
Multilevel Non-Linear Random Effects 

Claims Reserving Models 

And 

Data Variability Structures 
Graciela Vera 

Abstract 

Characteristic of  many reserving methods designed to analyse claims data aggregated by contract 

or sets of  contracts, is the assumption that features typifying historical data are representative of 

the underwritten risk and of future losses likely to affect the contracts. Kremer (1982), Bomheutter 

and Ferguson (1972), de Alba (2002), and many others, consider models with development 

patterns common to all underwriting years and known mean-variance relationships. Data amenable 

to such assumptions are indeed rare. More usual are large variations in settlement speeds, exposure 

and claim volumes. Also typifying many published models are Incurred But Not Reported (IBNR) 

predictions limited to periods with known claims, frequently adjusted with "tail factors" generated 

from market statistics. Of concern could be analytical approach inconsistencies behind reserves for 

delay periods before and after the last known claims, under reserving and unfair reserve allocation 

at underwriting year, array or contract levels. 

As applications of Markov Chain Monte Carlo (MCMC) methods, the models proposed in this 

paper depart from the neat assumptions of quasi-likelihood and extended quasi-likelihood, and 

introduce random effects models. The primary focus is the close dependency of the 1BNR on data 

variability structures and variance models, built with reference to the generic model derived in 

Vera (2003). The models have been implemented in BUGS (http://www.mrc-bsu.cam.ac.ulCougs) 

Keywords: Markov Chain Monte Carlo, Non-linear Random Effects and GLM, Reserving. 

1. I N T R O D U C T I O N  

Insurance data reflect and react to financial uncertainty associated with external 

events, quantifiable time varying factors such as inflation and interest rate fluctuations, 

and non-quantifiable factors such as variations in litigation practices and underwriting 

policy terms. In an interesting historical account of  legislative changes introduced in 

Israel to deal with inflation, Kahane (1987) illustrates how external events can be given 

functional interpretation in a reserving model. Further examples can be found in Taylor 

Casualty Actuarial Society Forum, Fall 2006 379 



Multilevel Non-I_a'near Random Effects 

(2000). Data distortions due to external events could undermine all stochastic 

assumptions. Concerned with the analysis of  claims data, from the simplest aggregation 

levels, such as class of business, to multiple-nested groups, this paper deals with the 

construction of  claims reserving models capable of capturing variability structures in a 

claims portfolio. 

Hierarchical or multi-level claims reserving models are potential source of wide- 

ranging contribution to claims portfolio analysis beyond reserving. Identification of the 

causes of  data variability with reference to hierarchical model structures could provide a 

statistical framework for parametric analyses of claims across a number of underwriting 

years. This would enhance our ability to construct more discriminating models, set 

initial parameter values, review and update our assumptions on risk premium 

calculations, related management strategies for commutations, portfolio composition, 

analysis, etc. 

1.1 Research Context 

As one of the simplest claims reserving methods, the chain ladder has motivated an 

extensive body of work intended to establish statistical basis for the problem of 

reserving. Models that fall within the category of generalized linear models (GLM) 

(McCullagh and Nelder (1989)), such as Renshaw (1989), Renshaw and Verrall (1998), 

Verrall (1991), Wright (1990), Mack (1991) and many others, have extended the 

research beyond assumptions of  lognormality and explored applications from 

exponential family distributions. Carroll (2003) remarks "there are many instances 

where understanding the structure of variability is just as central as understanding the 

mean structure". The IBNR definition given in this paper is integral to the definition of 

the model itself, and its value is highly sensitive to model specification. Hence, the 

emphasis of  this research is in the identification of suitable representations for the mean 

and data variability structures beyond assumptions of known and specific mean-variance 

relationships. 

Reserving model structures depend on the intended use o f ~ e  predicted reserves and 

on the sector of  interest in the claims portfolio, such as insurance class, contract, specific 

loss, etc. The data assessment should determine the selection of the analytical approach. 
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For instance, an insurance contract provides cover against the hazards listed in the 

contract. Premium calculations reflect policy management expenses, expected returns 

and risk premiums for all the perils covered by the contract. Risk premium analyses, in 

general, are carried out by peril, ignoring the fact that a particular event could 

simultaneously hit more than one kind of cover. When reserve analysis of  all perils with 

a single model is viable, it could deliver, for example, relative cost measures capable of  

generating more competitive commercial premiums, hence allowing cover assessment 

on statistical basis, identification of cross-subsidies and unexplored niches, etc. 

Within the context of  hierarchical models, claims data can be differently interpreted 

depending on their levels of aggregation. For instance: 

• Each underwriting year data set could be described as a set or cohort of 

longitudinal data. 

• A claims array could be considered single-level longitudinal data for more than 

one subject. 

• A book of business segmented by class, type of loss and underwriting year, 

could be treated as multilevel longitudinal data or as multiple nested groups of 

single level longitudinal data. 

Davinian and Giltinan (1993 and 1996) provide an introduction to the theory of non- 

linear random effects models and an overview of various techniques for the analysis of  

non-linear models with repeated observations. More recently, Pinheiro and Bates (2000) 

reviews the theory and applications of linear and non-linear mixed effect models to the 

analysis of  grouped data. 

In this paper it is shown that the generic model in Vera (2003), briefly outlined 

below, is key to the extension of random effect models to the analysis of  reserves. If  the 

claims process for underwriting year w is reported at times t,,t: ..... re, such that 

o < t, < t: < ... < t . ,  and t, is the final settlement period, the generic model is given in terms 

of a percentage cash flow and a ultimate claim amount functions, denoted respectively 

by P~.,, and Cw. P,..,, = ~r(w,z)dz ,  where ,:(w,t) is a probability density function taking 
0 
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t ,  

values from positive real numbers, s..,, = I - P , . , ,  = ITr(w,z)dz, P,..,,-<1 for j<e and 

P..,, = 1 otherwise. Finally, h...,, and H...,, are the instant and cumulative hazard rate 

funct ions ,  de f ined  for underwri t ing  year  w and p a y m e n t  year  r ( r  = w + delay time - 1 ) by  

Io(,°(l-p.,)) I =( c )lop..,) 
h., r .,+1 = ( 

"- 1BN~/[,~_..,, ) ~ - ~ S  ) . . . . . . .  

H...,_.,+, = -In(l-P.  ........ ) 

0.1) 

Hence, the following are alternative representations of  the claims process for cumulative 

data Y..~_.., : 

Y. ........ = C.P... ...... (1.2) 

r.. ...... = c . . ( l -  o x p ( - < . . _ . . , ) )  0 . 3 )  

Y.. ..... = C. 0-S.. ,  ...... ) (1.4) 

Equivalently, for incremental data y.,  . . . .  

_ , p  y ........ - c ,  ( , .  . . . . .  - P ,  . . . . . . . .  ) 

y ........ = C . ( e x p ( - H . , . ~ _ . ) - e x p ( - H . , ,  . . . . .  )) 

=C * S - S  Y . . . . . . . . .  ( . . ,  . . . . . . . . . . . .  ) 

(1.5) 

(1.6) 

(1.7) 

The underwriting year and array I B N R  and reported I B N R  projections are respectively 

IBNI~..,,_..+O = C. S.,,_.,+j 
u 

I B N R ( r )  = ~=I1BNR~ ........ ) 

RIBN~. .  . . . . .  ) = IBNt~...,_.,+,) + (C.,S.. ...... - Y. ...... , ) 
u 

easNR(3)  = ~ e a ~ N ~  ......... ) 

(1 .8)  

(1 .9)  

where u is the number of  underwriting years in the array. R I B N R  links the reserving 

analysis to the accounting processes, by adjusting the I B N R  by the difference between 

the total claim amount incurred to date and its estimate. Due to the additional noise 
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induced by the adjustment, (1.9) is only applied in the final stages of the reserving 

analysis. In contrast to many published reserving methods, an important aspect of  the 

models is the unrestricted 1BNR projection periods, since the period before the last claim 

is generally unknown. The above equations could make explicit, and potentially 

highlight, the sources of  data variability. Settlement speeds differences between 

underwriting years should be captured by Pw.,-,.,, Hr ..... , or S, ..... ,. Although exposure 

levels are largely determined by underwriting volumes and contract terms, neither 

necessarily random, to accelerate convergence and formulate the final model variance 

function, random effects are introduced in C,. When more than one claims array are 

analyzed, the additional aggregation level and source of variability is array,  indexed by 

subscript r. 

1.2 Objective 

The examples' aim is to show that more than one model could fit historical data, but 

not all may reliably predict the reserves. The reliability of the I B N R  and ultimate claim 

amount predictions depends on the models' capacity to extract from the data claims 

volume and settlement speeds measures. This is possible when the variability of both 

can be represented parametrically and formulated into the variance model. The scope of  

the models is made evident by their formulation and by the data. As the variability in 

settlement speeds and claims volumes increase the underlying assumptions of  GLM are 

no longer sustainable, and more complex variance models and random effect parameters 

for the mean response become essential. To illustrate the process of  constructing 

variance models two data sets are selected. One is a claims array simulated from a 

mixed portfolio, and the second consists of  three arrays simulated from a marine hull, 

marine cargo and aviation hull portfolios. The second, selected to exacerbate the 

variability encountered in the first, in addition to large claims volume differences 

between underwriting years, contains also 20 negative incremental claims entries. 

Since the concepts of  population models (Zeger, Liang and Albert (1988)) are 

intended to average random variability between subjects, they are implemented around 

the percentage cash flow function. They can be used to obtain average (or array) I B N R  

predictions for a given ultimate loss. Other array or average results are the weighted 

average array or portfolio hazard rates. They provide thresholds, useful to quantify the 

Casua l ty  Ac tua r i a l  Soc ie ty  F o r u m ,  Fall 2006  383 



Multilevel Non-Lanear Random Effects 

impact on the claims portfolio of excluding from it underwriting contracts associated 

with particular underwriting years or arrays. 

1.3 Outline 

The paper structure is as follows. Section 2 introduces random effect models for one 

array with a general formulation of  non-linear random effects models, and translated 

into a Bayesian framework in section 2.1.1. Noted in section 2.2 are amendments 

necessary to formulate multi-array models. 

The models selected to analyze the two data sets are presented in sections 3 and 4 

respectively. Denoted 1.0 and 2.0, in section 3.1 two preliminary models for one array 

are given, followed by numerical examples in section 3.3. The examples identify 2.0 as 

the basis for further analysis to construct the final models. In section 3.4.5 the results 

from two validation and two final models are discussed. Also in two stages, in section 4 

multi-array models are constructed for two mean response functions denoted 

respectively 7.0 and 8.0. The preliminary models, used to establish data variability 

structures, are introduced in section 4.1, followed by numerical examples in section 4.2. 

For mean response functions 7.0 and 8.0, results for precision parameters ~r :,  a~ and 

~r~ are obtained, identifying the three model versions by (a), (b) and (c). The final 

models, defined in section 4.3, are analyzed in section 4.5. They emphasise the 

contribution the generic model makes to the analysis of reserves, and to random effects 

models and variance models in general. 

