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Abstract People in insurance work all the time with financial processes that are best modeled with 
skewed distributions. Despite our constant exposure to skewed distributions, I believe when 
we study sample averages from these skewed distributions we think and work with them as if 
they were samples from normal symmetrical distributions. In this paper I want to discuss the 
idea that a sample average is biased lower than the actual mean of a skewed distribution - an 
amount that depends on the sample size and how skewed the distribution is. I vail talk about 
the implications that this small sample bias has for credibility procedures. Why do people 
ignore outliers? I will offer up some possible reason for why we ignore outliers and why deals 
get done despite what the data indicates. I will talk about the winner's curse or why we lose 
even as we win. Final]},, I will offer a small sample of skewed random thoughts on why these 
ideas explain everything from people engaging in risky behaviors to the property/casualty 
insurance cycle. 

INTRODUCTION 

People in insurance work all the time with financial processes that are best modeled with 

skewed distributions. Despite our constant exposure to skewed distributions, I believe when 

we study sample averages from these skewed distributions we think and work with them as if  

they were samples from normal symmetrical distributions. 

In this paper, I will show through computer simulations that the expected value of  a 

sample average from a skewed distribution varies between the mode o f  the distribution and 

the true mean of  the underlying distribution. Where the expected value of  the sample 

average falls between those two values will depend upon how skewed the distribution is and 

the sample size. For small samples, the expected value of  the sample average will be near the 

mode of  the distribution and for some skewed distributions, "small" samples can be 

unexpectedly big. The implication is that while we are searching for information on a 

population's mean by examining the averages of  small data samples from skewed 

distributions, we will most  likely be getting indications that could be significandy lower than 

the population mean. This is in contrast to the situation when we are sampling from a 

symmetrical distribution where the expected value of  a sample average is equal to the mean 

of  the distribution regardless of  the sample size. 

I would also like to talk about some of  the implications of  people not  realizing or 

ignoring that the expected value of  the sample average from a skewed distribution is biased 

lower than the mean of  a positively skewed distribution. I ~ talk about small sample bias 



We're Skewed--The Bias in Small Samples from Skewed Distributions 

and credibility procedures. I will talk about why people tend to ignore outliers and why deals 

get done in spite of  what the data indicates. I will offer an explanation on why we can't win 

for losing or why making money in insurance is no easy matter. Finally, I will offer up a 

small sample o f  skewed random thoughts on how these ideas help to explain everything 

from people engaging in risky pursuits to the property/casualty insurance cycle. 

In the paper I talk a great deal about the mode and the mean because I think those are 

concepts that are common ground for all of  us in insurance. I hope to reach a bigger 

audience of  insurance professionals than just actuaries. To that end, I relegated all formulas 

to the appendices. However, I must share a word of  caution to actuaries who want to 

discuss these ideas with others outside our field. I have tried it and I have seen strange 

reactions from professionals of  all kinds. People have played dead so that I would just go 

away and leave them alone. Others have fought back violendy. ! have seen our outside 

audit partner a hardened insurance veteran who has "seen it all" practically break his leg as 

he tried to escape from my office when I even hinted at these ideas in answer to his 

question. You have been warned. 

A P R A C T I C A L  P R O B L E M  

Consider the following scenario - we have a customer who has written some business in 

a particular state and it turns out to be profitable business. The customer would like to 

expand into the state to write more of  this good business. Our job is to produce forecasted 

financial statements for this customer so that they can present their business plan to 

management. 

Because our customer does not have a great deal of  existing business in the state, we use 

an industry average loss ratio - a ratio that happens to be higher than our customer's actual 

experience when we produce a first draft of  the forecasted financials. Our customer objects 

to the higher loss ratio since he knows that his past business has been better than the 

industry result. In order to acknowledge his concerns we credibility weight his past 

experience with the industry average to give some credence to the actual experience. By 

using the credibility procedure, we are recognizing that our customer's experience might 

actually represent a profitable niche as opposed to being just be a random fluctuation from 

the industry average. 

However there is another explanation for why the small sample average based on our 

customer's past experience is different from the long term industry average as opposed to it 

being a profitable niche or a random fluctuation. I f  we are sampling from a typical positively 
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skewed distribution, the most likely value o f  that small sample average will be less than the 

true average of  the distribution simply because it is a small sample from a skewed 

distribution. For very small samples from highly skewed distributions, the sample average 

will more likely be closer to the mode rather than to the mean. 

When we do a single sample from any discrete distribution, the most likely value that we 

will see is the mode of  the distribution. That's the definition of  the mode - the observation 

that appears most often, or in other words, has the greatest probability o f  occurring. The 

mode is one of  those statistics that we learn about when we first do statistics but then we 

never hear much about it again unless we are trying to avoid distortions associated with 

extreme values. That is an injustice to the mode; it actually deserves more attention. 

For a symmetrical distribution with one mode like a bell curve, the mode is equal to the 

mean. But for a typical distribution that we might encounter in insurance that is skewed to 

the right and which has only one mode, the mode is less than the median which is less than 

the mean. (For an example of  an atypical skewed distribution where the mode is greater 

than the mean, see Appendix A). When we do small samples from typical skewed 

distributions, the most likely value for the sample average will be somewhere between the 

mode and the mean of  the distribution. How close to the mode or how close to the mean 

will depend on how skewed the distribution is and the sample size. Moreover, for some 

skewed distributions, "small" samples can be surprisingly big. 

For some insurance examples, this relationship should be in the back of  our minds. Take 

for example the annual sample from a highly skewed distribution like the annual hurricane 

losses in the city of  Miami. For any particular year, the most likely loss we will observe is 

zero -- the mode of  the distribution. Every so often there will be a hurricane loss that will 

bring the long-term average above the zero mark but most of  the losses we see ~ be zero. 

