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1 Background 

Entry ratio tables are often a convenient mechanism for capturing informa- 
tion that is subject only to scale transforms. For example, the National 
Council on Compensation Insurance, Inc. (NCCI) stores excess loss factors 
(ELFs) in entry ratio tables. To determine an ELF at an attachment point, 
you simply divide the attachment point by the mean loss, and use that "entry 
ratio" value to look up the ELF in the table. A key assumption is that the 
underlying size of loss distribution changes only by a uniform scale transform 
over time (or by a transform that is close enough to a scale transform; c.f. 
Venter [3] for a discussion of scale adjustments and excess losses). 

In fact, there can be forces at work that change the shape of size of loss 
distributions in ways that are not captured by scale transforms. For example, 
large claims might have greater trend factors than small claims (differential 
severity trend). Also, the frequency of small claims might decrease more than 
the frequency of large claims over some period of time (differential frequency 
trend). Not surprisingly, both of these possible effects act to "stiffen" the size 
of loss distribution, that is, increase the probability that a claim is "large," 
given that a claim occurs. A surprising result of our analysis is that the 
adjustments to entry ratio tables to take these phenomena into account, 
when they occur, often work in opposite directions. When large claims have 

*Much thanks goes to Greg Engl and John Robertson, also of NCCI. Greg reviewed 
numerous drafts and his input improved the work throughout. John was key in promoting 
the topic within NCCI's actuarial research agenda. Both made direct and significant 
contributions to the paper. 
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greater trend factors than small claims, it might be necessary to increase 
the entry ratio table ELFs for large entry ratios. But when small claim 
frequency declines more rapidly than large claim frequency over a period of 
time, it might be necessary to reduce the tabular ELFs for large entry ratios. 

In this note we specify a generic, spreadsheet-friendly, format for an en- 
try ratio table and consider the effects of differential trend and differential 
frequency changes. Each is illustrated by a real world Workers Compensa- 
tion (WC) case study. We then describe general techniques for modifying 
an entry ratio table to account for not only a change in scale but also a 
change in the relativity between the mean and the median loss (or any fixed 
percentile loss) or a proportional shift in the hazard rate function of the loss 
distribution. The findings suggest that entry ratio tables work surprisingly 
well even for non-uniform trend and that in some important instances just a 
small adjustment can extend the shelf life of an entry ratio table. 

2 Background 

Before we get into the details of the paper, we present a thought experiment 
to illustrate some of the issues. Suppose we have 100 claims, 99 of which are 
for $1 and the other is a $10M claim. Consider what happens if over the next 
year inflation is expected to double the cost of the $10M claim, but leave the 
other 99 unchanged. Observe that the mean cost per claim is expected to 
roughly double, going from about $100K to about $200K. Recall that the 
excess ra t io  is simply the ratio of the sum of losses in excess of a per claim 
loss limitation to the total of all first dollar and up losses. The following is a 
sketch of the graph of the old and new excess ratios, expressed as functions 
of the loss limitation amount: 
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Differential Severity Example 
Excess Ratio Functions 
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LOSS A m o u n t  

In practice, excess ratios are often captured in "entry ratio" tables, i.e. 
tables in which losses have been normalized to a mean value of 1. In this case, 
when we normailize the old and new losses by dividing by their respective 
means, the graph of the tabular excess ratios looks something like: 

Differential Severi ty Example  
Normalized Excess Ratio Functions 
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Observe that the new tabular values all lie at or above the old, which 
makes intuitive sense. Indeed, the inflation targeted the big claim, thereby 
"thickening" the tail of the loss distribution and necessitating the use of 
higher excess ratios next year. Because inflation changed the cost of claims 
selectively by size, this is a case of what the paper calls "Differential Severity". 

Now suppose we begin with those same old 100 claims, but this time we 
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consider what happens when, due to a safety initiative, half the $1 claims do 
not emerge the next year. Because the change impacts claim frequency selec- 
tively by size, this is a case of what the paper calls "Differential Frequency". 
Notice that this experience change again roughly doubles the mean cost per 
case. Here the chart of the old and new excess ratio as a function of the loss 
limitation amount looks like: 

Differential Frequency Example 
Excess Ratio Functions 
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and when normalized to entry ratio tabular values becomes: 

Differential Frequency Example 
Normalized Excess Ratio Functions 
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Because the safety initiative is expected to be successful only for small 
claims, intuition again suggests a thickening of the tail. Observe, however, 
that the new tabular excess ratio values start out equal, then lie above, and 
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eventually fall below the old. This suggests that,  despite the similar impact 
on the mean cost per claim, something genuinely different is happening in 
the two scenarios. Actuaries should take heed that  intuition can be a fallible 
guide to updating entry ratio tables. 

3 N o t a t i o n  a n d  T e r m i n o l o g y  

We start  with a definition and, to keep the discussion self-contained, we 
derive some straightforward and familiar formulas: ! 

De f in i t i on  1 A random variable X is a loss variable if  it has finite mean 
# = E[X] > 0 and has a density [PDF] f that is continuous when restricted 
to [0, +oo) and whose support is contained in [0, +oo). We denote the distri- 
bution function of x by F(x) = fo  f ( y ) d y ,  whence ~ = f (~)  on [0, +oo). 
The survival function of X is S = 1 - F. The excess ratio function of X is 
given by R(x) = E[Max(X-x,O)] = f ~ ( y - x ) f ( y ) d y  for X > O. We denote by F the 

IZ # - -  

function given by F(x) = ~ for x > O. We use subscripts on #x,  Ix ,  i~ 

Fx,  Sx ,  Rx ,  and Fx when necessary to indicate dependence on X .  

Thefollowing proposition expresses the excess ratio function in terms of 
F and F. 

P r o p o s i t i o n  2 R(x) = 1 - F(x)  - ~ [1 - F(x) l ,  for all x >_ O. 

Proo f .  From the definition of R(x) we have 

R(x) = (y - x)f(y)dy 

1 ~ f ( y ) d y ]  = - ~ [ ~ ° ° y f ( y ) d y - x  

= l [ p - ~ o X y f ( y ) d y - x S ( x ) ]  

1/o  = 1 - ~ yf(y)dy- -~S(x) 

= 1 - F(x)  - ~[1 - F(x)]. 
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# 

xS(z) 

Thus 

as required. This completes the proof. • 
It is well known that  the mean of a nonnegative random variable, X,  can 

be expressed in terms of its survival function as E[X] = f o  S(x)dx. It is 
easy to see that  a similar result also holds for excess ratio functions. 

P r o p o s i t i o n  3 Let X be a loss variable with survival function S and excess 
ratio function R, then 

R(x) = f ~  S(y)dy for all x > O. 
f o  s(y)~y' 

Proof .  Let X have density f ,  then noting that  ~s = _ f ( y )  and using 
integration by parts, we have 

/7 i S ~ s (y )ey  = y (y)l~ + yf(y)ey 

= - x S ( x )  + y f ( y )ey  

- -  - ~  f (y )dy  + y f (y )dy  

= (y - x)f(y)dy,  

where the second equality follows from: 

= E[X] < c~ =~ [read "implies"] 

f ~  f ~  = • f(y)dy _< yf(y)ey ~ 0 as z --, ~. 

R(x) = f ~ ( y  - x) f (y)dy = f ~  S(y)dy 
E[X] f o  S(y)gy  

as required. • 

C o r o l l a r y  4 ~- (x)  = -s_~, for all x >_ O. 

P r o o f .  By the Fundamental Theorem of Calculus: 

d-7 (x) = ~ 
as required. • 
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Propos i t ion  5 Let X be a loss variable with density f x and distribution 
function Fx and let a, ~ > 0 be any two positive constants. Set: 

Y = a X  ~ 

then for every x, y > O: 

= 

a~5 

a. ~.(u)= 

(~)~ 
f w~fx(w)dw 
0 

I~xO 

4. Rx(x) = R ~ ( ~ x )  

Proof .  We note that 

F y ( y ) = P r ( Y < y ) = P r ( a X  t ~ < y ) = P r ( X <  y 7 ) = F x  

proving 2. 
d_£_ For 1, just differentiate 2, using the change of variable z = (~) ½ =~ dy 

~ =  Y : 

fv(Y) 

And for 3 just integrate using the change of variable 

i /  w = x a /  ¢~ aw~ z =v dz a~13 

Casualty Actuarial Society Forum, Fall 2006 457 



Trending Entry Ratio Tables 

we have: 

~Y(y) 
Y 

f zfy(z)dz 
o 

#Y 
z=y 

i ° 

a H x ~  
z = y  

dw d z  f welx (~) Z;z 
0 

].ZX~ 

(~)~ 
f wefx(w)dw 
o 

Finally: 

Y 

o,~xRx(x) 

1 1 

= a X  ~ ==> Y }  = aaX  =~ #y} = a-a#x 

= a}E[Max(X-x ,O)]  

= a } E [ M a x ( ( Y ) { - x , O ) ]  

E[Max(Y{ ' = - a ~ x ,  0 ) ]  
1 

= ~r~Rr~(a~z) 
1 1 

1 
Rx(z) = Rr}  (a~z) 

completing the proof. • 
The special case 13 = 1 applies when normalizing losses, in particular 

when dividing by the mean loss to get entry ratios: 

Coro l l a ry  6 Let X be a loss variable with density f z and distribution func- 
tion Fx, and let a > 0, then 

1. Ax(Y) = ot 
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2. F.x(y)  = Fx(~) 

a. ~o~(y )=  ~ ( ~ )  

4. R.~(y) = n~(~) 

P r o o f .  All but number 3 are clear from Proposition 5, and 3 is very nearly 
s o :  

f wfx(w)dw 
~.~(y) = o = ~(~) 

#x 
as required. • 

We associate to a loss variable X with (finite) mean # = # x  = E[X] an 
entry ratio table, which we term the rAB = rABx  table. The table consists 
of the two functions: 

• Ax(r)  = Fx/.(r) = 

Bx(r)  = F x / , ( r ) =  

Clearly, for any positive scalar a 

Y a X  X 
. . . .  ~ Ax  = Ay 

#y aPx # 

r 

# / f (#x)dx  = Fx(#r) 

o 
r 

# / x f (#x)dx  = Fx(#r) 

o 

> 0 if Y = a X ,  then 

and Bx = By :=> rABy = rABx  

and indeed the entry ratio table is invariant under such a transformation of 
scale. 

The dependent variable r is termed an "entry ratio" and corresponds to 
losses (but has applications to any positive real valued distribution, e.g. a 
wage distribution) normalized to a mean of 1. We often speak of these two 
functions as determining the A and B "columns" of the entry ratio table. 
Note that:  

Ax(oO) = lim Ax(r)  = 1 
t - ' +  O 0  

Bx(oO) = lim Bx(r)  = 1 
r---+ O 0  
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Column A is sometimes described as the percent of claims at or below the 
corresponding entry ratio (r), while column B is described as the percent of 
losses corresponding to the claims in column A. This rAB setup is employed 
in WC benefit on-level calculations, and is especially practical for spread- 
sheets that deal with calculations that involve normalized loss variables. 

