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1. INTRODUCTION 

In ma W loss reserve analyses, especially those involving long-tail casualty lines, the loss 
development mangle may end before all the claims are settled and before the final costs of 
any year are known. For example, it is quite common to analyze U. S. workers 
compensation loss reserve needs using the ten years of data available in Schedule P of the 
US NAIC-mandated Annual Statement, while knowing that some of the underlying claims 
may take as long as fifty years to close. In response to this, actuaries supplement the 'link 
ratios' they obtain from the available mangle data with a 'tail factor' that estimates the 
development beyond the last stage of development (last number of months of maturity, 
usually) for which a link ratio could be calculated. 

The tail factor is used just like a link ratio in that it estimates (1.0 + ratio of (final costs after 
all daims are closed) to (the costs as of the last development stage used)). It is of  course 
included in the product of all the remaining link ratios beyond any given stage of 
development in calculating a loss development factor to ultimate for that stage of 
development. 

This paper will discuss the methods of computing (really estimating to be precise) tail factors 
in common usage today. It will also suggest both improvements in existing methods and a 
new method. It will begin with the simplest class of methods and move forward in 
increasing complexity. 

There are four groups of methods that will be presented: 

1. The Bondy (repeat-the-last link-type) methods 
2. The Algebraic methods (methods based on algebraic relationships between the paid 

and incurred mangles) 
3. Use of Benchmark Data 
4. Curve Fitting Methods 
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As part of the discussion, commentary on the advantages and disadvantages of each 
individual method, as well as each class of methods will be included. When the opporttmity 
to discuss an improvement or enhancement that applies to multiple methods presents itself, 
a brief digression on the enhancement will be included. 

2. GROUP 1 - THE BONDY-TYPE METHODS 

The Bondy methods all arose from an approach published by Martin Bondy prior to the 
1980s. In what was thought to be a period where development decayed rapidly from link 
ratio to link ratio, he promulgated a practice of simply repeating the last link ratio for use as 
the tail factor. Since then, several variations of his method that all base the tail factor on the 
last available link ratio have arisen. 

2.1 The Bondy Method 

As explained above, the original Bondy method involves simply using the last link ratio that 
could be estimated from the triangle (the link ratio of the last development stage present in 
the triangle, or the last stage where the triangle data could be deemed reliable for estimation) 
as the tail factor. This 'repeat the last link ratio' approach probably seems crude and 
unreasonable for long-tailed lines, where link ratios decay slowly. However, for fast deca3qng 
lines (such as an accident year 1 analysis of automobile extended warranty) this method may 
work when used as early as thirty-six or forty-eight months of maturity. It must be 
recognized, though, that in long-tailed lines the criticism is usually justified. 

To truly understand this method it also may be best viewed in historical context. The author 
of the method, Martin Bondy, developed this method well prior to the 1980's. It is 
commonly believed that during the 1960s and certainly part of the 1970s the courts 
proceeded at a faster pace and, ignoring the long-taB asbestos, environmental, and mass tort 
issues that would eventually emerge, general liability was believed to have a much shorter tail 
than we see today. 

It is also of interest to note that there is a theoretical foundation that supports this in certain 
circumstances. If one assumes that the 'development portion' of the link ratios (the link 
ratios minus one) are decreasing by one-half at each stage of development, and the last link 
ratio is fairly low, then the theoretically correct tail factor to follow a link ratio of l + d  is: 

(1 +.58) x (1 + .25d) x (1 +. 125d) x (1 +.0625d) × .. . . . . .  

Or 

1+(.5+.25+.125+.0625+....)×d + terms revolving d 2, d ~, etc. 

It should be noted that policy year automobile extended warranty represents an entirely different situation. 
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Which, per the interest theorem v+ve+v3+ .... =v/(1-v) is equivalent to:  

1 +1 xd + terms involving d z, d 3, etc. 

Since d is 'small', the other terms will be smaller by an order of magnitude, making the 
implied tail factor under these assumptions very close to the Bondy tail factor, a repetition of 
the last link ratio, l+d.  So the Bondy tail factor is 'nearly' equivalent to the tail implied by 
what will later be called the 'exponential decay' method, with a 50% decay constant. 

Of  note, this involves two basic assumptions. First that the link ratios decay in proportion 
to the remaining 'development portion' of the link. Of  note, in the absence of any 
information whatsoever about the decay, that would be as reasonable an assumption as one 
could reasonably make. Second, that the decay constant is 50%. Again, in the absence of any 
data whatsoever, one-half would be as reasonable an assumption as one could possibly 
make. Of course, we do have data in the link ratios before the tail, but it is important to 
understand this theoretical basis for the Bondy tail factor. 

2.2 The Modified Bondy Method 

In this method, the last link ratio available from the triangle, call it l+d, is modified by 
multiplying the development portion by 2. The result is a development factor like l+2d. 
Alternately, the last entire link ratio may be squared, which yields nearly the same value. 
This has many of the same issues and applications as the basic Bondy method, but it does 
field a larger tail than the Bondy method itself. However, for long-taft lines it is still not 
what would be considered a truly conservative approach, as we will see later. The 
assumption here is ' The Bondy method seems to underestimate, it should be increased, the 
easiest thing to do is to multiply the development portion by two.'. 

A little algebra and the v+v2+v3+ .... =v/(1-v) theorem show that this is functionally 
equivalent to 'exponential decay' with a decay coefficient of 2/3. 

2.3 Advantages and Disadvantages of the Bondy Methods 

The primary advantages of the ]3ondy methods are that they are extremely simple to execute 
and easy to understand. Further, they involve relatively straightforward assumptions. 
However, a major disadvantage is that they tend to greatly underestimate tabs of long-tailed, 
slow-decaying lines. 

3. GROUP 2 - THE ALGEBRAIC METHODS 

These methods involve initially computing some algebraic quantity that in turn describes a 
relationship between some aspect of the paid and incurred loss triangles. Then that quantity 
can be used to generate a tail factor estimate. As with the Bondy method, and almost all tail 
factor estimation methods, they are based on assumptions. However, in this case each is 
based on some relatively simple and fairly logical assumption that some numerical 
relationship known to be true in one circumstance will be true in another. 
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3.1 Equalizing Paid and Incurred Development Ultimate Losses 

This method is the first method discussed with a full theoretical background. It is most 
useful when incurred loss development essentially stops after a certain stage (i.e., the link 
ratios are near to unity or unity). Then, due to the absence of continuing development, the 
current case incurred (sometimes called reported) losses are a good predictor of  the ultimate 
losses for the older or oldest years without a need for additional tail factor development. A 
tail factor suitable for paid loss development can then be computed as the ratio of the case 
incurred losses to-date for the oldest (accident-') year in the triangle divided by the paid losses 
to-date for the same (accident) year. That way, the paid and incurred development tests will 
produce exactly the same ultimate losses for that oldest year. 

This method relies on one axiomatic (meaning plainly true rather than an assumption as 
such) assumption and two true assumptions. The axiomatic assumption is that the paid loss 
and incurred loss development estimates of  incurred loss are estimating the same quantity, 
therefore the ultimate loss estimates they produce should be equal. The second assumption 
(the first true assumption) is that the incurred loss estimate of  the ultimate losses for the 
oldest year is accurate. The last assumption is that the other years will show the same 
development in the tail as the oldest year. 

This method may also be generalized to the case where case incurred losses are still showing 
development near the tail. In that case, the implied paid loss tail factor is 

(incurred loss development ultimate loss estimate for the oldest year) / (paid losses to- 

date for the oldest year). 

Of  course, in that instance the incurred loss development estimate for the oldest (accident) 
year is usually the case incurred losses for the oldest year multiplied by an incurred loss tail 
factor developed using other methods. 

This method has a substantial advantage in that it is based solely on the information in the 
triangle itself and needs no special assumptions. Its weakness is that you must already have a 
reliable estimate of  the ultimate loss for the oldest year before it can be used. An ancillary 
weakness flows from the assumptions underlying this method. Specifically, if  the initial 
incurred loss development test is driven by a tail factor assumption, this becomes a test that 
is also based on not only that assumption, but also the assumption that the ratio of  the case 
incurred loss to the paid loss WIU be the same for the less mature years once they reach the 
older level of  maturity where you are equalizing the paid and incurred loss estimates. 

2 Accident year is used here for illustration. Under similar circumstances, this method would also work in 
policy year, reinsurance contract year, etc. development. 
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3.1.1 An example: 

Assume that it is just after year-end of 2000. You have pulled the incurred loss triangle from 
a carrier by subtracting part 4 of Schedule P from part 2 of Schedule P. You have also 
pulled a paid loss triangle from part 3 of Schedule P. The mangles cover 1991-2000, so 1991 
is the oldest year. Say for the sake of argument that the incurred loss link ratios you develop 
are 2.0 for 12-24 months, 1.5 for 24-36, 1.25 for 36-48, 1.125 for 48-60, 1.063 for 60-72, 
1.031 for 72-84, 1.016 for 84-96, 1.008 for 96-108, and 1.004 for 108-120. This conveniently 
happens to match the exponential decay discussed for the Bondy method, so it makes sense 
to use 1.004 for the tail factor for development beyond 120 months. Now assume that the 
latest available (i.e., at 12/31/2000, or 120 months maturity) the case incurred loss 3 for 1991 
is $50,000,000 and the corresponding paid loss is $40,000,000. The incurred test ulfrnate 
using the 1.004 tail factor is $50,200,000. The paid loss tail factor to equalize the ulfmate 
would be $50~200,000 divided by $40,000,000 or 1.255. 

3.1.2 Improvement  1 - us ing  multiple years tO develop the tail factor 

As stated earlier, the previous method assumes that the current ratio of case incurred loss to 
paid loss that exists in the oldest year (1991 evaluated at 12/31/2000 in the example above) 
will apply to the other years when they reach that same level of maturit T. For a large high 
dollar volume mangle with relatively low underlying pohcy limits that may be a reasonable 
assumption, but for many reserving applications the 120 month ratio of case incurred to paid 
loss may depend on whether a few large, complex claims remain open or not. Therefore, it 
may be wise to supplement the tail factor derived from the oldest available year with that 
implied by the following year or even the second following year. This method is particularly 
useful when the later development portion of the mangle has some credibility, but the 
individual link ratio estimates from the development triangle are not fully credible. 

The process of doing so is fairly straightforward. You merely compute the tail factor for 
each succeeding year by the method above, and divide each by the remaining link ratios in 
the mangle. 