On the other hand, an industry average loss ratio is based on a sample size that we could 

consider for all practical purposes to be approaching infinity. I f  we are dealing with large 

samples, even from skewed distributions, we are confident that the most likely value for the 

sample average will be something close to the true average of  the distribution. This is the 

law of  large numbers. As the sample size increases, the probability approaches zero that the 

sample average differs from the mean of  the distribution by any set amount as long as the 

samples are mutually independent and from a distribution with a finite mean and variance. 

In between the two extreme cases - a sample size of  one and a sample size approaching 

infinity - the most likely value for the average of  the sample goes from the mode of  the 

distribution up to the distribution average. How does the most likely value o f  the sample 
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erage change with how skewed the distribution is and the sample size? Let us explore this 

question by examining results from a positively skewed distribution that is used in insurance 

modeling - the lognormal distribution. 

RESULTS FROM A TYPICAL SKEWED DISTRIBUTION 

The lognormal distribution has been used by actuaries to model losses since at least the 

early 1970's [1]. A lognormal has its hump to the left and a long tail to the right. Because of 

the shape of the curve, the lognormal implies that small losses are more likely than very big 

losses. How likely a small loss is as compared to a large loss depends on how skewed the 

particular lognormal distribution is. The chance of a large number of small losses increases 

with the skew of the distribution. 

Rather than talk about the skew of a distribution, I am going to talk about the coefficient 

of variation (CV) of  a distribution. When we are working with a lognormal, a higher CV is 

the same as a higher skew. The CV is defined as the standard deviation of the distribution 

divided by the mean of the distribution. Actuaries typically refer to the coefficient of 

variation (CV) of a distribution rather than how skewed a distribution so that they can 

compare the skews of two distributions with different means. Intuitively we should feel that 

for a family of skewed distributions, the higher the standard deviation, the higher the CV, 

and the more skewed the distribution. The lognormal is always positively skewed as shown 

in Appendix B. 

Actuaries who use the lognormal for size of loss curves very often have rules of thumb 

for an appropriate CV depending upon the line of business. CV's of around 1 or 2 rrught 

represent low limits liability lines of business, CV's between 2 and 5 might represent rmxed 

property and liability losses, and CV's on the order of 10 might be used for very volatile 

high limits excess lines of business. 

Chart 1 shows three lognormal curves each with a mean of 1000 and with varying CV's. 

As the CV increases, the mode or highest point on the distribution is associated with lower 

and lower values than the mean. Other typically skewed distributions would have the same 

relationship between the mode and the mean - as the skew of the distribution increases, the 

mode gets lower and lower as compared to the mean. 

4 Casua l t y  Actuar ia l  Society  Forum, Spr ing  2 0 0 7  



We're Skewed The Bias in Small Samples from Skewed Distributions 

Lognormals with Mean 1000 
__ .ean IOO01 
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Chart 1 

For the ]ognormal, the ratio o f  the mode to the mean can be written as a function of  the 

CV. I have included that formula at the end of  Appendix B for those who like formulas. 

Chart 2 shows the ratio of  the mode to the mean for lognormal distributions with different 

coefficients of  variation. 
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Chart 2 

As the coefficient of  variation increases, the ratio o f  the mode to the mean of  a lognormal 

distribution drops off  very quickly towards zero. What does that imply? The more skewed 

the distribution, the more likely a sampled mean will underestimate the true underlying 

mean. For a lognormal distribution with a CV over two, the most likely value for a sample 

of  one is relatively close to zero no matter how big the mean of  the distribution. For small 

samples, the expected value for the sample average will be close to zero. 
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To acknowledge that there are people who are uncomfortable with the idea of  focusing 

on the mode rather than the mean, I offer some numbers that might help them get more 

comfortable. The mode is the point at the highest point on the probability density function. 

What I am going to show is the area under the probability density function for all points that 

have a value that is greater than the value associated with the mean. Chart 3 shows a 

lognormal dismbution and we are interested in area "A" between the mean and the point to 

the left of  the mode that has the same probably density function value as the mean. 

Lognormal with Mean 1000 

J~ 
o 

a .  

VaLue 

Chart 3 

Table 1 shows for varying samples size averages from lognonnals with different 

coefficients of  variation the percentage of  sample averages whose probability density 

function value is higher than the value at the mean. This is area "A" in chart 3. 

Sample Size 
0.5 

1 47% 
25 13 
50 12 
75 11 
100 11 
150 7 
200 7 
300 7 
400 3 
500 2 

13 

CoefficientofVafiafion 
1.0 2.0 5.0 10.0 

64% 74% 82% 86% 
28 44 62 70 
19 38 56 66 
16 33 54 64 
13 28 53 63 

47 57 

2 
Table 1 Area "A" for 

26 
25 47 57 
17 41 55 
16 
14 

41 
38 

different sample average sizes distributions and CV's 

53 
51 
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As an example, the numbers in this table says that if you are taking averages from a 

lognormal distribution with a coefficient of variation of 10.0, then there is better than a 50% 

chance that the sample average will be below the true average of the distribution if the 

sample size is 500 or less. I like to think that focusing on the mode makes it easy to capture 

a lot of  this information and I hope to convince you of that with the following simulation 

exercises. 

So what makes up a very small sample size? In order to answer this question, I simulated 

a single random value from a lognormal distribution with mean 1000 and varying CV's using 

an Excel add-in called @Risk by Palisades. The @Risk add-in has functions that will 

simulate random values from various statistical distributions and it has functions that will 

calculate statistics for the random results. Since I am sampling from a continuous 

distribution, it is unlikely that I would sample any single point more than once. So rather 

than find the most common single point, I set the program to keep track of the most 

common interval of width 5 as a proxy to finding the single point mode. As a check on this 

process and to see if @Risk actually does what it claims to do, I wanted to see if the mode 

for a sample size of one tracks with the formula mode of the distribution. The results in 

Table 2 show that the simulated results track closely to the formula mode of the distribution 

after 1,000,000 simulations. 

