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Abstrac t  
Semi-parametric mixture models have well documented technical 

advantages for modeling loss distributions. These technical advantages are 
documented in papers that focus on the estimation of the parameters of  

semi-parametric models. 

This paper assumes that the parameters have already been determined and 
then provides an interpretation of  the results of  the parameter estimation. 

This interpretation is intended to make semi-parametric models intuitively 
appealing. I f  we accept this interpretation of  the parameters, then we can 

use conditional probability concepts to calculate bulk reserves either 
deterministically or in a stochastic framework. 

1. Introduction 
A recent paper by Keatinge I discussed the virtues of  semi-parametric mixture models vis- 
/t-vis (fully) parametric models and non-parametric (empirical) models. The advantages 
discussed in Keatinge focus on the attractive compromise between smoothing and data 
responsiveness offered by semi-parametric models. Semi-parametric models have the 
following density function: 

f ( x )  = w I x f l  (x )  + w 2 x f2  (x)  +... + w n × f~ (x)  

where: 
i. y~x) represents the probability density function for the mixture model, 
ii. f,(x) represents the probability density function for the i-th component of  the 

mixture, and 
iii. wirepresents the mixing weight corresponding to i-th component of  the mixture. 

Furthermore, the mixing weights are subject to the constraints that: 
i. w ~ > 0  

ii. )-~w i =1.  

i Keatinge, Clive L., "Modeling Losses with the Mixed Exponential Distribution," Proceedings of the 
Casualty Actuarial Society 1999 Vol: LXXXVI Page(s): 654-698, Casualty Actuarial Society: Arlington, 
Virginia 
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The mixture is considered semi-parametric since each component of  the mixture is a 
parametric model but the distribution of  mixing weights is model free. Also, it should be 
noted that there is no restriction that the components of the mixture have the same model 
form (e.g. exponential, lognormal, Pareto) or, for that matter, any specific model form. 

The remainder of this paper assumes that model forms and parameters have already been 
determined. 

2. Interpreting Semi-parametric Models 
While Keatinge's arguments are certainly persuasive, there may be a more important 
argument supporting the use of  semi-parametric models: they are intuitively appealing. 

Specifically, it is reasonable to assume that loss experience is comprised of  observations 
from a discrete number of underlying loss processes. The table below provides some 
examples: 

Coverage 
Auto Liability Workers Medical Homeowners 

Compensation Malpractice 
Property Damage Indemnity Nuisance Theft 

2 Total Loss of 
Settlement without 

Death Property and 
o litigation ,z Contents 

Under this assumption, it is then reasonable to interpret the mixing weights (wi) as the 
percentage of total claims that are generated by each loss process. Logically, the named 
loss processes must therefore be exhaustive 2. That is, all claims must fall into one of 
these categories and the sum of the probabilities associated with the loss processes must 
equal 1. It would then follow that the components of the mixture would be interpreted as 
describing the distribution of  claims amounts resulting from each loss process. 

Although in many cases the loss process is coded in the claims record 3, this is not always 
the case. The table above is meant to provide examples of  types of  multiple loss 
processes that might produce the observed claim distribution That is, we assume that the 

2. Since we can define the loss process as narrowly or broadly as we desire, we are not concerned that a 
mixture model would be required to describe a single loss process nor are we concerned that multiple loss 
processes would be described by distributions that are not significantly different. 
3 For example, auto liability loss records will often indicate whether the loss is for bodily injury or property 
damage. 
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mixture model identifies all significantly different underlying loss processes 4. In addition, 
it should be noted that there is no requirement that we identify the loss processes by 
name. In fact it may not be possible to identify each and every loss process. 

3. Using Conditional Probability Concepts to Estimate Claim Level Bulk Reserves 

The term "bulk reserve" is used to represent the reserve for development on known (or 
reported) losses and is often referred to as the "incurred but not enough reported" 
("IBNER") reserve. As is common in analysis of  claims-made coverages, the bulk 
reserve is often estimated in the aggregate for a body of  claims. For occurrence 
coverages, the bulk reserve and the reserve for unreported claims are often estimated on a 
combined basis. 

