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Abstract 
This chapter discusses an approach to model the value of an outstanding, discounted liability under the 
impact of uncertain interest and inflation rates. Interest and inflation rates are modeled separately as 
time series to take into account autocorrelation. Subsequently, the dependence between interest and 
inflation is modeled using copulas. The goodness of fit of some copulas can be evaluated on the basis 
of historic data using a quantile plot. This is done for the Gumbel, Clayton and Independent copulas. 
The Gumbel copula, which gives the best fit, is then compared with the Normal copula to show that 
the two copulas are very similar with the parameters chosen. The distribution of the required reserve is 
shown under four different copula assumptions: comonotonicity, which represent the best case, 
countermonotonicity which represents the worst case, and the Gumbel and Normal copulas which 
represent more realistic scenarios. The choice of copula has considerable impact on the higher 
percentiles of the required reserve, and the adopted approach is effective in selecting a suitable copula. 
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1. INTRODUCTION 

In this chapter the following are investigated: 
 

1. Correlations between the same variable, i.e. interest or inflation, at different 
points in time (autocorrelation). 

2. Correlations between interest and inflation over an extended period of time. 
3. Impact of these correlations on the present value of a discounted and inflated 

liability. 
 
The effect of both types of correlations is demonstrated in a case study investigating the 
effect of interest and inflation rates fluctuations on outstanding claims liabilities. Interest 
and inflation rates are modeled as time series. Time series models are commonly used for 
variables of which observations are available sequentially in time, and consecutive 
observations are dependent. Both these properties typically apply to interest as well as 
inflation rates. 
 
A simple example of a time series is an autoregressive process of order 1 (AR(1)) which 
is given below: 
 
X(t) = a + bX(t-1) + ε(t),  t = 1,…,T 
 
with  
 
X(.):  array of stochastic variables, t= 0,1,…,T, X(0) a given constant. 
ε(t):  random error within period (t-1,t), with N(0,σ) distribution. 
a,b:  model parameters. 
 
It can be shown that this structure defines a correlation structure between all X(t), with 
correlations depending on b and σ and the elapsed time between observations. More 
complex time series models are often required to adequately capture specific 
characteristics such as cyclicality or heteroskedasticity. 
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2. OUTSTANDING LIABILITY UNDER UNCERTAIN 
INTEREST AND  INFLATION RATES  

We consider the value of an outstanding claims  reserve as the present value of inflated 
and discounted future claim payments. Interest and inflation rates are modeled as 
random variables. As a starting point, we use uninflated projections of future claim 
payments in each future payment period. These can be derived from triangular reserving 
methods which include an explicit inflationary effect.  
 
Define: 
 
C(t):  Uninflated, fixed and given cashflow projection at time t. 
Inf(t): Inflation rate in period (t,t+1), t = 0,1,2,… 
Int(t): Interest rate in period (t, t+1), t = 0,1,2,… 
 
 
Ac(t):  Actual cashflow at time t. 
 

Ac(t) is equal to: 
 

Ac(t) = ∏
−

=

+×
1t

0τ

Inf1C(t) ][ )τ( ,  t = 1,2,3,… 

  
For simplicity it is assumed that Ac(t) is the product of the cashflow projection C(t), 
which is fixed and given, and future inflation rates only. Therefore the only uncertain 
factor in actual future cashflows is future inflation which can represent general inflation, 
superimposed inflation or a line-specific inflation. In this study we have used medical 
inflation, a line-specific inflation impacting on health insurance related liabilities.  
 
The inflation rates represent a component of systematic risk in the cash flow projection, 
i.e. they affect all individual claims simultaneously and to the same extent. To relax the 
assumption that inflation is the only uncertain factor affecting future cashflows, 
additional components of unsystematic risk can be added without any difficulty, however 
these are excluded here.  
 
Df(t): Discount factor in period (t,t+1), t=0,1,2,…: 
 

Df(t) = 
Int(t)1
1

+
 

 
 
RR(t): Required reserve at time t , t=0,1,2,…: 
. 