CV 

0.5 

1.0 

2.0 

5.0 

10.0 

Table 2 

Simulated Mode Formula Mode 

717.91 715.54 

361.67 353.55 

79.75 89.44 

7.86 7.54 

2.51 0.99 

I then increased the sample size to 25 random values, 50 random values, 100, 200, 300, 

400, 500 and 10,000 random values. I measured the midpoint of the most common interval 

for the average of those larger samples doing 500,000 simulations each tune. (See Appendix 

C for additional details.) The results are shown in Chart 4 for lognormal distributions with 

mean of 1000 and CV's of 0.5, 1.0, 2.0, 5.0 and 10.0. 
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Chart 4 

What does this Chart 4 tell us? For individual claim size distributions that have low CV's, 

the most likely value that we would see from a sample average very quickly approaches the 

mean of the distribution, We are getting the same result as if wc were sampling from a 

symmetrical distribution where the mode is equal to the mean. However as the CV 

increases, it takes a very big sample size before the most likely value of the sample average 

approaches the mean of the individual claim distribution. For a distribution with a CV of 

10, even at a sample size of 500 the most likely value we would see from the sample average 

is 85% of the distribution mean. Formal credibility formulas aside, I believe many actuaries 

would consider 500 homogeneous claims a fairly large database. Appendix D has charts, 

albeit more complicated charts, which show additional information about the entire 

distributions of the sample averages. 

With a CV of 10 and a sample size of 10,000, the most likely value we would see is still 

only 96% of the mean of the distribution. William Blatcher, CFA, points out that a 

simulation size of 10,000 is a typical @Risk simulation size for actuaries working in 

reinsurance. Even at this large number of samples, there is still a downward bias of 4% from 

the actual average of the distribution. 

Another thing to observe about these sample results is that the most likely values for the 

sample averages follow a pattern of rising quickly from the mode of the distribution and 

then hitting a fairly fiat area that approaches the mean very slowly. In his book "Fooled by 

Randomness" [2], Nassim Taleb discusses how people are misled by skewed distributions. 
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He focuses on the rare extreme values in the tail of  the distribution, which he calls the black 

swans that are usually missing from the sample results out of skewed distributions. People 

forget about these black swans or are unaware of  them. However, for "small" samples out 

of skewed distributions, it is not just missing black swans that the observer can innocently 

miss that can cause problems. The small sample from the body of the distribution is actively 

misleading the observer because the mode is so much lower than the mean. It is almost as if 

the distribution is actively evil by feeding us misleading information from its body as 

opposed to passively withholding tail information from us. 

What are some of the implications of this? When we are doing relatively small samples 

from skewed distributions, we should recognize that the most likely value of the sample 

average will be less than the mean of the distribution that we are trying to measure. We 

should adjust our sample results based on the CV of the distribution and the sample size to 

calculate the population mean of the sampled distribution. The correction factor should be 

the ratio of the population mean and the mode of the sample average. The mode of the 

sample average would vary by the sample size. It would equal the population mode for a 

sample size of one and would approach the population mean as the sample size approaches 

infinity. Table 3 shows the correction factors for a lognormal distribution for given sample 

sizes and coefficients of variation based on the simulation results. These values are just the 

ratio of  the actual distribution mean and the mode of  the sample means underlying Chart 4. 

Sample Coefficient of Variation 
Size 

0.5 1 2 5 10 

1 1.45 2.51 
25 1.02 1.07 
50 1.00 1.05 
75 1.00 1.02 
100 1.00 1.03 
150 1.00 1.02 
200 1.00 1.01 
300 1.00 1.00 
400 1.00 1.00 
500 1.00 1.00 

10000 1.00 1.00 
Table 3: Correction factors 

11.79 
1.25 
1.13 
1.13 
1.09 
1.07 
1.05 
1.04 
1.02 
1.02 

128.90 
1.79 
1.45 
1.32 
1.31 
1.19 
1.18 
1.13 
1.11 
1.09 

399.67 
2.68 
1.93 
1.71 
1.58 
1.M 
1.38 
1.26 
1.24 
1.21 

1.00 1.02 1.05 

There is actually a precedent for a table of  adjustment factors like this. The British 
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Department for Transport has recognized that planners for large public projects routinely 

underes~nate the actual cost and time of the project [3]. To adjust for this tendency to bc 

optimistic, project appraisers are required to make adjustments or 'uphfts" to the submitted 

costs, benefits and duration. The factors which depend on the type of engineering project 

under consideration could be up to 51% for building projects and up to 200% for IT 

projects. They are used to adjust the project costs to overcome this downward bias and 

increase them to more likely cost levels. 

SMALL SAMPLE BIAS A N D  CREDIBILITY 

When we are credibility weighting two results from skewed distributions, we should 

recognize that the small sample size average might be different from its population mean 

only because it is biased downwards, In his paper "An Examination of Credibihty 

Concepts" [4], Stephen Philbrick presents an example of four people shooting at four 

different targets to help explain credibility. The diagrams in the paper show the historical 

results for the four shooters with their shots clustered around their four respective targets. 

The clustering is a simphfying assumption in order to focus on the main point of the paper. 

We are better able to guess who the shooter is if: 

We see more subsequent shots taken, 

The shooters are better shots or, 

The individual targets they are shooting at are moved further apart. 

When the targets are widely separated and the shooters are good shots; we want to give 

high credibility to the hypothesis that A is the shooter when we see a subsequent shot fall 

near target A. This follows, in part, from the assumption that the shots are symmetrically 

distributed around the targets. 

Now suppose a wind is blowing across the firing range affecting the results of shooter A. 