We are particularly interested in determining how Ez(r) ,  which we also 
refer to as the normalized excess ratio, behaves subject to a non-scale "trend" 
adjustment. For convenience we often expand the entry ratio table to include 
a third column E, readily derived from the others by applying Proposition 2 
and Corollaries 4 and 6 to X/#:  

Ex(r)  = Rx/ , (r )  = 1 - Bx(r)  - r(1 - Ax(r))  

dEx dlt-7~l'~ (r) = -Sx /u(r )  Sx(#r)  = Fx(#r) - i 

( r )  = a T  i - 

The following picture, reminicent of the area interpretation of integration 
by parts (c.f. Lee [2]), illustrates the usual way of visualing the rAB  table 
and illustrates the formula for the normalized excess ratio: 

E(r) = 1 - B(r) - r(1 - A(r)) 

in terms of r, A, and B: 
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¢0,~) 
(A(O,O 

(o,o) (A(0,0) 
A(r) 

a~ea=E(~) 

i -A(~) 

(1,0) 

(1,0 

We will let Y denote a loss variable that captures the effect of applying 
"trend" to X. We also set: 

G = Fv 

g = f y  
. = ELY] .  

Our goal is to determine rABv  from rABx.  We are particularly interested 
in the absolute and relative impacts on the normalized excess ratio: 

6(~) = 6 x r ( ~ )  = E y ( ~ )  - E x ( ~ )  

6(r) p(~) - 
Ex(~)"  

We clearly have: 

6 ( o )  = p(O) = o 

lim ~(r) = 0 
7*---+00 
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Taking derivatives and applying L'H~pital (twice), we have: 

d5 

dr 
d?5 
dr 2 
dp 

dr 

1 +  l i m p ( r )  = 
r---~O0 

G(vr) - F(#r)  

vg(vr) - # f (# r )  

Ex ( r )G(vr )  - E y ( r ) F ( # r )  + 5(r) 

Ex(r)~ 

1 + lira 5(r___.__~) = 1 + lim G(~,r) - F(#r)  
r - ~  Ex ( r )  ~ - ~  F(#r)  - 1 

= 1 + lira G(vr) - 1 - (F(#r)  - 1) 
r-,oo F(#r)  - 1 

: G ( v r ) -  1 1) 
= l + l i ~ r n ~ \ F - - - ' ~  1 

/ 

G(vr) - 1 lim vg(ur) 
= l ira F(#r)  - 1 - ~-~oo # f ( # r )  

~ , .  g(~s) 
= - n m - -  ( s i n c e r - - * o o v ~ s = # r - ~ o o ) .  

Iz s--oo f(s) 

For large entry ratios, the impact of t rend on the normalized excess ratio 
column, E x  (r) vs. Ey  (r), is dictated by the impact of t rend on the mean and 
on the largest losses. For any loss variable X let M x  denote the maximum 
loss (in the case of no finite maximum loss amount,  we set M x  = oo ). 

P r o p o s i t i o n  7 Suppose X and Y are two loss variables with M x ,  M y  < oo 
and Mx > Mr then there exists b > 0 such that Ey(b) < Ex(b) and O = ItX #y  

Er(r )  < Ex ( r )  for r > b. 

P r o o f .  Setting b = Mr < Mx we have 
,Uy /~X 

b#x < M x  

By(b) = Ry/ .y (b)  = R r ( ~ b )  

= n y ( M ~ )  = 0 < Rx(b~x)  = Rx/ .x (b)  = Ex(b) 

and r > b 

r # y  > b#y = M y  :=v Ey(r )  = R y / , r ( r  ) 

= R r ( # v r  ) = 0 < Ex ( r )  
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as required. • 
We will find a use for the following later in Section 4: 

Proposition 8 Suppose X and Y are two loss variables with the same max- 
imum loss M x  = My  < 0o and with #y  > #x~ then there exists a > 0 
such that Ry(r )  > Rx ( r )  for 0 < r <_ a and there exists b > 0 such that 
Ey(b) < Ex(b) and 0 = E r ( r )  _< E x ( r )  for r > b. 

P r o o f .  Since #y  > #x,  the existence of b follows from Proposit ion 7. For 
the existence of a, we have from Corollary 4: 

dRx  - 1 - 1 d r y  
dx ( 0 ) = - - < - - =  (0) #x  #Y dy 

Now clearly Ry(O) = Rx(O) = 1 and since Ry and R x  are continuously 
differentiable there exists a > 0 with 

Rx(x )  - i 

X 

< 

In particular: 

Rx(X)  - Rx(O) 

x - - O  
n y ( v )  - Ry(O) 

y - O  

Ry(y )  - 1 
for every x, y E (0, a]. 

R x ( r )  - 1 Ry(r )  - 1 
< r<_a=> < 

r r 

=> R x ( r ) -  l < R r ( r ) -  i => Rx ( r )  < Ry(r) .  

This completes the proof. • 

4 Differential Severity Trend 

Let the function h(x) defined on [0, 00) be such that  h(x) > 1 and ~ > 0 
on [0, oo). In this section we assume f ( x )  > 0 for x > 0. Think of h(x) as 
a severity trend factor that  increases with the size of loss x. The random 
variable of the trended loss is Y = ¢ ( X ) ,  where the transformation ¢(x)  = 
h(x)x  has d~ = h ( x ) + x ~  > 1 for x > 0 and is order preserving and 
invertible (and expands distances). Thus: 

G(¢(x) )  = Pr (Y < ¢(x))  = P r ( ¢ ( X )  < ¢(x) )  = P r ( X  < x) = F(x) .  
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We clearly have ¢(x) > x ~ v = E l Y ]  = E[¢(X)] 
F ( x )  = G(~b(x) k G ( x )  Observe that:  

x > 

x > 

=:> 

=~ 

> E [ X ]  = # a n d  

a ¢ ,  ¢ (x)  > ¢(a)  

a =:> ¢(x) - ¢(a) = h ( x ) x  - h ( a ) a  > h ( a ) x  - h ( a ) a  

h ( a ) ( x - a ) > x - a  

v R y ( ¢ ( x ) )  = E [ M a x ( Y  - ¢(x),  0)] 

E [ M a x ( ¢ ( X )  - ¢(x),  0)] > E [ M a x ( X  - x ,  0)] = # R x ( x )  

But the relationship between the normalized excess ratios Ey(r )  and 
E x  (r) is more subtle. 

Let hM = l im~_~ h ( x )  and hm = h(0), then 1 < h,n < hM ~ O0 and we 
have: 

= h ,~E[X]  < E [ h ( X ) X ]  = E[~b(X)] = E l Y ]  = v < h M E [ X ]  = h M #  
II 

=:> hm < - < hM 
# 

~ there exists exactly one a > 0 such that  h(a)  = - 
# 

h,n# 

However, we see that  since F and ~b are both monotonic increasing, 
whence invertible, and so too is G = F o ¢-1. Whence for r > 0 we have the 
equivalence: 

O 
d~ 
d-7 = G ( v r )  - F ( # r )  ¢# C ( v r )  = F ( # r )  ¢~ v r  = ¢(#r )  

h ( # r ) # r  = v r  

h ( # r ) #  = v ¢:> h ( # r )  = v = h(a)  ¢=> a = # r  v=> r = a 
# Iz 

Now 0 = a(0) = limr-.o~ a(r) and so it follows that,  unless a(r) = 0 for every 
r > 0, the function a(r) has either a unique minimum or a unique maximum 
on (0, oo), and consequently a(r) is either always > 0 or always < 0, for all 
r > 0. We claim that  a(r) > 0 for all r > 0. To verify this, select fi such that  
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hm < fl < ~ and let b = #s  = h- l ( f l )  > 0; then: 

a 

¢(s~) 

v 

= r # , b = s p ,  l < f l = h ( b ) < - = h ( a ) ~ b < a  
# 
ly 

= ¢(b) = h(b)b = fib < ~b = - s #  = us 
# # 

=~ F(~) = c ( ¢ ( ~ u ) )  < c(~,~) 
d5 

=~ ~ (~1 = c(~,~) - F ( ~ . )  > 0 

b and therefore on the entire interval It follows that  5(r) is increasing at s = 

(0, ~). Since 5(0) = 0, this clearly forces 5(~) > 0 and consequently 5(r) > 0 
for all r > 0, as claimed. 

We see that  the graph of 5(r) is n-shaped, i.e. is concave with 0 = 6(0) = 
l i m r - ~  5(r), with a unique maximum at r -- ~. We have established: 

P r o p o s i t i o n  9 In the case of the differential severity trend model G(¢(x) )  = 
F(x)  and f ( x )  > 0 for x > O, as defined above, Eu(r)  - E x ( r )  > 0 for all 
r > 0 .  

Let r0 = 0 < ra < r2 < • • • < rM be a sequence of entry ratios and set 

Ai = Ax ( r i ) ,B i  = Bx(rl) ,O < i < M. 

Suppose that  Ai = Ax(r i )  > A x ( r i - 1 ) , l  <_ i <_ M and AM = 1. Set 
AA~ = Ai - Ai-1, ABi = Bi - Bi-1. Note that  /~aAi ~ '  1 < i < M, is the mean 
value of the untrended loss over the interval [#ri-1, #ri]. For 1 < i < M, set 

= h A ,  

i 

k = l  

(#  a_~B. ~ is Since ¢ is order preserving, it is reasonable to assume that  C k hA, y 

a good estimate of the mean value of the trended losses on the interval 
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[¢(#ri-1), ¢(#ri)], (the smaller the interval, the more accurate the estimate). 

v v ( / AB, hh 

k = l  k = l  

= ~ (G(¢(#ri)-G(¢(#ri_,))) ¢ t#-~-~i) 
k = l  

= r ___ + ( . r , / /  ' ,¢ 
k = l  

M 

~ er (¢(.r~_1) < r < ¢( .rd)  E [ Y  I¢(.r~-~) < g _< ¢(.rd] 
k = l  

= E [ Y l  = ~, 

And we have the estimate/TM ~ u. The sequence {Ai} can be viewed as the 
cumulative percentage of cases over the intervals of the trended losses and 
thus approximates the A column of the entry ratio table of the trended losses. 
The sequence {/~i } approximates the cumulative losses for the trended loss 

from the corresponding intervals. So the sequence { Bi } is proportional cases 

to the B column of the entry ratio table of the trended losses. Also, we have 
observed that the sequence {~a(#ri)} provides the endpoints of the corre- 

sponding intervals of the trended losses which have overall mean = v ~ BM. 
So setting: 

~ / _ ¢ ( # r i )  ~i=A,, ~ , =  /7i 0 < / < M  

A 

we have approximated the rAB table for the trended losses rABy ~ rAB in 
the case of differential severity trend. This differential severity trend adjust- 
ment to the rAB table is a simple three-step process (1-fix A, 2-estimate B, 
a-normalize r and B). In practice, this approximation can yield small negative 
values for a(r) which by Proposition 9 should be set equal to 0. 

4 . 1  W C  C a s e  S t u d y  o f  D i f f e r e n t i a l  S e v e r i t y  T r e n d  

The tables for excess ratios in WC are specific to the five types of WC in- 
jury: Fatal, Permanent Total Disability [PTD], Permanent Partial Disability 
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[PPD], Temporary Total Disallity [TTD], and medical only. It is standard to 
itemize WC losses into medical and indemnity (or wage replacement) compo- 
nents. While indemnity benefits are limited, either implicitly or by statutory 
maximum aggregates, the medical portion is unlimited and subject to broadly 
inclusive statutes as regards the medical procedures covered. In any event, 
it has been noted that as the claim size rises, the percentage of the benefit 
that goes for medical also rises. This is generally observed within all the 
injury types (except medical only). A series of charts below provide a more 
detailed picture of this phenomenon. Combine that observation with the fact 
that medical losses are subject to greater upward inflationary pressure than 
wages, and you have a scenario in which to apply the differential severity 
trend model of the previous section. 