 RR(t) = ])[
1

0
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The required reserve is the total of all actual future cashflows discounted at actual future 
interest rates. Obviously RR(t) is not known in advance as it is a function of C(t), Inf(t) 
and Int(t) with future interest and inflation rates unknown.  
 
The distribution of the RR(t) is a function of the marginal distributions of the interest 
and inflation rates after time t and the dependencies between interest rates in different 
periods, the dependence between inflation rates in different periods, and the dependence 
between inflation and interest rates in the same period and in different periods. 
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3. MODELLING THE DISTRIBUTION OF INTEREST AND 
INFLATION RATES AND THEIR MUTUAL DEPENDENCE 

3.1 Interest rates 
 
A discrete version of the CIR1-model for a single interest rate is used. A single interest 
rate is used for simplicity, although the CIR-model allows for the generation of the entire 
yield curve with full dependence between different maturities. Different yield curve 
structures can be generated using various other interest rate models of a similar time 
series structure. 
 
 The discrete CIR-model is a time-series model of the following form: 
 

(t)}ε1)Int(t1)Int(tbamax{0,Int(t) int−+−−= ][  
 
with 
 
Int(t):  the interest rate in the period (t,t+1)  
a:   the average speed of reversion to the long term mean interest rate; 
b:   the long term mean interest rate. 

(t)ε int :  random deviation in period (t,t+1). The (t)ε int  are mutually independent 

with marginal distributions )σN(0, 2 . 
 
 
The model has several desirable properties such as: 
 

• Interest rates are mean reverting; 
• Interest rates are non-negative. 
• Interest rates are heteroskedastic, i.e. variance increases with mean.  
• Interest rates at adjacent points in time are correlated. 
• Confidence intervals widen for interest rates projections further into the future. 

 
For the parameterization of the time series, we have used 3 year interest rates on US 
government securities which are shown in appendix I. The estimated parameters are 
shown in appendix II, simulated autocorrelations of interest rates are shown in appendix 
III. 
 
 
 

                                                 
1 Cox Ingersoll Ross, see Kaufmann (2001) 
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3.2 Inflation rates 
 
For inflation rates a second order autoregressive process (AR(2)) is used: 
 
Inf(t) = c0 + c1 Inf(t-1) + c2 Inf(t-2) + (t)ε inf  
 
with 
 
c0 , c1 , c2:  model parameters. 

(t)ε inf :   random deviations in period (t,t+1).  
 
The (t)ε inf  are mutually independent with identical marginal distributions )σN(0, 2 . 
 
Some properties of the AR(2) model are: 
 

• If c2 < 0, inflation rates may exhibit cyclicality. 
• Observations at adjacent points in time are correlated. 
• Confidence intervals widen for projections further into the future. 

 
For the parameterization of the time series, we have used US medical care index figures 
provided by the Bureau of Labor Statistics, which are shown in appendix I. The 
estimated parameters are shown in appendix II, simulated autocorrelations of inflation 
rates are shown in appendix III. 
 
The (analytically determined) autocorrelations between the inflation rate in time period 1 
and all other periods, derived from the time series parameterization, are shown below: 
 

Correlation between Inf(1) and Inf(t)
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    Figure 1: Modeled autocorrelations of inflation rates 
 
As the parameter c2 is very close to, and not significantly different from 0, there is no 
cyclical pattern in the correlation structure and the process is virtually identical to an 
AR(1) process.  
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3.3 Dependence between inflation and interest rates 
 
The dependence relation between interest and inflation rates in the same period is 
determined by, on the one hand, the structure of the time series model for both interest 
and inflation rates, and on the other hand by the dependence between the random errors 

(t)ε int  and  (t)ε inf  in the same period.  
 
Both time series as well as the dependence between them are parameterized on the basis 
of actual historic data shown in appendix I. It can be expected that there is a dependency 
between (t)ε int and (t)ε inf  as changes in both inflation and interest rates are driven by the 
same or related macro-economic factors. Various types of dependence relationships, i.e. 
copulas, can be used to model the dependency between (t)ε int and (t)ε inf . We assume that 
the dependence relation is the same for all values of t, hence does not change over time.  
 