An example using the data above may help clarify matters. Given the data above, assume 
that 1992 has $50,000,000 of paid loss and $60,000,000 of case incurred loss. Also, assume 
that your best estimate of the 108-120 paid loss link ratio is 1.01. The incurred loss esfmate 
of the ultimate loss, using the 108-120 link ratio (1.004) and the incurred loss tail factor (also 
1.004) is $60,000,000×1.004×1.004, or $60,480,960. The estimated (per incurred loss 
development) ultimate loss to paid loss ratio at 108 months would then be 
$60,480,960/$50,000,000, or approximately 1.210. So, 1.210 would then be the tail factor 
estimate for 108 months. Dividing out the 108-120 paid link ratio (assumed above to be 
1.01) gives a tail factor for 120 months of 1.21/1.01 = 1.198. By comparison, the previous 
analysis using 1991 instead of 1992 gave a 120-monfll tail factor estimate of 1.255. So it is 
possible that either 1991 has a high number of claims remaining open, or that 1992 has a low 
number. Both indicate taft factors in the 120-125 approximate range, though. So averaging 

3 To be technically correct, this would be loss and defense and cost containment under 2003 accounting 
rules. 
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the estimates might be prudent. Further, the use of averaging greatly limits the impact of 
any unusually low or high case reserves that may be present in the oldest year in the mangle, 

Note also, that the improvement above involved computing an alternate tail factor using the 
year with one year less maturity. A similar analysis could also be performed on the next 
oldest year, 1993, except that two incurred development link ratios plus the tail factor are 
needed to compute the incurred loss estimate of ultimate. Correspondingly, two paid loss 
link ratios need to be divided out of the (incurred loss ultimate estimate)/(paid loss to-date 
ratio for 1993) to estimate the 120 month paid loss tail factor 

3.1.2.1 An important note 

Further, in this case the improvement involved reviewing the taft factors at various ages from 
the equalization of paid and incurred loss estimates of the ultimate loss. The core process 
involves computing tail factors at different mamries, then dividing by the remaining link 
ratios to place them all at the same maturity. As such, it can also be used in the context of 
other methods for computing tail factors that will be discussed later in this paper. 

3.1.3 A brief digression - the nrimarv activity wi th in  each deve lopment  sta~e 
v 

When using multiple years to estimate a tail factor, it is relatively important that the years 
reflect the same general type of claims department activity as that which takes place in the 
tail. For example, in the early 12 to 24 month stage of workers compensation, the primary 
development activity is the initial reporting of claims and the settlement and closure of small 
claims. The primary factors influencing development are how quickly the claims are 
reported and entered into the system, and the average reserves (assuming the claims 
department initially just sets a 'formula reserve', or a fixed reserve amount for each claim of 
a given type such as medical or lost time) used when claims are first reported. In the 24 to 
36-48 month period, claims department activity is focused on ascertaining the true value of 
long-term claims and settling medium-sized claims. After 48-60 months most of the activity 
centers on long-term claims. So, the 12-24 link ratio has relatively httle relevance for the tail, 
as the driver behind the link ratio is reporting and the size of initial formula reserves rather 
than the handling of long-term cases. Similarly, if the last credible link ratio in the mangle is 
the 24 to 36 or 36 to 48 link ratio, that mangle may be a poor predictor of the required tail 
factor. 
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3.2 The Sherman-Boor 4 Method - Adjusting the Ending Case Using 
Ratios of Paid Loss to Case Reserve Disposed Of 

This method, developed by Sherman in Section X of  [3] and independently by the author, is 
the one method that relies solely on the triangle itself and does not  require a pre-existing 
ultimate loss estinaate, involve curve-fitting assumptions, or require external data. For data 
triangles with high statistical reliability as predictors, this can represent the opt imum 
estimation process. 

This method involves simply determining the ratio of  case reserves to paid loss for the oldest 
year in the triangle, then adjusting the case reserves by an estimate of  the ratio of  the unpaid 
loss to carried case reserves. In essence, the case reserves of  the oldest accident year are 
'grossed up' to estimate the true unpaid loss using a factor. The estimate of  the (true unpaid 
loss)/(case reserves) factor is based on how many dollars of  payments are required to 
'eliminate' one dollar of  case reserves. 

The mathematical formula requires computing a mangle containing incremental rather than 
cumulative paid losses. In effect, for each point in the paid loss triangle, one need only 
subtract the prexdous value in the same row (the first column is of  course unchanged). The 
next step begins with a triangle of  case reserves. The incremental case reserve disposed of  is 
calculated as the case reserve in the same row before the data point, less the current case 
reserve. That  represents (as the beginning case reserve - the ending case reserve) the case 
reserve disposed of. Then the ratios of  incremental paid to reserve disposed of  at the same 
points in the triangles are computed. Reviewing these, the adjustment ratio for the ending 
case reserves is estimated. 

3.2.1 An  example  

Reviewing an example may help the reader follow the calculations discussed earlier. This 
method requires two triangles, one of  paid loss and one of  case reserves. Consider the 
following set of  triangles: 

Cumulative Paid Loss Triansle 

12 24 36 4{ 6C 72 
1991 1,000 2,000 2,500 2,800 2,95C 3,100 
1992 1,100 2,400 3,000 3,50( 3,90C 
1993 1,300 2,500 3,000 3,400 
1994 1,200 2,300 3,100 
1995 1,400 2,800 

1996 1,490 

4 Of note, this method was first published by Richard Sherman, FCAS in 1984 and developed 
independently by the author in 1987. Of note, the author used some business materials that contained 
precursors to this method in 1984-1986 that were developed by a firm of which Mr. Sherman was a 
principal. 
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Triangle ofCase Reserves Outstandin~ (Cumulanve Case Incurred-Cumuladve Pmd) 

12 24 36 4~ 
1991] 1,500 1,30( 900 75C 

1992[ 2,000 1,70( 1,300 90C 

1993] 1,900 1,70( 1,300 1,00C 

1994[ 2,100 2,10( 1,500 
1995 ] 2,300 2,00( 
1996] 2,500 

60 72] 
600 5001 

600 

First, we compu te  the incremental  paid loss triangle. We begin wi th  a given cell in the 
cumulative paid loss triangle, and then  we subtract  the previous  cell in the same row of  the  
cumulative paid loss triangle. Tha t  produces  the fol lowing triangle. 

Incremental P~dLossTfian#e 

12 

199' 1,00C 
1992 1,10C 
1993 1,30C 

1994 1,20C 

1995 1,40C 

1996 

72! 24 36 48 60 
I 

1,000 50C 300 150 150 I 

1,300 600 500 400 
1,200 500 400 

1,100 800 

1,400 

1,49C 

T h e n  we subtract  the current  cell f rom the previous cell in the case reserve triangle to obta in  
the triangle o f  case reserves disposed of. 

Triangle oflncremental Case Resen, esDisposedOf 
12 24 

1991 20( 
1992 30( 
1993 20( 
1994 10( 

1995 30( 
1996 

36 

40C 
40G 
40G 
60{3 

48 

150 
400 
300 

60 

150 
300 

72 

100 
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Then we divide the actual fmal costs paid (the incremental paid loss), by the assumption- 
based case reserves eliminated. 

Ratio ofPmdLossto Resen,es Eliminated 
Ii 24 

1991 500~ 
1992 433~ 

1993 600~ 

1994 1100% 
1995 467~ 
1996 

36 

125% 
150~ 

125~ 

133% 

48 6£ 72 

200% 100% 150~ 
125% 133% 

133% 

Because the early development invoR-es not just elimination of  case reserves through 
payments, but also substantial emergence of  IBNR claims, the 12 and 36 columns are 
presumably distorted. In many lines the 48 month column would still be heavily affected by 
newly reported large claims, but presumably this is medium-tail business. Looking at the 
various ratios it would appear that they average around 140%, so we will use that as our 
adjustment factor for the case reserves. 

Pulling the $500 of  case left on the 1991 year at 72 months, and the cumulative paid on the 
1991 year of  $3,100, the development portion of  the paid loss tail factor would be 
($500/$3,100)x 140% = .161x140% = .226. So, the paid loss tail factor would be 1.226. 

For the incurred loss tail factor, first note that only the 'development portion' of  the 140%, 
or 40%, need be applied (the remaining case is already contained in the incurred). Second, a 
ratio of  the case reserves to incurred loss is technically needed (replacing 1.61 with 
$500/($500+$3,100) = .139). Multiplying the two numbers creates an estimate of  the 

development portion of  the tail at .4x.139=.056. So, the incurred loss tail factor estimate 
would be 1.056. 

3.2.2 An Important Note  

As is the case with most of  the other methods, this method has strengths and weaknesses. 
Significant strengths o f  this method are that it requires only the data already in the triangle 
and that it does not require additional assumptions. The weakness is that it can be distorted 
if the adequacy of  the ending case has changed significantly from the previous year. The 
reader is advised to also follow Improvement 1 and also evaluate the tail at the next-to-oldest 
year. 
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4. GROUP THREE- METHODS THAT USE BENCHMARK DATA 

A common solution to the ratemaking problems generated by data with partial statistical 
rehability (credibility) is to supplement the claims data with a 'complement of  credibility'. O f  
course, tail factor estimation problems stem more from a lack of  any data at all after the 
oldest development stage in the triangle rather than from partially rehable data. But, we can 
adopt a similar strategy and add outside data in the form of benchmark development factors. 

4.1 Directly Using Tail Factors From Bencbmark Data 

As noted above, many actuaries review benchmark data in selecting tail factors s. Benchmark 
data may come from one of  several sources. Perhaps the most common is the use of  the 
data triangles that can be developed from Best's Aggregates and Averages for each of  the 
Schedule P lines. The two larger rating bureaus, the National Council on Compensation 
Insurance and Insurance Services Office; as well as the Reinsurance Association of America, 
all publish benchmark loss development data. At its simplest, this method invokes cop3fing 
the derived remaining development factor at the maturity desired for the tail factor. 

It is important to note, though, that the quality of  the benchmark tail factor as an estimate of  
the tail depends on how closely the tail development of  the benchmark mirrors the tail 
development of  the book of business being analyzed. Considerations such as differences in 
the way claims are adjusted or reserved, differences in the potential for long-developing high 
value claims, differences in the initial reporting pattern of  claims (claims-made vs. 
occurrence, whether or there is an innately long discovery period or not, etc.), and 
differences in the adjudication process of  litigated claims can all cause differences in 
development patterns. It is important to consider those factors along with the statistical 
reliability of  the benchmark triangle when selecting the most appropriate benchmark tail 
factor. 

4.2 Using Bencbmark Tail Factors Adjusted to Company Development 
Levels 

One way to address differences between the benchmark development pattern and the 
development pattern of  a given book of  business is to try to adjust the benchmark data to 
more closely mirror the subject book of  business. A common practice is to review the 
relafivities of  link ratios from the triangle being analyzed to benchmark link ratios. Of  
course, there is not a tail factor for the triangle being analyzed (we are Wing to estimate 
one). So, instead we can review the quotients (relativities) of  subject triangle link ratios to 
those of  the benchmark data at the development stages prior to the tail development stage. 
The relativities from those stages are used to estimate a adjustment multiplier for the 
benchmark tail factor. Of  note, generally just the development portions ('d' of  l+d)  are 
compared in all the relativities we compute. 

s It is also common for actuaries to review benchmark data to supplement the portion of the reserve triangle 
following 72, 60, 48, or even 36 months when the overall triangle has medium credibility and hence has 
less than medium credibility in the portion that is dominated by activity on a smallish number of claims. 