In this case study we assume constant annual trend factors of to = 1.075 
for indemnity and tl = 1.095 for medical, applicable to all injuries and all loss 
sizes. Normalized WC loss data by injury type was itemized into medical and 
indemnity components and used to produce the following charts, by injury 
type, that show the percentage of the total [=medical + indemnity] loss 
by entry ratio (the role of the fitted curve will be described later). It is 
worth noting that the percentages shown in the charts are determined over a 
common interval width of entry ratio. Since there are typically more claims 
at lower entry ratios, one consequence is more claims per plotted point at 
the lower entry ratios, whence the greater spread of the plotted points at the 
higher entry ratios. 
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For each injury type = i, a simple curve (akin to a mixed exponential 
survival curve, and shown on the charts) was fit to the patterns of decreasing 
indemnity proportion rci(r) by entry ratio r as the loss size increases: 

~, (~)  = a~ (b~  ° ~  + ~ e , ~  + (1 - ~, - c~)e , ,~)  
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Injury i ai bi ci c~i ~i 7i 
Fatal 1 0.9280 0.6240 0.3761 -0.0051 -0.1416 -0.4599 
PTD 2 0.6928 0.7905 0.2095 -0.2542 -0.0007 -0.4599 
PPD 3 0.5811 0.3827 0.6173 0 -0.0281 0 
TTD 4 0.6237 0.0397 0.9603 0 -0.0475 -0.4599 

We set hi(r) = 1ri(r)to + (1 - 7ri(r) ) tl ,  then: 

dhi drri (to - tl) > O. l < to < tl,~-~ < O ~ l < hi(r) and dr - dr 

and so each injury type other than medical only provides a differential sever- 
ity trend model. 

Letting Xi  denote the random variable of losses by injury type and Nx~ 
the corresponding claim counts, the usual formula (readily obtained from 
Definition 1; see Gillam [1]) for the combined excess ratio over the injury 
types at attachment A is: 

XSra t io (A )  = XSra t io (X1 ,  X2,Xa, X4,X5; A) = i 
E Nx~#x, 

i 

Of course, to accomodate differential severity trend one could produce new 
r A B  tables as detailed above. A simpler alternative is to determine the 
difference: 

A X S r a t i o ( A )  

= XSrat io(Y1,  Y2,Y3, Ya,Y5; A) - XSrat io*(X1,  X2,X3, Xa,Xs; A) 

i i 

i i 

i 

i 

i 

i 
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expressed in terms of the 6x~ and where the * attached to XSratio* is 
meant to emphasize that one would consistently use the newer claim counts 
N~ and means #y~ in doing the calculation. While in principle you would 
need updated rAB tables to precisely determine the 5z, y, terms, if there were 
a simplified form to approximate that term based on inflation data or other 
cost trend considerations, this would provide the ability to refine the excess 
ratio calculation: 

X Sratio(Y1, Y2,Ya, Ya, Ys; A) 
= XSratio*(X1, X2,X3, Xa,Xs; A) + AXSratio(A) 

without recourse to new rAB tables. 
The use of entry ratio tables is a very good way to account for inflation 

when calculating excess ratios. Indeed, even compounded over a five year 
time interval, the AXSratio adjustment in this case study is very small. The 
following chart is indicative of what the calculation described here produces. 
Of course, a bigger difference between medical and indemnity trend or a 
longer time interval will produce bigger adjustments. Because excess ratios 
decline with increasing attachment points, as the attachment point increases 
the adjustment will typically increase as a percentage of the excess ratio. 

0.005 t 0.004 
0.003 
0.002 

0.001 t 
0 

4 

5 Year AdJusment 

§ § ~ § § § § § § § 
g g g g g g g g g g 

,a ~- ~ @ ~- 4- ~ 4 4 ~- 
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5 Differential Frequency Trend 

Let the function h(x) defined on [0, oo) be such that  0 < h(x) < 1, with h 
piecewise continuous and non-decreasing on [0, oo). So as to relate h with 
the 'untrended' loss variable X,  we also assume that  there exist a, b > 0 such 
that  h(a) < h(b) with h continuous at a and at b and with f (x)  > 0 for 
every x E (a, b). Observe that  this clearly forces a < b, and so there exist 
bk E (a, b) such that  lira bk = b. But then, since h continuous at b: 

k---+oo 

h(a) < h(b) => h(a) < h(b) = h (l imbk) = k--+~limh(bk) 

there exists M E N such that  h(bk) > h(a) for every k _> M. 

In particular, letting c = bM we have: 

C = bM E (a,b) 
=:> f(c) > O, h(c) > h(a) => h(c)f(c) > 0 :=> 0 < E[h(X)] < E[1] = 1. 

We consider the ' trended' loss model defined by the PDF: 

g(x) = h(x)f(x)  = "h(x)f(x). 
E[h(X)] 

Think of h(x) as a proportional decline in the incidence rate that  decreases 
with the size of loss x. For the trended loss Variable Y, we have: 

a a 

Pr(Y < a) = g(x)dx = h(x)f(x)dx = Pr X) _< a). 

0 0 

And accordingly, for the differential frequency trend model we take Y = 
h ( X ) .  Also, if h is differentiable (except at perhaps finitely many points), 
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::~ 1 

integration by parts gives: 

o ( y )  = 

y y 

g x  x =  x x x 

o o 

= d x  

o 
y A 

o 

> 

For the differential frequency trend model we cannot have F(x)  >_ G(x) 
for all x > 0, since by the above that would force the contradiction 

> _> 

> h(x) for all x > 0 such that f ( x )  > 0 with 1 > h(a) for some a > 0 such that f(( 

< E h(X) = E [E[--~(X)]J = 1 :=>~= 

In particular, differential trend models and differential frequency models are 
disjoint from one another 

R e m a r k  1 0  T h e  r e a d e r  s h o u l d  n o t e  t h a t  u n l e s s  w e  m a k e  t h e  s t r o n g e r  as-  

s u m p t i o n  that h is continuous on [0, oo), we cannot be assured that this Y is 
a loss variable, as that term is defined here. The weaker assumption on h is 
to include the case in which h is a step function. The reader may prefer to 
demand that h be continuous, in which case some of the arguments can be 
simplified. 

Propos i t i on  11 In the case of the differential frequency trend model g(x) = 

"h(x)f(x), as above, u > #. 

Proof .  Note that the function h(x) is piecewise continuous and non-decreasing 
on [0, oo). We claim that h(0) < 1, since otherwise: 

h(x) > 1 for every x > 0 ~ g(x) = "h(x)f(x) > f ( x )  for every x > 0. 
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But then g(x) and f ( x )  are two piecewise continuous funtions on [0, oo) with 
the same finite integral = 1. So the relation g(x) > f (x )  entails that  g(x) = 
f (x )  except possibly at points of discontinuity of g. So h(x) = 1 except for 
a discrete set of values or where f (x )  = O. By our model assumptions, there 
exist ~,/~ > 0 such that  h(~) < h(/~) with h continuous at ~ and at /~ and 
with f ( x )  > 0 for every x E (c~,/~). It follows that  h(x) = 1 on (c~,/5), except 
for perhaps a discrete set of points: 

there exist ai, bi e (~,/3) such that  

a = .lima/,/3 = . l imb/and "h(ai) = "h(bi) = 1 

"h(a) = "h ( l imai)  = ,--,o¢'limh(ai)= ,-~o¢'liml = 1  

= l i m h ( b i ) =  h (liimbi) = "h(Z) 

=, h (~ )  = "h(c~)E[h(X)] = "h(Z)E[h(X)]  = h (5 )  

=* h(~) = h(/3) > h(a)  =#¢= [read "contradiction"]. 

This contradiction shows that h(O) < 1. Similarly, we claim that  h(a) > 1 
for some a > O, since otherwise: 

h(x) _< 1 for all x >_ 0 :=> g(x) = "h(x)f(x) < f (x )  for all x >_ 0 

and again g(x) and f ( x )  are two piecewise continuous funtions on [0, oo) with 
the same finite integral. This again entails that  they are equal except possibly 
at points of discontinuity. Then again h(x) = 1 except for a discrete set of 
values or where f ( x )  = 0 and just  as before we arrive at a contradiction. So 
we have 

< 

there exists b > 0 such that  h(x) < 1 on [0, b) 

a n d h ( x )  > l o n ( b ,  oo). 

Next we claim that  there exists c > 0 such that  h(c) ~ 1 and f (c)  > 0 since 
otherwise 

x > O, f (x )  > 0 ~ "h(x) = 1 ~ h(x) = E[h(X)] 

But by our model assumptions, there exist ~,/~ > 0 such that  h(~) < h(/~) 
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with h continuous at ~ and a t /7  and with f(x) > 0 for every x E (c~,/~): 

=:> there e x i s t s c E  c ~ , ~  , d E  

such that  h(c) ¢ h(d), f(c) > 0 , f ( e )  > o 
=~ E[h(X)] = h(c) ¢ h(d) = E[h(X)]. 

It follows that  there exists c > 0 such that  h(c) ¢ 1 and f(c) > 0 and we 
have: 

.-.: i x.I.,'.- S - ,I.,," 
0 0 0 

oo 

: 

0 

b oo 

= /x (h(x)- 1)f(x)dx + i x (h(x)- i)f(x)dx 
0 b 

b oo 

> bi (h(x)-1)f(x)dx +by (h(x)-1)f(x)dx 
0 b 

o o 

(/ / . )  = b g ( x ) e x  - x ) &  = b(1  - 1)  = o 

as required. • 
As in the case of differential severity trend in the preceding section, we 

again are considering a change that  increases the mean severity. Suppose we 
use a fixed entry ratio table to calculate excess ratios. Then for a fixed at- 
tachment point A, we have declining entry ratios _A > A and the lookup into 

tt 

the same entry ratio table leads to excess ratios that  increase from E x  (A)  
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to Ex (A). In the case of differential severity trend, we observed in Propo- 
sition 9 of the previous section that the increase is consistently understated. 
In the case of differential frequency trend, however, we will show that the 
increase may be either overstated or understated. This may at first seem 
somewhat counterintuitive for the two "trends" to move the mean upward 
but the normalized excess ratio tabular amounts in perhaps opposite direc- 
tions. However, the entry ratio lookup is dominated by the change in the 
mean. For differential severity trend the overall trend factor consistently un- 
derstates the impact of trend on the largest loss amounts, which helps explain 
why the calculation consistently understates the excess ratio. But the case 
of differential frequency trend is quite different: selectively removing smaller 
sized losses will have a leveraged upward impact on the overall mean severity 
while leaving the size of the largest claims unchanged. 

With differential frequency trend we have, from the proof of Proposition 
11: 

/7 x > b =~ vnv(x)  - t tnx(x)  = ( y -  x) (g(y) - f (y ) )dy  

/7 ---- ( y - x )  (y) - i f (y)dy >_ O 

Rr(x) > ~Rx(X). 
lJ  

But again the relationship between Ev(r) and Ex(r)  is more subtle. 
In the case that X has a maximum loss M = Mx < oc, since h(x) is non- 

decreasing on [0, c~) and there exists c > 0 such that h(c) > 0 and f(c) > O, 
and we have c < M and h(d) > 0 for every d > c, whence: 

Mr = sup{x[g(x) > 0} = sup{xlh(x)f(x) > 0} = sup{xl f (x  ) > 0} = M. 