Given that both error terms are assumed to follow a Normal distribution, the simplest 
form of dependency is the linear correlation which corresponds to the Normal copula. 
However the Normal copula does not always capture dependencies in the tail of the 
distributions appropriately2 hence the Gumbel and Clayton copulas are also investigated  
 
As (t)ε int and )(tε '

int are independent if 'tt ≠ , so are (t)ε int and )(tε '
inf . Thus the choice of 

the time series models for interest and inflation rates together with the copula 
representing the dependence between (t)ε int and (t)ε inf  fully define the joint distribution 
of interest and inflation rates. As RR(t) is fully determined by the deterministic uninflated 
cashflows C(t) in combination with interest and inflation rates during the projection 
period, the distribution of all RR(t) is fully defined by the joint distribution of inflation 
and interest rates and C(t) . The distribution of RR(t) is derived by means of simulation.  
 
For the uninflated cashflow projection C(t) we set C(t) = 1 for t= 1,2,…,10 and 0 
otherwise. For the choice of the copula defining the dependence between (t)ε int and  

(t)ε inf , several alternative scenarios are investigated: 
 

1. (t)ε int  and (t)ε inf  are comonotonic, i.e. the dependence between the two is 
maximum. As both (t)ε int and  (t)ε inf  are Normal random variables, the linear 
correlation between them is 100%. This is the best case scenario for the insurer 
with respect to the dependence between the two error terms. The underlying 
assumption is that random deviations of interest rates are fully correlated with 
random deviations of inflation rates, hence unexpected increases in inflation are 
always accompanied by unexpected increases in interest rates. As increases in 
inflation rates lead to increases in RR(.) whereas increases in interest rates lead to 
a decreases of RR(.), the comonotonic assumption implies that there always is a 
compensating effect of the two random errors on the liability for the insurer. 
Therefore this  scenario represents a best case for the insurer with respect to the 
occurrence of extremely high values of RR(t). 

 

                                                 
2 See Embrechts (2001) 
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2. In the second scenario, the dependence between (t)ε int  and  (t)ε inf  is assumed to 
be ‘countermonotonic’3, meaning unexpected increases in inflation rates are 
always accompanied by unexpected decreases in interest rates. Contrary to the 
first alternative, this scenario represents the worst case with respect to the 
occurrence of extremely high values of RR(.), as the effects of unexpected 
inflation in any particular period are aggravated by lower interest earnings in the 
same period.  

 
3. In the third scenario, the dependence between (t)ε int  and (t)ε inf  is parameterized 

on the basis of historic observations. Historic observations of the error terms are 
obtained by substituting observed historic interest/inflation rates in the time 
series equations for Int(t) and Inf(t). Sufficient credible historic data needs to be 
available to justify a choice and parameterization of a copula in this way.  

 
The copula chosen here is the Gumbel copula, with parameter α = 1.4.  
Appendix IV shows the fit of the Gumbel and Clayton copulas, on the basis of 
which the Gumbel copula is the preferred choice. Appendix V shows correlations 
between inflation and interest rates under the Gumbel copula. 

 
4. In the fourth  alternative, the dependence between (t)ε int and  (t)ε inf  is modeled 

as a multivariate Normal distribution, with the dependence between the two 
random variables fully characterized by their linear correlation coefficient.  

 
The simulated results of each of the four methods are shown in figure 2 below4, with BC 
(Best Case) , WC (Worst Case), Gumbel and Normal depicting RR(0) in alternatives 1-4 
respectively. As the graphs of alternative 3 and 4 seem to overlap completely, the right 
tail is shown in more detail in figure 3.  
 

                                                 
3 Characterization of comonotonicity and countermonotonicity can be found in Denuit (2003) 
4 Results were generated using IGLOO software. 
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                 Figure 2: simulated distributions of RR(0) scenario 1-4 
 
In alternative 4, a linear correlation between (t)ε int  and (t)ε inf  of 0.44 is applied. This is 
the historically observed correlation between the residuals.  In alternative 3, the Gumbel 
copula is parameterized using the algorithm described in Valdez (1998). The Gumbel 
copula in this case gives rise to the same linear correlation of 0.44 as the Normal copula.  
 