Section 4.4 extends the claims array average percentage cash flow definition given 

in section 3.2 to introduce portfolio model average for the percentage cash flow. As 

immediate by-products of the reserving analysis, hazard rates are discussed in section 

4.6. The claims' hazard rate profile, essential for further portfolio analyses, can be used 

also as a portfolio management template. Discussion on the contribution made by the 

models proposed is given in section 5. 

For the models in section 3, the results are fully reported in appendix A. Given the 

size of the data used in section 4, the reported results in this section are restricted to 

IBNR and ultimate claim amount projections for the selected preliminary and final 

models. 
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2. G E N E R A L  F O R M U L A T I O N  O F  N O N - L I N E A R  R A N D O M  

E F F E C T S  M O D E L S  

In non-linear hierarchical models, inter and intra-underwriting year variations are 

analysed as a two-stage process. In the first, the intra-underwriting year variation is 

defined by a non-linear regression model for the underwriting year covariance structure. 

In the second stage, the inter-underwriting year variation is represented by both, 

systematic and random variability. The models can be constructed within a Bayesian 

hierarchical structure by noting that the intra-underwriting variation is associated with 

the sampling distribution, while the prior distribution is relevant to the inter- 

underwriting variation. Because the models' notation will depend on the number of 

aggregation levels, in sections 2.1 and 2.2 the array and multi-array analytical 

frameworks are respectively given. 

2.1 Analytical Framework For a Claims Array 

For the purpose of defining the general model, ignoring whether claims are 

cumulative or incremental, the observation at development time t of response vector for 

underwriting year w is simply denoted by y, j ,  and the model is defined as follows: 

y..., =/aw., (#.) + a'.,., (2.1) 

where &,, is a non-linear function common to the entire array, while parameter vector #,. 

is specific to underwriting year w. t = t, ..... t.. ; with t.. representing the last period with 

known claims to date, w= l,...,u, and u is the number of  cohorts or underwriting years in 

the claims array. Hence 
yw=[y,..,,,...,yw.,.. ] r 

&. = [,u..,, ,..., &..,.. ] r 

c,. = [~,, ...,e,.,, ] r 

and 

cov(e,.)=a'R~. (2.2) 

R. is the intra-underwriting year covariance matrix for underwriting year w. 
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Inter-underwriting year variation accounted by ~. is assumed to be random and, rather 

than simply regarding 4, ~ #, for i ~ w, the model represents 

#. =A /~+B.b. 

where fl is a p-dimensional fixed parameter effects vector, and bw is a q-dimensional 

underwriting year or random effects vector. Parameters bw are independent and 

identically distributed with zero mean and variance covariance matrix £ .  Finally, A, 

and B~. are (n~xp) and (nwxq) design matrices for the fixed and random effects 

respectively. While missing data fxom the earliest payment years and irregular reporting 

time intervals are allowed by the model formulation, the code and model specification 

for data given at regular intervals are simpler. The length of the response vector for the 

array is M = ~-~n w and 
w=l 

y=[y, ..... y,,]r ~=[~ ..... ~,]r Z=diag[Y ...... 2~] 

/a = [/~ ...... ,%]r b=[br,...,br]r R=diagtR ...... R.] 

g=[c, ..... C.] r B=diag[B, ..... B.] 

. . . . .  4:]' 

Hence, the overall model becomes 

e (y )=y(# )  

v r(y) = 

¢ = A/~+ 8b (2.3) 

Corresponding to the two stages in the hierarchical models are two possible types of  

inferences or derived results: array and underwriting year cohort. Parameters common to 

all underwriting years relate to the array inferences, while underwriting year parameters 

measure underwriting year deviations from the claims array mean. Array inferences are 

generic when they represent insurance classes, and can help reassess or draft 

underwriting contracts, for instance. Alternatively, underwriting year parametric 

structures can set foundations for more discriminating premium rates reflecting 

systematic trends evident in the losses experienced. The latter can be viewed as a 

continuous calibration process. 
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Unless a book of business is closed, the number of observations in the most recent 

underwriting years could restrict the choice of  viable variance and covariance models, 

particularly with non-linear model structures. Inferences on parameters of non-linear 

mixed effects models implemented in S-Plus (Pinheiro, Bates and Lindstrom (1994)) are 

based on the linear mixed effect model approximation of  the log-likelihood function. 

This relies on the restricted maximum likelihood estimates derived from asymptotic 

results and on the approximate distribution for the maximum likelihood estimates. Since 

the maximum likelihood estimates in the linear mixed effect models are assumed to be 

asymptotically normal (Pinheiro and Bates (2000), Lindstrom and Bates (1990) and 

others), implementations with NLME library have to be approached with care to meet 

the criteria of  the generic reserving model. Alternative assumptions are also considered. 

In non-parametric models the distribution of  the random effects is left unspecified, 

hence completely unrestricted. Escobar and West (1992) propose a non-parametric 

approach, where ¢.are taken from distribution classes provided by the Dirichlet 

processes. Wakefield and Walker (1994) consider a non-parametric approach when 

random effect parameters are suspected to be neither normal nor Student t distributed, 

and allow for multimodality and skewness. Beal and Sleiner (1992) use a mixture of  

normal distributions and Wakefield (1996) a multivariate t-distribution for the random 

effect parameters and lognormal distribution for the response. The heavier tails in the t- 

distribution accommodate outlying cohorts. To define the parameters it is necessary to 

establish the curve's behaviour with parameter value changes, categorising the 

conditions, if any, for convergence, divergence, discontinuities etc (Ratkowski (1990)). 

The models' capacity to predict reserves depends on the stability of  the projected curves, 

which in turn depends on the variance model structure. The most complex are more 

easily implemented within a Bayesian framework, as outlined below. 

2.1.1 Three-Stage Models With Heterogeneous lntra-Underwriting Year 

Variation: A Bayesian Approach 

Gibbs sampler application to Bayesian hierarchical models removes obstacles 

associated with non-linear multi-parameter structures integration. First to consider the 

problem of fully Bayesian non-linear regression is Wakefield et al. (1994). Bayesian 

random effects models can be represented by the following three-stage structure: 
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First Stage: Intra-underwriting year variation: 

It accounts for variability within underwriting years, through scale parameter a 2 and, in 

some cases, through functions v~(~.,3(t),~9) or r . (p) ,  or both, such that ~.,8 and p are 

parameters, .'3(t) is some function of  t and r.  (p) is a correlation matrix. Hence, given 

y~ = .u (~.,) + ~., 

for the most general case 

R. (#.,, at,p) = v. ''= (~,,,.~ (,),a)r.(p)vw ''= (~.,~ (t),,9) (2.4) 

So ew are independently and identically distributed with zero mean and 

Cov(e.. I ~..,'7, O r, p) = ~2 R..(Ow, ,9 r, p) (2.5) 

T ;r The functional form of R..(#..,,gr,p) and covariance parameters ( = [ o , 8  ,p] are the 

same for all underwriting years. Implicit in z . (# . ,3( t ) , ,9 )  are functions of  u~(#.) or t, 

and of some or all parameters in ~... If  probability distribution function is denoted by 

f then 

(y. I •..,()~ f~.~..¢ (y.. [O. ,() 

Second Stage:Inter- underwriting year variation: 

The inter-underwriting year variation in the values of #., is represented by 

#.. = &.,O + B..b~ (2.6) 

The degree of complexity of design matrices A w and Bw will depend on the data and the 

percentage cash flow function. Random effect parameters are assumed to be 

independent and identically distributed: 

b.. - &~z (bw I Z) (2.7) 
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Zero mean assumption for b w is not essential and, with software packages such as 

BUGS, may not be attainable. Non parametric and semiparametric model specifications 

for ¢,can be considered. 

Third Stage: Hyperprior distribution: 

Definition of  parameters fl,( and X completes the model formulation. 

(fl,(,Y~)- fp.¢x (fl,(,Y~) (2.8) 

The joint posterior distribution of  all parameters upon which the Bayesian inferences 

are based is 

fa C b X,. ( f l , ( ,b,  X iy) = f , ' l a  C h (Yi f l , ( ,b)foix (b I Z) f~..,..~ (p,(,x) 
fy(y) (2.9) 

The marginal posterior distributions of interest are fa~ (Pl y), fbl>. (bly) and f~l, (Xl y). 

Implicit in the above are two simpler models: 

• For uncorrelated intra-underwriting year observations r,(p) = 1 ..... and ( = [a,<9 r jr .  

• I f  the model is homoscedastic, then r (p) = R, (¢w, <.or, p) = 1 ..... and ( = tr. 

As a simple example, consider 

a n d  

b IX ~ N(0,57) (2.10) 

pie',x0- 

1 v v  o o ( o o v )  
7 ' ~  t i ' T )  

(2.11) 

where parameters p',ro,X*,v*,o,v are known. When a linearization method is used x0 

could be replaced by o'2(2r2) -', such that 2=~. .  If  ~=_1 ~ f l . , u  .., the parameters' 

conditional distributions for correlated observations are: 
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<,,,,o,=,,.,w=,. =/('='t(.=' +/=;'++/=='+ ='/')'='/')' (.='a+/=;'+.'/'=),] 
1 / • T * ° * (r:'ly,~,p,~,.,w=~,...,~)-m (~,-~)(<-p) +~  ,~+~ 

(o --~ ly, fl, Y~,~,.,w=l,...,u)~ 

Go((~-~-),I( Or+ ==~.=l(Yw-bl..('.))rR.-'('..,oor,p)(Y.,-I~..('..))) I 

(2.12) 

Then, the conditional distributions of ¢., and ,9 are 

. =.e~(exp(-O.5cr-:(Y.-fw,(~..))rl~.'(~J.,~gr,p)(Y.-f..,(qJw))}) 
fsl,..a.=.~., .......... (o°ly,,a,E,a, CJ,., w = 1,..,u) ~ H /  ~ ".K 

- '[ "-'I=,~-'*"~I ~ J 

Variations on the above general model, with r ,  (p) = 1 ..... can be found in Wakefield 

(1996). In relation to the purpose of  this paper, in the first stage, where variability 

structures are established, the predicted values that contribute to the 1BNR(,.,,) (equation 

t .  

(1.8)) are simply defined as C~ Szr(w,z)dz. While for the final models, y~, or predicted 
t j  

losses for underwriting year w, are sampled from the distribution 

f,.:>e.=.,,,.(y~. I y,/~,~:,~r,¢,.) and applied to equation (1.9). 

2.2 General Formulation Of Multi-Array Bayesian Models 

Extending the general model for a single array, the three-stage multi-array 

hierarchical model requires the following notation. For underwriting year w in claims 

array r, where r = l,...,r, and w = l,...,u,, let the response vector be 

Y,..=[Y,.w.,~,..,Y,....,.. ] r 
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Hence, for the entire data set 

Y = [ Y,.,,", Y,.,,, ,", Yq.,", Yr,.,,~ ] r 

t = t, ..... t,~ are the reporting times, such that t denotes the last period with known claims n~ 

for underwriting year w. y .... will be replaced by Yr.. when the data analysed is 

cumulative. The length of the response vector is M, such that nr = ~n,.. and M = ~ n . .  
w=l rM 

We write 

where 

Y,..w = ,ur... (~.) + e~.,. 