354 Casualty Actuarial Society Forum, Winter 2006 



Estimating Tail Development Factors 

4.2.1 An examnle 

An example will help to illustrate how the process works. 
patterns: 

Consider the following two 

Link 

Ratio 

Estimated Benchmark 
Months of By Link 

Maturity Triangle Ratio 
12 2.00( 2.00( 
24 1.45( 1.35( 

36 1.20( 1.15( 
48 1.15( 1.10( 
6C 1.10( 1.05( 
72 1.08( 1.03( 
84 1,05( 1.025 
9~ 1.035 1.02( 

108 1,01( 1,01( 

Ta/ 1.05( 

We then simply compute the relativity quotient of  the 'development port ion'  of  our triangle- 
based link ratios to the development portion of  the matching benchmark link ratios. Noting 

that 1+1 = 100%, .45+.35 = 129%, .2+.15 = 133%, etc. 
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Link 

Ratio 

Estimated Benchmark 
Months of b v Link 

Matufi~" Triangle Ratio 

12 Z00( 2.00( 
24 1.45( 1.350 
3{ 1.20( 1.150! 

48 1.15( 1.10( 

6(] 1.10( 1.051 

72 1.08( 1.03C 
84 1.05( 1.025 
9{ 1.03~ 1.02( 

108 1.01( 1.01C 

Relafivi~, of 
Triangle 

Development 
to 

Benchmark 

100% 

129% 

133% 

150% 

200% 
267°/, 
200°A 
175°A 

100% 

Tail 1.05( 

Ehosen Ratio 175% 

;Implied Tail ] 1.08[ 

In the case above, we judgmentaUy select that the triangle development is roughly 175% of 
benchmark based on the 60 through 108 month  relativities. So the .05 development portion 

of the benchmark tail becomes .05x1.75=.0875~.088. Consequently the entire tail factor, 
including tmity, is 1.088. 

4.2.2 Ano the r  i m p o r t a n t  no te  

It is important  to consider that adjusting the benchmark tail for actual triangle link ratios is 
only helpful as long as the link ratios, or at least the broad pattern of  link ratios has statistical 
reliability (predictive accuracy). I f  not, the uncertainty surrounding the true long-term link 
ratios of the block of  business will cause the adjusted tail factor to lack predictive accuracy. 
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4.3 Advantages and Disadvantages o[ Using Benchmark Data 

When a good benchmark tail factor is available, this is both one of  the easiest and also 
among the most usefi.fl methods. However, it is often difficult to find a perfect match in 
terms of  all the factors (claims handling, case reserving, potential for large claims, etc.) that 
affect loss development. Adjusting the benchmark improves the fit markedly. One could 
even think of  the process of  adjusting the benchmark as that of  fitting a curve to the link 
ratios, where the family of  curves you are fitting from consists of  various relativity-adjusted 
versions of  the benchmark. If  the benchmark is remotely related to the book of  business 
being analyzed, that family of  ctm'es should be a superior choice to the highly assumption- 
driven curve families discussed later under curve fitting. 

On the other hand, it is often very difficult to obtain the more-mature data needed to create 
a reliable benchmark tail factor. So, for tail factors beginning at 108 or 120 months, it may 
be very difficult to find a suitable benchmark. 

5. GROUP 4 -THE CURVE HTTING METHODS 

As good students of  numerical analysis, actuaries long ago realized that they could attempt to 
extrapolate the tail development by fitting curves to the development before the tail, then 
using the fitted curve to extrapolate the additional tail development. Some methods have 
been developed that fit a curve to the paid or incurred loss. Other methods fit to the link 
ratios. What they all have in common is that they begin with some assumption about the 
development decay that gives rise to a family of  curves, and then select the coefficient(s) that 
specify the particular member of  the family of  curves that best fits the data. As with most 
extrapolations, they are as good as the assumptions that underlie them. 

5.1 McClenahan's Method-Exponential Decay of Paid Loss Itself 

McClenahan's method (as discussed in [1]) fits a curve to a set of  data per an assumption 
that the incremental paid loss of  a single accident year will decay exponentially over 
increasing maturities of  the accident year. In effect, that there was some decay rate 'p' and 
that the next month's payout on the accidents in a given month would always be 'p' times 
the current month's payments on that given accident month. He combined that with an 
assumption that no payments occurr in the first few months of  a claim. Putting those pieces 
together mathematically, he inferred that the payments in a given incremental month of  
maturity (call it 'm') were 

Ap( m *)q. 
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In this case A is a constant of  proportionality and 'p', (0<p< 1, q= (l-p)) represents the decay 
rate ~ and 'a '7 represents the average lag time until claims begin to be paid. A theorem from 
the study of  compound interest states that 

- ~ A p  ~m-~) q= A~'~ p ' q=  Aq/(1-p)=Aq/q =A. 
m::~ i=0 

So A is actually the ultimate loss for the entire year. 

Then,  under this assumption, the additional payments or incurrals beyond x months  are 
theoretically determined by the basic formula, at least once p and a are estimated. And there 
are several ways to estimate p and a. For convenience, p is monthly, but pl',  the annual 
decay rate, may be defined as 'r 's. Then r may be estimated by reviewing the ratios of  
incremental paid between m+12 and m+24  months  to the incremental paid between m and 
m+12  months.  McClenahan advised that 'a' could be estimated by simply reviewing the 
average report lag ̀) (average date of  report-average date of  occurrence) for the line of  
business.. Then, a curve of  the form 

A f ,  

where y is the maturity of  the accident year in years before each amount  of  incremental paid 
can be fit to the incremental dollar amounts of  paid loss (or incurred loss, as long as no 
downward development in incurred loss is present in the development pattern). 

Then,  McClenahan shows that the percentage remaining unpaid for an entire twelve month  
accident year at m months  of  (returning to p = r t/12) is 

(l_p)X(pm+,-a+ p=+l-a ,+ pm*,+=+...+ p,.+l+n)/(12X(1_p)) = p,~-~-> (1-p'Z)/12q 

The tail factor at m months is of  course unity divided by the percentage paid at m months,  
o r  

1/(100% - percentage unpaid at m months). 

6 McClenahan's model actually incorporates additional variables for trend, etc that may be collapsed into 
'p' for purposes of this analysis. 
7 In Mclenahan's original paper, 'd' is used instead of 'a'. But, since I have used 'd' to denote the 
development portion of the link ratio or development factor, I am using 'a' to denote the average payment 
lag. 
8 Please note that the usage of 'r' in this context is different than the usage in McClenahan's original paper. 
It is used merely because it represents an annual rate. 
9 Note that 'a' applies on a month-by-month basis. So it is technically incorrect to say that the average lag 
between the beginning of all loss reporting for an accident year is six months (the average lag between 
inception of the accident year and loss occurrence, at least for a full twelve month accident year) plus 'a' 
months. To simplify the calculations, the first twelve months can be excluded from the fit 
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Substituting our formula for the unpaid at 12 months ,  McClenahan's  me t hod  produces  a tail 
factor o f  

1/{1 - [p"~ ~'" (1- p '3 /12q]}  

Some algebra reduces that to 

1 2 q / { 1 2 q -  pm-~-u, (1- p*-') }, 

which provides a nice closed form*" expression for the tail. 

An Example: 

Assume that you begin with an 85ea r  triangle, and generate the following link ratios: 

12-24 5.772 

24-36 1.529 

,6-48 1.187 

48-60 1.085 

;0-72 1.042 

72-84 1.022 

84-96 1.012 

The first step is to covert  t hem to a form o f  dollars paid ( remember  that there are different 
paid amounts  for different accident years, so we just begin with one  hundred  dollars for the 
cun-e fitting and multiply by the successive link ratios. 

Development Link 

Stage Ratio 
12-24 5.772 
24-36 1.52c~ 

36-48 1.18"~ 
48-60 1.08 
60-72 1.047 

72-84 1.027 

~4-96 1.01." 

Equivalent 
Beginning Cumulative 
Mamfi~- P~d 

12 $100.00 
24 $577.23 

36 $882.45 
4~ $1,047.38 

6C $1,136.50 

77 $1,184.66 

84 $1,210.68 

9{ $1,224.75 

m It should be noted that while a closed form expression makes the calculations easy, for some audiences, it 
may be preferable to show the projected link ratios, at least until they are overwhelmingly close to unity. 
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Then  subtract successive cumulative paid amounts  to obtain 'normalized to $100 o f  first year 
paid'  incremental  dollars at each stage o f  deve lopment  that mirror  the actual link ratios. 

Development Link 

Stage Ratio 

12-24 5.772 

24-36 1.529 

36-48 1.187 

48-60 1.085 

60-72 1.042 

72-84 1.022 

84-96 1.012 

Beginning 

Maturm" 

12 $100.00 

24 $577.23 

36 $882.45 

48 $1,047.38 

60 $1,136.50 

72 $1,184.66 

84 $1,210.68 

96 $1,224.75 ! 

Equivalent Incremental 

Cumulative Paid 

Paid (Difference) 

$100.0( 

$477.22 

$305.2~ 

$164.92 

$89.1~ 

$48.1( 

$26.0,~ 

$14.0e 

T h e n  ratios o f  the successive 'normalized '  incremental  paid amounts  can be taken. 

Development Link 

Stage Ratio 

12-24 5.772 

24-36 1.529 

36-48 1.187 

48-60 1.085 
60-72 1.042 
72-84 1.022 

84-96 1.012 

Be~annm~ 

Mamrit)- 

12 $100.00 
24 $577.23! 

36 $882.4" 

48 $1,047.3~ 
60 $1,136.5( 
72 $1,184.66! 
84 $1,210.681 
96 $1,224.75 

Equivalent Incremental 

Cumulanve Paid 

Paid (Difference) 

$100.0( 

$477.22 

$305.2,~ 

$164.93 
$89.1,~ 

$48.1~ 
$26.0,2 

$14.0{ 

Year 

to Year 
Ratio 

4.7723 

0.6396 

0.5404! 
0.5404 

0.5404 
0.5404 

0.5404 

As one  can see, in this contrived example, the deve lopment  stage-to-stage ratio is a cons tant  
r = .5404. It 's twelve root  p is p = r 1/n = .95. 

That  o f  course only provides p, the average delay must  be found as well. Because the answer 
is contr ived to have a=7 months ,  a= 7 mon ths  will work  perfectly n for this example,  bu t  
note that McClenahan suggests merely using the repor t  delay for the b o o k  o f  business to 
determine 'a'. 

Using a= 7 m on ths  and p = .95, the computed  tail factor is 

1 2 q / { 1 2 q -  .95 m-a-''' (1- .9512)}, = .6/{.6 - .017385(1- .5404)} = 1.0135. 