The mixture model represents the overall distribution of  claim values without anyprior 
knowledge. However for reported claims, we will have some knowledge about each 
claim. This "knowledge" will generally include amounts paid to date and case basis 
reserves. 

For purposes of  this discussion, it should be assumed that an unbiased estimator for the 
ultimate value of  each claim is available. (We will return to this assumption in the next 
section.) This unbiased estimator will be denoted U. 

We now focus on the likelihood of  the various loss processes generating a claim of  size 
U. What we are really concerned with is not the absolute probabilities but rather the 
relative probabilities. Recall the conditional probability relationship: 

Pr(A~ I B) - Pr(A~ n B) where 
Pr(a) 

At represents the event that loss process i underlies the claim and 
B represents event that the unbiased estimate of  the claim is equal to U. 

The relative probabilities i.e. Pr (A JIB), Pr (AeIB) ... Pr (A,IB) are proportional to: 
Pr(A, n B) = Pr(A, I B) x Pr(B) = Pr(B I At)* Pr(A~). 

In this case we decide to use the second expression. Under the interpretation offered in 
Section 2: 

Pr(A3 = wi and 
Pr(BIA3 is proportional tof,(U). 

So we can restate the mixture model with adjusted mixing weights defined as follows: 
~, = Pr(A,)x Pr(B I A,) oc w, x f~ (U). (2.1) 

4 To the extent that those differences are represented in the data, of course. 
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where the - indicates that the parameter (or distribution) is applicable to an individual 
claim and has been adjusted to consider the unbiased estimator of  the ultimate value of  
that claim. 

Normalizing mixture weights, we obtain: 

~, = w, × f , ( u ) / ~ w ,  ~ f , ( u ) .  
i 

(2.2) 

The conditional density function is then equal to: 

f (x I u)  = 7(x) = ~,~ × A (x) + ~'2 × A (x) +... + ~,. × f . ( x ) .  (2.3) 

The table below provides an example of how mixing weights adjust for various U values 
for a mixture of 3 component iognormal models. 

i 
muj 

sigma~ 
Initial Mixing Weight (w i) 

1 2 3 Total 
9 10 12 

1.5 1.75 1.5 
50% 20% 30% 100% 

Mean 24,959 101,849 501,320 183,246 
Standard Deviation 72,716 459,801 1,460,532 

Example #1 
Unbiased Estimator (U) 10,000 

ft  (U) 2.63E-05 2.06E-05 4.72E-06 
Adjusted Mixing Weight 70% 22% 8% 100% 

Mean 24,959 101,849 501,320 77,943 

Example #2 
Unbiased Estimator (U) 150,000 

f~ (U) 2.67E-07 g.33E-07 1.77E-06 
Adjusted Mixing Weight 16% 20% 64% 100% 

Mean 24,959 I 01,849 501,320 344,701 

Example #3 
Unbiased Estimator (U) 750,000 

f ,  (U) 3.73E-09 3.98E-08 2.1 IE-07 
Adjusted Mixing Weight 3% I 1% 87% 100% 

Mean 24,959 101,849 501,320 445,681 

In particular, readers should observe how the mixing weights shift given the unbiased 
estimator for the claim and the means and standard deviations of the components of the 
mixture. 

Readers will also note that the mean value for each claim is not equal to the unbiased 
estimator. This is because the process is designed to produce individual distributions that, 
taken together, describe the distribution of a portfolio of claims. The process is not 
necessarily appropriate for any individual claim. (As discussed in the following section, 
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determination of  an unbiased estimator for a claim may also not be possible.) That is, as 
with most actuarial techniques, the predictive value of  the results requires sufficient 
credibility of  the claims portfolio being modeled. Finally, after reviewing the relative 
stability 5 of  the distribution parameters and the stability of  the unbiased estimator, it may 
be appropriate to balance the results of  the two indications. 