¢~ = .4,~,o + &.b,.  + B~b~ (2.13) 

fl is a p-dimensional fixed effects parameter vector, b r is a q,-dimensional first level 

random effects vector and b~. a q.,-dimensional second level random effects vector, br 

and b~. could be defined to have zero mean and variance/covariance matrices E, and Z2 

respectively. Through design matrices A. ,  B,., and B~. information specific to each 

underwriting year data set can be brought into the analysis. By replacing (2.6) by (2.13) 

the three-stage models accounts also for array variation. 

The models in section 3, and those in section 4, show that more flexible covariance 

structures could provide insight into the data variability structures by exploring 

alternative definitions for ( =  [a2,~qr,p] T. However, to avoid degrading inferences on 

first moment components, the final model should assume common parameters ( for all 

underwriting years and arrays. Hence, the problem consists of  identifying any 

relationship evident between 3(t), ¢~., ~r., or any other function of  ¢,~., and the 

patterns of  variability revealed by parameters (=[a=,~gT,p] r. Outliers could lead to 

incorrect inferences, possibly indicate that the claims distribution is in fact muitimodal 

and the data should be segmented for analytical purposes. Although the models 

proposed do not include specific functions to capture payment year effects of the kind 

of systematic inflation, they can be easily amended to do so. 
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3. M O D E L S  F O R  O N E  A R R A Y  

3.1 Examples Of Preliminary Models For One Array  

Two preliminary models, denoted 1.0 and 2.0 respectively, are given below. Both 

have a power variance function. However, to assess variability assumptions and 

construct the final models, the power in model 2.0 is allowed to change with 

underwriting year. With the variance formulation of model 2.0 the standard variance 

parameter definition is disregarded, by using instead ( ,  = [ a ,~  r, p]r,  thereby weakening 

the inferential capability of the model. Hence, even if the IBNR and ultimate claim 

amount predictions for model 2.0 were satisfactory, model 2.0 should be treated as 

preliminary and used exclusively for exploratory purposes. 

3.1.1 M o d e l  1.0 

The first heteroscedastic model is defined as follows: 

with 

such that, ( = [or, 8] r 

and 

r . ,  = ~..,(#..)+ <., 

(Y,,., I@..,~')- N(/a.,, (#.,),o-2,u .., (<~.,)~(a,) 

. . . .  exp(L +l.,) 

la"'t"J-{l+exp(D+dw-exp(Kc +kc.,)ln(t')-exp(Kd +kd )*t')} 

_(  exp(Ks,)'~ 
where t " - ~ t + ~ )  

e~lO..,(~N(O, az ~,p(a) r I .l, l )1 ..... ) 

and 

#., = &.p+ 8.,b,, 
A.. = 17. 7 i ooioo ] 

~/'8., 'T= o o o I o 
0 o o 0 1 

0 0 o 0 0 

/ r < = [ . . , < , < , , ~ . . ] ,  b.I<,Z.,  - mTv(~:,,Z,,) 

,8=[I~,,I%,&L,D, Kc, Kd] ~, pIp',Zo~MVN(p',Eo) 

(3.1) 
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The hyperprior distributions are ~ - Ga(O.O01,O.O01), and 

fl'lfl", Y:" - MVN (fl", Y.:" ) (~o)-'lY: - Wi ((7 ~;)-I, 7) 
-1 * ~ , -1 b:,Ib",YZ~MVN(b",Z: ) (Z.,) IZ.,- i((4Y..,),4) 

for given parameters /~",b",Z~,Yo',Z',ZY. Functions C., &., and h.., describing the 

underlying claims process for model 2.0 are: 

C., = exp(L+lw) 

&., ={l+exp(D+d..-exp(Kc +kc..)ln(t')-exp(Kd+kd..)'t')}-' (3.2) 

S.., = 1- &., (3.3) 

exp (Ks= + Ks, ) 

3.1.2 Model 2.0 
In model 2.0 &,, (#,) is given by (3.1), but 

0 "  2 ¢xp(,9÷3 ) .) 

where ( .=[m&oo] ~. Having included random effect parameters in the variance 

function, the following further amendments to model 1.0 are needed: 

such that 

Aw= B., =lsx5 

~.t~,,¢,-N~,0. t~,t#,) "1 ..... ) 
b~=[aw,l..,d..,kc..,kd.] r , b..Ib'~,Z.,- MVN(b:.,Y...) 

- I  • ~ .  . - 1  

The power parameters in models 1.0 and 2.0 are formulated as multivariate normal, 

together with the mean response parameters. The reason becomes evident in section 3.4, 

where the relationship between the parameters is analysed to construct the final models. 
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3.2 Claims Array Average Percentage Cash Flow Model 

Non-linear mixed effect or population models (Zeger, Liang and Albert (1988)) are 

intended to deliver population parameter distributions to derive population inferences. 

The inter-subject variability allowed by the models assumes that the subject-specific 

parameters are identically and independently distributed. The generic claims reserving 

model describes the data as the product of  functions for the percentage cash flow and the 

ultimate claim amount, In the best scenario the ultimate claim amount function would 

account for differences in claim and exposure volumes. Since both could be largely 

determined by underwriting contract terms, for array inferences to be l:epresentative of  

the type of peril the contract covers, they are better based on the percentage cash flow 

functions alone. 

In the example that follows the general formulation of the random effects model, the 

random effects parameters are set to be b , i£-  N(0,Y), while observing that alternative 

definitions are feasible. In some applications or models it may not be possible to assume 

a zero mean for the random effects parameters, particularly when they are defined to 

belong to multivariate distributions. BUGS, for instance, cannot handle multivariate 

range restrictions, but can accommodate some simpler univariate centering forms. 

Replacing design matrices A. and B,. in models 1.0 and 2.0 by A and 

B respectively, the parameters for the claims array average percentage cash flow model 

have to be extracted from the parameter vector given by 

Hence, for model 2.0, the claims array average percentage cash t k ~  ¢ ~  is: 

-1 

1 1 1 , ,']l 
• I, t ku,..~ " )  t ku,.:~ ) )  t. t u..=~ ) )  ) j  

(3.5) 

with t" defined as before. To ascertain if (3.5) is representative of the array, the curve is 

compared to the plots for the percentage cash flow for all underwriting years in the 

array. 
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3.3 Numerical Examples Of Preliminary Models 1.0 Aand 2.0 

Extracted from a book of business containing more than one type of claim, the data 

selected for the examples display significant differences in the development patterns and 

exposure volumes across underwriting years, particularly evident in the last three 

underwriting years. (See graph 3.3.1 and tables A. 1 and A.2). Another characteristic is 

the zero claims in the first reporting period. To ensure they are not interpreted as 

missing data, they have been set to one. This artifice is often necessary with non-linear 

models for the mean response or when the mean response is formulated into the 

variance. 

laoo 

~ 2 o o  

laoo 

. . o  

4 . m  

o ~  

M i x e d  B o o k o f  B u s i n e l m  
C u m u l a t i v e  C l a i m s  D a t a  - T a b l e  3 A . 2  

. a  ~,.-4 t ' "  

/.~-~"',2~. I ] i. __ i 

1 3 8 7 9 11 13 15 17 

Pe rio d 

• u. Ym~ I 

U. Y I~  3 
U, Ye l  4 
u Y e ~  s 

Graph 3.3.1 Cumulative paid claims data aggregated on annual basis. 

Of interest in the examples are the repercussions of  hierarchical variance models. To 

facilitate the analysis of  the preliminary models, the 1BNR predictions do not include the 

accounting adjustment in (1.9) Graphs for observed claims and fitted values for the 

preliminary and final models would show that the fitted curves are almost 

indistinguishable and very close to the data. However, from table 3.3.1 and graph 3.3.3 

observe that the IBNR predictions at underwriting year level for model 1.0 cannot be 

reliably used. The plot for the percentage cash flow for underwriting year 4 is unlikely 

to converge to 1. The model compensates by producing a higher 1BNR. As graphical 

representations of spread, location and skewness for error distributions, the box plots 

show that, in contrast with model 1.0, with the introduction of  parameter 0% in the 

variance function, model 2.0 deals effectively with scale variability and with some of 

the outliers evident in the quantile plots. 

Casua l ty  Ac tua r i a l  Soc ie ty  Forum, Fall 2006  395 



Multi/eve~ Non-La'near Random Effects 

Model 1.0 

Und. 3 
Year 4 

Model 2.0 

3 
Und. 4 
Year 

T a b l e  3 . 3 . 1  

Ultimate Claim Amount IBNR (I .8) 

Standard Standard 
Mean Mean Sq. Predictive Interval Mean Mean Sq. Predictive Interval 

Prod. Pred. 
Error 2.50°,6 I 97.50°/, Error 2.50*/, I 97.50°,6 

I I 

, 4,442,+ I 80.01 4,302,0o01 4,611,0001 95,4901 28,9901 53,9201 16l,lo0 
2 4,342,0001 73,4801 4,219.0001 4.487,0001 46,2601 ]8,9801 19,7701 87,900 

2,180,0O0 1 65,4701 2,059,0001 2,311.0001 22,8501 14,5501 3,4891 57+970 
2,179,0001 539,2001 1,889,0001 4,383,0001 173,1O0[ 467,0001 4,4871 2,116,000 

5 6.642,O00[ 115,1001 6,413,0O0] 6,863.00o[ 290,8001 51.360] 197,4001 397,800 
6 ]0,170,000 ~53.100 9,S9LO001 10,500.0001 607,2001 85,1001 457,7001 791,100 
7 12.650,000 131.400 12.38o,o0o I ,2.88o.o0o I 676,100 54.63o I 556.600 774.600 

Total 42,600,000 607,100 41,940,0001 44,830.0001 1~912.000 499,4001 1,546+000 3.915,000 

i 4,481,0o01 58,48014,37,,o00 4804,0o01 11,.5001 23,96o I 74.3401 168,000 
2 4.327,o001 48.00j 4,23~.o00j 4,424,0001 40,920 11.2601 2,,9901 66.4,0 

2,165,o001 39,6501 2,093,o001 2,249,0o0 1 16,4001 8,7561 5,3351 38,440 
2,007,0001 54.0901 1,909,o001 2,128,0001 31,5701 17,560[ 8,824[ 79,130 

5 6,644,O001 88,1901 6,474,000[ 6,822,o001 293,5001 42,590 217,8o01 382,600 
6 10,160.0o0] 257,300[ 9,668,000110,700,0001 6O6,400] 144,000[ 348,0001 933,100 
7 |2,790.o001 348.100 12,170.o00[ 13.580,000 771.200 200,400 458.100 1.259.o00 

Total 42,570,0001 471, O0 4 .720.000 43+590,O00 1,873.O00 268+6O0 1.421,000 2.502.000 

Ultimate losses and IBNR predictive distributions for models  1.0 and 2.0 

Model 1.0: Ultimate Claim Amount Model 1.0: Total IBNR 

"' \ 

]l / 
1 

/ 
/ . . . . . .  
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Model 2.0: Ultimate Claim Amount Model 2.0: Total IBNR 
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G r a p h  3.3.2 Kernel  densities for ultimate losses and 1BNR totals for preliminary models 1.0 and 2.0. 
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G r a p h  3.3.3 Percentage cash flow plots and normalized residuals for models 1.0 and 2.0. 
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Hence, model 2.0 in general, and 0,. in particular, should be analysed to formulate the 

final variance model. The Kernel densities for ultimate claim amount and IBNR 

projections in graph 3.3.2 suggest possible bi-modality, particularly for model 1.0. 