I f  one reviews the link ratios prior to this, it certainly appears to be reasonable. In  fact, 
extending the payout to additional stages o f  deve lopment  will conf i rm its accuracy. 

n An interested reader can confirm that a=7 months and p=.95 yields the exact link ratios above. 
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5.1.1 Advantages and disadvantages of McClenahan 's  method 

At its core, McClenahan's method involves three basic assumptions: First, it assumes that the 
pattern of  paid loss will be a constantly decreasing pattern, at least after all the initial report 
lags are finished. Second, he assumes that the reduction will always occur in proportion to 
the size of  the most current payout (exponential decay). Third, he assumes that the 
exponent of  decay is constant throughout the entire payout pattern. Logically speaking, if 
one knew nothing about the individual pattern of  the data, but was forced to make some 
assumptions, those assumptions would seem to be about as minimal and reasonable as 
possible (excepting perhaps the third). But it is important to remember that they are 
assumptions and as such will color the predictions the method generates. They do suggest 
exponential decay of  the paid amounts, and exponential decay is a relatively fast decay 
relative to other forms of  asymptotic (far out in the tail) decay. Moreover, it does seem that 
in practice the decay in paid loss often seems to 'stall out' and show less decay near the tail. 

5.1.2 Improvement  2 - exact  fitting to the oldest vear  

A common problem with fitted curves is that the combination of  the curve assumptions and 
the data in the middle of  the triangle may create a curve that varies significantly from the 
development factors at the older stages. McClenahan's method is relatively unique in that 
the cutn, e is fit to the incremental paid, rather than the link ratios (as will be done in most of  
the later methods). Nevertheless, we can often improve the quality of  the tail prediction by 
comparing the fitted value to the actual incremental paid loss at the latest stage. 

This approach is especially helpful when the curve does not match the shape of  the data 
itself. For example, assume that the assumption of  a constant decay rate does not hold. Say 
the initial year-to-year decay was high at between 3612 and 48 months, 48 and 60 months, 
etc., but the decay rate at 84 to 96 months and 96 to 108 months, etc. is much less (i.e., a 
higher decay factor). Then, the last incremental payments (say between 108 and 120) may be 
much higher percentagewise than what is implied by the fitted curve. 

In that case 13, one need merely multiply the 'development portion' of  the tail factor (the tail 
factor minus one) times the ratio of  the actual 108 to 120 increment to the fitted increment. 
Of  course, unit 3, (one) must be added to the final result to produce a proper tail factor. 

12 Note that because of the delay a before payments, etc. begin, the apparent decay between 12 and 24 
months and 24 to 36 months is a distortion of the true annual decay. 
~3 Assuming that the data has enough volume for the 108 to 120 link ratio to have full credibility. 
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For example, in the above data, the last incremental data shown is from 96 to 108 months. 
In that case the fitted value equals the actual 'normalized' value equals $14.06 per a 96 to 108 
link ratio of  1.012 and decay rate of  .5404. But what if we had the same decay rate overall, 
but the link ratio from 96 to 108 was 1.018. In that case, the incremental paid would be 
$21.09, or 150% of the fitted value of  $14.06. Then the adjusted tail factor would be: 

l+150%(fitted tail factor-I) = 1+150%(1.0135-1)=1+150%x.0135=1.0203. 

Note that in the case of McClenahan's method, the ratio used for 'exact fitting' is the ratio of  
actual to fitted paid loss. In the later methods, where a curve is fit to the 'development 
portions', a ratio of  development portions should be used to produce the exact fit to the last 
link ratio. 

5.1.3 Improvement  1 (using mult iple  years to est imate the tail) can enhance 
improvement  2 

For McClenahan's method, and all the curve-fitting methods, improvement 1 can only be 
done in connection with improvement 2. In essence, the concept is to create an exact fit to 
the next-to-oldest link ratio or 'normalized' paid loss, and perhaps the third-to-last link ratio 
as well. Then, the implied tail factors can be averaged or otherwise combined into a single 
tail factor indication. This method is particularly useful when the 'tail' of  the triangle has 
some credibility, but the individual link ratio estimates from the development triangle are not 
fully credible. 

Dev Link Endin F 

Sta~e Rat io  ~htufiw 

12-24 5.772 ! 12 

24-36 1.529 24 

36-48 1.187 36 

¢8-60 1.0851 48 

50-72 1.0421 6G 

72-84 1.02~ 72 

84-96 1.012 84 

96 

Eqmvalent Incremental 

Cumulative Paid 

P r o d  ~Differenc~ 

$100.00' $100.00 

$577.23 $477.23 

$882.45 $305.22 

$1,047.38 $164.93 

$1,136.50! $89.12 

$1,184.66] $48.16 

$1,210.68 $26.02 

$1,224.75 $14.06 

Year Rexfised Equivalent 

to Year Link Cumulative 

Rauo Ratio Pmd 

5.772 $100.00 

4.7723 1.529 $577.23 

0.6396 1.187 $882.45 

0.5404 1.085 $1,047.38 

0.5404 1.042 $1,136.50 

0.5404 1.044 $1,184.66 

0.5404 1.018 $1,236.79 

0.5404 $1,259.05 

Incremental 

Pmd 

(Differenc~ 

$100.00 

$477.23 

$305.22 

$164.93 

$89.12 

$48.16 

$52.13 

$22.26 

For example, the table above contains the data cited in the original example of  McClenahan's 
Method (5.1) as the first set of  link ratios, equivalent cumulative paid, etc. But, beginning 
with the 'Revised lank Ratio' column it contains alternate link ratios, etc. for 72 months and 
later. Using that data, one would still conclude that the fitted annual decline is.5404. But, 
now the last rink is 1.018 (as in 5.1.2 - Improvement 2) instead of  1.012, and that the next- 
to-last (penultimate) 72-84 rink is 1.044 instead of 1.022. In this case, the implied normalized 
incremental paid between 72 and 84 monthsis now $52.13 instead of the original $26.02. 
$52.13 is approximately twice $26.02, so the 72-84 activity would imply a tail factor of  
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l+200%(fi t ted tail f ac to r - I )  = 1+200%(1.0135-1) = 1+200%x.0135 = 1.0270. 

The implied tail factor per the 84-96 link ratio is very close to the 1.0203 of  the previous 
example. Note that the normalized paid loss in the 84-96 stage is $22.26 now or roughly 
158% of paid loss. That  implies a tail factor of  

1+158%(1.0135-1) =1+158%x.0135 = 1.0213. 

So, averaging the two, a tail factor in the range of  1.024 might be optimal. 

5.2 Skurnick's 14 Simplification of McClenahan's Method 

Skumick's approach in [3] is essentially the same as McClenahan's. The difference is that 
Skumick does not include the delay constant. Further, Skumick does not  calculate a single 
decay rate for the entire triangle using selected link ratios. Rather Skumick fits a curve to 
each accident year and uses each cuta-e as the sole mechanism of  projecting each year's 
ultimate losses. MathematicaUy, his tail factor reduces to 

( 1 - ~ ( l _ r _  ry ) 

where r and y are as before. In this case y denotes the number  of  years of  development at 
which the tail factor will apply. 

An E:eample 

Consider the following incremental loss payouts: 

Development Accident Year 
Stage 199i 1991 

12 400( 1000 
24 2000 2000 
36 100( 1000 
4~ 500, 500 
6G 25( 250 
72 12~ 125 
84 62.5 62.5 
96 31.25 

14 This method is also referred to as the 'Geometric Curve' method. 

Casualty Actuarial Society Forum, Winter 2006 363 



Estimating Tail Development Factors 

For  illustration o f  the curve fitting process,  the 1992 data p roduces  the  following table, w h e n  
a curve is fit to the natural  logar i thms o f  the paid loss in each year (using the  identity 
~ ( a x ~ )  = ~(.a)+yXk,(r) ). 

Fitted Line 

Development Stase Amount Log of Ln(A) = 8.987 EXP = A = 8000 Fitted 

Stage in Years Paid ~mount Ln(r) = -.693 EXP = r = 0.5 Cu~'e 

12 1 4,00( 8.29405 4,000 

24 2 2,00( 7.600902 ! 2,000 

36 3 1,00( 6.907755 1,000 

48 4 50C 6.21460{ 500 

60 5 25( 5.521461! 250 

72 6 125 4.82831~ 125 

84 7 63 4.135161 63 

Fit 

gr~or 

The  tail factor is t hen  (1-.5)/(1-.5-.57)=.5/(1-.5-.007813) = 1.0159. 

T h e  above is o f  course  a contr ived example.  But  consider  the  m o r e  typical case o f  the  1991 
accident  year. In  this case, the paymen t s  begin low, then  decrease after reaching a ' h u m p '  in 
the  24 m o n t h  stage. The  eventual  rate o f  decrease is still .5, bu t  the  curve fit produces:  

Fitted Line 

Development Stage Amount Los of Ln(A) = 8.294 EXP = A = 4000 Fitted 

Stage m Years Paid kmount Ln(r) = -0.578 EXP = r = 0.56123 Cur~,e 

F~t 

Error 

12 1 1,00C 6.907755 2,245 

24 2 2,00C 7.60090; 1,122 

36 3 1,00¢ 6.907755 561 

48 4 50C 6.21460{ 281 

60 5 25C 5.521461 140 

72 6 125 4.82831~ 70 

84 7 63 4.13516~ 35 

96 8 31 3.44201~ 18 

-1,245 

878 

439 

219 

110 

55 

27 

14 

Because  o f  the h u m p  shape 'r '  is c o m p u t e d  at a h igher  (i.e., less decay) value, .5613. H e n c e  

the  tail factor is m u c h  larger at 

(1 -.5613) / (1 -.5613-.56137) = .4387/( .4387-.017554) = 1.041 7. 
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5.2.1 Advan tages  a n d  d i sadvan tages  of  Skurniclds  m e t h o d  

The primary advantage of  Skumick's method, at least relative to McClenahan's method, is 
that the calculations are much simpler. But correspondingly, this method invoh'es not  only 
all of the assumptions underlying McClenahan's method; a constantly decreasing pattern, 
exponential decay, and a lack of  trend in the decay rate; it adds the assumption of  no lag 
between the accident date and when payments begin. The last assumption is clearly untrue 
in the vast majority of  cases. 

As shown above, an additional major disadvantage is that it does not accommodate 'hump 
shaped' patterns well. The problems with hump-shaped curves sen-e as an introduction to 
the next improvement. 

5.2.2 I m p r o v e m e n t  3 - l imi t  curve f i r i n g  to the  m o r e  m a t u r e  years 

Skurmck's method is a prime candidate for this approach, because it is so common to have a 
'hump-shaped'  payout curt-e, whereas by the very nature of  the exponential curve, 
exponential curves are monotonically decreasing. So, it is logical to refocus the tail 
estimation process, putting primary emphasis on the tTpe of  claims activity occurring near 
the tail. 

Going back to the 'Brief Digression' on types of  claims activity, the t3"pe of  claims activity 
most closely associated with the tail does not  begin until after 48 or 60 months.  So, it would 
be logical to just fit the development cun, e to the paid after 60 months. The result of  
performing that limited fit on the 1991 data used to illustrate Skumick's method is shown 
below. 