The right tail of the distributions resulting from the Normal and Gumbel copulas are 
shown below. 
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Figure 3: right tail of simulated distributions of RR(0) scenario 3,4 

 
A marginal difference between the two reserves can be observed. The fact that the 
difference between the distributions under the two copulas is so small suggests that the 
two copulas generate very similar dependence structures. This is confirmed by the 
simulated rank scatter plots of the two copulas shown in figure 4 below.  
 
A rank scatter plot shows simulated pairs of uniform random variables under a given 
dependence structure between the two variables. When realizations are spread evenly 
across the square, this indicates a low degree of dependence. A high degree of 
dependence is indicated by concentrations of points in certain parts of the square. For 
example tail correlation leads to a higher concentration of realizations in the corners of 
the square. 
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              figure 4: rank scatter plot of simulated Normal and Gumbel copulas. 
 
 
The two scatter plots shown in figure 4 show very similar patterns, both with a slightly 
lower density of points towards the upper left hand and lower right hand corner, and 
higher towards the other two corners. This indicates the dependence structures simulated 
by the two copulas are very similar. 
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4. RESULTS AND DISCUSSION 

Dependence between interest and inflation rates has a considerable impact on the 
distribution of the required reserve. The parameterization of the copulas in alternatives 3 
and 4 require a sufficiently large history of reliable data, and one needs to assume that the 
dependence structure does not change over time. The approach in alternative 2 however 
provides an upper bound with regard to the dependence between the random errors of 
the two time series. Hence alternative 2 may be preferable if a prudent approach is 
sought and historic data are not considered sufficiently reliable.  
 
The difference between the Normal and the Gumbel copula and the impact on the 
distribution of the required reserve is minimal. The Gumbel copula gives a better fit to 
the data than the Clayton copula. A fit of the Normal copula can not be shown in the 
same way as it does not belong to the family of so-called ‘Archimedean’ copulas, see 
Valdez (1998).  
 
Parameterization of an interest rate model based on historically observed rates may lead 
to results which are inconsistent with current market rates. Also, the use of a one-factor 
model can be regarded as too simplistic. However additional prudence can be built in by 
reducing the long term mean parameter b for example on the basis of projections by an 
economic forecasting bureau.  
 
The long term average interest rate parameter b of 6.7% appears high in the current 
environment, and leads to a continuous upward trend in the projected future interest 
rate. Reducing b to 3% leads to an increase of the liability by about 6% across the 
distribution. Alternatively the CIR model can be parameterized on the basis of the 
current yield curve but this would not allow for the measurement of the correlation with 
inflation rates. Such measurement requires the availability of simultaneous observations 
of interest and inflation over an extended historic period. 
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Supplementary Material 

 
Two spreadsheets are attached. One contains the parameterization of the time series, the 
other the parameterization of the copulas and the quantile plot.



RWP on Correlations and Dependencies Among All Risk Sources Report 
 

Casualty Actuarial Society Forum, Winter 2006     269 
 

Appendix I 

 
1. Medical Inflation rates: 
 
Area: U.S. city 
Item: Medical care 
Source:http://data.bls.gov/servlet/SurveyOutputServlet?data_tool=latest_numbers&ser
ies_id=CUUR0000SAM&output_view=pct_1mth 
 
2. Interest rates: 
 
Rate of interest in money and capital markets 
Federal Reserve System 
Long-term or capital market 
Government securities 
Federal 
Constant maturity 
Three-year 
Not seasonally adjusted  
Twelve months ending December 
 
Source: http://www.federalreserve.gov/releases/h15/data.htm#fn12 
 

Year Medical Inflation 
rate (%) 

Interest rate (%) 