So too must Y have maximum loss M and Proposition 8 assures us that 
Ev (r) < Ex  (r) for large enough r. More precisely, we have: 

P ropos i t ion  12 In the case of the differential frequency trend model g(x) = 
h(x) f(x) ,  as defin~ above, in which X has a maximum loss Mx  < oo, there 
exists b > 0 such that Ey(b) < Ex(b) and Ey(r) < Ex(r) for all r > b. 

Before stating a result that deals with the relationship between Ew(r) 
and Ex(r) in the case Mx = oc, it is instructive to make a few observations. 
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Note that  since the non-decreasing function h is bounded above by 1, it is 
reasonable (but not necessary) to have the decline in frequency flatten out 
for large losses, say in the sense that  the derivative dh ~ -0 0 as X -+ c~. We 
also observe that: 

P r o p o s i t i o n  13 In the case of the differential frequency trend model g(x) = 
"h(x)f(x), as above, the limit lim=_+~ h(x) = A exists and ~ < A. 

Proo f .  Since h is non decreasing and bounded above by 1, existence of the 
limit is apparent. We evidently have: 

v 
h(x) _< A for all x >_ 0 ~ v = E[X'h(X)] <_ E[XA] = AE[X] = Ap ==> - _< A 

# 

as required. • 

P r o p o s i t i o n  14 Assume Mx = oo, then for any p > 1 for which the limit 
lim=~m ~ exists: s(=) 

lim S(px.__~) < 1 
• s ( x )  - p 

Proo f .  Note that  Mx = oo is equivalent to S(x) > 0 for every x > 0 and so 
is always well defined. Thus the expression lim=__~ s _ ~  makes sense s(=) 

:n(~ further our assumption is that  the limit exists for some p > 1. Note 
that  the integral f o  S(x)dx = # < oo. Suppose, by way of contradiction, 

that  lim=_+~ ~s(=) > a'l Then, using the change of variable z = px, we would 
have: 

there exists c > 0 such that  pS(px) > S(x) for every x > c 

~ S(px)dx 

P 

=> pS(px)dx > S(x)dx 

l I7 
=> - S(x)dx < S(px)dx 

P 
1 ~oo S(px)pdx 
P 

I? _ 1 S(z)dz 
P 

> 1 => - S(z)dz < S(z)dz 
p 

~ - S ( z ) d x  < S ( z ) d z  =~,= p ; 
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This contradiction completes the proof. • 

R e m a r k  15 Appendix A considers the implications of the existence of the 
• S px  limit llmx__.~ ~ .  The discussion shows that if you assume that the limit 

lim,__,~ ~ exists for all p > 1 and is not identically 0 for all p > 1, then 
the tail behavior is essentially determined up to just a single parameter. More 
precisely, consider the one-parameter survival function: 

{1 
T(C~;x)= x -~ x > l  " 

For T(/3; x) such limits exist and are particularly manageable as we clearly 
have t 

p,/3, x > 1 :=> T(/3; px) _ (px) -B _ p_~ = lim T(/3; py) 
TO3; x) x-e  u-~o~ T(/3; y) " 

It turns out that for a loss variable X with S = Sx  and for which there exist 
• • S p x • > 1, k 6 N such that hmk-~oo Pk = 1 and hm~.~oo ~ exzsts for Pk e v e r y  

k E N ,  then for all p > 1: 

either lim S(px) - 0 
S(x) 

S(px) _ p-Z w h e r e ~ = - l n \ ~ _ ~  S(x) ] or l im S(x) ( lim S(ex) ~ > 1. 

We see that under these assumptions, the conditional probability of survival 
s(z) for y > x and x large is asymptotically the same as that of T(/3; x) for 
some unique ~, with 1 < ~ <_ oo. 

E x a m p l e  16 For the "thin-tailed" exponential density S(x) = e-~ we have, 
for any constant p > 1, that 

_ o-~e=~ lim S ( p x ) _  l i m e  o _ l ime  o = 0 .  
S( ) x - - * o 0  X x.. .-*oo e - ~  x -..., o o  

E x a m p l e  17 For the "thicker tailed" Pareto density S(x) = (o-~) ~ we have, 
for any constant p > 1, that 

S ( p x )  lim ~ - lim 
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Example 18 This example shows that the inequality in Proposition 13 can- 
not, in general, be improved. Consider the survival function: 

S ( x )  

# 

1 

P 

1 

P 
1 

P 

with finite mean. 

lim S(px) 
~-~ S ( x )  

e 

(x + e) (ln(x + e)) 2 
o o  o o  

= x X = 2du where u = x + e 
u 0n(u)) 

0 e 

o o  

1 

= e - -  = e < o o  

1 

We have, with several applications of L 'I-I~pitah 

= lim ( e ( x + e ) ( l n ( x + e ) )  2)  
• - . ~  (px + e) On(pz + e)) ~ e 

= lim ( ( x  +e "~ (ln(x + e))2 '~ 
=-~ t,\px + - - - 7 / ( ~ 7 ~  ~) 

( x + e ' ~  ( ln(x+e) )= 
= l im \ p x + e ]  lirn \ln---~-x-77) 

1 (lim ln(x+e)~= 
= ; , ,=-~,l~:t-7)) 

2 (1/ 
l im~ 

px+e ] 

lira ~-+--~ ~ 
~--+oo px + pe ] 
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Example  19 Define the function: 

x 0 _ < x < l  
2 x - 1  1 < x < 2  

3 2 _ < x < 4  
h(x) = 1 + ~ 4 <_ x < 8 

: 

k + 1 2 k-1 < x < 2 k and  k > 1 even  

k - 2 + ~ 2 k- l  <_ x < 2 k and k > l odd 

then the reader can readily verify that h is continuous and non-decreasing 
with h(O) = 0 and limx--,~ h(x) = c~. It  follows that S (x )  = e -h(~) is a 
survival function. Let X be a nonnegative random variable with S = S x .  
The reader can verify the following: 

h(4x) = h ( x ) + 2 f o r x > 2  

h(2k) = k + l  k > l e v e n  

And we find that for  x > 2: 

s(4.) 
s(.) 

e-h(4x) 
_ _ eh(x)-h(4x) = e -2  

e-h(x)  

S(4x) 1 
=> A(4)= lim 

• - . ~  S ( z )  d "  

Since A(4) = ~ < ¼ it is at least possible for  this distribution to have a finite 
mean; and indeed, the reader can readily verify that: 

X 
In x 

> 2 ~ h(x) >_ ln---2 - 1 
1 

S ( z )  < e z  ,°5 

/ (  7( ' =* S ( x ) d x  <_ e x - r ~ d x  = e 

f o  ~ 
=* # x  = S ( x ) d x  < c~ 

(11) 2 - ra-~ 
1 

rg-~- I 
< o o  
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and we see that X is a loss variable. Observe that: 

h(2k) = { h(2k-1)+2 k > l o d d  } 
h(2 k-l) k > 1 even 

5'(2.2 k-~ ) s(2 k) e-h(2k) 
=:> 

8(2k-1) 8(2k-1) e-.(= k-') 
= eh (2k -1 ) -h (2  k) : ~ e - 2  

( 1 
k > 1 odd ] 

i k > 1 even 

S(2x) 
limoo ~ fails to exist. 

Finally, observe that should lim=_~ ~ exist, that is not sufficient to guar- s(~) 
2 k antee that lim=__,oo s(~=) exists for/3 > 4. Indeed, setting Xk we have: s(=) = T 

h ( 5 x k ) - - h ( x k )  = { !~2 kk > 3 °dd 3 even 

S(5Xk) { e--~ k > 3  odd } 
==> S - - ~ k )  - -  e - h ( 5 x k ) + h ( x k )  = e - 2  k > 3 even 

S(5x) ~im ~ fails to exist. 

This example is meant to provide some additional insight into the nature of 
the assumption made in the very special case considered in the above remark, 
namely that lim=__,~ s(p=)S(x) exists for all p > 1. 

The two limits lim~--,o~h(x) > ~ > 1 (Propositions 11 and 13) and 

lim=_~ s(~=) = lim=-+~o ~ < ~ < 1 play a key role in determining the 
S ( = )  S ( ~ = )  - -  - -  

sign of 5(r) for large enough entry ratio r, as demonstrated in the following: 

Propos i t ion  20 In the case of the differential frequency trend model g(x) = 
"h(x)f(x) ,  as defined above, assume that M x  = oo, that h is differentiable on 
(0, oo) (except at perhaps finitely many points) and that there exists c > 0 with 
dh _ 0 for all x > c. Let p = ~ and assume that the limit A = lim=_~ 
d =  - -  - -  ~ S ( x )  

exists. Then 

A'h(c) > 1 =* there exists b > 0 such that Ey ( r )  > E x ( r )  for all r > b 

)~h(c) < 1 ~ there exists b > 0 such that Ev ( r )  < E x ( r )  for  all r >_ b. 

Casualty Actuarial Society Forum, Fall 2006 481 



Trending Entry Ralio Tables 

P r o o f .  To compare Ey(r) and Ex(r) for large entry ratios, we again inves- 
tigate the derivative of 5(r): 

d5 
dr a ( ~ r )  - F(W')  

ur  I~r 

0 0 

ur  I~r 

f 'h(x)f(x)dx+ / ( 'h(x)-1)f(x)dx 
lar 0 

Observe that  the first integral is always _> 0 and converges to 0 as r --0 oc 
and that  the second integral is an increasing function of r for r large enough 
to force h (# r )  > 1 and the second integral also converges to 0 as r -+ oo. 
Let r > {, Our assumptions together with ~_dh > O, give us: 

t i t  A 

= h(c)F(vr)-/F(x)dd--~hxdx 
0 

= h(c)F(~r) - "7 for some constant ~ /k  O. 

Taking the limit as r --* oo: 

= 

1 - h ( c )  

G(~r) 

~(c)  - 
= - , y  

= ~ ( c ) F ( ~ )  - - r  

= g ( ~ ) Y ( ~ )  + 1 - ~ ( ~ )  

= - h ( c ) ( 1  - F(ur)) + 1 

d5 h(c) (1 - F(ur)) + 1 - F(#r) 
=:> d r -  
= -~(c)S(ur) + S(#r). 
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Now suppose Ah(c) > 1 : 

)~h(c) > 1 ~ lim "f(c)S(px) > 1 
 -oo 

there exists b > 0 such that  "h(c)S(px) > S(x)  for every x _> #b 
/ ]  

p = - =# "h(c)S(vr) > S(#r)  for every #r  > #b 
# 

=a "h(c)S(vr) > S(#r)  for every r k b 

-'h(c)S(z/r) < - S ( # r )  for every r > b 

d5 -'h(c)S(t*r) + S(#r)  < 0 for every r > b. 
d-7 = 

And it follows that  5(r) is decreasing for r > b. Since 5(r) --+ 0 as r --+ oo it 
follows that  Ev(r)  - Ex ( r )  = 5(r) > 0 for r > b. We have established: 

Ah(c) > 1 ==> there exists b > 0 such that  

Ev(r)  - Ex ( r )  = 5(r) > O::~ Ev(r )  > E x ( r )  for all r > b. 

Reversing inequalities in the above argument shows: 

Ah(c) < 1 ~ there exists b > 0 such that  

Ey(r )  - E x ( r )  = 5(r) < O=~ Er(r )  < Ex ( r )  for all r > b 

completing the proof. • 
An immediate consequence is that  distributions with an infinite but  com- 

paratively thin tail act like distributions with finite support: 

C o r o l l a r y  21 In the case of the differential frequency trend model g(x) = 

"h(x)f(x), as defined above, assume that M x  = oo, that h is differentiable on 
(0, oo) (except at perhaps finitely many points), that there exists c > 0 with 

d h = 0 for x > c, and further that lim=--,oo ~ = 0. Then there exists 
d =  - -  S ( = )  

b > 0 such that Ey(r )  < Ex ( r )  for all r >_ b. 