Development 

Stage 

72 
84 
96 

Freed Line: 

Stage Amount Log of Ln(A) = 8.987 EXP = A = 8000  Fitted Fit 

in Years Paid Amount Ln(r) = -0.69 EXP = r = 0.5 Cun, e Error 

6 12~ 4.82831 125 
7 62 4.13519 62 
8 31 3.4420~ 31 

As expected, this produces the correct decay rate value of  'r '  = .5, and the corresponding tail 
factor of 1.0159. 
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5,2.1 A note of  caution 

The above improvement is logical and generally works well with large volume high- 
credibility data. When the mangle is of  'medium 'is size and has a fairly high cap on loss size, 
the mangle will not have full credibility. Therefore, a fit to paid data directly out of  the 
mangle will likely lead to poor tail factor estimates. Of  note, Skumick's method is not the 
only method where this will yield poor tail esnmates. It will happen with all the curve-fitting 
methods. 

5.2.3. Improvements 1 and 2 applied to Skumick's method 

These improvements and their processes have likely been discussed enough earlier in this 
paper to eliminate a need for examples. Logically, both improvements may be applied while 
using Skurnick's method. 

Method 1, using multiple ending years can be applied by simply fitting the curve to all the 
payments but the last year, computing the corresponding tail factor for the next-to-last stage 
of  development, and dividing by the last link ratio. 

Method 2 can be performed just as it was in McClenahan's method. For example, in the 
poor curve fit obtained when fitting to all of  the 1991 data, the 'development portion' of  the 
fitted tail, 1.0417-1 =.0417 could be multiplied by the ratio of  the actual incremental paid loss 
in the 96-108 stage (31, holding the place of  the exact value 31.25) to the fitted value 
(rounded to 18). Note though, that the 'corrected' tail factor is even further off at 
1 + 31 ×.417 / 18 = 1.0718. This illustration of  when improvement 2 does not improve the tail 
factor prediction is intended to further show what happens when the t3.'pe of  curve fitted is a 
poor match for the pattern of  the data. 

5.3 Exponential Decay of the Development Portion of the Link Ratios 16 

This method is the first of  several methods that extrapolate the tail factor off the loss 
development link ratios rather than the paid loss. This method was referred to briefly in the 
discussion of  the Bondy method as a possible source of  theoretical underpinnings for the 
two Bondy methods. The process is very simple. Given a set of  link ratios l+dl ,  l+d2, 
l+d3,.... 1+~., a curve of  the form 

D x r  = 

where D is the fitted development portion of  the first link ratio and r is the decay constant, 
is fit to the dm's. The easiest way to do so is by using a regression to the natural logarithms 
of  the dm's. Then, for an ending dy of  small size, the additional development can be 
estimated by using the previous approach of  

Ls It is very difficult to quatify 'medium' in a manner that will work across the different lines of insurance 
and still be meaningful years in the future. At the time this was written, an example of a 'medium" volume 
triangle might be a very large workers compensation self-insurance fund. 
16 This method was outlined in Sherman's paper, but likely was already heavily used by actuaries before 
Sherman's paper was published.. 
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f i  (1+ D x r ' )  =[I ( l+d: . r" ' )  = l + d , .  ~ r m = l+d~z / (1 - r ) .  
h i = )  + l  m = l  ' m = 3 + l  

This also automatically introduces Improvement  2 by fitting exactly to the last point. Similar 
algebra would show that the tail factor is approximated by 

1+ D x r  y+I /(l-r). 

For an ending dy of larger size, it may be necessary to simply project the link ratios for the 
next fifteen or so years (until the additional tail is immaterial), then multiply them all together 
to create a tail factor. 

5.3.1 An  example  

Consider the following sample link ratio data. 

StaRe Link 
m Years Rauo 

Development 
Sta[{e 

2~ 
3{ 
4{ 
6( 

72 
84 

1 1.5 
2 1.25 
3 1.125 
4 1.0625 

5 1.03125 
6 1.015625 
7 1.007813 

The astute reader will notice that is a pattern similar to that underlying the Bondy method. 
In any event, to fit our exponential curve to the development portion, we first subtract unity 
to obtain the development portion of  each link ratio. 

Development Sta~e Link Development 
Stase in Years Ratio Portion 'd' 

12 1 1.5 

24 2 1.25 

36 3 1.125 
48 4 1.0625 

60 5 1.03125 

72 6 1.01562~ 
84 7 1.007812 

0.5 

0.25 

0.125 

0.0625 

0.03125 
0.015625 

0.0078125 

Casualty Actuarial Society Forum, Winter 2006 367 



Estimating Tail Development Factors 

Then,  as a precursor  to cun 'e  fitting, we take the natural logarithms o f  the development  

portions,  or "d's".  

Development Stage L i n k  Development Lo B of 

Stage in Years R a t i o  Portion 'd' d' 

1~ 1 1.5 0.5 -0.69315 

2a 2 1.25 0.25 -1.38629 

3{ 3 1.125 0.125 -2.07944 

4{ 4 1.0625 0.0625 -2.77259 

6( 5 1.03125 0.03125 -3.46574 

7~ 6 1.015625 0.015625 -4.15888 

84 7 1.007813 0.0078125 -4.85203 

Then,  we fit a line to those logarithms. Standard commercial spreadsheet software produces: 

Development Stage L i n k  Development Log of Fitted Curve Values 

Stage in Years R a t i o  Portion 'd' d' Slope -0.6931 

Intercept 0.0000 

1~ 1 1.5 0.5 -0.69315 

24 2 1.25 0.25 -1.38629 

3{ 3 1.125 0.125 -2.079& 

4~ 4 1.0625 0.0625 -2.77259 

6£ 5 1.03125 0.03125 -3.46574 

72 6 1.015625 0.015625 -4.15888 

84 7 1.007813 0.0078125 -4.85203 
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Then ,  our  'D ' ,  or  deve lopmen t  por t ion  at t ime zero, is the e x p o n e n t  o f  the  intercept,  and  the  
rate o f  reduct ion,  'r '  is the  e x p o n e n t  o f  the slope. Calculating the  exponen t s  and  the  fitted 
curve,  we get: 

Development 

Sta~e 

12 

24 

36 

48 

60 

72 

84 

Stage Link Developmen! Lo~ of Fi,ed Cu~'e Value~ Fi,ed 

m Years Ratio Portion 'd' d' 5lope -0.6931 Cum-e 

[ntercept 0.0000 

1,5 0.~ -0.69315 

1.25 0.2~ -1,38629 = exp/slope ) 

1.125 0.12~ -2.07944D = exp(intercept) 

1.0625 0.0625 -2.77259 

1.03125 0.03125 -3.46574 

1.015625 0.015625 -4.15888 

1,007812 0.007812~ -4.85203 

1 1.50000 

2 0.5 1.25000 

31 1! 1.12500 

4 1.06250 

5 1.03125 

6 1.01563 

7 1.00781 

8 1.00391 

9 1.00195 

10 1.00098 

11 1.00049 

12 1.00024 

13 1.00012 

14 1.00006 

15 1.00003 

16 1.00002 

17 1.00001 

18 1.00000 

19 1.00000 

20 1.O000C 

21 1.0000C 

22 1.0000C 
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Then ,  for reference we compu t e  the  tail factor us ing  bo t h  the  'quick'  formula  usable for 

smaU remain ing  ' deve lopmen t  por t ions ' ,  and  by mul t ip lying the  fifteen fitted link ratios that  
make  up the  tail. 

Quick Formula Tail 

1 +1x(.5^8)/(1-.5) = 1.00781 

I 
Product of 8-22 Links 1.00783 

As  one  can see, the  difference is negligible. 

5.3.2 A m o r e  rea l i s t i c  e x a m p l e  

T h e  previous  example  was contr ived to make  the  ma thema t i c s  clear. Cons ider  the  following 
set o f  more  realistic data. 

Development 

Sta~e 

12 
24 
36 
48 
60 
72 
84 
96 

Sta~e 
in Years 

Link 

Rauo 

1 2.000 
2 1.250 
3 1.090 
4 1.050 
5 1.040 
6 1.030 
7 1.028 
8 1.020 

A cun-e can be fit to the  data us ing  the  m e t h o d o l o g y  employed  in the previous  example.  

Development 
Stage 

12 
24 
36 

48 
60 
72 

84 
96 

108 

Stage Link 
in Years Ratio 

Fitted Cun-e Values ] Fitted Fit 
Slope -0.4415 Curve Error 
Intercept -0.5723 

Development Log of 
Portion 'd' d' 

1 0.0000 

0.25 -1.3863 
0.09 -2.4079 

0.05 -2.9957 
0.04 -3.2189 
0.03 -3.5066 

0.028 -3.5756 
0.02 -3.9120 

0.018 -4.0174 

1 2 1.3628 -0.6372 
2 1.25 r = exp(slop~ 0.643042 1.2333 -0.0167 

3 1.09 D =  exp~ntercepO 0.56422 1.1500 0.0600 
4 1.05 1.0965 0.0465 
5 1.04 1.0620 0.0220 

6 1.03 1.0399 0.0099 
7 1.028 1.0257 -0.0023 
8 1.02 1.0165 -0.0035 
9 1.018 1.0106 -0.0074 

No te  that  the  fit errors exhibit  some  c)clic behavior ,  negative as a group at first, then  
positive f rom 3-6 years, then  negative again at 7-9 year maturit ies.  This  suggests  that  the 
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curve may be  a poo r  fit. Tha t  is bo rne  out  by the relat ionship o f  the tail factor estimates 
with  and  wi thou t  exact fit to the last rink ratio: 

( • u i c k  Formula Tail 
1,,+,Dx(r^lO//(1-r ) = 

Product of 8-22 Est. Links 

I 

1.019108 

1.019226 

After exact fit to last link 
1+.0191 x.018/.01061 ] 1.032403 

Once  again the 'quick approximat ion '  to the tail is a lmost  identical to the  precise tail 
indicated by exponent ia l  decay. However ,  note  that  because o f  the poor  fit o f  the curve near 
the tail, the use o f  I m p r o v e m e n t  2 (exact fitting to the last link ratio) produces  a markedly 
different  tail factor. The  quest ion o f  which  tail factor is bes t  mus t  now be  answered. 

To  do so, I m p r o v e m e n t  3 (fitting the curve solely to the mature  years) is in order. In  this 
case, the  curve will simply be  fit to years 4 (48 months )  and  beyond.  Tha t  produces  the 
following fit; 

Development 
Stase 

48 
60 
72 
84 
96 

108 

Sta~e Link Development Lo~ of Fitted Cun,e Values 
inYears Ratio Portion 'd' d' Slope -0.2073 

Intercept -2.1900 
4 1.05 0.05 -2.9957 
5 1.04 0.04 -3.2189 r = exp(slope) 
6 1.03 0.03 -3.5066 D =  exp0ntercepO 
7 1.028 0.028 -3.5756 
8 1.02 0.02 -3.9120 
9 1.018 0.018 -4.0174 

0.812748 
0.111915 

Fitted Fit 
Curve Error 

1.0488 -0.0012 
1.0397 -0.0003 
1.0323 0.0023 
1.0262 -0.0018 
1.0213 0.0013 
1.0173 -0.0007 

Which  produces  the following tail estimates: 

Quick Formula Tail 
l+Dx(r^l~)/(1-r/= 

Product of 10-24 Est. 
Links 

I 
After exact fit to last link 

1.075166 

1.075813 

1 +.075x.018/.0173 I 1.078035 
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Due to the low fit errors, as long as the 48-120 development triangle data that generated the 
link ratios is credible, this would strongly suggest that a tail factor of  around 1.075 is needed. 
Note also that the 'quick approximation also works well in this instance. In summary, this 
example illustrates the importance of  restricting use of  the fitted curve to the portion of  the 
development data that it can reasonably fit. 