Most of the shots are blown away from target A and land near target B. Occasionally the 

wind ~ stop blowing and a shot wiU land near target A. Even more rarely, the wind will 

reverse direction and the shot will fall widely wide of the target on the other side. On 

average all the shots fall around target A. In this example, even if the means and standard 

deviations of the distribution of shooters has not changed from the symmetrical example, 

whatever standards we may have created for credibility when the shots were symmetrically 

clustered around the target have to be increased given that the distribution of shots is 

skewed. We need more shots, or the shooters have to compensate for the wind to improve 
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their aim, or the targets have to be much further apart to achieve a given credibility standard 

when we are dealing with skewed distributions as opposed to symmetrical. 

In this second example, i f  we had a small sample from this skewed distribution, we 

probably would have given little credibility to the idea that the shooter was A unless we 

really understood the process involved. I f  we assumed we were dealing with symmetrical 

distributions, we most likely would have concluded that the shooter was B since the small 

sample of  shots would most likely have been grouped near the mode of  the distribution - 

target B. It is important to understand what type of  distribution we are working with and 

avoid convenient assumptions. 

O U T L I E R S  A N D  T H E  A R T  O F  T H E  D E A L  

James MacGinnitie in his Address to New Fellows at the November 2006 Casualty 

Actuarial Society annual meeting stated that the world is not normal and warns against 

unexamined use o f  the bell curve or  normal distribution as a model. In his book "The 

(Mis)Behaviour of  Markets" [5], Benoit Mandelbrot of  Chaos Theory fame discusses 

problems with assuming the financial markets behave according to the normal distribution. 

Why was the normal curve used in the first place? Mandelbrot states that at one time all of  

nature was assumed to behave according to the bell curve - that is why it is called the 

normal curve. Independent observations from a normal curve are not an appropriate model 

for many financial market situations even though modelers have historically used normal 

curves. Actual observations come from more highly skewed correlated distributions. 

Nevertheless, many financial modelers say, "So what?" They argue that the normal curve is 

a convenient approximation and as long as this assumption does not cause any problems, 

then we should just ignore any theoretical refinements. MacGinnitie and Mandelbrot claim 

that assuming normal, independent observations does cause problems by underestimating 

the true risk associated with skewed processes. Mandelbrot demonstrates that Chaos Theory 

yields a better model of  the financial market's behavior, He says that you cannot make 

money with this insight but he does assert that it allows you to understand better the risk 

that is involved which could help you avoid losing money. 

I f  someone makes a statement it is good to check it if  we are able. Can we underestimate 

the risk by using standard statistical techniques on small samples? Table 4 shows the most 

likely indicated CV from different sample sizes from a lognormal simulation with varying 

CV's. 
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Sample Size 

25 
50 
75 

0,50 
0.46 
0.47 
0.48 

Coefficient of Variation of  Sampled 
1.00 
0.79 
0.85 
0.89 

Distribution 
10.00 
1.81 
2.21 
2.66 

2.00 5.00 
1.02 1,63 
1.31 1.82 
1.40 2,04 
1.41 2.16 
1.5 2.27 

1.56 2.44 
1,61 2.55 
1,63 2.97 
1.65 2.98 
1.91 3.82 

100 0.48 0.89 3.00 
150 0.48 0.92 3.00 
200 0,50 0,93 3,01 
300 0.49 0.94 3.02 
400 0.49 0.96 3.17 
500 0.50 1.00 3.67 

0.50 10,000 1.00 
Table 4 Mode of the Sampled CV's 

6.00 

For small samples from skewed distributions, the most likely value for the CV 

underestimates the CV of the actual distribution since we are missing the values from the tail 

of  the distribution. If we used these numbers as parameters for our models, then we would 

underestimate the risk of the situation we are modeling. 

There is another reason to avoid assuming the normal distribution either consciously or 

unconsciously. Besides worrying about the tail of  the distribution, we also have to worry 

about the body. In actuarial and financial work, we have to avoid assuming that "small" 

sample averages from skewed distributions will give unbiased indications of the true mean of 

the underlying distribution as they would if we were sampling from a normal distribution. 

Actuaries someumes go out of their way to create problems, for example, by creating 

smaller and smaller data samples as opposed to maintaining larger groups for large samples. 

I have seen reserve studies that will take a book of business, split it into 34 different rating 

groups, and then split each of those into three different currencies for over 100 different 

groups to study. By doing so many splits of  data, we end up creating small sample averages 

where the results will be biased low. A few groups may have large claims but those are 

ignored as aberrations as opposed to being recognized as the extreme values from a skewed 

distribution. If only they were combined with the other sample values in larger groups, then 

there would be a better chance of yielding a more appropriate estimate of the true 

population mean. 

Is there a psychological explanation for why people disregard outliers? One of the 

explanations for our tendency to disregard outliers has to do with our training. Students are 

taught that, 
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"An out~er is a point ~vhich your data set is better off ~thout. If.you can prove yourpoint better by 

ignoring some smallportion of.your data, why not ignore it? It's probab[vjust a blunder on the part 

of the person colkcting data, or some ~Oedal, irrelevant circumstance that we needn't investigate in 

detaiZ "[6] 

I hope everyone is appropriately shocked with this advice and will acknowledge they have 

never followed it in the past nor will they ever follow it again. MacGinnitie and Mandelbrot 

strongly recommend not ignoring outliers. Taleb and others argue that properly accounting 

for outliers is how to win or lose the big money. Helping customers deal with outliers is 

what insurance is all about. 

Ignoring outliers could be instinctual. As the herd moves on, the weak, the old and the 

sick fall behind becoming outliers to be picked off by the wolves. The clustering illusion is 

an identified psychological bias where people xxfill pick out patterns even when none exist [7]. 

Because of this bias professionally designed standardized tests do not have long runs of a 

particular multiple choice answer. Students would feel such a pattern is unlikely and then 

feel pressured to answer incorrectly just to break the run. 