E x a m p l e  22 As a general example of a differential freqency trend model we 
may take h = F, then g(x) = a F ( x ) f ( x )  for a uniquely determined constant 
a. But clearly F 2 is itself a distribution function and setting: 

G = F 2 

dG dF 2F f is a PDF =~ a = 2 
dx - 2F dx 
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and the increase in the mean is: 

u - #  = / ( 1  - G(y))dy-  S(y)dy 

0 0 

/(1 F(y) )dy /S(y)dy 
0 0 " 

/ ( 1 -  F(y))(1 + F(y) )dy -  / S(y)dy 
0 0 

/ S(y)(1 + F(y) )dy -  / S(y)dy 

0 0 
OO 

= / S(y)(1 
0 

O0 

+ F(y) - 1)dy 

= fS(y)F(y)dy. 

Example  23 Let X be an exponential denisty with f(x) = e -~ and set 
h(x) = ~+-~. Then from numerical integration applied directly to the defi- 
nitions: 

E[h(X)] = 0.404 
p = 1 
u = 1.477 

The following graphs the excess ratio functions Rx(x) = Ex(x), Ry(x), and 
Ey(x); from the graph we see that: Ey(x) < Ex(x) = Rx(x) < Rr(x).  
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Example 24 Consider the case of 10 losses per year: 9 of amount 1 and 1 
of amount 2 and let X denote the corresponding random variable. Suppose 
there is a decline in frequency to a rate of just 2 losses per year: 1 of amount 
1 and 1 of amount 2 with random variable Y.  The following graphs the excess 
ratio functions Ex(r) ,  and Ey(r) .  In this case we see that Ey(1) > Ex(1) 
and Ey(1.5) < Ex(1.5) > 0. 
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E x a m p l e  25 Consider a Pareto density with survival function S(x)  = ( - ~  )~ 

and a linear frequency decline of the form h(x) = M i n  (~+d 1) We provide \ c+d  ' ' 
the results of a direct evaluation via numerical methods for two cases: 

8 = 2, c~=5, c = 2 ,  d = 1  
v 

/z = 0.5, v ~ 0.695, p = - ~ 1.39 
# 

1 S(x) 
~ = li~moo S - ~  ~ 5.16 > 2.04 ~ h(c) 

Ey(x )  < Ex(x)  

and: 

0 = 2, c~=5 ,  c = 1 0 ,  d = 5  
v 

# = 0.5, v ~ 0.575, p = - ~ 1.149 
# 

1 lim S(x) 
=  .oo s -77)  1.97s < 2.72s ,, cj 

Ey(x)  > Ex(x) .  

In both cases, Proposition 17 holds for any b > O. This gives an instance 
for which the same untrended loss variable and two functions for h,. both of 
linear frequency decline proportions with the same range of [½, 1], can produce 
opposite sign impacts on the normalized excess ratio function. 

let 
As to the r A B  table for this differential frequency trend model, as before 

r 0 = 0 < r l  < r 2  < " "  < r M  

be a sequence of entry ratios and set 

A, = Ax(r , ) ,B i  = Bx(r,) ,O < i < M. 

Suppose that  Ai = Ax(ri)  > Ax(ri-1),  1 < i < M and AM = 1. Set 
AAi = Ai - Ai-1, ABi = Bi - Bi-> Again note that  #A&,I~ " < i < M, is 
the mean value of the untrended loss over the interval [lzri-1, #ri], which we 
assume can be taken as an estimate for the mean of the t rended loss. This 
would hold provided that ,  within sufficiently narrow entry ratio layers, the 
removed claims (and whence the retained) are representative of all claims in 
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that layer. This would hold exactly, for example, in case the function h is a 
step function that is constant on the intervals [ri-1, ri). For 1 < i < M, set 

[" ABi ~ 

i 

k=l 

Assuming then that #~__~B is a good estimate of the mean value of the trended AAI 
losses on the interval [#ri-1, Mr/], we have: 

BM 

M 

k=l 
M 

k=l 

kA£ ( 

/' ABk'~ 
Pr  ( # r , - i  < Y ~ #rk) t # - ~ k )  

Pr (#r~-i < Y <_ #rk) E[Y I#rk_l < Y <_ #rk] 

= E [ Y ]  = , ,  

and we infer, as before, that v ~ ~AM and that the two sequences { Ai } and 

{Bi ) are nearly equal cases not necessarily to the cumulative and losses of 

normalized trended losses. So they only need to be rescaled to give the A and 
B columns of the trended losses. Whence they are very nearly proportional 
to the A and B columns of the entry ratio for the trended losses (and albeit 
with different proportionality constants). So setting: 

~i = #ri priAM Ai = ~--Ai Bi = ~Bi 0 < i < M 
~ =  B y '  AM' B y '  
AM 

we have approximated the rAB table for the trended losses: rABy  ~ rAB. 
Finally, note that this simple three-step differential frequency trend adjust- 
ment to the t A B  table (adjust A, estimate B, renormalize r, A, and B) can be 
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done quite generally to account for a change in frequency by size of loss and 
dh (0, C~), although order preserving does not formally demand that ~ > 0 on 

is needed to justify the calculation. 

5 . 1  W C  C a s e  S t u d y  o f  D i f f e r e n t i a l  Frequency 
The tables for excess ratios in WC are produced by five types of WC in- 
jury: Fatal, Permanent Total Disability [PTD], Permanent Partial Disability 
[PPD], Temporary Total Disaility [TTD], and medical only [MO]. The WC 
system in the US has seen a persistent decline in claim frequency over the 
past 10-15 years. The decline is observed within each of the injury types 
and over the spectrum of US industries. There is no consensus on how long 
this pattern can persist, or even on its underlying causes. One pattern that 
has emerged, both in NCCI investigations as well as from studies by the De- 
partment of Labor, is that this decline has not been uniform by size of loss. 
Small WC claims have declined proportionally more than have large WC 
claims. That is the motivation for this look at how differential frequency 
trend impacts entry ratio tables. 

A recent NCCI study produced the following table of percentage changes 
in claim frequency (per unit of wage-adjusted payroll exposure): 

Fatal PTD PPD TTD MO 
Smallest third of claims -6.2% -52.4% -23.7% -32.8% -26.7% 
Middle third of clgims -7.9% -18.5% -12.8% -20.4% -29.9% 
Largest third of claims -10.3% 4.3% -8.7% -8.5% -13.8% 

With the exceptions of the fatal and medical only injury types, the table 
conforms to the by now familiar pattern of a smaller decline in frequency with 
increasing claim size. These percent changes were used to define a propor- 
tional change in frequency function hi(r) as a step function of entry ratio r 
for each injury type i. Even a smoothed version of hi(r) would not likely con- 
form to the differential frequency trend model assumptions for injury types 
Fatal [i = 1] and Medical Only[/= 5] : 

Range of r h,(r) h2(r) h3(r) h4(r) hs(r) 
0_< A(r) < 0.9a82 0.476 0.7628 0.6718 0.7a29 
1~ <_ A(r) < =s 0.9211 0.8151 0.87% 0.7957 0.7014 

<_ A(r) _< 1 0.8967 1.043 0.9134 0.9151 0.8624 
Even though the assumptions of the differential frequency trend model 

are technically not met in this case study, the discussion still makes it clear 
how to determine, for each injury type, a trended entry ratio table from the 

488 Casualty Actuarial Society Forum, Fall 2006 



Trending Entry Ratio Tables 

untrended table. The graphs below show the excess ratio functions Ez~(r), 
and E~(r) by injury type i before (Xi) and after (Y~) trend. With the 
exceptions of the fatal and medical only injury types, we again see that 
Ey(r) - Ex(r) < O. For each injury type except perhaps medical only, the 
two curves are very close, which indicates that little or no frequency trend 
adjustment to the rAB table is indicated. 
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T T D . - F r e q u e n c y  D e c l i n e  on X S r a t i o  
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As in the earlier case study, it is straightforward to combine differen- 
tial frequency trend impacts by injury type into a combined impact on the 
normalized excess ratio. 
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6 Matching  the  M e a n  and Median  Loss 

Suppose we are presented with an entry ratio table r A B x  together with some 
constant ~ ~ 0, we next discuss how to build the entry ratio table rABx~.  
Here we consider the trended random variable to be Y = ~b(X) = X e where 
the transformation ¢(x) = x ~ has ~ = ~x ~-1 and is order preserving for 
c > 0 and order reversing for ~ < 0. Thus, as we did for differential severity 
trend, we have: 

G(¢(x)) = Pr(Y_< ¢(x)) 

{ P r ( X < x ) = F ( x ) ~ > O  } 
= Pr(¢(X)  < ¢(x)) = Pr(X k x) S(x)  ¢# e < 0 " 

Let r0 = 0 < rl < r2 < • • • <: rM be a sequence of entry ratios and set 

Ai = Ax ( r i ) ,B i  = Bx(ri) ,O < i < M. 

As before, suppose that  Ai = Ax(r i )  > Ax(ri-1) ,  1 < i < M and AM = 1. 
Set "`Ai = Ai - Ai-1, "`Bi = Bi - Bi-1. Note that  # ~ ,  1 < i < M, is the 
mean value of the untrended loss over the interval [#ri-1, ~ri]. F o r l  < i < M, 
s e t  

/' " `B, • )  /" "`B,~ ~ 
= -,,4, ¢ = ' ` A '  

i 

k=l 

Assuming, as usual, that  # is a good estimate of the mean value of the 

trended losses within the interval [#~r~_l, >~r~] leads to the familiar estimate 

u ~ BM and, as before, the two sequences {Ai} and {/~i} approximate 

the cumulative claim and loss percentages of the trended losses. A change 
of scale to normalize the trended losses corresponds to adjusting the two 

sequences {Ai} and {Bi} by constant factors. So the sequences are very 

nearly proportional to the A and B columns of the entry ratio for the trended 
losses. Setting: 

~ii = --~--,#er~ A, = Ai, and Bi __Bi , 0 < i < M  
BM = BM 
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we have approximated the r A B  table for the trended losses: r A B y  = r A B x ~  

r A B .  
Now abstract from this and suppose only that you are provided an entry 

ratio table 0 in the form of three finite increasing sequences of M numbers: 

r o  = O < r l  < r 2  < . . .  < r M  

Ao = O < A I < A 2 < . . . < A M = I  

Bo = O < B I < B 2 < . . . < B M = I  

We will assume that these table values were constructed using some loss 
variable X and so e at least conforms to the properties of an entry ratio table. 
Given s > 0 we can formally construct a new entry ratio by mimicking the 
above and assuming, with no loss of generality, that Px  = 1. For 1 < i < M, 
set A A i  = Ai - Ai-1 and ABi  = Bi - Bi-1 and define 

( A B i  ~ ~ 
A B ,  = A A i  \ - ~ i ]  

i 

k = l  

And construct a new table ~) from the increasing sequences: 

8 

~ i i = ~ M  M, A , = A i ,  andB,---- B-~' ~ '  0 < i < M .  