5.3.3 Advantages  and disadvantages of  this method v 

A primary advantage of  this method is it's simplicity. The assumption of  exponential decay 
is relatively easy to understand. The calculations have moderate complexity, but an 
illustration of  the fitted values can readily give laypeople comfort that the method is being 
executed correcdy. Of  note, this method is 'asymptotically equal' to both McCleuahan's and 
Skumick's methods, yet is much simpler to execute. That also leads to it's major 
disadvantage. Because it assumes such a quick decay of  the [ink ratios (exponential decay is 
faster decay than l / x ,  l / x  2, l / x  3, etc.), it can easily underestimate the tail. 

5.4 Sberman's Method - Fitting an Inverse Power  Curve to tbe Link 
Ratios 

This method, the l a s t  17 of the curve fitting approaches to be discussed, was first articulated 
by Sherman [2]. Sherman noted TM, while fitting a curve from the McCleuahan-Skumick- 
Exponential Decay family, that the 'decay ratios' (ratios of  successive development portions 
of  link ratios) were not constant as suggested by expoential decay. Rather, as one went 
further out in the development pattern, the decay ratios rose towards unity (i.e. there was 
less and less decay as one went further out in the curve). Looking at the data, it appeared 
that asymptotically, the decay ratios approached unity. Based on this, he posited an 'inverse 
power' curve of  the form l+aXt b (t representing the maturity in years) for the link ratios. 
Sherman then investigated the quality of  curve fit to actual industry data for several families 
of  cmn-es, including the inverse power culn-e. The family that he found generally fit best 
were the so-caned 'inverse power' culx-es. 

The process of  fitting an inverse power curve is very similar to that used to fit the 
exponential ctuve, excepting that the 'independent variable' used in the curve fit is In(t). 
More specifically, the identity 

In(l+d-1) = In(d) = In(l+aXtb-1) = In(axt b) = In(a) + bxln(t) 

can be used to create an opportunity to base the fitted curve on a simple regression. 

17 Sherman also discussed the fitting of a lognormal curve to the cumulative paid (or implied cumulative 
paid) and the fit of a logarithmic curve to the link ratios. However, the lognormal fit does not lend itself to 
easy spreadsheet mathematics, and the logarithmic fit to the link ratios does not produce a unique tail 
factor. Further, a Sherman discussed, the inverse power curve is a preferable approach. 
~8 Mr. Sherman discusses this in Section III of [3]. 
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Unfortunately,  this author is no t  aware o f  any simple closed form approximat ion to the tail 
this curve generates,  so the tail factor mus t  be estimated by multiplying together  the 
successive link ratios after the tail begins until the impact  o f  additional link ratios is 
neg~gible. 

5.4.1 A n  e x a m p l e  

This may best  be  illustrated by using the initial dataset used for the exponential  decay 
approach: 

Development Stage Link 

Stage in Years Ratio 

12 1 1.5 

24 2 1.25 

36 3 1.125 
48 4 1.0625 

60 1.03125 
72 ~ 1.015625 

84 1.007813 
The first step is to calculate the deve lopment  por t ion o f  each link ratio and take natural 
logarithms o f  the result. 

Development Sta~e Link 

Sta~e in Years Ratio 

12 1.5 

24 1.25 
36 1.125 
48 4 1.0625 

60 5 1.03125 
72 6 1.015625 
84 7 1.007813 

Development Log of 
Portion 'd' d' 

0.5 -0.6931 

0.25 -1.3863 
0.121 -2.0794 

0.0625 -2.7726 

0.03125 -3.4657 
0.01562. -4.1589 

0.0078125 -4.8520 
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T h o s e  will represent  the  ' dependen t  variable'  in our  regression.  T h e n  for the  i n d e p e n d e n t  
variable, we take natural  logar i thms o f  the  deve l opmen t  s t age /beg inn ing  matur i ty  for  the  
link ratio in years. 

Development 

Stage 

24 

3C 

4{ 

6( 

7] 

84 

Stage 

in Years 

Link Development Lo~ of Log of 

Ratio Portion 'd' d' Stage in Yrs 

'X' W' 

1.5 0.5 -0.6931 0.0000 

1.25 0.25 -1.3863 0£931 

1.125 0.125 -2.0794 1,0986 

1.0625 0.0625 -2.7726 1,3863 

1.03125 0.03125 -3.4657 1,6094 

1.015625 0,015625 -4.1589 1.7918 

1.007813 0.0078125 -4.8520 1.9459 

Then ,  we c o m p u t e  the  regression parameters .  

Development Stage Link Development 

Stage in Years Ratio Port/on 'd' 

12 1 12 0.5 

24 2 1.25 0.25 

36 3 1.12~ 0.125 

48 4 1.062~ 0.0625 

6C 5 1.0312~ 0.03125 

72 6 1 .01562~ 0.015625] 

84 7 1.007812 0.0078125 

Log of 

d' 

LX' 

-0.6931 

-1.38631 

-2.0794 

-2.772( 

-3.4651 

-4.158S 

-4.852( 

Losof  

Stage inYrs 

'3" 31ope = 

0.000£ [ntercept = 

0.6931 = exp(intercp9 

1.0986 

1.3863 

1.6094 

1.7918 

1.9459 

Fitted Curve Parameters 

-2.1051~ =b 

-0.20881 

0.811553 
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Following that,  we c o m p u t e  the  fitted curve values and  the  fit error. 

Development Stage Link Fitted Curve Parameters 

Sta~e in Years Ratio 

Slope = 

12 1 1.5 Intercept = -0.20881 

24 2 1.25 a = exp(intercept) 0.811553 

36 3 1.125 

48 4 1.0625 

60 5 1.03125 

72 6 1.015625 

84 7 1.007813 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

lg 

2£ 

21 

2~ 

-2.10512 =b 

And,  the taft factor es t imates  are: 

Fitted Tail = 1.056977 

Fitted Fit 

Zurve Error 

1.8116 

1.1886 

1.0803 

1.0438 

1.0274 

1.0187 

1.0135 

1.0102 

1.008C 

1.0064 

1.005~ 

1.0042 

1.0037 

1.0031 

1.0027 

1.0024 

1.0021 

1.0018 

1.0016 

1.0015 

1.0013 

1.0012 

0.3116 

-0.061z 

-0.0447 

-0.0187 

-0.0038 

0.0030 

0.0057 

Exact Fit to last link 

1 +0.056977 x0.007813/0.0135 

= I 1.032975[. 

E v e n  with the  utility this adds m the fit, the  initial fit p roduces  a tail factor o f  over  1.05, 
w h e n  the previous  exponent ia l  decay analysis sugges ted  only 1.00781. The  exact  fit 
correction, though ,  does  p roduce  a n u m b e r  that  is m u c h  closer to the  theoretical tail. 

Casualty Actuarial Society Forum, Winter 2006 375 



Estimating Tail Development Factors 

Again,  one  approach  is to fit solely to the  mature  years. Tha t  approach  p roduces  the  

fol lowing regression calculations: 

Development StaRe Link Developmenl Los of 

, Stage in Years Ratio Portion 'd' d' 

~'X' 

48 4 1.0625 0.0625 -2.7726 

60 5 1.03125 0.03125 -3.4657 

72 6 1.015625 0.015625 -4.1589 

84 ~ 1.007813 0.0078125 -4.8520 

Lol~ of Fitted Curve Parameters 

Stage in Yrs 

W' Slope = 

1.3863 Intercept = 

1.6094 a = exp(intercpt) 

1.7918 

1.9459 

-3.69867 =b 

2.413854 

11.17696 

A n d  then  it p roduces  the  following fitted ctm-e: 

Development! 

• Stage 

4{ 

6( 

7] 

84 

Sta~e Link 

in Years Ratio 

Fitted Curve Parameters Fitted 

~kll~re 

Slope = -3.69867 =b 

4 1.0625 Intercept = 2.413854 1.0663 

5 1.03125 a = exp(intercpO 11.17696 1.0290 

6 1.015625 1.0148 

7 1.007813 1.0084 

8 1.0051 

9 1.0033 

10 1.0022 

11 1.0016 

12 1.0011 

13 1.0008 

14 1.0006 

15 1.0005 

16 1.0004 

17 1.0003 

18 1.0003 

19 1.0002 

2C 1.0002 

21 1.0001 

22 1.0001 

Fit 

Error 

0.0038 

-0.0022 

-0.0008 

0.0006 

And ,  the  tail it produces ,  a l though it remains  h igher  than  the  theoretical  tail (at a certain 
level, the  slower decay o f  the  inverse  power  curve as compa red  to an  exponent ia l  curve  

makes  it inevitable that  it will p roduce  a h igher  tail) is m u c h  closer to the  theoretical tail. 

Fixed Taft= 1.017077 

Exact Fit to last link 

1 +0.017077 x0.007813/0.0084 

= [1.0158841 
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5.4.2 The  more realistic e x a m p l e  

G o i n g  back to the  exponent ia l  decay, a tail was fit to the  m o r e  realistic link ratios s h o w n  

below: 

Developmenl 

Stage 

12 

24 

36 

48 

60 

72 

84 

96 

108 

StaRe Link 

in Years Ratio 

1 2 
2 1.25 

3 1.09 

4 1.05 

5 1.04 

6 1.03 

7 1.028 

8 1.02 

9 1.018 

As  in the  previous  example,  we fit an  inverse power  curve: 

Development Stage Link Development Log of 

Sta~e in Years Ratio Portion 'd' d' 

'X' 

12 2 0.0000 

24 ~ 1.25 0.25 -1.3863: 

36 1.09 0.0 c, -2.40791 

48 4 1.05 0.05 -2.99571 

6C 5 1.04 0.04 -3.2189 

7,7 6 1.03 0.02 -3.5066 

84 7 1.021 0.02~ -3.5756 

9~ 8 1.02 0.0,~ -3.9120 

10~ 91 1.018 0.01~ -4.017z 

Lo[[ of 

Stase in Yrs 

W' Slope = 

0.000C Intercept = 

0.6931 = exp(intercpt) 

1.098~ 

1.3862 

1.6094 

1.791~ 

1.945~ 

2.0794 

2.197~ 

Fitted Curve Parameters 

-1.82497, =b 

-0.18424 

0.83174 

A n d  then  we c o m p u t e  the  fitted curve values for the  link ratios that  compr i se  the  tail. Since 
the  link ratios decay so slowly, we project  thirty years o f  addit ional  deve lopmen t  ins tead o f  
fifteen. 
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Development 

Stage 

24 

3~ 

4~ 

6£ 

72 

84 

96 

10~ 

Stage 

in Years 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24, 

2.: 

2C 

2~ 

2{ 

2~ 

3( 

31 

3~ 

32 

34 

3.= 

3( 

37 

3{ 

3c~ 

Link Fined Curve Parameters 

Rado 
I 

,3lope = 

2.00C,!Intercept = 

1.25C a = exp(mtercpt) 
I 

1.0% 
I 

1.05C 
i 

1.04C 
i 

1.03C 
I 

1.028 
I 

1.02G 
i 

1.018 

-1.82492 =b 

-0.18424 

0.83174 

Fitted 

C u ~ r e  

1.8317 

1.2348 

1.1120 

1.0662 

1.0441 

1.031( 

1.014~ 

1.0111 

1.0151 

1.0124 

1.010~ 

1.008~ 

1.007; 

1.006~ 

1.005~ 

1.0052 

1.0047 

1.0042 

1.003~ 

1.0035 

1.0032 

1.003C 

1.0027 

1.0025 

1.0023 

1.0022 

1.002G 

1.0019 

1.0018 

1.0017 

1.0016 

1.0015 

1.0014 

1.0013 

1.0013 

1.0012 

1.0011 

1.0011 

1.0010 

Fit 

Error 

-0.168. ~ 

-0.015; 

0.022( 

0.0162 

0.0041 

0.001( 

1.023~ 

1.018~ 

-0.002~ 
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Tha t  p roduces  the  following tail data. 