Certainly actuaries make their li~ag by finding and identifying patterns. Once a theory is 

formed about a particular pattern the confm-nation bias in psychology is the tendency for 

people to search for or interpret information to confirm one's preconception [7]. Outliers 

don't  fit the pattern and they don't support the basic idea that's being proposed, so ignore 

them. What is even worse, the more outrageous the outlier the more likely we are to throw 

it out of the sample. We can put all these biases all together to explain why people ignore 

outliers and call it the "Simon and Garfunkel Bias" - still the man hears what he wants to 

hear and disregards the rest [8]. 

Certainly, there may be business reason s for a person to leave an outlier unexamined 

when pricing a deal. There are no absolute rules. And for certain parties in the transaction, 

it is in their best interest to deemphasize the outliers. The negotiation skills and dedication 

of the brokers and market makers influence the final price. The best dealmakers that I have 

seen in action are those that continually work on the ego of the person they are trying to sell. 

The skilled insurance broker will set up a situation where the rejection of the proposed deal 

at the suggested price implies the insurance underwriter lacks cojones; they are not a real 

player. The broker will threaten that they have other underwriters at other companies - real 

business people - that are ready and willing to do the deal. Eventually, the ego driven 

underwriter will be dying to do the deal in order not to appear weak in front of the broker. 
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It doesn't matter about outliers. The broker now has the underwriter working for them in 

finding a way to do the deal rather than the underwriter working for their employer. This 

whole process is a beautiful thing to behold. You really have to admire a good broker at 

work. 

This is where an objective actuary can be a valuable asset in these negotiations. Actuaries 

typically get their ego kicks from doing a thorough analysis and beating other people (either 

in competitive exams or in doing accurate forecasts). I f  another actuary has arrived at an 

estimate that is lower than your estimate but cannot give a satisfactory reason for why your 

answer is too high, then you will stubbornly stick to your result. This can be a valuable 

sanity check for the underwriter when evaluating a deal. Whether the deal finally gets done 

or not at a particular price will depend on many things. Ego is involved in a complex 

interaction with many different forces; forces that will vary from company to company. The 

actuary can be a big assistance in providing a quantitative estimate that takes into account all 

the available information. 

Actuaries are also subject to ego problems and can be a liability to the process. Forecasts 

of  indicated prices are the appropriate combination of  all available information including 

outliers. As a deal is negotiated, very often new information is introduced that was not 

available when the first price forecast was produced, for example, a legitimate explanation of  

the outlier. That new information could cause the forecasted price to go up or it could cause 

the forecasted price to go down. It has been my experience that actuaries are more willing to 

allow their prices to go up rather than to go down based on new information. Part of  this 

might be the natural reluctance to lower a price based on the suspicion that only good 

information is being shared and none of  the bad information. Some of  it might just be 

misplaced pride in that changing an answer somehow implies that the original forecast was 

wrong. Some of  it might just be psychological. 

There have been experiments done asking people to guess a particular number when they 

have no idea what the appropriate answer is. For some reason the first number that people 

hear sets the magnitude of  the perceived correct answer whether or not it is anywhere close 

to the correct answer. This is known as the anchor effect [7]. All future answers will be 

judged against this initial answer. For example, what is the population of  Brazil? Someone 

might throw out a guess that the population is 40 million people. It sounds like a reasonable 

number. From that point on people xx4ll be evaluating future answers to the question, 

including the correct one, based on this initial guess. And future guesses will tend to 

fluctuate in the neighborhood of  this initial guess. (What is your guess for the population of  
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Brazil?') 

Are actuaries subject to the anchor effect? Are they more likely to be subject to it when 

they are the author of  the original forecast or guess? Everyone else is affected by it so why 

not actuaries? If  you have been around long enough, you have definitely seen this process in 

action. An early number sets the value for a deal, a transaction or an acquisition. Based on 

that early number a decision is made to do the deal or not. From that point on it doesn't 

matter what new information is brought forth and how the numbers change. A decision has 

been made and a course of  action is in motion. The first numbers that are released are very 

important because those may be the last numbers anyone pays attention to. 

The actuary has to bring a forecast to the table that reflects all the information available 

including outliers. A forecast is different than a prediction of  the future. If  data might have 

been withheld that can influence the answer or even if appropriate data are not available to 

do a proper forecast such as with a small sample from a skewed distribution, then that 

inadequacy of  the data has to be built into the pricing of  the deal. Exactly how the price is 

adjusted for the lack of  the data is a judgment call. But that judgment call is made by those 

responsible for the deal. The actuary has to be upfront with the indicated forecast based on 

the information available and also explicit about any additional loadings in the price that are 

due to the quality of  the data. 

B L E S S E D  A R E  T H E  L O S E R S  

Economists are concerned with a problem called the winner's curse [9]. In this problem 

several bidders are competing for an item in an auction and the winner will be the highest 

bidder. This item is worth the same to all the bidders. The bidders only have incomplete 

information about the true value of  the item and they have to make estimates about this 

value to prepare their bids. The average of  all the bids is assumed to be around the true 

value of  the item. If  this is the case, the winner will tend to lose money since they ~ bid 

more than the item is worth - the winner's curse. Savvy bidders will avoid the winner's 

curse by bid shading or quoting a price below what they believe is the value of  the item. The 

bidder who follows this strategy will lower their chance of  winning a particular auction but 

increase their expected return over time. This is the ideal situation as described by 

economists. 

For the reality of  the insurance world we have to make some changes as the problem is 

more complicated. One change is the winner is the lowest bidder not the highest. Another 

"The population of Brazil was reported to be 188 million people in 2006. 
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difference is that a particular account might be more valuable to one insurer than to another 

insurer for a variety of  possible business reasons. An account might have value outside of  its 

expected profit, For example, a company might have written premium goals and they 

set the price to win the account as opposed to setting the price at the estimated value of  the 

account. The winning bid does not necessarily lose money even if the bid is below the long 

term average cost of  the account because the annual cost of  an account is not fixed. An 

insured might have a good year and experience low losses for the year of  the auction. 