The significance of this construction for adapting entry ratio tables to chang- 
ing conditions will become clear from the following: 

P ropos i t ion  26 Let 1 < xl  < x2 < . . .  < XM be an increasing sequence of 
M > 1 numbers. Then for  any fixed number w with 0 < w < 1 and integer 
k, 1 < k < M,  there exist c~, ~5 > 0 such that setting Yi = ~xi  ~ we have: 

M 
1 

i = l  

= 1 and Yk = w 

M 
1 Proof .  Let zi = ~ 1 < i < M and define ~(v) = ~TY]z~' then~o is a 

X k  ~ - -  - -  

i = l  
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continuous function of v and invoking the Intermediate Value Theorem[IVT]: 

~o(0) = 1 

ZM > 1 ~  lim ~o(v) = oo 

1 1 
1 < -- < oo, IVT ~ there exists fl > 0 such that  ~o(fl) = --  

W W 

Now set a = ~ ,  then we have: 

Yi 
W 

= axi ~ = - x i  ~ = w z y , l < i < M  

1 M w~_~zBi 
y i  = - H 

i=1 i=1 

= w~0(/5)=--w = 1 and yk=WZ~k = w l  e = w  
W 

completing the proof. • 
This means that ,  quite generally, for discrete loss da ta  the power trans- 

form Y = aX/~ enables us not only to normalize to mean 1 but  also to simulta- 
neously specify the entry ratio w(= r) of any selected percentile k ~ ( =  A(r) ). 
As a very general example, suppose you are provided an rAB table and some 
loss data  with random variable X.  Suppose further that  you observe a me- 
dian = m and mean = #, so the observed entry ratio of the median = _m /z" 

Now suppose further that  in the given tAB table you observe that  A(m) is 

1 This suggests to you that  the given rAB table may not well removed from 5" 
be suited to the task, say, of looking up excess ratios Rx (x) for the given loss 

1 for data. Now assume that  the given entry ratio table rAB has A(w) = 
some w < 1-- this  is not unreasonable since loss distributions typically have 
median less than the mean. From Proposition 23, there is a power transform 
Y = aX B whose median has entry ratio equal to w. But this, in turn, sug- 
gests tha t  the given entry ratio table rAB may be suitable as an entry ratio 
table for the transformed losses Y = aX  e, i.e. rAB ~ rABy, inasmuch as 
the transformed losses have the ratio of mean to median implicit in the table. 
While a power transform may not be the exact relationship for how losses 
trend, it is reasonable to assume some structural  relationship between the 

given tAB table and the given losses. By Proposit ion 5, Rx(x )  = Ry} (a}x)  

and we find that  all we require to customize the table lookup of excess ratios 
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1 

is an entry ratio table for Ya. But the above discussion provides an algorithm 
for determining the entry ratio table of a power transform. So let rAB  be 
determined, as above, from the original rAB  table under the power trans- 
formation s = {, then rAB  ~ rABy~ = rABy~.  This enables us to look up 

1 

the excess ratio Ry~ (aax). Finally, note that all this simplifies to the usual 

process of looking up the entry ratio of the loss limit, but in the adjusted 
entry ratio table: 

1 

Y = a X  ~ =:> Y{ = a½X => ]..~y~ = a~J~  X 

= ) Ev~ \ # r {  / Rx(x) Rr} = 

= = Ev ~ x 
Ey ~ \ Oz'~ # X / 

: q ,  

So to summarize, this example illustrates a general technique to deal with 
the case in which "trend" has impacted the shape of the severity distribution 
as evidenced by a change in the relationship between the mean and the 
median loss. In fact, the discussion details how to "trend" the old entry 
ratio table, rAB, to a new table rAB. 

The challenge with this approach comes in finding c~ and/3. At first, it 
would seem to require a calculation involving the complete loss variable X, 
or at least a very robust and representative claim subsample. And such cal- 
culation (the proof of Propostion 23 coupled with a binary search algorithm 
might prove useful), if doable at all, would suggest that direct calculation of 
the excess ratio, or even an entirely new rAB table, may be more practical. 
However, notice that only/3 is required to construct rAB  from rAB  and it 
is a straightforward spreadsheet application to try different values for/3 until 
the resulting rA-'~ satisfies A(w) = ½. This approach may well provide a/3 
that works even when w >_ 1 and the technique can be applied equally well 
to other percentiles than the median. Consequently, the technique is both 
general and constructive. 

Example  27 This example considers an entry ratio table r A B  (columns 
4th r,A,B) that reflects a loss distribution for which the median is about g of 
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the mean. Assume that later data revealed that the entry ratio of the median 
loss had grown from 0.8 to 0.85. A power transform with 13 = 2 is illustrated. 
Appendix B includes the table and displays a trended entry ratio table t A B  

A 

(columns ~, A, B)  which may better fit the newer data. The following chart 
shows the corresponding change in the normalized cumulative distribution 
function, from A -+ A: 

Power Transform Example 

1.00 

O.Tfi 

0 50 

0.25 

0.00 

0.00 

. . . . .  A 

i i ! i ! i i 

O.fiO 1.00 1 50 2.00 2.50 3.00 3 50 4.00 

Entry Ratio r 

We just, saw how a calculation similar to that of the differential severity 
trend approach can adapt the rAB  table to a power transform Y = a X  ~. We 
conclude this section by describing how the set up of the differential frequency 
trend calculation can adapt the rAB table to a proportional hazard transform 
Sy = (Sx)% In the notation used for differential frequency trend, we have: 

dSy = aSx(x)~_l f (x ) :=> "h(x) = aSx(x)  ~-1. 
g ( z )  - dx 

Now abstract from this as above and suppose again that you are provided 
an entry ratio table 0 in the form of three finite increasing sequences of M 
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numbers: 

ro = O < r l  < r2 < " "  < r M  

Ao = O < A a < A 2 < . . . < A M = I  

Bo = O < B I < B 2 < . . . < B M = I .  

Given a > 0 we can formally construct a new entry ratio table by employing 
the three-step process for the frequency differential trend, again assuming for 
convenience and with no loss of generality that the mean of the loss variable 
of the given table is 1. Set AAi = Ai - Ai-x, ABi = Bi - Bi-1 and define 

Ai = 1 -  ( 1 -  A i )~ ,AAi  = A i - -4 i -1 ,  O < i < M  

\ AAi ] 
i 

Bi = E A B k ,  I < i < M  
k=l  

From which we construct a new table g) from the increasing sequences: 

- _ , =--=--, -=--, O < i < M  

BM AM BM 

Example  28 This example begins with the same entry ratio table t A B  as 
the previous example. A proportional hazard transform a = ~, selected to 
again adjust the median to an entry ratio of about 0.85-the table is included 
in Appendix.B. The following chart shows the corresponding change in the 
normalized cumulative distribution function, from A --+ A: 
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Proportional Hazard Transform Example 
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The t.w 0 examples illustrate the rather different ways in which the power 
transform (which bears a formal similarity with the differential severity trend 
set up) and the proportional hazard transform (which bears a formal similar- 
ity with the differential frequency trend set up) achieve raising the relativity 
of the median to the mean loss. The power transform disproportionately in- 
creases the larger losses, including increasing the maximum loss amount from 
3 to around 3.3, so that proportionally fewer losses above 0.8 are needed for 
an overall mean = 1. By contrast, the proportional hazard adjustment re- 
moves the largest losses, including dropping the maximum loss amount from 
3 to about 2.3, forcing the smaller losses to increase in order to maintain an 
overall mean = 1. Accordingly, it is advisable to consider the impact of trend 
on the largest losses when selecting a trend adjustment to update an entry 
ratio table. 

It is also worth comparing what the WC case studies suggest in regard 
to the justification for trending an entry ratio table. Medical inflation has 
outstripped overall wage growth very consistently and the reasons why are 
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well understood. Also, WC medical coverage is not subject to the statutory 
limitations imposed on wage-replacement benefits. Finally, in the case of 
excess ratios, the direction of the change in the tablular values is consistent 
and readily explained. So in the case of differential severity trend, there is a 
strong argument to be made that the underlying dynamics are persistent. 

The case of differential frequency trend provides a contrast. The decline in 
WC claim frequency, while persistent over the past decade, is neither readily 
explained nor well understood. Experts disagree on whether the decline 
will, or even can, continue. While no one is surprised that medical inflation 
outstrips wage growth, the observation that the WC frequency decline is 
greater for smaller claims is a fairly new and a largely unforseen observation. 
In the case of excess ratios and differential frequency trend, the direction of 
the change in the tablular values is neither consistent nor straightforward. 
While the dymanics of differential severity trend are extemely unlikely to 
reverse, that cannot be said for differential frequency trend. 

As with any trend adjustment, there is the concern that missing turning 
points will result in trend adjustments leading to worse estimates rather than 
better estimates. This is especially so when the direction of the numerical 
change is itself problematic. In the case of entry ratio tables, there is a built in 
correction for short term changes in severity that works very well. And so any 
"trend" adjustment must be justified over a long time window as improving 
the estimate. This study suggests that while a fairly strong argument can 
be made for incorporating the differential severity trend adjustment to WC 
entry ratio tables, the case is much weaker for differential frequency trend. 

7 C o n c l u s i o n  

In the case of a differential severity trend in which large losses trend upward 
faster (slower) than do smaller losses, the use of an entry ratio table assumes 
an average trend which corresponds with a severity distribution whose tail is 
not thickening (thinning) in response to the non-uniform trend. Ideally, the 
normalized excess ratios from the rAB table should be increased (decreased) 
to offset this. 

In the case of a differential frequency trend in which the frequency of small 
losses declines faster (slower) than for large losses, the impact of the frequency 
decline on the mean severity is leveraged. Over the range of attachment 
points, the use of an untrended entry ratio table may sometimes overstate or 
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sometimes understate the change in the excess ratio. 
The two models described here, the differential severity trend and differ- 

ential frequency trend scenarios, are meant to act independently of one an- 
other. Differential severity trend assumes that all trend is due to inflationary 
movement and none is due to a change in claim emergence. Differential fre- 
quency trend holds loss amounts fixed while applying a proportional change 
in the density. Therefore, it is perhaps not to o surprising that while both act 
to increase the mean severity, they can impact the normalized excess ratio 
in opposite directions and may offset one another when updating an entry 
ratio table. 

Another very general technique that can be used to accomodate a non- 
uniform trend is to use a power transformation or a proportional hazard 
transformation, in lieu of just dividing by the mean loss when performing 
the lookup into the entry ratio table. The technique provides another way 
to trend an entry ratio table. More precisely, the ratio between the mean 
loss and a fixed percentile loss may be observed to change over time. And 
this calculation gives a way to periodically modify the entry ratio table to 
accomodate that movement. 
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APPENDIX A 

In this appendix we invoke the notation and assumptions of the Differ- 
ential Frequency Trend (section 4) of the main paper and let X be a loss 
variable with survival function S(x) for which Mx = oo. We consider the 

implications of the assumption that the limit A(p) = limx_,o~ ~ exists for s(~) 
all p > 1. Proposition 14 of the paper gives: 

P r o p o s i t i o n  29 Let X be a loss variable with M x  = oc and S = Sx ,  then 
for any p > 1 for which the limit A(p) = limx__.~ ~ exists: s(=) 

Note that  when the limit A(p) 

More generally, we have: 

lim S(p2x) - 

A(p) <_ 1 
- < 1 .  
P 

• S px = hmz--.~ ~ exists: 

lim S(P2X) S(px) 

= lim S(p(px))  lim S(px) 
~ - ~  S ( p x )  ~ - ~  S ( x )  

= ( l i m  S(px)~2 

A(p ~) = ~(p)=. 

P r o p o s i t i o n  30 Let X be a loss variable with Mx  = oo and S = Sx ,  then 
for any m E N, if the limit A(p) = l~m ~ exists then -----z-,co s(x) 

S(pmx) 
~(pm) = ~im s(x)  = ~(p)m. 

