDF LDF LDF LDF LDF LDF LDF 

0.085 0.042 0.020 0.010 0.005 0.002 0.001 
0.089 0.046 0.021 0.010 0.004 0.003 
0.091 0.045 0.020 0.007 0.005 
0,091 0,045 0.019 0.010 
0.087 0.042 0,019 
0.086 0.042 
0.087 

0.088 0.044 0.020 0.009 0,005 0.003 0.001 
0.002 0.002 0.001 0.002 0.000 0.001 0.001 
1.092 1.045 1.020 1.009 1.005 1.003 1.001 

0.170 0.082 0.038 0.018 0.009 0.004 0.001 
0.004 0,003 01002 0,002 0.001 0.001 0.001 
1.185 1.085 1,039 1.018 1.009 1.004 1,001 

Mean -1.246 0.569 0.181 
S,D. 0.069 0.016 0.005 
LN Fit LDFs 28.8% 1.767 1.198 

Cum Mean -0.327 0.919 0.350 
Cum S.D. 0.071 0.018 0,006 
LN Fit LDFs 72.3% 2.508 1.420 

Source: Highline Data LLC as reported in the statutory filings (OneSource) 



The Path of the Ultimate Loss Ratio Estimate 

EXHIBIT 3 

S U M M A R Y  OF ESTIMATED ULTIMATE LOSS RATIOS 
FROM PAID LOSS DEVELOPMENT ANALYSIS  

PRIVATE PASSENGER AUTO LIABILITY 

INDUSTRY AGGREGATE EXPERIENCE 

Net Estimated 
Accident Earned Net Paid Net Paid Age-to-UIt Ultimate 

Year Premiums Losses Loss Ratio Factor Loss Ratio 
1995 63,183 45,540 72.1% 1.000 72.1% 
1996 66,006 46,753 70.8% 1.001 70.9% 
1997 68,764 46,921 68.2% 1.004 68.5% 
1998 69,343 47,809 68.9% 1.009 69.6% 
1999 69,231 50,716 73.3% 1.018 74.6% 
2000 69,444 53,242 76.7% 1.039 79.6% 
2001 73,143 52,661 72.0% 1.085 78.1% 
2002 79,922 50,356 63.0% 1.185 74.6% 
2003 87,242 41,640 47.7% 1.420 67.8% 
2004 92,064 24,468 26.6% 2.508 66.7% 
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The Path of the Ultimate Loss Ratio Estimate 

E X H I B I T  4 

S U M M A R Y  OF PAID  L O S S  D E V E L O P M E N T  F A C T O R S  

WITH A S S O C I A T E D  L O G N O R M A L  9 5 %  C O N F I D E N C E  I N T E R V A L S  

PRIVATE PASSENGER AUTO LIABILITY 

BASED ON INDUSTRY AGGREGATE EXPERIENCE 

AGE-TO-AG E FACTORS 

Paid Loss 
Development Est IJ for Est a for 

Period LDF LD.._.FF 
9-Uff* 0.001 0.001 
8-9 0.003 0.001 
7-8 0.005 0.000 
6-7 0.009 0.002 
5,-6 0.020 0.001 
4-5 0,044 0.002 
3-4 0,088 0.002 
2-3 0.181 0.005 
1-2 0.569 0.016 

Lognormal 
95% Confidence 

Mean LDF Lower LDF Upper 
LDF Bound Bound 

1.001 1.000 1.002 
1.003 1.002 1.004 
1.005 1.004 1.005 
1.009 1.006 1.012 
1.020 1.018 1,022 
1.045 1.041 1,048 
1.092 1.087 1.097 
1.198 1,187 1.209 
1.767 1,710 1.824 

AGE-TO-ULTIMATE FACTORS 

Paid Loss 
Development Est p. for Est a for 

Period LDF LDF 
9 - Ult* 0.001 0.001 
8 - UIt 0.004 0.001 
7 - UII 0.009 0.001 
6 - UIt 0.018 0.002 
5 - UIt 0.038 0.002 
4 - UIt 0.082 0.003 
3 - UIt 0.170 0.004 
2 - UIt 0.350 0.006 
1 - UIt 0.919 0.018 