Note that a variance derived directly from model 2.0 may not deal completely with the 

pattern evident in the plots for the normalized residuals (graph 3.3.3). Portfolio transfers 

or account consolidations often produce data sets where the settlement speeds of the 

new and old data differ significantly. The quantile and scatter plots point to the second 

observation in underwriting years 1, 2, 5 and 6 as possible outliers. These give an 

indication that the correction needed in the variance model may involve a function 

dependent on delay period t. In the next section the variance function for model 5.0 is 

derived form the output of model 2.0. With the variance function for model 6.0 it is 

aimed to deal with remaining outliers. 

3.4. Final One-Array Models 

The generic model conveniently separates the percentage cash flow and the ultimate 

claim amount functions and, through the percentage cash flow function, can extract from 

the data settlement speed characteristics. Deviations induced by large differences in 

underwriting volumes between underwriting years may not be captured by random 

effect models, and the introduction of  cluster structures may be necessary. The criteria 

needed to establish them remains to be determined. 

Book 
Year 

1 

2 

3 

4 

5 

6 

7 

Table 3.4.1 

Model 1.0 

Fixed parameters 

~5.7400 ,9 -6.2470 
Random parameters 

/ ,9. 
-0.4364 
-0.4592 
-1.1480 
-1.169C 
-0.0342 
0,39% c 
0.61011 

Model 2.0 

Fixed parameters 

L ,9 

14.890(~ -3.4710 

Random parameters 

I a. 

0.4214 -0.5061 

0.3865 -0.1910 

-0.306G -1.4670 

-0.3818 -0.8611 

0.8153 -0.0693 

1.2400 1.4680 

1.4700 1.6780 

Parameter estimates for variance model and C,. function. 
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From tables 3.3.1 and 3.4.1 note the approximate correspondence between the order of  

magnitudes of  C. and 9̀~, for model 2.0. Hence consider the following regression line: 

,9. = 4 + 821 ,. (3.6) 

Graph 3.4.1 

. e  oe.1 0 o , o  $ o e . 1  1 o e o  I J ~ o  

1. 

Line `9. = 8, + 821 w and scatter plot of 1. vs ,9 w . 

(3.6) gives [6.4]=[-0.79914,1.54866 ] . From table A.6, there is no evident relationship, 

similar to (3.6), between `9, and any of  d . ,  kcw or /cal,, directly or through a suitable 

transformation. Graph 3.4.1 displays the scatter plot of &versus Iwand regression line 

`gw=8,+821w. exp(`9+`9,,) lies between 0.007 and 0.166, such that the minimum and 

maximum values correspond to w=3 and w= 7 respectively. Had model 1.0 provided a 

better fit, the magnitudes of  exp(`9+,9,) could have influenced a decision to select a 

homoscedastic model. However, from table 3.3.1 note that C~=2.17million and 

C, = 12.79million. Hence, it is justifiable to integrate exp(`9+`9.)-- exp((`9+8,)+l w.82) in 

the variance function definition as follows: 

vary,.,) = ~,'&.., (¢..)~'(~'+"~) (3.7) 

r" r . , T "IT 
(3.7) satisfies covariance definition (2.5) because parameter vector ( =  Lcr, LSi,̀ 9~] J is 

invariant with underwriting year. It is intuitively obvious that if the variance parameters 
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for preliminary model 2.0 would have been defined as (.. = [a,., oar ] r instead of 

(w =[a, 'gr] r , a similar relationship to (3.6) would be evident between aw and/,.. This is 

further explored in section 4. Although the variance for final model 5.0 will be (3.7), to 

validate the model and explore alternative analytical approaches, the fmal model is 

preceded by other two. The first gives an appreciation of the IBNR reserve values that an 

analysis of the data segmented into K subsets would deliver, where subset membership 

criteria is determined by the values of c,  or ~,. Hence, the variance function considered 

is 

v~r,.,) = ,,,=,,.., ( < ) ~  

The second preliminary model assumes an autoregressive error structure. Variance 

function (3.7) may not successfully explain the variability evident in the normalized 

residual plot pattern of  model 2.0 (graph 3.3.3) and function ~,., (¢,)~(~'+,.e;) may need to 

be adjusted. Hence, the function proposed for model 6.0 is 

oxp(3; (,' ;:) 

3.4 .1  M o d e l  3 .0  - V a l i d a t i o n  M o d e l  

Model 3.0 is equal to model 1.0 in all respects, except that subset membership for 

each underwriting year is taken into account only at the point of  calculating the 

variance, and for subset k ~r, = is estimated independently from the rest of the data. For 

underwriting year w, member of  subset k 

r,.., =/~w.,(<)+<., 

with 

(Y..., I~-,( ,)-  N (~.., (<),~,=~.., ( < ) ' ~ )  

1 Ga(O.O01,O.O01) and such that (k = [ak,3] r , - '7 
O" k 
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3.4.2  M o d e l  4 .0  - V a l i d a t i o n  M o d e l  

In model 4.0 the option of using an autoregressive error structure is explored, to 

ascertain if this can effectively deal with scale variability between underwriting years: 

such that 

and ( = I m p ]  ~. 

r.., = & , ( ~ . , ) +  w..., 

W ., = pWw. ,_  ~ +, r ,  

vAR(Y,.., )= vAR(w,.., )=~ 

~wl~.,c- ~(o,.=0-~')) 

3.4 .3  M o d e l  5.0 - V a l i d a t i o n  M o d e l  

Final model 5.0 integrates regression (3.6) into the variance model: 

with 

r,., = u,,,(¢,.)+<., 

(~.,, I#.,,¢)- ~(~.,, (~.,),-= ~.,, (#.,)="~"'"*)) 

(( . . ; ) ,  where aT=[~,',a~], e . I < , ( ~ N  0,tr 2 u.(#..) "0(¢÷"~) I . . . . . .  ~-~Ga(O.O01,O.O01) and 

( = [a, o r i t .  Since/~,., is given by (3.1), in addition to the obvious changes in the design 

matrices, the other necessary amendments to model 2.0 are: 

P=[r~,,K*=,¢,e;,L,O, Kc, Ka] ~, plp',z0 - ~ N ( a ' , X o )  

e'lp",~o - ~'~(e",=') (z0)'l~;- w,((8=)',8) 

3.4.4  M o d e l  6.0 - F i n a l  M o d e l  

Final model 6.0 extends the variance model (3.7) as follows: 

(y...,l#.,¢)- N(~..,(# . . . . . . .  ) "=" '(~ )"{"'"*'°xP(*;('÷°x'-!~'V:~v ,°'~,, J )) 
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where ( = [ a , 0 r ]  r and O" =[O;,0~,0~,O~]. Hence the fixed effect parameter vector and 

related distributions are: 

,8=[Kst,Ks2,8;,,9"2,,93,,9:,L,D, Kc, Kd] z , fllfl',Xo~ MVN(,8",]~o) 

e ' l f ,x;"-  u ~ , ( f , x ; ' ) ( L ) - ' I x ;  - w,((,0 x;)-' ,10 ) 

3.4.5 Numerical Examples And Discussion For Validation Models 3.0 And 4.0 

And Final Models 5.0 And 6.0 

D a t a  s e g m e n t a t i o n  c r i t e r i a  d e s c r i b e d  b y  t h e  l a s t  c o l u m n  i n  t a b l e  3 . 4 . 5 . 1  a n d  a p p l i e d  

to model 3.0 is given by the values of lw fxom model 2.0. 

Book 
Year 

Book 
Year 

a 2 

Subset l- ~ 

Subset2- a~ 

Subs~ 3- v~ 

Deviance 

Model 2.0 
Fixed paramete~ 

14.890 -3.471 

Random parameters 

L A. 
0.4214 -0.5061 
0.3865 -0.1910 

-0.3060 -1.4670 
-0.3818 -0.8611 
0.8153 -0.0693 
1.2400 1.4680 
1.4700 1.6780 

Combined Effect 

L+~ exp(~+ J..) 

15.3114 -3.9771 
15.2765 -3.6620 
14.5840 -4.9380 
14.5082 -4.3321 
15.7053 -3.5403 
16.1300 -2.0030 
16.3600 -1.7930 

5.87E+09 

Model 3.0 
Fixed parameters 

L I ' 
14.290 -6.861 

Random parameters 

1.0300 
0.9940 
0.3015 
0.2259 
1.4240 
1.8620 
2.0660 

Combined Effect 

L+t~ exp(8+8,) 

15.320o 
15.2840 
14.5915 
14.5159 
15.7140 
16.1520 
16.3560 

7.496E+09 

3.328E+09 

3.182E+10 

2,936 2,937 

Subset 
Membership 

For 
Modcl 
3.0 

Tab le  3.4.5.1 Scale and deviance values and parameter  estimates for models 2.0 and 3.0. 

The table compares parametersL, Iw and L+t. for both models. Variance function power 

for model 3.0 is very small. For a model with variance ~ ,  instead of  ad~w,,= ( ~ , ) ~  , the 

402 Casualty Actuarial Society Forum, Fall 2006 



Multilevel Non-Linear Random Effects 

values of  L+z.. are not significantly different. Although that model version is excluded 

from this paper, it is observed that its results indicate that in model 3.0 information on 

the data variability structures is mainly contained in a~, and that neither model 

successfully deals with claim volume differences between underwriting years. 