Fitted Tail = I 1.114487 

I 

= I 1.136502 

For  compar i son ,  the  final 'bes t  es t imates '  us ing  the  exponent ia l  decay were in the  1.03-1.05 
range. But,  those  bes t  es t imates  were based o f f  a fit to just the  mature  years. So, let us  fit 

the curve solely to the  48+  m o n t h  data. 

Development 

Stage 

48 

60 

72 

84 

96 

108 

Stage 

m Years 

Link Development Log of Log of 

Ratio Portion 'd' d' Stage m Yrs 

'X' W' 

41 1.051 0.05 -2.9957 1.3863 

5 1.04 0.04 -3.2189 1.6094 

6 1.031 0.03 -3.5066 1.7918 

7 1.028, 0.028 -3.5756 1.9459 

8 1.01 0.02 -3.912C 2.0794 

9 1.018, 0.018 -4.0174 2.1972 

Fitted Cuta'e Parameters 

Slope = -1.2810~ =b 

Intercept = -1.1868~ 

a - exp(intercpt / 0.305171 

However ,  in this case, the  tail is even higher,  per  the  fit 

Development Stage Link 

Stage mYears Ratio 

Slope = 

48 4 1.05 Intercept = 

60 5 1.04 a = exp(mtercpt) 

72 6 1.03 

84 7 1.028 

96 8 1.02 

108 9 1.018 

10 

11 

12 

13 

Etc. 

Fitted Cuta,e Parameters 

-1.28108 =b 

-1.18688 

0.305171 

Fitted 

Curve 

1.0515 

1.038~! 

1.0307 

1.0252 

1.0213 

1.0183 

1.016C 

1.0141 

1.0126 

1.0114 

Etc 

Fit 

Error 

0.0015 

-0.0011 

0.0005 

-0.002~ 

0.0013 

0.0003 

Casualty Actuarial Society Forum, Winter 2006 379 



Estimating Tail Development Factors 

Multiplying the link ratios that comprise the tail factor together, the estimated tail is: 

Fitted. Tail = 1.208566 

Exact Fit to last link 

1 +0.2086 x0.018/0.0183 ] 1.20518 

So, this illustrates how this method is generally more conservative than the exponential 
decay method. 

5.4.3 Advantages and disadvantages of Sherman 's  method 

Relative to the other crux-e-fitting methods, this method's primary strengths and weaknesses 
stem from it's source, although that is mitigated by the fact that in choosing the form of the 
mathematical curiae family that was used (the inverse power cuB-e), Sherman relied heavily 
on actual data. Specifically, he noted that exponential decay factors flattened heavily (i.e., 
rose toward unity) at later ages. So, he chose the inverse power curve as his model to reduce 
the decay at later ages. In a sense, Sherman designed the inverse power curve with an eye 
toward mathematically correcting an observed deficiency in the exponential decay method. 
The approach he used to correct exponential decay 19 was merely to find a curve that roughly 
matched the data he obsein-ed. So, since the inverse power approach is based on actual 
properties of  the observed development link ratio curves, and appears to have superior fit to 
the data, it should arguably be a better predictor of  the tail. But on the other hand it also 
gives no single simple assumption (such as decay proportional to development portion size) 
that we can test the data against. In other areas, the fit looks a little more mathematically 
complex to the outsider, but is no more computationally difficult for the practitioner than 
exponential decay of  the link ratios. 

5. 5 Sherman's Revised Method - Adding Lag to the Inverse Power Curve 

In his study of  the inverse power curve, Sherman [3] noted that the fit could sometimes be 
improved by adding a lag parameter to the curve. He used the formula 

l + d  ~ l+aX(t-c) b. 

In this case, the mechanics of  fitting the curve are somewhat more complex. An example 
will illustrate the process. 

19 Sherman effectively replaced 1+ D r '  from exponential decay with l+axt a' . Note that a in the inverse power 

curve plays the same role as D in exponential decay, so really he just replaced r t , wath a constant decay ratio of 

r by tb'with a decay rate of ((t + l )+  t) b , which is asymptotically one. 
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5.5.1 E x a m p l e  o f  f i t t i ng  a n  i n v e r s e  p o w e r  c u r v e  w i t h  l a g  

W e  first set the  lag equal  to o n e  (unity) to beg in  the  process ,  t hen  fit the  an  inverse  p o w e r  
curve  reflect ing that  lag 

Development Stage Link Development Log of Stage 

Stage in Year~ Rauo Portion 'd' d' Minus Lag Stage in Yrs Lag = 

3lope = 

48 4 1.05 0.05 -2.9957 3.0000 1.098~ Intercept = 

60 5 1.04 0.04 -3.2189 4.0000 1.3861 = exp(intercp~ 

72 6 1.03 0.03 -3.5066 5.0000 1.6094 

84 7 1.02~ 0.028 -3.5756 6.0000 1.791{ 

96 8 1.0] 0.02 -3.9120 7.0000 1.9455 

108 9 1.01~ 0.018 -4.0174 8.0000 2.0794 

LogofRev. Fitted Curve Parameters 

1 

-1.0273 =b 

-1.8324 

0.1600 

T h e n  we  c o m p u t e  the link rat ios o n  the  fitted curve,  and  the  total squa red  fit e r ror  as well  

Development 

Stage 

48 

6O 

72 

84 

96 

108 

Stage 

in Years 

Link Fitted Curve Parameters Fitted Fit Squared 

Ratio Lag = 1 Curve Error Error 

Slope = -1.027387872 =b 

1.05 Intercept = .1.832444677 1.0385 -0.0115 1.32E-04 

1.04 a = exp(intercpt) 0.160021887 1.0306 -0.0094 8.79E-05 

1.03 1.0254 -0.0046 2.12E-05 

1.028 1.0217 -0.0063 4.00E-05 

1.02 1.0189 -0.0011 1.22E-06 

1.01~ 1.0167 -0.0013 1.58E-0~ 

2.84E-04 

W e  note  that  the total  fit e r ro r  associa ted  wi th  a lag o f  o n e  is .000284. 
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Next, in order to estimate the optimum lag, we use a bisection process, foUowing the process 
above for different potential lags; finding the lowest value of  the squared error across a 
group of values; and progressively narrowing the range. The computations were as follows, 
and only 7 steps were needed. For reference, at each step of  the process the lowest value of  
the fit error as well as the two adjacent values (the three values generated by the lag points 
that will be carried to the next step of the process) are in bold. 

gtalge 1 
Squared Squared Squared 

Lag Error Lag Error La~ Error 

-1 7.06E-04 -0.5 1.58E-04 

-1 7.06E-04 -o.5!  1.58E-04 -0.25 4.86177E-05 

( 1.32E-05 o 1.32E-05 o 1.32454E-05 
2.84E-04 o .5]  9.22E-05 0.25 3.28903E-05 

7.50E-04 1 2.84E-04 0.5 9.22146E-05 

1.08E-03 

Sta~e 5 Sta[~e 6 

Squared Squared Squared 

Error La~ Error La 8 Error 
4.8617VE-05 - 0 . 1 2 5  2.2949E-05 - 0 . 0 6 2 5  1.62499E-05 

2.2949E-05 -0.06251 1.625E-05 -0 .03125 1.43034E-05 
i 

1.32454E-05 0 1.3245E-05 0 1.32454E-05 
1.72333E-05 0 . 0 6 2 ~  1.366E-05 0.03125 1.30419E-05 

3.28903E-05 0 . 1 2 5  1.7233E-05 0 . 0 6 2 S  1.36599E-05 

Squared 

Error Final Selection 0.02 
1.32454E-05 
1.30389E-05 

1.30419E-05 
1.32502E-05 

1.36599E-05 

Stage 2 StaRe 3 

Sta~e 4 

Lag 

-0.2~ 

-0.125 
( 

0.12~ 

0.2~ 

Stage 7 

Lag 
C 

0.015625 

0.03125 

0.046875 

0.0625 

Note that as the fit error changes little near the minimum point, a rounded value is 
acceptable. 
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T h e n ,  t h a t  l ag  v a l u e  m a y  b e  u s e d  in  t h e  f ina l  c u r v e  fit. 

Development 

Sta~e 

48 

6C 

72 

84 

9~ 

10~ 

Stase Lmk 

m Years Ratio 

1.05 

1.04 

1.02 

Fitted Curve Parameters 

lO~ 

11 

1~" 

13 

14 

15i 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

1.02~ 

1,0f 

1.01~ 

La~ = 

~lope = 

[ntercept = 

= exp(intercpt) 

0.02 

-1.253797784 =b 

-1.23628766 

0.290460507 

Fitted Tail = 1.230663894 

Exact Fit to last link 

1+0.2307×0.018/0.0185 

= 1.224464865 

Fitted 

Curve 

1.0511 

1.038~ 

1.0307 

1.0252 

1.0214 

1.018~ 

1.016~ 

1.014a 

1.012 c 

1.011~ 

1.010{ 

1.009; 

1.009( 

1.008.: 

1.007, 

1.007g 

1.006~ 

1.006~ 

1.006( 

1.0055 

1.005, 

1.0051 

1.004 c. 

1.004~ 

1.004 

1.004 

1.004~ 

1.003! 

1.003~ 

1.003( 

1.003~ 

1.003~ 

1.003: 

1.003~ 

1.0031 

1.002! 
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Which provides a shghdy smaller tail. 