4. Calculation of  Bulk Reserves 

With this adjusted density function, we can calculate bulk reserves either 
deterministically or stochastically. The deterministic estimate is simply calculated by 
integrating and subtracting the current reported value (denoted R) of  the claim as follows: 

~,~ × j(x)ax 
oULK= f (x)a  R. 

(3.0 

It should be noted that the limits of  integration are not included in the formula above. A 
possible adjustment would be to truncate the distribution from below at the paid to date 
value of  the claim or to truncate the distribution from above at the maximum probable 
loss. Without these adjustments, the denominator of  the first term equals 1 and is not 
necessary. 

In addition, the numerator can readily be modified to consider the effect of  policy limits. 
This adjustment is left to the interested reader. 

More powerfully however, we can use the adjusted mixing weights to simulate a range of  
ultimate values for each claim. This is done in a two step process. In the first step, we 
draw from a Discrete (x, p) distribution where the loss processes are the x values and the 
adjusted mixing weights are thep values. This step determines the loss model that 
describes the distribution of  ultimate values of  the claim. In the second step, we draw a 
loss value from the loss model from the first step. This amount represents the simulated 
ultimate value of  the claim. Commercial simulation software can then be used to develop 
both mean estimates of the bulk reserve as well as bulk reserve estimates at various 
confidence levels. 

5. The Unbiased Estimator 

The discussion above assumes that an unbiased estimator of  the ultimate value of  each 
claim is available. As we know this is almost never the case. (If it were, there would be 
much less need for actuaries.) However, we should recognize a biased estimator is 
usually available and an adjustment factor can be applied to this estimator to remove the 

s "Stability" here refers to the change in these items resulting from incremental (marginal) increases in the 
data underlying their estimation. 

Casua l ty  Actuar ia l  Society  Forum, Spr ing  2007  93 



Interpretations of Semi-Parametric Mixture Models 

bias. That biased estimator is the reported (paid plus case reserve) value of the claim and 
the adjustment factor is related to the loss development factor. 

The loss development factor would have to be adjusted to remove the distorting 
influences of  closed claims and unreported claims. That is, a cumulative reported loss 
development factor at age (maturity)j could be written as follows6: 

Paid on Closedj + Ultimate on Openj + Ultimate on Unreportedj 
RLDFj - (4.1) 

Paid on Closedj + Reported on Openj 

It should be noted that for this purpose, the loss development factors merely need to be 
for the same type of claim as the bulk reserve being estimated. That is, we are simply 
trying to develop the adjustment factor for known claims and liability for known claims 
exists regardless of  whether coverage is written on a claims-made or occurrence basis. 
Therefore, we could use claims-made factors in this exercise to develop bulk reserves for 
occurrence basis coverage. 

Rewriting the numerator of  equation 4.1 as Ultimate Loss and taking reciprocals, we 
arrive at the following: 

RLDFTJ = Paid on Closedj + (Paid on Openj - Paid on Openj)+Reported on Openj 

Ultimate Loss 

RLDFT, = PLDFT~ Paid on Openj ÷ Reported on Open Claimsj 
Ultimate Loss Ultimate Loss 

where "PLDFf '  denotes the cumulative paid loss development factor at agej. 

(4.2) 

We can rewrite the second term of the right hand side of  the equation using the following 
relationship: 

Paid on Openj Total Paidj Paid on Openj 
x = PLDF71 x (4.3) 

Ultimate Loss Total Paidj Total Paidj 

and we then rewrite equation 4.2 as: 

RLDF 7' = PLDF 7' - PLDF 7' × 
Paid on Openj Reported on Open Claimsj 

4 
Total Paid j Ultimate Loss • ( 4 . 4 )  

Rearranging equation 4.4, we obtain: 
I Paid on Openj ] -- Reported on Open Claims~ 

RLDF7 ~ - P L D F 7  ~ x 1 TotalPaidj ) Ultimate Loss (4.5) 

6 Assumes no reserve is required for reopened claims. 
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Taking reciprocals, we have: 