1962           2.02  3.47
1963           2.42  3.67
1964           2.02  4.03
1965           2.83  4.22
1966           6.69  5.23
1967           6.38  5.03
1968           6.27  5.68
1969           6.05  7.02
1970           7.44  7.29
1971           4.80  5.66
1972           3.45  5.72
1973           5.52  6.96
1974         12.56  7.84
1975           9.70  7.5
1976         10.14  6.77
1977           8.73  6.68
1978           8.73  8.29
1979         10.25  9.70
1980         10.03  11.51
1981         12.45  14.46
1982         11.02  12.93
1983           6.38  10.45
1984           6.48  11.92
1985           6.48  9.64
1986           7.87  7.06
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1987           5.75  7.68
1988           6.91  8.26
1989           8.73  8.55
1990           9.70  8.26
1991           7.97  6.82
1992           6.48  5.30
1993           5.22  4.44
1994           4.80  6.27
1995           3.97  6.25
1996           3.04  5.99
1997           3.04  6.10
1998           3.45  5.14
1999           3.76  5.49
2000           4.18  6.22
2001           4.70  4.09
2002           4.90  3.10
2003           3.66  2.10
2004 4.28 2.78
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Appendix II Parameterization of the time series 
 
Interest rates 
 
Parameters of the CIR model are:  
a 0.085823 
b 6.684528 
σ 0.450159 

 
Parameters are estimated by minimizing the sum of squared residuals on the basis of the 
data in appendix I. 
 
Inflation rates 

parameter Estimate 
Standard 
error 

0c    1.3470   
1c    0.8441  0.13 
2c  - 0.0806  0.13 
σ'   1.7151  

 
N.B. as 2c  is very small and not significantly different from 0, an AR(1) process (with 

2c = 0) will produce very similar results. 
 
Parameter estimates are derived as5: 
 

1c  = 2
1
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with r1 and r2  estimates of the first and second order autocorrelation: 
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0c  is estimated such that the mean inflation rate is stationary and equal to the historical 
average: 
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5 See Box (1994) 
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Appendix III Simulated autocorrelations of interest and inflation rates 
 

 

 

  Interest[1]   Interest[2]   Interest[3]  Interest[4]  Interest[5]  Interest[6]  Interest[7]  Interest[8]  Interest[9]  Interest[10]  
 Interest [1]  1.000 0.660 0.509 0.416 0.352 0.306 0.267 0.230 0.206 0.186 
 Interest [2]  0.660 1.000 0.766 0.625 0.529 0.457 0.399 0.347 0.310 0.277 
 Interest [3]  0.509 0.766 1.000 0.815 0.688 0.593 0.519 0.453 0.400 0.357 
 Interest [4]  0.416 0.625 0.815 1.000 0.842 0.724 0.633 0.556 0.490 0.435 
 Interest [5]  0.352 0.529 0.688 0.842 1.000 0.857 0.749 0.657 0.579 0.514 
 Interest [6]  0.306 0.457 0.593 0.724 0.857 1.000 0.868 0.760 0.670 0.594 
 Interest [7]  0.267 0.399 0.519 0.633 0.749 0.868 1.000 0.876 0.773 0.685 
 Interest [8]  0.230 0.347 0.453 0.556 0.657 0.760 0.876 1.000 0.881 0.780 
 Interest [9]  0.206 0.310 0.400 0.490 0.579 0.670 0.773 0.881 1.000 0.884 
 Interest [10]  0.186 0.277 0.357 0.435 0.514 0.594 0.685 0.780 0.884 1.000 

  
Inflation[1]  

 
Inflation[2]  

 
Inflation[3] 

 
Inflation[4] 

 
Inflation[5] 

 
Inflation[6] 

 
Inflation[7] 

 
Inflation[8] 

 
Inflation[9] 

 
Inflation[10]  

 Inflation [1]       1.000       0.629       0.420      0.289      0.206      0.151      0.108      0.071      0.055      0.043  
 Inflation [2]       0.629       1.000       0.709      0.493      0.351      0.254      0.185      0.128      0.098      0.072  
 Inflation [3]       0.420       0.709       1.000      0.739      0.528      0.383      0.280      0.197      0.144      0.105  
 Inflation [4]       0.289       0.493       0.739      1.000      0.754      0.547      0.398      0.290      0.209      0.151  
 Inflation [5]       0.206       0.351       0.528      0.754      1.000      0.760      0.555      0.402      0.291      0.211  
 Inflation [6]       0.151       0.254       0.383      0.547      0.760      1.000      0.760      0.550      0.401      0.291  
 Inflation [7]       0.108       0.185       0.280      0.398      0.555      0.760      1.000      0.765      0.561      0.410  
 Inflation [8]       0.071       0.128       0.197      0.290      0.402      0.550      0.765      1.000      0.767      0.560  
 Inflation [9]       0.055       0.098       0.144      0.209      0.291      0.401      0.561      0.767      1.000      0.767  