Fitted Tail = I 1-2306 

5.5.2 Advantages and disadvantages of introducing lae in the inverse power cma-e 

Summarizing, we can note that while the lag factor may sometimes mitigate the size of the 
tail, the inverse power in general tends to produce a higher tail than the exponential fit. 
Although it has not been illustrated herein with actual data, the inverse power curve also 
generally indicates higher tail factors than McClenahan's and Skumick's methods, as those 
methods tend to produce results that are very similar to that of the exponential decay a'. As 
before, the inverse power curve's main attraction is that it simply seems to fit the data better. 
However, in introducing lag it is clear that much computational complexity is added. The 
practitioner should evaluate whether the additional complexity produces large gains in the 
accuracy of the estimated tail factor. 

6. SUMMAR Y 

Several different methods for assessing tail development were presented, as well as some 
refinements. Hopefully, this will help the reader in his or her actuarial practice. 

2o That is because they are simply based on exponential decay of the payments rather than the link ratios. A 
little analysis will show that their decay patterns are about equal for 'large' maturities. If in doubt, simply 
consider their asymptotic properties. 
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Appendix 1-Tail Factor Metbods Based on Counts 

A.1 Introduction 

Although they are less commonly used, there are several methods for estimating tail factors 
that are based on counts. Among these are the Sherman-Diss method, the projected unpaid 
severity method, and what is really a older year ultimate loss selection method instead of a 
tail factor method for unexpectedly low open counts that is based on maximum possible 
costs per claim. All of these methods do have demonstrated limitations, though. So, it is 
just as important to understand the limitations of each method as it is to understand the 
methods themselves. 

A.2 The Sherman-Diss Method 

The Sherman-Diss method described in [4] is a specific example of what could become a 
class of methods that project the open claim counts at future times, and the cost per claim at 
each future period. For the first step, this method involves projecting the likelihood that 
each 'mature' (near the tail maturity) workers compensation claim will still be open next year, 
the following year, the year following that, etc. using life (mortality) tables and the claimant's 
current age. Then, the indemnity (wage replacement) benefits each would receive in each 
future period (if they are still alive to collect benefits as estimated using the life table) is 
estimated using each worker's current annual benefit, plus an estimate of any inflation in the 
benefit (should any be allowed under the law of the injured worker's state). The total 
indemnity tail would then be calculated by extending the probability of each claimant's 
survival at each future period (the expected open claim counts) times the annual indemnity 
benefit. For the medical benefits allowed claimants under the workers compensation laws, 
the probability of sun'ival to each future period is extended by the current medical inflated 
by an appropriate medical inflation factor. The extension of probability of survival times 
medical benefits produce the dollars of medical tail. 

A.2.1  Pros  a n d  c o n s  

Due to the complexity of the calculations and the status of this discussion as an appendix 
rather than the main paper, an example will not be provided. However, some discussion of 
this and the other methods in this appendix is certainly in order. 
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When Sherman and Diss compared their method to other tail factor methods (primarily the 
curve-fitting methods) on some specific workers compensation data, they found that it 
produced much higher tail factors than the other methods. However, when they tested their 
method retrospectively against actual dollar emergence on some Western state fund data, 
they found that as claimants achieved advanced ages (roughly at thirty to forty-plus years of  
development) the medical became much higher than that predicted by their method. Per 
their studies, it appears that as claimants achieve advanced ages, unexpected (at least per life 
tables and medical) additional development occurs because the main injury may cause related 
illnesses that are exacerbated by age and because family or spousal care for severely injured 
claimants must be replaced by nursing home care as the caregivers age and become infirm. 
So, at least for direct and unlimited workers compensation benefits, it appears that many 
common methods produce an inadequate tail, but that this method does not fully solve the 
problem. 

Also note that this 'open claim count' method is suitable only for fines where benefits are 
paid as long as claims remain open. To this author's knowledge, the only fines of  insurance 
that have that feature are workers compensation and disability. 

Further, this method was designed for direct and unlimited claim costs, when most insurers 
purchase some form of specific excess reinsurance that caps the insurer's costs at some 'net 
retention'. Note however, that method could be revised by accumulating the total projected 
costs paid to each claimant and eliminating the claim once the net retention is reachedZk In 
so doing, each claim would be effectively capped at the retention. 

Lastly, this method only directly produces a tail factor for the mature years. I f  there is a low 
volume of claims remaining open in the older years (as is often the case), the results of  this 
method will not be a reliable statistic for projecting the tail on the later years (i.e., they will 
lack credibility). 

Qualifications aside, this method does create a powerful tool in the right circumstances. 
Futher, as time goes by it is possible that other 'remaining open count'-based methods will 
be developed. 

21 Of note, it is also appropriate to build in any projected costs that exceed the limit of per claim reinsurance 
purchased. 
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A.3 The Unclosed Count Method 

This method also requires qualifications, but is worth discussion. Just as in workers 
compensation, the open status of  a claim is related to payments. In most other lines the 
majority of  payments occur at the time of  claim closing. So, it is reasonable to suppose that 
there would be a method based on the number of  claims yet to close and the average cost of  
each of  those claims. Of  course, while it may be relatively easy to estimate the number of  
claims that will close in the future as long as the actuary is certain that no further IBNR 
claims will materialize; it is usually very difficult if not impossible to estimate the average 
costs of  closing each claim. However, in some limited circumstances, the average paid loss 
per closed claim of the oldest accident year may have reliably and permanently plateaued. In 
those specific circumstances (and only those circumstances), it would be appropriate to 
multiply the number of  unclosed claims by the average paid loss per closed claim from the 
latest twelve months for the given accident year. 

A.3.1 Pros and cons  

This method cannot be discussed without discussing the tremendous detraction posed by 
blithely assuming that the current average paid loss per closed claim will equal the average 
cost of  disposing of  the open claim inventory. The author has personally seen general 
liability data of  about 48 months maturity and fairly low volume where the average paid per 
claim had leveled off  at around $5,000 per claim, where only four claims were open, but they 
were all $20,000+ claims. One major problem was that the maturity was only 48 months. 
So, the actuary is strongly cautioned to use this only for data of  at least 96 months maturity, 
preferably 120 months, and to carefully review whether the remaining open claims are of  the 
same type, class, average demand, etc. as the claims closed between, say, 96 and 120 months. 

The actuary is also cautioned that if  the data volume is not overwhelming large, the 
percentage of  claims left open for the older years now may not match the percentage of  
claims left open at 120 months or so on the more recent years once they reach the 120 
month stage. For example, if  only four or so claims are left open on the older years, they 
will lack statistical validity (a form of credibility) in predicting what will be open when the 
more recent years reach the same development stage. Therefore, they will lack validity in 
predicting the tail factors for the more current years. 

All that being said, under the right circumstances this can be a useful method. One must 
simply make sure that the set of  underlying assumptions hold in whatever circumstance the 
actuary is using this method. 
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A.4 The Maximum Possible Loss Method 

This method is a variant of  the unclosed count method. It, however, does not  so much 
create a taft factor as it does establish a maximum tail for the older years. The core idea of  
this method is that, given that the maximum net liability of  an insurer is some net retention 
'R', the liability for all the open claims should not  be more than the sum of  R-paid to date 
across all the open claims. So, to use it, given that an accident year is sufficiently mature for 
no IBNR claims to be reasonably possible, the remaining amounts to reach the retention (R- 
paid to date) are summed across all remaining open claims in the accident year. The result is 
not  so much an estimate of  the tail factor as an upper bound on tail development for that 
specific year. So, if  application of  the tail factor to a given year suggests more development 
than is 'possible' per the remaining amounts to reach the retention in the accident year, the 
ultimate unpaid loss for that accident year might be capped at the amounts remaining to 
reach the retention. 

In the (fairly unusual) event that there are enough claims left open for this to be a statistically 
valid predictor of  the development of  the more recent years, it could be used in estimating 
the tail factor for all the accident years. But, one would have to be certain that this finding 
was statistically consistent with the initial tail factor analysis. For example, if the initial tail 
factor came from a curve fitting, it might be reasonable statistically that the curve fitting was 
simply using the wrong curve. However, if the initial tail factor came from a 'paid over 
disposed' method that also used the actual data in the triangle itself, the tail findings would 
suggest the data is intemaUy inconsistent. In that case, greater care must  be taken to 
understand which method is most  accurate for the tail factor to be applied to the more 
recent years. 

A.4.1 Pros and cons  

This method improves on the average unpaid loss method by virtue of  the fact that the 
amount  to reach the retention need not be estimated. Rather, it is fact. However, it only 
produces an upper bound, not  an actual best estimate. 

Like the average unpaid loss method, there are often statistical reliability issues when making 
inferences about the tail factors of  the more recent years. But, one cannot  readily dispute 
the results as an upper bound for the older years on which the method is apphed, at least as 
long as one is certain the prospect of  additional IBNR claims is immaterial. So, like the 
average unpaid loss method, one must  be very careful to make sure the proper assumptions 
hold when using it. But, unlike the average unpaid loss method, it has far more certainty 
surrounding the loss sizes. 
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Appendix 2-Developing Case Reserves on the Older Years 

This method is also not  so much a method for estimating the tail factors to use in incurred 
or paid loss development as it is a method for estimating ultimate losses in the very mature 
years. The scenario this addresses is that of  a medium-to-low credibility (medinm-to-low 
volume of  losses in relation to the net retention) loss triangle. In that scenario it is not 
unusual for the remaining unpaid loss in the mature to vai T significantly depending on 
whether a large claim, or a few large claims, or no large claims happen to have occurred and 
still be open in the late development stage. In such circumstances, the standard application 
of  a tail factor may not  work simply because there are not  enough open claims in the mature 
years, or even open claims expected in the tail factor, for the law of  large numbers to apply. 
In that case, some recognition of  the specific cases remaining open (assuming no further 
reopenmgs or IBNR claims) will make the resulting ultimate loss predictions for the older 
years more accurate. 

The process is fairly simple. Given a ratio of  what it actually costs to close cases vs. the case 
reserves held from the 'paid loss to reserve disposed of'  method, one simply multiplies that 
ratio times the case reserve to obtain an estimate of  the unpaid loss on each of  the very 
mature years. The ultimate loss estimate for each of  those years would simply be the derived 
unpaid loss estimate plus the paid-to-date for each )Tear. 

A word of  caution is in order, however. Remember that this method was used to estimate 
the ultimate loss because the law of  large numbers did not  work. Therefore, the unpaid 
losses derived using this method lack credibility in estimating the tail factor for the less 
mature years. So, if this method is used because the remaining unpaid losses are driven by 
'luck of  the draw '=, it is illogical to use the unpaid losses from this method to estimate a tail 
factor for the less mature years. 

Pros  a n d  c o n s  

This method's  inherent advantage is it's usefulness in low credibility situations. It's 
disadvantage is that it does not  truly produce a tab factor, just some estimates of  ultimate 
loss for the older years. Further, it assumes no reopenings or true IBNR claims. So, it must 
be used with great caution and respect for it's limitations. 

22 The astute reader will note that the adjusted case reserves are exactly what is used to develop a tail factor 
in the 'paid loss to reserve disposed of  method. But note that in that instance the tail is presumably based 
on case reserves that are large enough to have reasonable credibility. 
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