Another difference is that the result of  the traditional auction problem is known immediately 

but for an insurance contract, it could take years for the actual result to be known. Because 

there is this lagging feedback mechanism, inappropriate pricing might persist for a period of  

time as opposed to being corrected immediately. I would think these differences would tend 

to increase the monetary losses of  the winner. A difference that would tend to ameliorate 

the losses of  the winner is that all insurance companies are not all created equal. In real life, 

the insurance buyer bases their purchase decision on more than just price. They may go 

with a higher priced policy if they expect to get better service from a particular insurer. 

Participants in the traditional aucdon problem are assumed to have incomplete advanced 

information about the value of the item being auctioned. This is certainly true for insurance. 

We also have the potential additional problem associated with small samples from skewed 

distributions. Gary Blumsohn points out that the more skewed the distribution, the more 

likely it is that bidders will be quoting prices based on downwardly biased sample averages 

and thus the winner's curse will be compounded. 

Bidders in this case should build into their decision process how skewed the loss process 

is and how much actual loss information is available to price the account. The more biased 

the actual losses or the smaller the pool of  available information on the particular account or 

similar accounts, the more we should be concerned about adding a charge to our bid to 

compensate for any potential biases in the available information. In some extreme 

situations, we might just want to quote a "go away" price to the risk or broker. That would 

be a situation where we are very uncomfortable with the risk involved and/or  the 

deficiencies in the available pricing information. If  we are concerned about pricing it too 

low, then we should just quote a price high enough so that it is unlikely to be accepted but 

high enough so that we still feel O K  if for some reason we are the winning bidder. 

I f  one is faced with the risk of  an event that is likely to be a small sample from a highly 

skewed loss distribution, then there are a few things that can be done to Improve the 

situation. The first is to increase the sample size and combine that risk with other risks to 

take advantage of  the law of large numbers. If  you are a single insured, you buy a policy 
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from an insurance company who does the combining of  risks for you. If  you are an 

insurance company you can expand your writings until you have sufficient volume to 

produce stable results. As an insurance company, if it is impossible to combine the 

presented risk with a sufficiently large number of other independent risks, then the other 

alternative is to reduce the skew of the risk distribution. You can reduce the limits on the 

policy, restrict policy terms, or buy some form of appropriately priced reinsurance. Finally, 

the last thing that you can do is reduce the probability of the event to zero by not writing the 

risk at all. 

A S M A L l .  S A M P L E  O F  S K E W E D  R A N D O M  T H O U G H T S  

More than once, I have heard a story at a luncheon at a Casualty Actuarial Society 

meeting about either a start up company or a new branch of operation where the initial loss 

experience is good. The stories deal with heroic battles between an actuary and the naive 

management team. The actuary wants to hold surplus and maintain high rate levels in 

anticipation of losses yet to come. Management wants to cut rates or pay out large dividends 

based upon the small but exceptional experience to date. In the stories that I have heard, 

either the actuary wins out or the company barely survives its first few years. Because those 

are the only endings that I have heard, I have to assume that there is a survivorship bias in 

these results - only the survivors are happy to share their stories. 

The heroes of these stories recognized that skewed distributions give biased results not 

just due to small sample sizes but also because the mode is seen before the average result. 

Incremental claim reports follow skewed patterns. Once people in a company see 

incremental claim reports from a particular accident or policy year declining after the mode 

of the distribution has passed, they might think the worst is over and that claim reports will 

drop off as fast as they appeared. However, the tail that follows the mode could stretch out 

for years. Actuaries who have recognized this and have convinced their colleagues of claim 

reports yet to come have the right to boast [10]. Actuaries think accident year; everyone else 

thinks calendar year. 

Speaking of start up companies, another lunchtime conversation has to do with the 

strategy of starting a reinsurance company devoted to catastrophes. The question is whether 

the company will be able to build capital by surviving its first year without sustaining a 

catastrophe. These companies are insuring events from highly skewed distributions. The 

most likely loss that they vail see is zero. Chance is in their favor that they will survive the 

first year. This same type of thinking could explain why some investors are willing to rush in 
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and refinance catastrophe reinsurance companies after they suffer a particularly bad season. 

The hope of stock price recoveries from big premium increases following the cat loss also 

has something to do with it. 

In case the traditional age to age development method has not been beaten up enough in 

recent papers, what about the way we average development factors? In the past, I have used 

methods that take the average of the most recent x development factors excluding the high 

and the low value. I have also heard of methods that use x binomial factors as weights to 

apply to the most recent x development factors ranked from highest to lowest to get a 

weighted average estimate. It certainly sounds like these methods are making an implicit 

assumption that we are sampling from a symmetric distribution if not a normal one. 

However, if these unquestionably small sample averages of individual loss development 

factors are from a skewed distribution then these methods are throwing out or downplaying 

important information. 

We become complacent about our safety or survival from repeated exposure to 

threatening situations that do not actually happen. Psychologists call this habituation [11]. 

When I worked in Jersey City, NJ, I would pass a good example of habituation in action 

every day when I went to work. Each morning I would drive past Nunez Restaurant on the 

comer of Montgomery Street and Jordan Avenue. The owner of the restaurant had put a 

couple of plastic owls on the ledge of his building to scare away the pigeons and save his 

customers untold embarrassing problems. However, the pigeons had become habituated to 

the owls. Initially the model of their natural predator would have scared the pigeons away 

but when nothing threatening ever happened, the pigeons learned to suppress their natural 

instinct to be afraid. So many pigeons have become habituated at Nunez Restaurant that on 

some mornings the corner could be used for the Jersey City/pigeon remake of Alfred 

Hitchcock's "The Birds". The pigeons have become conditioned to the mode of nothing 

happening and suppressed their fear of the extreme event of being attacked by the stationary 

plastic owls. (Some people might argue that my driving to work every day down 

Montgomery Street in Jersey City is a good enough example of habituation.) 