Lognormal 
95% Confidence 

Mean LDF Lower LDF Upper 
LD__FF Bound Bound 

1.001 1.000 1.002 
1.004 1.002 1.006 
1.009 1.007 1.011 
1.018 1.015 1.022 
1.039 1.034 1.043 
1.085 1.079 1.091 
1.185 1.176 1.193 
1.420 1.403 1.436 
2.508 2.423 2.595 

* Age 10 deemed to be ultimate 
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The Path of the Ultimate Loss Ratio Estimate 

E X H I B I T  5 

S U M M A R Y  OF  R E V I S E D  M E A N  P A I D  L O S S  D E V E L O P M E N T  F A C T O R S  

O N E  Y E A R  O U T  

PRIVATE PASSENGER AUTO LIABILITY 

BASED ON INDUSTRY AGGREGATE EXPERIENCE 

MEAN AGE-TO-AGE FACTORS ONE YEAR OUT 

Lognormal 
95% Confidence 

Paid Loss Est a for Actual Est a for Est li for 
Development Actual LDF Revised Revised Revised 

Period LDF Wei.g.~ Mean LDF Mean LDF Mean LDF 
9-Ult* 0.001 1/2 0.000 0.001 

8-9 0.001 1/3 9.000 0.003 
7-8 0.000 1/4 0.000 0.005 
6-7 0.002 115 0.000 0,009 
5-6 0.001 1/6 0.000 0.020 
4-5 0.002 1/7 0.000 0.044 
3-4 0.002 118 0.000 0,088 
2-3 0,005 1/9 0.001 0.181 
1-2 0,016 1/10 0.002 0.569 

Revised Revised 
Mean LDF Mean LDF 

(Lower (Upper 
Bound) Bound) 

1.001 1.001 1.002 
1.003 1.002 1.003 
1.005 1.005 1.005 
1.009 1.009 1.010 
1.020 1.020 1.020 
1.045 1.044 1.045 
1.092 1.091 1.093 
1.198 1.197 1.199 
1.767 1.761 1.772 

MEAN AGE-TO-ULTIMATE FACTORS ONE YEAR OUT 

Lognormal 
95% Confidence 

Paid Loss Est a for Est p. for 
Development Revised Revised Revised 

Period Mean LDF Mean LDF Mean LDF 
9 - UIt ° 0.000 0.001 1.001 
8 - UIt 0.000 0.004 1.004 
7 - UIt 0.000 0.009 1.009 
6 - UIt 0.000 0.018 1.018 
5 - UIt 0.001 0.038 1.039 
4 - UIt 0.001 0.082 1.085 
3 -  Ult 0.001 0.170 1.185 
2 - Ult 0.001 0.350 1.420 
1 - Ult 0.002 0.919 2.508 

Revised Revised 
Mean LDF Mean LDF 

(Lower (Upper 
Bound) Bound) 
1.001 1.002 
1.003 1.005 
1.008 1,010 
1.017 1.019 
1.038 1.040 
1.084 1.086 
1.183 1.186 
1.417 1.422 
2.499 2.517 

* Age 10 deemed to be ultimate 
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ANALYSIS OF ESTIMATED ULTIMATE LOSS RATIOS (CHAIN LADDER) 
ONE YEAR OUT 

PRIVATE PASSENGER AUTO LIABILITY 

BASED ON INDUSTRY AGGREGATE EXPERIENCE 

Lognormal 
95% Confidence 

Estimat~ Est L/R 1 EstUR 1 
Est p, for Est a for Est p. for Est a for Est F, for Est o for Ultimate Yr Out Yr Out 

Accident Devt Net Paid Actual 1-Yr Actual 1-Yr Revised Revised Est UIt L/R Est UIt L/R Loss Ratio (Lower (Upper 
Year ~ Loss Ratio LDF LDF Mean LDF Mean LDF 1 Yr Out 1 Yr Out ~ Bound) 
1995 10 72.1% 0,000 0,000 0,000 0,000 -0.327 0.000 72.1% 7 2 . 1 %  72.1% 
1996 9 70.8% 0.001 0.001 0.000 0.000 -0,344 0.001 70.9% 7 0 . 8 %  71.0% 
1997 8 68.2% 0.003 0.001 0.001 0,000 -0.378 0.001 68.5% 6 6 . 4 %  68.6% 
1996 7 6 8 . 9 %  0.005 0.000 0.004 0.000 -0.363 0.001 69.6% 6 9 . 5 %  69.6% 
1999 6 73.3% 0,009 0.002 0.009 0.000 -0.293 0.002 74,6% 7 4 . 4 %  74.8% 
2000 5 76.7% 0.020 0.001 0.018 0.000 -0.228 0.001 79,6% 7 9 , 5 %  79,8% 
2001 4 72.0% 0,044 0.002 0.038 0.001 -0.247 0,002 78.1% 7 7 , 8 %  78.4% 
2002 3 63.0% 0.088 0.002 0.082 0.001 -0.292 0.003 74.6% 7 4 , 3 %  75,0% 
2003 2 47.7% 0,181 0,005 0,170 0,001 -0.389 0.005 67.8% 6 7 . 1 %  68.4% 
2004 1 26.6% 0.569 0,016 0,350 0.001 -0.406 0.017 66.7% 64.5% 68.8% 