Model 3.0 

1 
2 
3 

Und. 
Year 4 

5 

6 
7 

Total 

Model 4.0 

1 
2 
3 

Und. 
Year 4 

5 
6 
7 

Total 

Model 5.0 

1 
2 

Und. 3 
Year 4 

5 

6 

7 

Total 

Model 6.0 

1 
2 

Und. 3 
Year 4 

5 

6 

7 

Total 

Table  3.4.5.2 

Ultimate Claim Amount Reported IBNR (1.9) 

Standard Standard 
Me.an Mean Sq. Confidence Interval Mean Mean Sq. Confidence Interval 

Error Pred. 2,5o%197.5OO/o Error Pred. 250o~ I 

Validation Model 

4,480,00( 122,100 4,239,000 4.721,000 115,200 122,100 -125,400 
4,324,00( 115,800 4,097,000 4,556,000 -121,600 115,800 -347,900 
2,163,00C 76,730 2,012,000 2,315,000 -21,340 76,730 -172,300 
2,004,00C 80,470 1,847,000 2,164,000 -86,010 80,470 -243,900 
6,648,00( 280,700 6,103,000 7,214,000 358,600 280,700 -186,000 

10,300,00( 340,500 9,656,000 11,000,000 395,000 340,500 -251,900 
12,630,00C 318,900 12,020,000 13.280,000 988,900 318,900 376.800 
42.550.00C 607.500 41,400.000 43.810.000 1.629,000 607,500 473.400 

Validation Model - (AR) en'or structure 

4,451,00( 164,000 4,131,000 4,776,000 86,840 164,000 
4,315,00( 159,700 4,002,000 4,630,000 -130,300 159,700 
2,149,00( 157.300 1,842,000 2,462,000 -34,560 157,300 
1,995,00( 165,100 1,677,000 2,322,000 -94,990 165,100 
6,635.00C 180,900 6,277,000 6,989,000 345,800 180,900 

10,130,00C 211,700 9,732,000[ 10,570,000 226,500 211,700 
12,590,00C 229,9001 12.130.000 13,030,000, 945.900 229.900 
42,270,00C 469,50( 41.340.000 43.190.000! 1,345.000 469.500 

Final Model 

4,477,00C 114,30( 4,254,00( 4,703,000 112,700 114,300 
4,321,00C 105,80( 4,112,00( 4,527,000 -124,800 105,800 
2,162,00C 87,57( 1,990,00( 2,336,00( -22,300 87,570 
2,001,00C 92,29( 1,823,00C 2,188,00C -89,490 92,290 
6,645,00G 164,00£ 6,327,00~ 6,971,00( 356,000 164,000 

10,190,00¢ 328,100 9.576,00( 10,870,000 280,200 328,100 
12.750.00C 513.700 11,770,00( 13,800,000 1,110,000 513.700 
42,550.00C 675.90( 41.240.00C 43,920.0001 1.623.000 675,900 

Final Model 

4,418,000 37,32C 4,345,00( 4,492,00C 53,860 37,320 
4,426,00(I 42,00C 4.338,00( 4,504,00(] -19,530 42,000 
2,201,00C 26,94( 2,146,00( 2,253,000] 16,98( 26,940 
2,094,00C 36,93( 2,016.00( 2,161,00~ 3,306i 36,930 
6,525,00C 70,37C 6,395.00C 6,673,00( 235,70( 70,370 

10,470,00C 231,80( 10,040,00C I0,960,00C 560,00( 231,800 
12.370.00(] 283,30C 11,880.00C 13,0]O.OOC 724.40C 283,300 
42.500.000 393.10~ 41,800.00C 43.380,00C 1.575.00C 393.100 

-233,200 
-443,400 
-342,200 
-413,700 
-11,950 

-176,300 
486.100 
420.800 

-110,900 
-333,000 
-194.300 
-267,900 

38550 
-332.600 
127.000 
313.300 

-19,210 
-107,100 

-38,450 
-74,000 
106,000 
136,600 
235.500 
876.400 

Subset 
Membership 

For 
Model 

3.0 
97.50% 

356,600 1 
110,200 1 
130,700 2 
73,750 2 

924,700 3 
1,088,000 3 
1,637.000 3 
2,891.000 

411,400  
185,000 
277,800 
231,400 
699,800 
660,900 

1,391,000 
2.264,000 

338,300 
81,830 

151,900 
97,4.50 

681,600 
965,000 

2,162.000 
2,994.000 

127,700 
58,360 
69,290 
70,160 

384.200 
1,054,000 
1,365.000 
2.453.000 

Models 3.0 to 6.0: Ultimate losses and IBNR predictions and predictive distributions. 
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Model 3.0: Ultimate Claim Amount Model 3.0: Total IBNR 
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G r a p h  3.4.5.1 Mode ls  3.0 to 6.0: Kemel  densit ies and predict ive distr ibutions for ul t imate  losses and 

IBNR totals. , 
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G r a p h  3.4.5.2 Models 3.0 to 6.0: Scatter plots and average array curve for percentage cash f low versus delay time and Box plots o f  normalized residuals. 
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Preliminary models 

Model 
Predictive distributions 

Ultimate Claim Amount IBNR (I.8~ 

t Mean Deviation Interval Mean Deviation Interval 
2.5% 97.5% 2.5% 97.5% 

Log Likelihood AIC 

Confidence Confidence 
dean Interval Mean Interval 

2.5% 97.5% 2.5% 97.5% 

'° I 42~'°°° °°7'°° "9°°°° '483°~° '9'2'~ 499'°° '~4~'°°° 3'9'5°°° I I I 
2.0 42r570,000 471~ 00 41,720,000 43,590,000 1,873,000 268,600 Ir421,000 2,502,000 

BIC 

I Confidence 
Mean [ Interval 

12.5% 97.5% 

Devi. 

t',O 
Validation models 3.0 and 4.0 and final models 5.0 and 6.0 

O Model 

3.0 
4.0 
5.0 
6.0 

Predictive distributions 

Ultimate Claim Amount 

Mean Deviation Interval 
2.5% 97.5% 

Mean 

.Reported mNR (I.9) 
Standard [ P~dictive 
Deviation Interval 

2.5% 97.5% 

Log Likelihood 

I Confidance 
~ean Interval 

2.5% 97.5% 

AIC BIC 

Confidence I Confidence 
Mean Interval I Mean [ Interval 

2.5% 97.5% [2.5% 97.5% 

Devi. 

42~550,000 607,50( 411400t000 43,810,000 1,629~000 607,50(3 
42~270,000 469150( 41,340,000 43,190r00~ Ir345,000 469fi0~ 
42r550,000 675r90( 41~240r000 43,920,000 1~623,000 675190~ 
42,500~000 393~10( 41~800,000 43,380,1300 I,$75,000 393,10G 

473t400 
420~800 
313r300 
876r400 

2,891r00( 56.0 42.3 71.6 181.9 154.7 213.1 277.1 249.8 308.3 2,936 
2,264~00( 56.0 42.6 71.7 182.C 155.1 213.5 277.2 250.3 308.6 2,902 
2,994~00( 56.0 42.3 71.6 183.9 156.6 215.1 281.8 254.4 313.0 2~928 
2,453,00(3 56.0 42.3 71.5 187.9 160.5 219.0 291.2 263.8 322.3 2,887 

O 
---..1 

T a b l e  3 .4 .5 .3  C o m p a r i s o n  o f  resul ts  for  mode l s  1.0 to 6.0. 
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The ultimate claim amount and IBNR predictions for final models 5.0 and 6.0 and 

preliminary models 3.0 and 4.0 are compared in table 3.4.5.2. The boxplots for model 

5.0 are the most consistent with those of model 2.0. (see graphs 3.4.5.2 and 3.3.3), but 

the predictive intervals are slightly wider than for models 3.0 and 4.0. The 

autoregressive error structure in model 4.0 is insufficient to deal with scale variability. 

In contrast to model 6.0, models 2.0 to 5.0 do not resolve the downwards pattern in the 

quantile plots (see graph 3.4.5.3). From the percentage cash flow plots and the array 

average percentage cash flow curve it is evident that the curve is representative of  the 

array. The additional variance parameters increase the AIC and BIC values with respect 

to model 3.0, but decrease the deviance (table 3.4.5.3). The slight skewness of the IBNR 

and the ultimate claim amount kernel densities for model 2.0 is no longer so evident in 

models 3.0 to 6.0 (see graphs 3.3.2 and 3.4.5.1). 

4. MULTI-ARRAY MODELS 

To explore data variability structures and illustrate the process of designing multiple- 

array models, two mean response functions are used. For the preliminary models the 

variance functions considered are a 2 , ~r~ and cry, denoting the three model versions by 

a, b, and c respectively. In section 4.2, observations on the models and numerical 

examples highlight the motivation for their inclusion. In section 4.3 the values of  aL are 

analysed and the final multi-array models are introduced. Numerical examples and 

assessment of  the final models are given in sections 4.5 and 4.6. 

4.1 Examples Of Prel iminary Mult i -Array Models 

4.1.1 Models 7.0 (a), (b) and (c) 

Model 7.0 is proposed as example of hierarchical reserving models with a limited 

number of parameters in the percentage cash flow function. It is followed by two 

amended versions selected to further explore variability patterns in the data. 

Model 7.0(a) 

For claims array r and underwriting year w, the first homoscedastic model at delay 

time t is defined as follows: 
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such that, 

and 

u~.,.., (~,) =,xp(L + C,,). 

l + J  exp(D+d +d'.) ),  ( exp(Ks,)'~ 
- q  ~ / l r l / t + ~ / /  

. exp (Ks,) I 
• exp(Ks, ) 2 

(4.1) 

where 

CJ~. = A~fl + B,,..,b, + B~,b~ 

,,.,. l¢~.,a - U (0, ~'+ ...... ) (4.2) 

b~ =[C,¢,~2] ', 
b r = [ d r , k C r ]  I" , 

fl = [ Ksp Ks2L, D, Kc ] r , 

b,.lb;.,Y; ~ MVN(b~.,~ °) 

brle;,X, = amV(b;,Xr ) 

m ' , X o - ~ V ( / , x . )  

The configuration of the design matrices is determined by the order of the parameters 

in the fixed and random effect parameter vectors. For known parameters 
• * , •  • •  * • o  * °°  o *o • •  , ,a ,b~., b, ,Z0, Z~, Zr, So,Zr , Z~, the hyperprior distributions are: 

p'l/ ',x;" - a~v(e",x;') 

b;,l<,x;" - v~V(b",X;') 

b'lb'~°,Y.:" - MVN(b;',YT) 

{z o/-' Z'o - w , ( { , = / - '  . ,) 
<,::;' ,::o -.,,(0=ot-',,) 

< ~ . / - ' 1 ~ : - ' ; ( < = ~ : / - ' . 2 )  

and ~-~Ga(0.001,0.001). The claims process functions Cr, w and P~.,., for model 4.1 and 

the related survival and hazard functions &..., and hr.,., are: 
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C ..... exp(L+l:) 

,.., =. 

1+ 2(, exp(D+d, +d~,).]ln¢t+ exp(Ks,)~] 
I, exp(Kc+kc, +kc~.,)) t, t "<r<') 7) 

. exp(Ks,) 

. exp (Ks,) 2 

S ..... = 1- Pr.., 

1 7 ( ~  t_ in ¢, + exp (Ksl) ] ~ _ [  "/ 
t 2exp(D+d.+d:) t t <'(~'') )J j 

h"" '=¢t 'exp(Ksi )~(exp(Kc+kc '+kc '~) (~) ) (~  - r ~ j / ~ + - - ~ . }  +In 1+ 1 exp(Ks, +Ksi)]-it=,(r~:)+,) 
(4.3) 

Amended Versions Of Model 7.0(a) 

In the alternative versions of  model 

¢,.,. I ~b~.,a, -N(O,a~l ..... ) and 

.,,wi#..,a ~ N(0,a:l, .,. ) • 

7.0(a), denoted by 7.0(b) and 7.0(c), 

~,.w [t~.,o .- N(O,a~l ..... ) replace 

4.1.2 Models 8.0 (a), (b) and (e) 

In model 8.0 the percentage cash flow function has more parameters than model 7.0 

to assess if a more flexible percentage cash flow function could produce more reliable 

IBNR predictions. As with model 7.0, three versions are considered. 