People are not to be outdone by pigeons. Here is a possible explanation for riding a 

motorcycle without a helmet. People are probably encouraged to do any high risk activity 

because they get something out of it and, most likely, not suffer any consequences for at 

least the first few times. The loss distributions associated with any high risk activities are 

skewed - driving without a seat belt, cave diving, painting the outside of a house without 

securing the ladder. For a small number of trials, any individual is most likely to experience 

the mode of the distribution and not suffer any consequences. Based upon the lack of any 
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immediate losses, the individual grows complacent, ignores any warnings, and continues with 

the activity. Yet the possibility that the individual will experience a loss increases over time 

as the sample size increases. 

The difference between the mode and the mean in skewed industry loss distributions 

might be a contributing factor to the insurance cycle. The distribution of  annual industry 

results appears skewed to me. If  that is the case, the most common result for the industry 

during the cycle period will be something closer to the mode of the distribution. All other 

things being equal, competition will keep pricing levels below the mean of the distribution as 

people grow complacent and the sky doesn't seem to be falling as constantly predicted by 

actuaries. Every once and a while there will be a major industry loss event. The industry 

feel the cash flow shock because it was pricing below the long-term average and it WIU 

overcorrect above the long-term average when it reacts. Mix in some skewed distributions 

associated with the asset side of the balance sheet and away we go. 

Along these lines, Ted Kelly, CEO of Liberty Mutual was quoted in the November 27, 

2006 [12] issue of the National Underwriter warning about pricing levels in the 2006 

property market. Property insurance prices had increased dramatically in 2006 because of 

the losses associated with Hurricane Katrina in 2005 and presumably due to the early 

predictions by the hurricane forecasters of severe hurricanes for 2006 and beyond. He said, 

"The lack of catastrophes this year will create its own set of  problems, including accusations 

that we cried wolf when we raised rates and are now price gouging." He joked that, "It's like 

saying someone who survives Russian roulette faced no risk just because the gun didn't go 

off, when we all know there is still a bullet in the chamber, and if you play the cat game long 

enough, it's going to go off." In my opinion, using the best estimate of the loss over the 

period in which the policy is exposed would be the correct way to fund for catastrophes. 

Currently, all the market forces seem to produce a collective behavior that is influenced by 

the results of small sample averages and then plays catch up after a major shock loss. If  

nothing else, funding at the best loss estimate for the exposure period would identify the 

costs that that market is facing. That being said, what is the loss distribution and what is the 

best cost estimate are among the difficult questions that all the participants in this market 

have to answer. 

The only cure for complacency is a conscious effort to take measures guarding against 

extreme events. Insurance companies exist to help our customers guard against extreme 

unexpected financial consequences of life. As actuaries and managers of insurance 

companies, we have to make sure we are forecasting the true long-term results and acting 

appropriately to account for extreme events so that our companies Hill be there to pay the 
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losses of  our customers. We have to avoid complacency bred by constant exposure to the 

mode of  distributions. 

A quote attributed to former first lady Barbara Bush is, "Bias has to be taught." She was 

speaking about prejudices and that children learn prejudices from adults as opposed to being 

born with any biases. I f  we speak about the statistical bias of  small sample averages, there 

are whole hosts of  places where subdy we are being rmsled. No  one is teaching us these 

things. We are forming theories based on small samples and then forgetting or not realizing 

that those theories might be wrong since they are based on small samples. Is that not a 

definition of  prejudice - developing a theory and then forgetting that it is a theory and 

assuming that it is fact? It would have been better if Barbara Bush had said, "Bias has to be 

fought". 

There is an old insurance joke that says an insurance company is a car being driven down 

the road by the blindfolded president of  the company. The head of  marketing is stepping on 

the gas, the underwriter is stepping on the brake and the actuary is looking out the rearview 

marror yelling which way to turn. To paraphrase the warning label that appears on the 

passenger side rearview mirrors of  US cars, those loss estimates that the actuary sees are 

larger than they appear. 

In that joke, the actuary is the only person in the car who is looking at any section of  the 

road. When working with small samples from skewed distributions, we should keep in mind 

that it rmght take many samples m order to get an average that provides a good estimate of  

the true average of  the underlying distribution. We have to understand the loss process we 

are trying to model along with the limitations of  our data samples, and make forecasts and 

recommendations accordingly. 
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Appendix  A 

Counter Examples Where the Mode of  a Distribution is Larger than the Mean of  a 
Distribution 

There is more than one definition of  the skew of  a distribution. The skew of  a 

distribution is usually calculated as the third central moment o f  the distribution. 

In this formula, n is the sample size, ~ is the sample mean and s is the sample standard 

deviation. A positively skewed distribution has a longer tail to the right. 

In Excel, the formula for the skew of  a distribution is the following: 

/ ' / ( / 3  

(n-l)(n-2) 2 
A distribution may have more than one mode but for this discussion I am going to 

assume that we are dealing with distributions with only one mode. 

Using the Excel definition, it is easy to construct a discrete distribution that is skewed to 

the right and the mode is greater than the mean [13]. 
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Chart 4 

One way to remove the counter intuitive examples is to define them away. The Pearson 

mode skewness of  a distribution is defined as: 
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m e a n  - m o d e  

s tandard d e v i a t i o n  

Using this definition, a positively skewed distribution would always have the mean higher 

than the mode. 
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Appendix B 
Some Formulas for the Lognormal Distribution 

As a reference or reminder, the probability density function for a lognorrnal distribution 

with parameters x < 0 ,  _00 </~ < o% and o" > 0 is the following [14]: 

1 - l ( lnx- /~  2 

f (x,  p ,  cr) = x o ' ~  e 2~ ~, j 

The mean is equal to: 

The variance is equal to: 

e(~ t+o2/2 ) 

And the coefficient of  variation (CV), the standard deviation of  the distribution divided 

by the mean, is equal to: 

- 1) 

Formulas that actuaries are probably not familiar with are the formulas for the median: 

e g 

The formula for the mode: 

(>-o 2) 
e- 
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And the formula for the skew of the distribution is the following: 

/ 
The lognormal is positively skewed for all values ofo ' .  