First Effect Second Effect 
Accident Year DeW Tail Factor Revision 

2005 0 0.0% -1.246 0,069 0.919 0.002 -0.327 0.069 72.3% 6 3 . 0 %  82.6% 
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EXHIBIT 7 

ANALYSIS OF ESTIMATED ULTIMATE LOSS RATIOS (BORNHUETTER-FERGUSON) 
ONE YEAR OUT 

PRIVATE PASSENGER AUTO LIABILITY 

BASED ON INDUSTRY AGGREGATE EXPERIENCE 

First Effect Second Effect 
Accident Year Devt Tail Factor Revision 

Lognormal 
95% Confidence" 

Estimated Est L/R 1 Est L/R 1 
Est p. for Est a for Expected Est ~ for Est a for Expected Ultimate Yr Out Yr Out 

Accident Devt Net Paid Actual 1-Yr Actual l -Yr Paid L/R Revised Revised Mean Tail Loss Ratio (Lower (Upper 
Year Aae Loss Ratio LDF LDF 1 Yr Out Mean LDF Mean LDF 1 Yr Out 1 Yr Out Bound~ Bound) 
1995 10 72.1% 0.000 0.000 72.1% 0.000 0.000 1.000 72.1% 72.1% 72.1% 
1996 9 70.8% 0.001 0.001 70.9% 0.000 0.000 1.000 70.9% 70.8% 71.0% 
1997 8 68.2% 0.003 0.001 68.4% 0.001 0.000 1.001 68.5% 68.4% 68.6% 
1998 7 68.9% 0.005 0.000 69.3% 0.004 0.000 1.004 69.6% 69.5% 69.6% 
1999 6 73.3% 0.009 0.002 73.9% 0.009 0.000 1.009 74.6% 74.4% 74.8% 
2000 5 76.7% 0.020 0.001 78.2% 0.018 0.000 1.018 79.6% 79.5% 79.8% 
2001 4 72.0% 0.044 0,002 75.2% 0.038 0.001 1.039 78.1% 77.8% 78.4% 
2002 3 63.0% 0.088 0.002 68.8% 0.082 0.001 1.085 74.6% 74.3% 75.0% 
2003 2 47.7% 0.181 0.005 57.2% 0.170 0.001 1.185 67.8% 67.2% 68.3% 
2004 1 26.6% 0.569 0.016 47.0% 0.350 0.001 1.420 66.7% 65.1% 68.2% 

2005 0 0.0% -I .246 0.069 28.8% 0.919 0.002 2.508 72.3% 68.6% 76.3% 

* Based on Monte Carlo simulation of:~Bv =xe  -E(xe)+E(xr)"/ail 

r'~ 

q3 

G~ 



E X H I B I T  8 

One Path o f  the Accident  Year 2004 Ultimate Loss Ratio Estimate 
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The Path of the Ultimate Loss Ratio Estimate 

EXHIBIT 9 

LOGNORMAL CONFIDENCE INTERVALS - ULTIMATE LOSS RATIOS 
ONE YEAR VS. ULTIMATE TIME HORIZONS 

PRIVATE PASSENGER AUTO LIABILITY 

BASED ON INDUSTRY AGGREGATE EXPERIENCE 

Accident 
Year Dec 2004 
1995 72.1% 
1996 70.9% 
1997 68.5% 
1998 69.6% 
1999 74.6% 
2000 79.6% 
2001 78.1% 
2002 74.6% 
2003 67,8% 
2004 66.7% 