Model 8.0(a) 

For claims array r, underwriting year w and development time t the model is given 

by: 
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such that, / /- OXp(,~+dr +<,)  
/a,..,, (~b ,)= exp (L + 1~.,)1+ ( lnt t ) /  

exp ~ 4 - -  - - 
t .xp ( -Kc-  kcr - kc:+) e x p ( - K d - k d r - k d : + ) J J  

and 

~b = A~,fl+ Br,.,b ~ + B~.b=, = d(a~,,fl.b,.b~,) 

, , . . . l#~.,a ~ N ( 0 , , r ' l  . . . . .  ) 

b., = [:.,a;,,,~7:,~.,]', 
b, =[a,,k,,~,] ~, 

=[L,D,K~,Ka]', 

The hyperprior distributions are: 

b=l:.,X~. ~ MVN (bT.., Y.,.,, ) 

b~Ib;,X,- MVN(b;,X,) 
m',Xo- U~(:,r.o) 

(4.4)  

(4.5) 

: l : ' , r ; "  - MVN(:,>7) (r0)-']X; - wi((4 >Z;)-' ,4) 

~=l~:,x:- ~=(~=,=/  I x . / %  ~.',((,x:/',,) 
~;1~:',=" ~ ~=(e',x:'/ (x./-'lx: - w,((,x:/-',,) 

and ~ ~ Ga(O.O01,O.O01), such that p",b~,bT,X'o,X~*,ZT,Z~',ECr',E7 are known. Functions 

C.. and &w., for model  8.0(a) and the related survival and hazard functions are: 

Cr .... oxp(L+C) 

{,~ oxp(~+~. ÷:.) l-' 
Pr..,., = exp(exp(Kc +kc. +kc'~,)lnt+exp(Kd+kd r + kd,~)t)J 

f oxp(~+a +:) ]-' 
St.. , =1 -  1+ " 

"' {exp(exp(Kc+kc ,+kc '~ , ) ln t+exp(Kd+kd~+kd: , ) t ) I  

hr (exp(Kc+kc +kc'~.) +exp(Kd+kd, +kd~))P~., (4.6) 
.w,t = I --l " " 

Amended Versions Of Model 8.0(a) 

Model versions 8.0(b) and 8.0(c) are derived from 8.0(a) as 7.0(b) and 7.0(c). 
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4.2 Numerical Examples And Discussion For Preliminary Models 7.0 And 8.0 

The claims data selected to illustrate the models in section 4 are reported in tables 

B. 1 to B.3. The data have been obtained through simulations based on a marine portfolio 

consisting of hull, cargo and aviation hull claims, labelled in graphs and tables as arrays 

1, 2 and 3 respectively. Evident from graph 4.2.1 are the data variability and a large 

number of negative entries in the incremental claims data. Claims reserving models for 

multiple-array Claims portfolios have to explain the variability emerging from the 

different array characteristics, settlement speeds and exposure levels. The broad range of 

the cumulative claim totals, from 1,013,800 to 85,287,218, suggest that such claim 

volume variability may not be effectively captured by the random effects parameters for 

the mean response model alone. 

Array 1 

Array 2 

.i'i! 
Array 3 

~ . , . y  

Graph 4.2.1 Incremental data bar plots by array and underwriting year for tables B.1, B.2 and B.3. 
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Array 
1 

Array 
2 

Array 
3 

By 
Array 

Total 

Model 7.0 (e) 
Ultimate Claim Amount IBNR (I.8) 

Under. Mean Standard Predictive Mean Standard 
Year Mean Sq. Interval Mean Sq. 

Predict 2.50% 97.50% Predict 
Error Error 

1 11,460,00( 560.30( 10,250.000 12,530,000 2.130.000 367.600 
2 18.660.00( 880,10( 16,790,000 20,390,000 3.103,000 592.200 
3 5 .703.00(  363,7001 4.959,000 6,413,000 1,006,000 249,000 
4 10,520,00( 699.0001 8,984.000 11.830.000 2,400.000 493,100 
5 79,440,00( 9,587.00( 59,530.000 96.770,000 21,190,000 6.833.000 
6 5,361.00C 646.10(  3.836,000 6,453.000 1.707.000 479.000 
7 10,340.00( 1,073.00( 8,789.000 12,900.000 2,199.000 788,100 
8 37,200,00C 8.030.00( 22,320,000 51.550,000 14,460.000 6.217,000 
9 57.000.00C 22.430.00¢ 20,850,000 100.700.000 28.180.000 17.890.000 
10 4,479.00C 1.919.00( 1.427.000 8.180.000 2,451,000 1,601,000 
1 3.259,00{ 160,000 2,928,000 3.555,000 460.700 105.900 
2 14,920,00( 718.600 13,810,000 16.590,000 1,661.000 455.000 
3 5 ,504.00(  456.900 4.520.000 6,358,000 1,787,000 311,800 
4 2 ,888.00(  213.50(  2,450.000 3,298,000 558,30t] 148.800 
5 9,255.00( 1.209.00( 7,091,000 11,620,000 2,261,000 864.500 
6 1.530.00C 232,80(  1,112,000 1,964,000 422,500 171.100 
7 1 ,896.000 6 6 , 6 1 0  1.800.000 2,063.000 293,300 44.510 
8 2 ,892,000 237.600 2.557.000 3.517.000 575.600 168,300 
9 1,264,00ff 133.600 1,083.000 1,612,000 299,500 99,010 
10 50.860.000 12.980.000 28.600,000 72.890,000 23,640.000 10.970,000 
1 22,570,00C 379.300 21.730.000 23.270,000 3,176,000 271.906 
2 10,270,00( 529.900 9,141.000 11,250,000 2.549.000 351.300 
3 7 ,549,00(  421,000 6,755.000 8.380,000 1,181.000 288.200 
4 7,465,000 748.000 5.903.000 8.828,00C 1,741,000 523.900 
5 8,308,000 570.900 7.056.000 9,387.000 2.950,000 408,700 
6 8,368.000 648.500 7.269,000 9.715,00C 1,642.00C 477.200 
7 8.719,000 1,810.000 4,564.000 11,610,000 3.735.000 1,376,000 
8 115,700~0ff 15.020.000 92.600.000 148,100.000 30,480,000 11,610,000 
9 7.997.000[ 1.149,000 6,085,000 10.260,000 2,621.000 925.900 
10 94.890.00C 42.140,000 22,790.000 188,100.000 43.200.000 33,030.000 

Array l 240.200.00( 26,480,00( 191.200,000 291,100.000 78.830,000 20.810.000 
Array 2 94.270.0OC 13,240.00C 71.450.000 117,200.00C 31.960,00~ 11.160.000 
Army3 291,800~0C 45.850,00C 215.600,000 389.100.00C 93,280.000 35.830.000 

626.200~0( 54,430.000 530,900,000 740,400,000 204,100.000 43.170,000 

Predictive 
Interval 

2.50% 97.50% 

1.338.000 2.827,000 
1,836,000 d,246,000 

489.400 1,498,000 
1,318,000 3,321,009 
7,172,000 33,700,000 

531.200 2,518,000 
1,256,000 4.081.000 
3.977,000 25,830.000 
4,647,000 63,910,000 

413,800 5,634.000 
236,100 657,100 

1,153,000 2.778.000 
1,108,000 2,369.000 

259,500 846.300 
819,200 3,993.000 
143,200 747.500 
251.100 413.400 
419.200 1.064,000 
213.300 579.900 

7.198.000 42,520,000 
2,555.000 3,660,000 
1.813.000 3.210.000 

646,200 1,759,000 
647.200 2.698,000 

2.060,000 3.712,000 
917,700 2,646,000 
683,200 5.940,000 

15.520,000 56.200.000 
1,228,000 4~85,000 
7.345,000 121,300.000 

42,460,000 119.300,000 
14.750.0OO 51.400,000 
48.710.000 175.000,000 

134.800.000 298.700,000 

2.63E+11 
5.31E+11 
8.09E÷10 
2.42E+11 
3.25E+13 
1.02E+11 
4.53E+11 
1.13E+13 
7.32E+13 
4.28E+11 
2.01E+10 
7.57E+11 
1.24E+11 
2.23E+10 
5.82E+11 
1.59E+10 

!4.42E+09 
'3.98E+10 
8.60E+09 
1.51E+13 
8.60E+10 
2.12E+11 
1.15E+II 
2.56E+11 
1.22E+11 
1.67E+11 
5.23E+11 

i5.84E+13 
2.07E+11 
3.62E+14 

I m  

Deviance 7.372 
lterat.: Start 31.000 

T a b l e  4.2.1 Mode l  statistics, ul t imate losses  and IBNR predictions,  and respect ive  predict ive  

distributions for M o d e l  7.0 (c). 

Portfolios displaying large differences in exposure levels or claims magnitudes are 

not at all unusual, even in treaties where underwriting contracts remain unaltered. Cost 

limitations or timing restrictions may impede exploring methods, possibly able to deal 

with high variability in exposure volumes, such as analyses at transaction level. In the 

models proposed, a good fit to historical data as assessment criterion of  the preliminary 

models, is as important as suitable variance models, as the latter determines the stability 

of  IBNR and ultimate claim predictions. This is more likely to be achieved by models 

7.0(c) and 8.0(c), as inspection of graph 4.2.2 and of actual and fitted claims confirm. 
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Model 7.0(a): Normalized Residuals Model 7.0 (a): Quamile Plot 
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Model 8.0 (a): Normalized Residuals Model 8.0 (a): Quantile Plot 
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G r a p h  4.2.2 Normal ized  residuals and quantile plots for models  7.0 and 8.0 (a) and (c). 

Plots  for 7 .0(b)  and 8 .0(b)  were  found to be  uninformat ive ,  and for this  reason  were  

e x c l u d e d  from graph 4.2.2.  W h i l e  the rankings  o f  ,r, ~ in m o d e l s  7 .0(b)  and 8 .0(b)  are 
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consistent, with ~r~ < a~ < or, = , the claims volume variability within each array present 

similar problems to those encountered with model 1.0. According to the quantile plots 

only the residuals from models with variance function #~. may satisfy the Shapiro-Wilk 

test W for near-normality (Shapiro and Wilk (1965)). Model 7.0(c) gives narrower 

intervals for the mean 1BNR at underwriting year, array levels and overall. (see table 

4.5.3). The close equivalence of ranking orders for c,~ and C,.. (table 4.2.1) confirms 

the expectation that either (~, = (a~.,,9,p) or (~. = (#,,%.,p) could reveal scale variability 

structures in the data. They do so more effectively than (~. = (o%,,9 ,p). In a variance 

model #=(/j,.,,.,(#,,,)),,~(,+8,), parameters a~ and 3, are less informative. 

Model 7.0(a): Ultimate Claim Amount 

a ~  

, \ 

° ~ °./-,  , . ; . ,  . . ~  , & .  , . / . . .  B.~, 

M o d e l  7 . 0 ( b ) :  U l t i m a t e  C l a i m  A m o u n t  

a . ~ 4  

10. .4 

b ,  • g., , .~°  . . . .  ° , . ~ °  

Model 7.0(c): Ultimate Claim Amount 

°a.. .a.. .£: ,~.. 
u . , m . ~  ¢,. ,m Amen ,  

Model 7 .0 (a ) :  IBNR 

T ~ ,  , . H R  

3 , ~  

M o d e l  7.0( 'o) :  I B N R  

T ~  mN~ 

M o d e l  7 . 0 (b ) :  I B N R  

o &.o , & .  a d . .  . .g~,  , . o . ,  , . & ,  ° & ,  , . & ,  
T~. ,  JBNR 

G r a p h  4 . 2 . 3  P r e l i m i n a r y  m o d e l  7 .0 :  K e r n e l  d e n s i t i e s  f o r  u l t i m a t e  l o s s e s  a n d  IBNR t o ta l s .  
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Model 8.0(a): Ultimate Claim Amount 

ilI. 
Model 8.0(b): Ultimate Claim Amount 

Model 8.0(c): Ultimate Claim Amount 

Model 8.0(a): IBNR 

a. 