P roo f .  The verification is a straightforward induction, the result has been 
observed to hold for m = 1, 2, we have: 

liE S(Pm+lx) = lira S(pm+ix) S(pmx) 
= - ~  S ( x )  ~ - ~  S ( p ~ x )  S ( x )  

= lim S(p(p=x))  lim S(PmX) 
= - ~  s ( p ~ = )  x - ~  s ( . )  

= ~(p)~(p~)  
= A(p)A(p) ~ = ~(pF +' 
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completing the induction and the proof. • 
When such limits all exist, this generalizes to: 

P r o p o s i t i o n  31 Let X be a loss variable with M x  = oo and S = Sx ,  and 
assume that the limit A(p) = lim,-~oo ~s(,) exists for all p > 1. Then 

A(p) °" = A(p °') for any positive real number w. 

Proof .  Observe that  since the limit A(p~) "' s(p~) = u m . - ~  ~ is assumed to 
exist, we must have: 

• -+~ = lim S(px) 
=_ ~ lim ~k S(x)  ~-oo S(x)  = A(p) 

">" S (p~x )  
=:> lim = A(p)~. 

But then  for any positive integers m, n we have: 

s(p x) 
A(p~ )  = l im  = l im _ ( A ( p ) ~ ) m  = A(p )~ .  

• - ~  S(x) ,-+~ s(.) 

Whence k(p a) = k(p) ~ for any positive rational a. Now let w be a positive 
real, then there are sequences of positive rationals: 

ak, bk E Q, k c N  

such t h a t 0  < al,ak <_ ak+l,bk >__ bk+l 

and with l imak  = l i m b k = w .  
k---*oe k--coo 

This clearly forces ak < w < bk and since S is a continuous, non-increasing 
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function, we have: 

ak _< 
=:> 

:=~ 

w < bk =V pa~ < p~ < pbk 

pakx < p~'x < pbkx for all x > 0 

S (p°~x) > S (p~x) > S ( p % )  for all x > 0 

s ( p o ~ )  s ( p ~ )  s (p%) 
~ _ _ k - - >  for all x > 0 

S(x) S(x)  S(x) 

=> lim S (p~kx) > lim S (p~'x_____~) > lim S (pbkx) 

 X(p) =  x(p 

and we see that  A(p) °' = A(p ~°) for any positive real number w, completing 
the proof. • 

An immediate consequence is: 

C o r o l l a r y  32 Let X be a loss variable with Mx  = oo and S = Sx ,  and 
assume that the limit A(p) = lim=__.~ ~ exists for all p > 1 Then s(=) 

1. there  exists p > 1 such that  A(p) = 0 ¢# A(p) = 0 for every p > 1 

2. there exists p > 1 such that  A(p) # 0 ¢# A(p) # 0 for every p > 1. 

Consider the one-parameter survival function: 

r (x )  = x-e z > l  

O,/5, x > 1 =~ T(px____J = (px)-____~ ~ = p _ ~ =  lim T(py) 
- T ( x )  x - e  y--,oo T ( y )  

Note that  T(/5; x) has a finite mean if and only if/5 > 1. By convention, 
we include the (discontinuous) possibility that /5  = oo by setting T(c~; x) = 
x -¢¢ = 0 for x > 1. 

P r o p o s i t i o n  33 Let X be a loss variable with M x  = oo and S = Sx  and 
assume that the limit A(p) = lim=_~m ~s(=) exists for all p > 1. Then 

A(p) = lim S(px) = p - ~  

for all p > 1, where/5 = - ln(A(e)) > 1. 
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Proof .  Consider first the case when there is some P0 > 1 such that  )~(P0) ~ 0. 
Then from Proposition 29 and Corollary 32 we find that  )~(e) E (0, 1). Then 
for any real p > 1 we have: 

~ ( p )  ~- )~(elnp) --~ ~ ( e ) l np  ~_ (e- f~) lnp  ~- (e lnp)- f~  ~-~ p-~3 

where ~(e) = e -~ ~ ~ = -ln()~(e)) 

and since by Proposition 29: 

<1 1 
k(e) - ~ e < ~ 1 = l n ( e )  < In = - l n ( A ( e ) )  = / ~  

the result follows in this case. For the remaining case A(p) = 0 for all 
p > 1 we have from Corollary 32, with minimally abusive notation and our 
conventions: 

- l n ( A ( e ) )  = - l n ( 0 )  = oo 
II.l : .  

lim S(px)  p_~ x-*~ ' S-~-) = 0 =  for all p > 1 

and the result holds in this case as well. The proof is complete. • 

Coro l l aS- -34  Let X be a loss variable with M x  = oo and S = S x  and 
assume that the limit A(p) = l imx-~  ~s(x) exists for all p > 1 and further 

that there is some Po > 1 such that )~(Po) ~ O. Then 

for all p 

= lim S(px)  = lim T(/3;px) _ p-e  
• --~ S(x)  x--,oo T(/3;x) 

> 1, where 1 </5  = - l n (k (e ) )  < oo. 

P r o p o s i t i o n  35 Let X be a loss variable with M x  = oo and S = S x ,  then 
the following are equivalent: 

1. limx--,o~ ~s(x) exists for all p > 1 

2. there exist Pk > 1, k E N such that l imk-~  Pk = 1 and lim~__,~ ~s(x) 
exists for every k E N. 
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P roo f .  It is apparent that  1 =# 2. To establish the meaningful direction 
2 => 1, we begin with the claim that: 

ak > 0 for all k E N and lira ak = 0 :::> {maklk,  m E N} is dense in [0, c~). 
k----*cx~ 

Indeed, given e > 0, b E (0, oo): 
E 

l i m a k = 0 = > 3 k E N g 0 < ~ k < -  
k--.c¢ 2 

and setting 

bm 
£ 

= mak  => bm+l - b m  = C~k < "~ 

=> there exists m E l~l such that  bm E (b - e, b + e) 

=> moek E ( b - e , b + e ) , k ,  m E N  

Since this holds for any e > 0, it follows that  {mo~kik, m E l~l} is dense 
in [0, oo) as claimed. And since the log function In : [1, oo) ---* [0, oo) is 
bicontinuous and bijective, we see that  

= m k l~I} is dense in [1, oo). Pk > l f o r a l l k E N a n d  l impk l=>{pk]  , m E  

Now we have our assumption: 

there exist Pk > 1, k E N such that  

l impk = l a n d  lim S(PkX) exists for e v e r y k E N  

and we select any p > 1 and seek to prove that  this assumption is sufficient to 
imply that  the limit limx_.~ ~ exits. So assume, by way of contradiction, s(~) 
that  limx-..~ s(p~) does not exist. We have, by density: scx) 

there exist ak, bk e {p?[l, m E N}, k 6 N 

such that  1 < a l , ak_<ak+l , ak__<pandwi th  l i m a k = p  
k--+oo 

and such tha tbk  >_ bk+l ,bk_>pandwi th  lim b k = p .  
k--+oo 

Now S is a continuous, non-increasing function on [0, co) and so we have: 

ak <_ p <_ bj f o r a l l j ,  k 6 N  

=> akx <_ px < byx for all x > 0, and for all j ,  k E N 

S (akx) >_ S (px) >_ S (b~x) for all x > 0, and for all j ,  k • N 

s (a x) s(p ) s (bs ) 
=> ~ > ~ > ~ f o r a l l x > 0 ,  and for a l l j ,  kEBt .  

S(x) S(x) S(x) 
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Consider the two sets: 

A = ~ l i m  S(akx) } 

B = ~ l i m  S(bkx) . } I'z--*°° ~ , / ¢  E N 

The  above inequalities clearly force: 

/ 9 < a <  1 for a l l a E A a n d f o r a l l / 3 E B .  

Observe that  by Proposition 29: 

lim S(akx) < 1 - - < 1  
• - - ~  S ( z )  - a ~  

a < 1 for a l l a  E A. 

We also have, for any k E N, that:  

ak ~ p 
akx <_ px for all x > 0 

:=~ S(akx) >_ S(px) for all x > 0 

S (akx) S (px) for all x > 0 
s(x--T >- s(x---T 

s ( ~ )  s(px) 
=¢, lim J (  ------'w- >- ~--~-w >- O f°r all x > O" 

• X - ' - ~ O 0  

We claim that  limx-~oo ~ > 0 for every k E N, since otherwise: s(x) 

lim S(akx) = 0 =:~ existence of the limit lim S(px) _ 0 =~¢=. 
~-~ s(~) ~-~ s(~) 

And we established: 

0 < a < l f o r a l l a E A  

A C  (0,1). 

Now set: 
a = inf A,/3 = sup B 
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then clearly 0 < # < a < 1. We claim that: 

O l = ~ .  

Indeed, suppose, again by way of contradiction, that  a ¢ j3. Then we would 
have: 

~<C~. 

Now 

A C (0, 1) ~ there exists 

and we have, for any given e 

1 > 

lim Pk -= 
k---*oo 

=~ 

=~ 

:=> 

=:> 

Proposition 29 

s (c . )  
c E {aklk E N} w i t h l > ' y = J i m ~ > 0  

> 0 :  

1 
~ , > 0 = > 3 n E N s u c h t h a t ' y a  > l - e  

1 

1 => ~m E N such that  P,n < ca 

p~ < c  

p~x < cx for all x > 0 

S (p~x) > S (cx) for all x > 0 

s (p x) > s (c.) 
S (x----)- - ~ for all x > 0 

lim S(p~nx) > lim S (cx) ,7 

lim S(pmx) ~ n S(p~x) 
,~---.~ S(x) ) = limoo S(x---~ >- "7 

1 •(pm x) , 
1 > - - >  lim ~ > ' y a  > 1 - e  

And we have established: 

For any given e > 0 there exists ~o 1 > 1 

such that  the limit lira S(~°lx) exists and is in (1 - e, 1). 

We next claim that: 

There exists ~o 2 > 1 such that  lirno S(x) s (8, 
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Let  /71 = ~2e~, t hen  clearly 0 < /51 < a and ( / s l , a )  C_ (/7, a ) .  Now let 
= In a - In/7~ > 0. T h e n  le t t ing e = 1 - e -a we have e > 0 and so by an 

earlier claim there  exists ~o 1 > 1 such t ha t  

lira S(~qx)  C ( l - e ,  1) 
• -~ s(~) 

In -( lira S(~°lx)'~ e (-5, 0). 
t:'~ S(x) ) 

Set r / =  - In (lim~_+o~ s ~_.(_~s(,) ) ,  then: 

= In / { l ira S(~°lx),~ 6 (-5,0)  = (ln/71 - l n o z ,  O) ,0 < ?7 < 6 
v - ~  s(~) ) 

lna in/7 6 { ' lna - ln/7'~ l n a -  In/7 
~ t ) " -~- ~ 77 7 > ~ 1 (ln  

=> there  exists 1 E N such tha t  l E - - ,  

- . l  c ( l n & , l n ~ )  ~ e -'~ c (91,a)  c_ (/7,~) 

and it follows tha t ,  se t t ing ~o 2 = ~Jl we have: 

e-rll ( ~ ) ) '  = e ' ' (  'im=-~ ~ )  = el" 'ira=__ 

= lim = lira = lira 

lim S(~°2x) = e -Èl 6 (/7, a) 
• -~ s(.) 

and the  claim is established. Recall ing how a and /7  were defined, we have: 

lim S(q°2x) C (fl, a )  = (supB,  infA)  
• -- s(x) 

:=> lim S (bjx) S (~o2x) S (akx) - - <  lim ~ <  l i m - - , V j ,  k ~ N  
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and we also have that:  

S ( a k x )  s (~0,x) 

~ > ~ s(~--7- -< s(~---T- 
=> lim S (akx) < lim S (£o2x_____~) 

~-~ s(~) - ~ - ~  s(~) 
s (%~) s ( ~ )  

=> lim S (bjx) > lim S (~o2x__.___~) 
• -~ s(~) - ~ - ~  S(x) 

and we are lead to: 

< a = inf A ~ 

> fl = sup B =>¢= 

ak<_~o2<_bj for allk, jEN. 