 Inflation [10]       0.043       0.072       0.105      0.151      0.211      0.291      0.410      0.560      0.767      1.000  
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Appendix IV Quantile plot for Independent, Gumbel and Clayton copulas  
 
A quantile plot (also know as Q-Q plot) can be used to inspect the goodness of fit of 
Archimedean copulas, and is derived as follows.  
 
Archimedean copulas are of the form: 
 

C φ(u,v) = φ-1(φ(u)+ φ(v))  with 0 < u,v ≤ 1 and φ a convex decreasing function with  
domain (0,1]. 

 
For two random variables X and Y with dependence defined by the Archimedean copula Cφ, 
it can be shown that the random Variable Z = Cφ(FX(X), FY(Y)) has the following 
distribution function: 
 

FZ(z) = z- φ(z)/φ’(z). 
 
 
This implies that, assuming the dependence between X and Y is described by a given 
Archimedean copula Cφ , the variable Z should follow the distribution function given above. 
Hence comparing n ordered (pseudo)-observations of Z with the percentiles of the 
distribution function of Z in a Q-Q plot allows for inspection of the goodness of fit of the 
assumed distribution of Z hence of the copula function Cφ. The observations of Z are 
derived from the observations of X and Y  and the relation Z =Cφ(FX(X), FY(Y)). The 
process of constructing the quantile plot and the underlying theory can be found in Valdez 
(1998). 
 
The interpretation of the Q-Q plot is no different than the Q-Q plot for any other single 
random variable. The closer observations are to the corresponding percentiles of the 
theoretical distribution, the better the fit of the distribution. Hence a Q-Q plot showing a 
pattern close to the straight line through the origin and (1,1) indicates a good fit of the 
distribution. 
 
The copulas used are:  
 
Gumbel:  C(u,v) = exp{-[(-ln u) α + (- ln v) α ]1/ α} ,  φ(u) =  (-ln u) α 
Clayton:   C(u,v) =  (u -α + v -α -1)-1/ α,   φ(u) =  u –α - 1 
Independent:    C(u,v) = uv ,     φ(u) =  -ln u. 
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Parameterization: 
Gumbel (α) 1.41716 
Clayton (α) 0.62773 
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Appendix V Linear correlations of interest and inflation rates 
 
Simulated linear correlations between interest and inflation rates in alternative 3 under the Gumbel copula are as follows: 
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 Interest[1]   Interest[2]   Interest[3]  Interest[4]  Interest[5]  Interest[6]   Interest[7]  Interest[8]  Interest[9]  Interest[10]  
 Inflation [1]         0.436       0.289       0.214       0.176       0.148       0.124       0.105       0.094       0.083       0.070  
 Inflation [2]         0.277       0.430       0.322       0.259       0.219       0.187       0.159       0.140       0.126       0.111  
 Inflation [3]         0.188       0.314       0.431       0.346       0.290       0.248       0.214       0.187       0.169       0.151  
 Inflation [4]         0.131       0.220       0.324       0.423       0.356       0.305       0.263       0.229       0.204       0.183  
 Inflation [5]         0.094       0.158       0.236       0.324       0.420       0.360       0.312       0.274       0.242       0.220  
 Inflation [6]         0.067       0.114       0.169       0.234       0.320       0.417       0.362       0.320       0.284       0.254  
 Inflation [7]         0.052       0.086       0.127       0.173       0.238       0.323       0.414       0.366       0.323       0.288  
 Inflation [8]         0.035       0.059       0.089       0.121       0.169       0.236       0.319       0.409       0.360       0.319  
 Inflation [9]         0.027       0.045       0.068       0.090       0.127       0.175       0.237       0.316       0.403       0.358  
 Inflation [10]         0.022       0.037       0.052       0.069       0.096       0.131       0.177       0.235       0.313       0.398  
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