95% Confidence Intervals - Chain Ladder Estimates 

One Year Horizon Ultimate Horizon 
72.1% 72.1% 72.1% 72.1% 
70.8% 71.0% 70.8% 71.0% 
68.4% 68.6% 68.4% 68.6% 
69.5% 69.6% 69.4% 69.7% 
74.4% 74.8% 74.3% 74.8% 
79.5% 79.8% 79.3% 80.0% 
77.8% 78.4% 77.7% 78.5% 
74.3% 75.0% 74.1% 75.2% 
67.1% 68.4% 67.0% 68.6% 
64,5% 68.8% 64.4% (39.0% 

Accident 
Year Dec 2004 
1995 72.1% 
1996 70.9% 
1997 68.5% 
1998 69.6% 
1999 74.6% 
2000 79.6% 
2001 78.1% 
2002 74.6% 
2003 67.8% 
2004 66.7% 

95% Confidence Intervals - B-F Estimates 

One Year Horizon Ultimate Horizon 
72.1% 72.1% 72.1% 72.1% 
70.8% 71.0% 70.8% 71.0% 
68.4% 68.6% 68.4% 68.6% 
69.5% 69.6% 69.4% 69.7% 
74.4% 74.8% 74.3% '74.8% 
79.5% 79.8% 79.3% 80.0% 
77.8% 78.4% 77.7% 78.5% 
74.3% 75.0% 74.1% "?5.2% 
67.2% 68.3% 67.0% 68.6% 
65.1% 68.2% 64.4% (39.0% 
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The Path of the Ultimate Loss Ratio Estimate 

EXHIBIT 10 

LOG t CONFIDENCE INTERVALS FOR PAID LOSS DEVELOPMENT FACTORS 
REFLECTING PARAMETER UNCERTAINTY 

PRIVATE PASSENGER AUTO LIABILITY 

BASED ON INDUSTRY AGGREGATE EXPERIENCE 

AGE-TO-AGE FACTORS 

Supporting Information for 
Confidence Interval Determination 

Log t 
95% Confidence 

Log t 
Ratio to Lognormal 

Paid Loss Degrees of LDF 
Development Sample Freedom Lower LDF 

Period Size n n-1 ** "/',-_~1(97.5%) Bound Mean 

9-UIt* 1 3 3.182 0.998 1.001 
8-9 2 3 3.182 1.000 1.003 
7-8 3 3 3.182 1.004 1.005 
6-7 4 3 3.182 1.004 1.009 
5-6 5 4 2.776 1.017 1.020 
4-5 6 5 2.571 1.039 1.045 
3-4 7 6 2.447 1.085 1.092 
2-3 8 7 2.365 1.184 1.198 
1-2 9 8 2.306 1.697 1.767 

LDF At At 
Upper Lower Upper 
Bound Bound Bound 
1.004 0.998 1.002 
1.005 0.999 1.001 
1.006 0.999 1.001 
1.015 0.998 1.002 
1.023 0.999 1.001 
1.050 0.998 1.002 
1.099 0.998 1.002 
1.212 0.997 1.003 
1.839 0.992 1.008 

AGE-TO-ULTIMATE FACTORS*** 

Log t Log t 
95% Confidence Ratio to Lognormal 

Paid Loss LDF LDF At At 
Development Lower LDF Upper Lower Upper 

Period Bound Mean Bound Bound Bound 
9 - Ult* 0.998 1 . 0 0 1  1,004 0.998 1,002 
8 - UIt t .000 1.004 1.008 0.998 1.002 
7 - UIt 1.005 1.009 1.013 0.998 1.002 
6 - UIt 1.011 1.018 1.025 0.997 1.003 
5 - UIt 1.031 1.039 1.047 0.997 1.004 
4 - UIt 1.075 1.085 1.095 0.996 1.004 
3 - UIt 1.171 1.185 1.198 0.996 1.004 
2 - UIt 1.397 1.420 1.443 0.996 1.005 
1 - UIt 2.401 2.508 2.619 0.991 1.009 

* Age 10 deemed to be ultimate 
°* Judgmentally limited to a minimum of 3. (Variance not defined, if d.f. < 3.) 
*** From Monte Cado simulation (10,000 trials) 
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EXHIBIT 11 