But  this, in turn, leads to 

l i m a k  = p =  l i m b k ~ 2 = p  
k---~oa k--*oo 

=:> existence of the limit lira S (~o2x) = lira 
s (pz)  ~ 

~-.oo s( .)  .-~ s(~) 

and with this contradiction we have established our claim tha t  tha t  a = ft. 
Now by the definition of the set A and a -- inf A we find tha t  for any given 
e>O: 

e S(aatx) 
there exists kl E N such tha t  a + [ > lime S(x) 

there exists Xl > 0 such tha t  

S (ak~x) S (px) for every x > xi 
+ ~ > s(x----T >-- S(x----T' 

there exists xt > 0 such tha t  

S (px) for every x > Xl. + c > S(x) ' 

And similarly, by the definition of the set B with a = / 9  = sup B, we find 
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tha t  for any given e > 0 

there exists k2 

O L - - C  

e S(bk2x) 
e N s u c h t h a t f l - ~ < l i m o o  S(x) 

there exists x2 > 0 such that  

S (bk2x_..___.~) < S (px) for every x > x2 
< s ( x )  - s(~---T' 

there exists x2 > 0 such that  

S (px) for every x > x2. 
= / ~ - ~ <  s(~----g' 

Therefore: 

given any e 

S (px),x > x3} 
s (~)  - 

> 0, there exists x3 > 0 such that  

c_ ( ~ -  e,c~+ e) 

=> the limit lim S(px) _ ~ exists =>~  

and this final contradiction establishes tha t  the limit lim=-~oo ~ exists for s(=) 
all p > 1 and completes the proof. • 
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r 

0 

0.1 

0.2 

0.3 

0,4 

0.6 

0.6 

0.7 

0.8 

0.9 

1 

1.1 

1.2 

1.3 

1.4 

1.5 

1,6 

1.7 

1.8 

1.9 

2 

2,1 

2.2 

2.3 

2.4 

2.5 

2,6 

2.7 

2.8 

2.9 

3 

A P P E N D I X  B 

Power Transform Example (~ = 2 )  

A B ~ ~ 7 
0 0 0 0 O 0 

0.082907 0.004145 0.082907 0.004145 0.316228 0.01853862 

0,163781 0.016276 0.080874 0.012131 0.447214 0.03132221 

0.236026 0.034338 0.072245 0.018061 0.547723 0.03612254 

0.303221 0,057656 0.067196 0.023518 0,632456 0.03975295 

0.363143 0.084821 0.059922 0,926965 0.707107 0.04019696 

0.417715 0.114835 0.054572 0,030015 0.774597 0.04047166 

0.467217 0,147012 0.049502 0.032177 0.83666 0.03991004 

0.512363 OA 80871 0.045146 0.033859 6.894427 0.03909732 

0,554109 0.216355 0.041746 0.035484 0.948683 0.03848772 

0.591876 0,252236 0.63777 0.635881 1 0.03681339 

0,626693 0.288792 0.034615 0.036555 1.048809 0.03567449 

0.658777 0.325688 0,032084 0.036897 1,095446 0.03440628 

0,688675 0.383061 0.029899 0.037373 1.140175 0,03342733 

0.716234 0.400266 0.027559 0.037204 1.193216 

0.741513 0.43692 0.025279 0,036655 1,224745 

0,765774 6,474524 6.024261 0.037604 1.264911 

0.788177 0.51149 0.022404 0.036966 1.30384 

0.809417 0,548~6 0.02124 0.037169 1,341641 

0.828932 0.584763 6,019515 0.036163 1.378405 

0.847916 0,620025 0,018084 0,035263 1,414214 

0.864609 0.656092 0,017594 0.036067 1.449136 

0,88129 0,691955 0,01668 0.035863 1,48324 

0.897579 0.728605 0.016289 

0.912953 0.764736 0.015375 

0.927842 0,801212 0.014888 

0,942066 0,837484 0,014224 

0.955979 0,874354 0.013913 

0,970255 0,913613 0,014276 

0.98386 0.952387 0.013605 

1 1 0.01614 

0,03665 1,816575 

0.036131 1.549193 

0.036476 1.581139 

0.036272 1.012452 

0.03687 1,643168 

0,039259 1.67332 

0,038774 1.702939 

0,(}47613 1,732051 

0.03202034 

0.03044021 

0.63O20417 

0.02877787 

0,02809741 

0.02654347 

0,02525227 

0.02519015 

6.02445823 

0.02443335 

0.62356912 

0,02330379 

0.02271451 

0.02264905 

0.0236738 

0.02296765 

0.02772158 

0 O O O 

0.016539 0.110346 0.082907 0.020457 

0.049861 0.220692 0.163781 0.05502 

0.086983 0.331039 0.236026 0.094879 

0.125736 0,441385 0.303221 0.138745 

0.165833 0,551731 0,363143 6,183101 

0,206405 0.662077 0.417715 0.22776 

0.246315 0,772424 0,467217 0.271799 

0.285412 0.88277 0.512363 0,314942 

0.3239 0.993116 0.554109 0.357411 

0.360713 

0,396388 

0.430794 

0.464222 

0.496242 

0,526682 

0.556886 

0.585664 

0.613762 

0.640305 

0.665557 

0,690747 

0.715206 

0,739639 

0.763208 

0.786512 

0.809226 

0.831875 

0.855549 

0.878517 

0,906288 

1.103462 0.591878 0.398034 

1.213809 0.626693 0.437399 

1.324155 0.658777 0.475385 

1.434501 0.688675 0.512251 

1.544847 0.716234 0.547584 

1.655193 0.741513 0.581174 

1.76554 0,765774 0.614503 

1.875886 6.788177 0.646258 

1.986232 0.809417 0.677263 

2.096578 0.828932 0.706552 

2.206925 0.847016 0.734417 

2.317271 0.864609 0.762214 

2.427617 0.88129 0.789202 

2.537963 0.897579 0.816164 

2,64831 0,912953 0.842171 

2.758656 0.927842 0.867886 

2.869002 0.942066 0.892951 

2.979348 0,955979 0.917943 

3.089694 0.970255 0.944066 

3.200041 0.98386 0.96941 

3.310387 1 1 
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Proportional Hazard Transform Example ((1 = 5/7) 

0 0 0 0 0 0 0 0 0 0 0 0 

0.1 0.08290724 0.004145 0.082907 0004145 0.059947 0.05994702 0,00299735 0.002997 0.078635 0.059947 0,002357 

0.2 0.16378083 0.016276 0,080874 0,012131 0.119936 005998875 0,00899831 0,011996 0,15727 0.119936 0.009433 

03 0.23602591 0.034338 0,072245 0.018061 0.174942 0.055005747 0,01375144 0,0~5747 0,235905 0.174942 0.02G246 

04 0.30322066 0 067856 0,067195 0023518 0,227453 0.052510987 0,01837885 0.044126 0,31454 0,997453 0.034698 

0,5 0,36314275 0084821 0,(~9922 0.026985 0275514  0,0489861374 0,02162762 0.055754 0.393175 0.275514 0,051705 

0,6 0,41771473 0.114835 0,654572 0.030015 0.320421 0,044907259 0,02469899 0,090453 0,47181 0.320421 0071127 

07 0,46721704 0.147012 0,049502 0032177 0.362208 0.041787246 0,02716171 0,117614 0,560445 0.362208 0,092486 

08 0.51236273 0.180871 0.045146 0033859 0.401296 0.03908775 002931581 0.14693 0,629081 0,401296 0.115539 

0.9 055410853 0.216355 0.041746 0.035484 0.438371 0037075025 0,03151377 0.178444 0.707716 0,438371 0.140319 

1 0.59187827 0.252236 0 0 3 7 7 7  0.035881 0.472779 0,034407898 0.0326875 0.211131 0.786351 0472779 0.166023 

1.1 0.62989301 0.288792 0.034815 0036555  0.50531 0.032531155 0.03415771 0.245289 0,864986 0.98531 0.192883 

1,2 0.65877703 0 325688 0.032084 0 036897 0.536066 0.0~0756108 0.03536952 0.280659 0.943621 0.536066 0 220698 

1 3 0,68867534 0,363061 0.1~9898 0.037373 0 .56548  0,02941379 0 03676724 0.317426 1.022256 0.56548 0.249608 

1,4 0.71623406 0,400266 0.(~7559 0.037204 0,593316 0027835655 003757813 0.355004 1.100891 0.593316 0.279158 

1.5 0.74151327 0.43692 0.(~5279 0.036655 0.619536 0.026220703 0.03802002 0,393024 1.179526 0.619536 0.309055 

1.6 0.76577385 0.474524 0,024261 0 007604 0.645399 0 025862853 0.04008742 0.433111 1.258161 0.645399 0.340577 

1.7 0.78817739 0.51149 0,(~2404 0,036986 0989971 0,024572019 004054383 0 473655 1,336796 0,669971 0.372459 

1.8 0.80941703 0,54866 0.02124 0037169 0,693983 0023991374 0,0419849 0.51564 1,415431 0693963 0.405474 

1,9 0.82893218 0584763 0.019515 0.036103 0.716689 0.022726515 0.04204405 0.567684 1.494066 0,716689 0438535 

2 0,84701571 0,620025 0018084 0,0~15263 0 .73842  0,02173056 0,04237459 0.600059 1.572701 0.73842 0,471857 

2.1 0,88460927 0656092 0,017594 0036987 0.760279 0,02185905 0 04481105 0,64487 1,651336 0.760279 0.507094 

2.2 0.88128965 0.691955 0,01668 0.035863 0.781767 0.021488162 0.{)4619955 0.6~11069 1.729971 0.781767 0.543423 

2.3 0,89757855 0728605 0.016289 0.03665 0.803602 0.021835308 0.04912944 0.740199 1 808607 0803602 0.582056 

2.4 0.91295335 0764736 0.015375 0036131 0,92~144 0,021541886 005062343 0,790822 1.987242 0.825144 0.621864 

2,5 0.92784159 0801212 0.014888 " 0036476 0.847071 0.0~1926519 005371997 0.844542 1.985877 0.847071 0.664106 

2,6 0.94206597 0.837484 0.014224 0.036272 0,869268 0,022197493 0.05660361 O.flO1146 2.044512 0.869268 0 708617 

2,7 0.95597917 0,874354 0.013913 0,03687 0.892555 0.023287235 006171117 0,962857 2.123147 0.892555 0.757143 

2,8 0.97025501 0,913613 0.014276 0.0~9259 0,918795 0.026239833 0.07215954 1,(135017 2.201782 0.918795 0.813886 

2.9 0.98385987 0,952387 0,013605 0.038774 0.947527 0.028732009 0.08198822 1 116903 2,280417 0.947527 0.878277 

3 1 1 0 01614 0 047613 1 0.052472719 0 15479452 1.271697 2.359052 1 1 
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