Model 8.0(b): IBNR 

/ _ _ _  . . . . . . .  _J 

1 - a . 4  

o~o 6 ~  1.c,o l e . e  

3 ~  

Model 8.0(c): IBNR 

Graph 4.2.4 Preliminary model 8.0: Kernel densities for ultimate losses and IBNR totals. 

Graphs 4.2.3 and 4.2.4 and table 4.5.3 show that the kernels for mean IBNR and 

ultimate claim predictions are skewed. In the next section it is shown how ~r:~ and C,., 

can be used to construct the variance function for the final models. 

4.3 Final Multi-Array M o d e l s  

The preliminary models demonstrate that the data variability can be explored more 

freely when var(Y.w)=a ~. The values of a~. and C,.,. suggest a variability structure 

associated to scale differences between underwriting year data sets, around which a 

cluster structuie could be constructed for analytical purposes. However, some 

management decisions, such as commutations, would require more precise IBNR and 
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Cr. " predictions at underwriting year or contract levels. Reconciliation of reserves 

would be more difficult if the data of interest were not part of the same cluster. A better 

approach to deal with scale variability, and one that is totally coherent with the generic 

model, may involve formulating C .... into the variance model. To assess this, the 

following regression is applied to the output of models 7.0(c) and 8.0(c): 

ln(o',=..) = 8~ +8= In(<.,.) (4.7) 

M o d e l  7 . 0 ( c )  M o d e l  8 . 0 @ )  

2, I . . . . .  

,.(cr..) ,.(or..) 

Graph4.3.1 Lines 81+d;=ln(C~,,, ) and scatter plots of In(C,.) vs ln(o-,~,) on the y-axis. 

(4.7) gives [4,4]=[-8.7068,2.1934] for model 7.0(c) and [4,4]  =[-6.355,2.0347] for model 

8.0(c). Graph 4.3.1 displays the regression lines and the scatter plots of  ln(C,,) versus 

In (o-~.) for both models. Equation (4.7) suggests that the final models should be 

(4.8) 

such that ( = a  2 and /4.w.,(#~.) is given by equations (4.1) and (4.4) for models 7.0(d) 

and 8.0(d) respectively. From regression model (4.7) for model 7.0(c), exp(8,)= 0.000165 

could set the initial value for ~2. The outcome of  the analysis is not unexpected. In fact, 

the inclusion of  C~w in the variance function has the effect of  normalising the data, 

hence, reducing the reserving analysis with random effects models to a type of  problem 

that is more consistent with the typical published examples, concerned with the analysis 

of  repeated observations on subjects or trials that share some common characteristics. 
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See for instance Elashoff et al. (1982) and Aziz et al. (1978). For the final models the 

mean IBNR and ultimate claim amount predictions are replaced by estimates generated 

by their predictive distributions. The reported IBNR values are calculated along the lines 

of(1.9). Extending the definition of section 3.2, the portfolio average model for the 

percentage cash flow is given below. 

4.4 Portfolio And Array Average Models For The Percentage Cash Flow 

Section 3.2 identifies the percentage cash flow as the most suitable function in the 

reserving model where concepts on inferences on marginal distribution or population 

average models could be applied. Comparisons across a claims portfolio are more 

meaningful at percentage cash flow level. As observed in section 3, a model may be able 

to fit the data well even when the percentage cash flow function converges to a value 

different to 1. However, in such cases the ultimate claim amount and IBNR predictions 

would be incorrect. 

To formulate the average models for the percentage cash flow the parameter vectors 

for the portfolio and array average models, ¢, and CA, are respectively defined: 

and 

-1  n u 

such that, design matrices &,, Br. ,, and an are replaced respectively by A, B, and B2. 

Consider for example the mean response function for model 7.0(d). If  

- I  u =D+-' 
~l r = l  ~ r = l  i /  r = l  ~ 1  

r~ ,., k,.~ j . . . .  

(4.9) 

such that D, Kc, d,.,kc r, dr.. and kc~ are the percentage cash flow function parameters, then 

the portfolio average for the percentage cash flow function at time t is given by 
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, ~ ~ exp 

Additional insight may be gained by including in the plots a curve for the percentage 

cash flow average model for each array. Continuing with the example, for the array 

average model for array r in model 7.0(d) 

D r = o+a, +l~a '~  

l u, • Kc,, = Kc+kc + ~ _ l ~ .  

should replace D, Kcp ill equation (4.10). 

4.5 Numerical Examples And Discussion For Models 7.0(d) And 8.0(d) 

Models 7.0(d) and 8.0(d) provide close fit to the data. The portfolio reported IBNR 

and ultimate claim predictions for 7.0(d) and 8.0(d) are given on tables 4.5.1 and 4.5.2 

and summarised on table 4.5.3. They show that the final models' predictive intervals are 

narrower than for their earlier model versions. At underwriting year level, the mean 

response function of  model 7.0 is still the most useful of the two (see table 4.5.1). 

Graph 4.5.2 compares scatter plots for the percentage cash flow values for both models 

and shows that model 8.0(d) is the least successful in separating the volume and 

development pattern elements in the data. Note that the graphs' scales are not the same 

and that the projection period for model 7.0(d) is longer than for model 8.0(d). The 
3 10 

predictive interval for )- '~ 'C .... for model 8.0(d) is also wider. (See tables 4.5.2 and 
r = l  w=l  

4.5.3 and graph 4.5.1). Evident from graph 4.5.2 is the settlement speeds variability. A 

reduction in the reported IBNR predictive intervals is consistent with a reduction of  the 

normalized residuals and the Bayesian Information Criterion. Particularly relevant to the 
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claims process is the systematic correction of historical errors as claims evolve, since 

negative incremental entries frequently adjust earlier overstated claim entries. The box, 

scatter and quantile plots make apparent data anomalies generated by negative 

adjustments to paid claims and by large claim volume differences. As in section 3, 

neither can be addressed with autoregressive error structures. The negative incremental 

claim entries are responsible for the some of the outliers and, in particular, for the slight 

depression in the quantile plots, between -2  and -1 of the horizontal axis. 

Model 7.0(d) 
Ultimate Claim Amount Reported IBNR (1.9) 

Under. Mean Standard Predictive Mean Standard Predictive 
Year Mean Sq. Interval Mean Sq. Interval 

Predict. Error 2.50% 97.50% Predict. Error 2.50% 97.50% 
1 11,210,00( 769,200 9,777,000 12,780,000 1.529,000 769,20( 95,310 3,099,000 
2 17,710,00(  1,249,000 15,420,000 20,320,000 2,353,000 1,249,00( 56,370 4,962,000 
3 5 ,444 ,00C 413 ,80 t ]  4.704,000 6.318,000 872,000 413,80(] 131,300 1.746.000 
4 10 ,080 ,000  837,600 8.526,000 11,800,000 2.233,000 837,600 681,600 3.954.000 

~n-ay 5 82,510,00( 7,098,000 69,530,000 97,320,000 22.950,000 7.098,000 9,971,000 37,750,000 
1 6 5 ,419,00(]  523,300 4,480,000 6,556,000 1,814,000 523,300 874,500 2,951,000 

7 9,677,00(] 708,000 8A97,000 11,350,000 864,700 708.0013 -315,500 2,534,000 
8 41,090,00( 5,069,000 32,640.000 52.560,000 18,800,000 5,069,0013 10.350,000 30,270.000 
9 77,960,00( 12,940,000 57,800,000 108,600,000 43,250,000 12,940,00( 23.090,000 73,890,000 
10 5.935.00( 1.329,00( 3.974.000 9.123.000 3.690.000 1.329.00( 1.730.000 6.879.000 
1 2.954,00( 159,9013 2,655,000 3,284,000 82.640 159,9013 -217,200 412.100 
2 |4,730,00( 867,6013 13,140,000 16,560,000 2.603,000 867,6013 1,004,000 4,431,000 
3 5,511,00( 416.500 4,745,000 6,370,000 1 ,968,000 416,500 1,202,000 2,828,000 
4 2,795,00( 234,300 2,377,000 3 ,289 ,000  388,300 234,3013 -30,250 881,400 

~.rray 5 9,708,00( 836,20( 8,198,000 l 1,490,000 1,928,000 836,2013 418.600 3,708,000 
2 6 1,610,00~ 165,700 1,319.000 1 ,967,000 510,000 165,7013 218300 867.300 

7 1,903,00C 110,600 1,695,000 2,130,000 315,000 110,60( 106,900 541,700 
8 2,878,00( 206,00( 2,527,000 3,345,00( 489,700 206.00( 139,200 956.900 
9 1,256,00( 130,0013 1,089.000 1,527,00( 242,70( 130,0013 74,990 513,500 
10 55.000.000 12,350,0013 37.090.000 86.390.00( 26.260.000 12.350.00( 8.350.000 57.640.000 
1 21,060,00C 1,339,000 18.570,000 23,870.000 1,494,000 1,339,00( -1,002,000 4,302,000 
2 9,372,00( 709,50( 8,070,000 10,840,1)00 1,601,000 709.50( 298.900 3.064.000 
3 7,253,00( 509,80( 6,333,000 8,330,000 1.012,000 509.8013 92,520 2,089.000 
4 7,430,00( 611.50( 6,300,000 8,685,000 1.447,000 611,5013 316,900 2,702.000 

~.rray 5 7,978,00( 683,90( 6,742,000 9,428,00( 2,968,00(] 683,9013 1,731.000 4.417.000 
3 6 7 ,794,0001 585,20( 6,785,000 9,090,00( 509,4013 585,20( -499,700 1,806,000 

7 9,066,000 992,9013 7,317,000 11,150,00( 3,852,0013 992,90( 2.103,000 5.936,000 
8 115,400,000 14,440,00( 94,040,000 148.400,00( 30,070,0013 14,440,00( 8,752,000 63,110.000 
9 7,423,000 1.083,00(  6,060,000 10,240.0013 , 1,912,0013 1,083,00( 549,400 4,731,000 
10 144.200.000 30.660.00( 100.000.000 217,200,0013 82.050.0013 30.660,000 37.860.000 155.100.000 

~rray 267,000.000 15,930,00( 239,600.000 302,600.00( 98.350.00( 15,930,00C 70,950,000 133.900.000 
3y ~.rray 2 98,350,000 12,500.0013 80,030,000 130,000,0013 34,790,000 12,500.0013 16,460,000 66.480,000 
stn'aY ~rray3 336.900,000 34,040,0013 284.200.000 416,100,00( 126,900.000 34,040,0013 74.190000 206,100.000 
rotal ] 702.300.000 39.690,00( 636.000.000 790.200.000 260.100.00( 39.690.0013 193.700,000 347.900.000 

~,2 [ 0.002308 

Deviance 7,365 
lterat.: Start I 29,500 

T a b l e  4.5.1 Model 7.0(d): statistics,  ul t imate loss  and reported IBNR predict ions,  and predict ive  

intervals. 
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Under. Mean 
Year 