MONTE CARLO SIMULATION OF ESTIMATED ULTIMATE LOSS RATIO FOR ACCIDENT YEAR 2004 
ONE YEAR OUT 

ILLUSTRATION OF ONE RANDOM TRIAL - REFLECTING PARAMETER UNCERTAINTY 

PRIVATE PASSENGER AUTO LIABILITY 

BASED ON INDUSTRY AGGREGATE EXPERIENCE 

Degrees Uniform Random Random 
of Random ~ LDF: LDF: 

Devt Expected Sample Freedom Number ",-T-~ I ( R )  V n ' / n + l  Accident Revised 
Period LD___FF Size n n -1 ** R .~' j" Yr Devt * Tail * 

9-UIt*** 1.001 2 3 0.561 0.167 0.001 0.000 1.225 1.001 
8-9 1.003 3 3 0.074 - 1.938 0.003 0.00(3 1.155 1.002 
7-8 1.005 4 3 0.084 -1.810 0.005 0.000 1.118 1.005 
6-7 1.009 5 4 0.484 -0.043 0.009 0.000 1.095 1.009 
5-6 1.020 6 5 0.899 1.468 0.020 0.000 1.080 1.020 
4-5 1.045 7 6 0.128 -1.255 0.044 0.000 1.069 1.044 
3-4 1.092 8 7 0.131 -1.220 0.088 0.000 1.061 1.092 
2-3 1.198 9 8 0.396 -0.273 0.181 0.001 1.054 1.196 

1-2 1.767 9 8 0.116 -1.293 0.569 0.016 1.054 1.727 
1.727 1.418 

Revised Chain Ladder Loss Ratio Estimate One Year Out = Paid Loss Ratio x Actual Acc Year Devt x Revised Tail Factor 

= 26.6% x 1.727 x 1.418 = 65.1% 

Revised B - F L/R Estimate One Year Out = Actual Paid UR - Expected Paid LJR + Expected Paid L/R x Revised Tail Factor 

= (26.6% x 1.727) - (26,6% x 1.767) + (26,6% x 1.767) x 1,418 = 65.6% 

q3 

* = e x p ( . ~ + T - _ t l ( R ) . s x f ' ~ + l ) / n )  

** Judgmentally limited to a minimum of 3. (Variance not defined, if d.f. < 3.) 
*** Age 10 deemed to be ultimate 



The Path of the Ultimate Loss Ratio Estimate 

EXHIBIT 12 

LOG t CONFIDENCE INTERVALS - ULTIMATE LOSS RATIOS 

ONE YEAR VS. ULTIMATE TIME HORIZONS 

PRIVATE PASSENGER AUTO LIABILITY 

BASED ON INDUSTRY AGGREGATE EXPERIENCE 

Accident 
Year Dec 2004 
1995 72.1% 
1996 70.9% 
1997 68.5% 
1998 69.6% 
1999 74.6% 
2000 79,6% 
2001 78.1% 
2002 74.6% 
2003 67.8% 
2004 66.7% 

95% Confidence Intervals - Chain Ladder Estimates 

One Year Horizon Ultimate Horizon 
72.1% 72.1% 72.1% 72.1% 
70.7% 71.1% 70.7% 71.1% 
68.3% 68.7% 68.3% 68.8% 
69.4% 69.7% 69.3% 69.8% 
74.2% 75.0% 74.1% 75.1% 
79.3% 79.9% 79.0% 80.3% 
77.7% 78.5% 77.4% 78.9% 
74.1% 75.1% 73.8% 75.5% 
66.9% 68,6% 66.7% 68.9% 
64,0% 69.4% 63.8% 69.6% 

Accident 
Year Dec 2004 
1995 72.1% 
1996 70.9% 
1997 68.5% 
1998 69.6% 
1999 74.6% 
2000 79.6% 
2001 78.1% 
2002 74.6% 
2003 67.8% 
2004 66.7% 

95% Confidence Intervals - B-F Estimates 

One Year Horizon Ultimate Horizon 
72.1% 72.1% 72.1% 72.1% 
70.7% 71.1% 70.7% 71.1% 
68.3% 68.7% 68.3% 68.8% 
69.4% 69.7% 69.3% 69.8% 
74.2% 75.0% 74.1% 75.1% 
79.3% 79.9% 79.0% 80.3% 
77.7% 78.5% 77,4% 78,9% 
74.2% 75.1% 73.8% 75.5% 
67.1% 68.4% 66.7% 68.9% 
64.8% 68.5% 63.8% 69.6% 
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