[ RLDFTI_PLDFTIx(1 Paid °n Openj.]]-I = 
Total Paidj )J  

Ultimate Loss 

Reported on Open Claimsj 
(4.6) 

Focusing on the right side of  this equation we have the following: 

Ultimate Loss 

Reported on Openj 

Paid on Closedj + Ultimate on Openj + Ultimate on Unreportedj " 

Reported on Openj 

(4.7) 

For convenience, we will refer to the three terms of the right hand side of  this equation as 
F, G, and H. We should recognize that the middle term (G) is the bias adjustment that we 
need to convert the reported value to an unbiased estimator of  ultimate loss (U). 

Substituting equation 4.7 into equation 4.6 and solving for G, we have: 

Paid on Open j - Fj - Hj  
G i = RLDF71 -PLDFj "1 x 1 Total Paidj (4.8) 

 ai On ota 
Paid on Closedj Ultimate on Unreportedj 

Reported on Open j Reported on Open j 

(4.9) 

The author recognizes that (1) Paid on Openj,  (2) Paid on Closedj and (3) 
Total Paidj Reported on Openj 

Ultimate on Unreportedj are statistics that are not "natural" and are not generally readily 
Reported on Openj 

available. 

However, it is the author's opinion that (1) and (2) should be straightforward to compile 
from a loss database since they are based strictly on reported values. Therefore it should 
not be inordinately more difficult to develop these statistics than it is to develop loss 
development factors. 

The third statistic should also be straightforward to determine and in many cases it may 
not be necessary. That is, with respect to the numerator of  this statistic, we can use a 
frequency / severity approach. We already have a severity model,fix), and unreported 
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frequency should be readily estimated using a claim count development factors. The 
denominator is based only on reported data. 

It should also be noted that for many lines of  business substantially all claims are 
reported within two years so this term would be unnecessary after 24 months. For longer- 
tailed lines of  business, loss development factors are generally available on a claims- 
made basis. If  we are using these claims-made loss development factors, this term is, by 
definition, equal to 0 and is therefore not necessary. 

Finally we should recognize that statistics (1) and (2) should be expected to approach 
zero as claims mature. Statistic (3) should be expected to become large as claims mature. 
In fact since (3) may become unstable at late maturities, the actuary may simply want to 
use the reported value of  the claim (without adjustment) at late maturities. This is not 
altogether unwarranted since at late maturities the unknown facts associated with a claim 
will decrease and reported value of  the claim is more likely to be an unbiased estimator of  
ultimate value. 

Using Rj.k to denote the reported value of thej- th  claim at age k, and Uj to denote the 
unbiased estimator of  the ultimate value of thej- th  claim, we can now state the following: 

Uj = Rj, k x G k . (4.10) 

Readers will note that G is based on aggregate statistics such as loss development factors. 
These statistics only consider the age of  a claim and therefore ignore many other factors 7 
that would influence development of  a given claim. Determining an appropriate G for any 
single claim is extremely difficult. The framework described in this paper therefore 
provides an attractive compromise between the unbiased estimator and the apriori 
average claim size. 

While this may seem like a significant effort, the reward is equally significant. Namely, 
the actuary now has insight into the average level of  misstatement in case reserves. The 
actuary should recognize this as particularly important information in evaluating reserves. 

6. Conclusion and Summary 

Using the procedure above, we can transform a semi-parametric mixture model from its 
generic form of  

f(x) =w, x f l (x)  + w 2 ×f2(x)+...+w. × f . ( x )  

to a form that may be used to describe the distribution of  the ultimate value of  a known 
claim: 

f ( x  I u )  : j ( x )  : ~, × f ,  (x) + ~'2 × L (x) +... + ~,. × L (x) 

7 Such as claim size. 
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where the mixing weights are adjusted based on an unbiased estimator of the ultimate 
value of the claim. This unbiased estimator can be calculated as a function of the reported 
value of the claim. 

As actuarial analyses move from deterministic frameworks to stochastic frameworks, the 
distributions of ultimate values for known claims will gain in importance. 
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