The formula for the ratio of the mode to the mean as a function of the CV is the 

following: 

mode =(CV 2 +1) -3 
mean 
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Appendix C 

Simulation of Results 

For these simulations, I used @Risk Version 4.05. I did different sample averages for 

different sizes 1, 25, 50, 75, 100, 150, 200, 300, 400, 500 and 10,000. For each sample size I 

took a sample average of that many random values of the lognormal function and for each 

different sample size I used different random values. I did not generate 10,000 random 

values and then take the average of the first 25, the first 50, etcetera. 

At each simulation, I selected as an output the RiskMod function to measure the mode of 

the simulated sample averages. Because we are dealing with a continuous distribution, I 

checked for the midpoint of the most common interval of width 5 as opposed to the most 

common single value. Excel/@Risk formulas for sample size 5 are below in Figure 1. 

1 

4 

7 

9 
1_3_o 
11 

, ,,12 
, 1 3  

14 

16 
17 
tR 

A . . . . .  t . . . . . . . . . . . . . . . . .  8 . . . . . . . . .  

Mean Standard Deviation 

10~ 2~0 

I=+A6+I 
=+AT+I- 
i=+AB+I 
I=+,68+1 

=RiskLognorm($A$4,$B$4) 
• • ~ -.R!skLo 9n o.rm(_$j~,$~ 4 ,$B $4)_.. 

=RiskLognorrn($A$4,$B$4) 
=RiskLognorrn($A$4,$B$4) 
=RiskLognorrn($A$4 ,$B$4) 

=RiskOu!put 0 + TRUNC(AVERAGE($B$6:B10)/5,0)%+2.5 

=RiskOutput 0 + TRUNC(STDEV(B$6:B10)/5,0)%+2.5 

17 l=RiskOutput0 + TRUNC((+A15/A13)/0.01,0)'0.01+0.005 

Average 5 
=+RiskOutput0+RiskMode(A13 ) 
SD 5 
=RiskOutput 0 + RiskMode(A15) 
CV5 
=RiskOutput 0 + RiskMode(A17) 

Figure 1 
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Appendix D 
Contour Maps of Sample Average Distributions 

In the paper, I showed charts on how the mode varies with the CV and how the mode 

varies in relation to the mean as the sample size varies. I wanted to get a feel for how the 

distribution o f  the lognormal sample average is shaped at different sample sizes. Even 

though the mode of  the distribution is the most likely result, I was interested in whether it is 

really more likely than other values or just marginally more likely. Here are the results using 

standard output from @Risk and Excel graphing routines. 

Charts 5 and 6 are contour maps of  the distributions of  sample averages of  lognormal 

distributions with CV's of  1 and 5 as the sample size varies. These are two-dimensional 

representations of  three-dimensional surfaces. I f  you are familiar with topographical maps, 

then think of  these charts in the same way. 
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Chart 5 

Reading across the gridfine on Chart 5 for a sample size of  25 from left to right, the 5 'h 

percentile point is on a slope between the 500 and 750 contour fines. At the 10 'u percentile 

point, a wide gentle plateau begins going from 750 up to 1250 at about the 85 *u percentile 

point. The mode appears approximately the 47 'u percentile point and the mean is close by at 

the 54 'h percentile point. After we pass the 85 ~' percentile, the distribution approaches a 

steeply rising area signified by the contour fines getting closer and closer. The 95 'h percentile 

point looks like it is just under a value of  1500. If  we are sampling from a distribution with a 
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CV o f  1 and the sample size i f25 or above, it is not going to be a problem that the mode of  

the avenge is lower than the mean. The values are close together straddling the median 

value at the 50 ~ percentile line. It looks like we could get away with an assumption o f  a 

symmetrical distribution. 

Contour Map of Sample Average Distributions CV-  5 
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Chart 6 

When the CV is 5 as in Chart 6, the map gets to be a little more interesfng. If  we look 

across the 25-sample size gridlme again, the fifth percentile point is very close to the 250 

contour line. Now rather than a gende plateau stretching across the graph, we have a 

steadily increasing slope going across the chart up to the 1250 contour line at the 78 'h 

percentile. Here the surface starts to increase more steeply reaching just above the 2250 

point at the 95 'h percentile. On this chart, the mode and the mean are widely separated for a 

sample size of  25. Approximately 67 percent of  all the values of  the distribution are below 

the mean. The mode looks like it is situated right in the middle of  those values at the 33 'd 

percentile. There are definitely higher values that are likely to occur out on the higher 

percentile part of  the curve. 

As the sample size increases, the situation is not as clear-cut that we can get away with a 

symmetrical distribution approximation as it was when the CV was lower. Here the 1000 

contour line stays above the 60 ~ percentile until the sample size reaches 250. Even at a 

sample size of  500, the contour line for 1000 is above the 57 ~ percentile while the mode is at 

43 ra percentile. 
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These  charts  also show someth ing  interes t ing about  company  funding  and  size. Suppose 

we are collecting exactly the  expected losses f rom each insured  and  we wan t  to have enough  

surplus in the first year so that  we have a 90% chance that  surplus will no t  go negative just 

due to loss fluctuations.  Us ing  Char t  5, we can see for  a small company  p roduc ing  only 25 

claims it would  need  an  addit ional  750 o f  surplus for each claim result ing in a p remium to 

surplus ratio o f  approximately 1.33. A larger company  p roduc ing  500 claims could get by 

with a p r emi u m to surplus rat io o f  approximately 4.0. 
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