1 11,650,00( 
2 15,330,00( 
3 5,257,00( 
4 8,169,00( 

Array 5 88,310,00( 
1 6 5,174,00( 

7 12,640,00( 
8 43,080,00C 
9 100,800.00C 
10 3.732.00C 
1 3,378,00C 
2 13,820,00C 
3 3,567,00C 
4 3,102,00C 

Array 5 13,150,00C 
2 6 1,679,00C 

7 1.726,00C 
8 3,693,00C 
9 1,718,00C 
10 45,620.00C 
1 19,970.00C 
2 9,249,00C 
3 7,050,00C 
4 9,812,000 

Array 5 5,939,000 
3 6 9,454,000 

7 8,073,000 
8 125,800,000 
9 6,229,000 
10 141.100.000 

Array 1 294,200.000 
By Array 2 91.450.000 
Array Array 3 342.700.000 
Total 728.300.000 

a2 0.002137 

Deviance 7.323 
Iterat.: Sta~ 29,500 

Model 8.0(d) 
Ultimate Claim Amount Reported IBNR (1.9) 
Standard Predictive Mean Standard Predictive 

Mean Sq. Interval Mean Sq. Interval 
Predict. Error 2.50% 97.50% Predict. Error 2.50°/. 97.50% 

1,272,00C 9.664,000 14,610,000 1,964.000 1,272,000 -17.750 4,926,000 
925,1013 13,650.000 17,290,000 -33.230 925,100 -1.713.000 1,931,000 
529,3013 4,491,000 6,648.00(1 6 8 4 , 3 0 0  529,300 -81.330 2,075,000 
518,1013 7,230,000 9.284,000 3 2 4 , 4 0 0  5 1 8 ,1 0 0  -614,400 1,439,000 

24,820,00C 62,930.0<)0 159,600,000 28,750,000 24,820,000 3,371,000 I00,100,000 
2,195,0013 3,529,000 11,800,000 1,569,000 2,195,000 -76,040 8,196,000 
4,024,00C 8,691,000 24,190,000 3,827,000 4,024,000 -121,500 15,380,000 

20,980,0013 24,940,000 94.960,000 20,790.000 20.980,000 2,646.000 72,670,000 
56,840,0013 49.440.000 261.700,000 66,120.000 56,840,000 14,730,000 226,900,000 
2.999.000 2.169.000 11.6t0,000 1.488.000 2.999.000 -75.410 9.362.000 

642,300 2.746,000 5,221.000 5 0 6 , 3 0 0  6 4 2 . 3 0 0  -125.300 2.349.000 
1,035,00~ 12,190.000 16,230,000 1,690.000 1,035.000 58.680 4.094.000 

214,600 3,174,000 4,022.000 24,380 2 1 4 , 6 0 0  -368 .000  479,200 
537,100 2,413,000 4,534,000 6 9 4 , 7 0 0  537.100 5,700 2,126,000 

5,018,000 7,527,000 26,000,000 5,372,000 5.018,000 -252.300 18.220.000 
615.700 1.125,000 3.443,000 5 7 9 , 0 0 0  615,700 24.490 2,343,000 
386,700 1,429,000 2,971,000 137,900 3 8 6 , 7 0 0  -159,100 1,383,000 

1,482,000 2,337,000 7,675,000 1,305,000 1,482,000 -51,290 5,287,000 
1,104,000 880 ,500  4,346,000 703 ,800  1.104,000 -133,300 3,332,000 

29.960,000 26A90,000 132.500.000 16,880.000 29.960,000 -2.253,000 103,800.000 
1,316,000 17,640,000 22,840,000 407 ,000  1,316,000 -1,924,000 3,271,000 

996,600 7,773,000 I 1,710,000 1,477,000 996,600 1,074 3,937,000 
1,353,000 5,927,000 11,690,000 809 ,000  1,353,000 -314,100 5,446,000 
2,500,000 6,652,000 16,390,000 3,829,000 2,500.000 668,500 10,410,000 

756,800 5,010,000 7,855.000 9 2 8 , 5 0 0  756,800 -607 2,844,000 
2,978,000 6,651,000 17,840,1)00 2,169,000 2,978,000 -633,000 10,560,000 
2,031,000 5,703,000 13,670,000 2,859,000 2,031.000 489 ,100  8,458,000 

37,370,000 89,280,000 229,700,000 40.550,000 37,370,000 3,992,000 144,400,000 
1,520.000 4,957,000 10,410,000 717 .800  1,520,000 -554,400 4,897,000 

60,410,000 75,900,000 293,600,000 78.980,000 60.410,000 13.760.000 231.500,000 
66,190,000 217.800.000 475,200.000 125,500,000 66.190,000 49,160,000 306.500.000 
30.130.000 68.590.000 177.000.000 27.890.000 30.130.000 5.030.000 113.400.000 
72.200.000 252.700.000 525.000.000 132.700.000 72.200,000 42.750.000 315.000.000 

102.600.000 584.700.000 984.300.000 286,100.000 102.600.000 142.500.000 542.000.000 

T a b l e  4 .5 .2  Model 8.0(d): statistics,  ul t imate loss  and reported 1BNR predictions,  and predict ive 

intervals. 

Historical claims add to 442,249,345. The difference between the ultimate claim 

amounts and the reported IBNR predictions for the final models are approximately 442 

million. The order of  accuracy in the WinBugs system prevents an exact reconciliation 

with the total claim amount to date. When model 7.0(d) is appraised for consistency 

with an analysis by array, the ultimate claim amount and reported IBNR predictions 

show respectively 1.1% and 3.1% overall difference from the predictions on table 4.5.1. 

In section 4.6 the hazard rate profile extracted from the model is discussed. 
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Model 7.0(d): Ultimate Claim Amount 

ii] /"\ 
- / \  

Model 8.0(d): Ultimate Claim Amount 

!] / \ 

o ~g.o  

Model 7.0(d): Reported IBNR 

Model 8.0(d): Reported IBNR 

Graph 4.5.1 Kernel densities and predictive distributions for ultimate losses and reported IBNR. 

Model 7.0(d): Percentage Cash Flow 
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Model 8.0(d): Percentage Cash Flow 

Model 8.0(d): Percentage Cash Flow by array 
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Graph 4.5.2 Models 7.0(d) and 8.0(d): Scatter plots and average portfolio curve for percentage cash 

flow versus delay time. 
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t 
M o d e l  7.0(d):  Quan t i l e  Plot  

'il ..... 
Model 7.0(d): Box Plot 

Graph 4.5.3 

Model 8.0(d): Quantile Plot 

Model 8.0(d): Box Plot 

' 

l!!i   !iI t!I!1 
Quantile plots and box plots by underwriting year. Underwriting years are labelled 1 to 

30. The first 10 correspond to the marine hull, the next 10 to marine cargo and the last 

)0 to aviation cargo. 

Model 7.0(d): Normalized Residuals 
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Graph 4.5.4 Models 7.0(d) and 8.0(d): Scatter plots versus delay time, overall and by array. 
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Preliminary Models 

Model 
Distributions 

Ultimate Claim Amount 
Standard Predictive 

Mean Mean Sq. L Interval 
Predict. Error / 2.5% 97.5% 

I~NR (1.8~ 
Standard Predictive 

Mean Mean Sq. Interval 
Predict. Error 2.5% 97.5% 

Log Likelihood 

viean Confidence 
Interval 

2.5% 97.5% 

AIC BIC 

I Confidence Confidence 
Mean  Interval Mean Interval 

2.5% 97.5% 2.5% 97.5% 

70(a) I 697,800,o001 20,900,000 
7.0 (b) 688,900,000 17,810,000 
7.0 (c) 626,200,000 54,430,000 

651,600,000 735,100,0001 261,000,0001 18,360,000 
650,100,000 721,400,000 253,800,000 14,350,000 
530,900,000 740,400,000 204,100,000 43,170,000 

219,900,000 293,800,000[ 
222,600,000 280,000,000 
134,800,000 298,700,000 

8.0(a)l 635,000,000[ 56,760,000 
8.0 (b) 742,600,000 126,600,000 
8.0 (c) 71 ,200,000 86,900,000 

558,600,000 793,200,000 192,800,0001 55,59O,000 120,200,000 
587,000,000 1,107,000,000 298,100,000 125,500,000 144,500,000 
505,300,000 , 90,000,000 274,700,000 82,000,000 88,270,000 

Devi. 

7942 
7,866 
7,372 

7,912 
7,816 
7,335 

Devi. Model 

Fina|Models 

Predictive distributions 

Ultimate Claim Amount Reported IBNR (I .9~ 
Standard I Predictive Standard I Predictive 

Mean Mean Sq. [ Interval Mean Mean Sq. Interval 
Predict. Error | 2.5% 97.5% Predict. Error 2.5% 97.5% 

Log Likelihood AIC 

vie.an Confidence [ Confidence 
Interval Mean  Interval 

2.5% 97.5% [ 2.5% 97.5% 

BIC 

Confidence 
Mean Interval 

2.5% 97.5% 

7.0(d) 702,300,000 39,690,000 636,000,000 790,200,000 260,1001000 39~690r000 193,700,000 3471900,000 127.0 106.0 150.0 452.1 409.5 498.8 802.7 760.1 849.4 7,365 
8.0(d) 728,300,000 02,600,000 584,700,000 984,300,000 286, 00,000 02,600~000 142,500,000 542,000,000 27.0 06.0 50.0 5 2 0 .  477.6 565.7 9 9 .  948.6 ,037.0 7,323 

T a b l e  4,5,3 Compar i son  o f  results for models  7.0 and 8.0. 
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4 . 6  A v e r a g e  H a z a r d  R a t e  F o r  M o d e l  4 . 1 ( d )  

As a pure loss measure, hazard rate can help comparing underwriting year contracts, 

to formulate portfolio management strategies, determine future premiums, portfolio 

composition, commutation or closure policies, etc. Hazard rates by underwriting year, 

or weighted average hazard rates for each array or for the whole claims portfolio can be 

derived from a reserving analysis. For payment year r these are respectively: 

= _[ O('n (I~P~...,))I : "  ={.OzJ . . . . . . .  , 
h 

' ' - | J ,  & . . . . . . . .  , 1 - P ,  . . . . . . .  , 

a.:. ,~.,. [ IBNR~ ........ ,) 

I 

- 

n ,, ( IBN& , ,) 
G~, : Z Z h , , , ,  ...... /0  

sBN~-]S.. ..... ~ t ~ . :  . . . . . .  , 

=£h,.,.,_,.+,( IBNP~ ......... , , ]  

,.-, t. m N g f r )  ) 

Given in terms of the 1BNR, the above equations make explicit the changing nature of 

the average hazard as claims evolve. Table 4.6.1 lists the hazard rate values for payment 

years 13, 15 and 17 for model 7.0(d). Since underwriting year losses are at different 

stages in their development, a similar table to 4.6.1 can be used to assess the impact on 

the claims portfolio of, fo r  example, excluding from it underwriting year contracts 

related to underwriting year j~ of array i, and underwriting year .#'2 of  array i 2 . The 

average hazard rate for the reduced portfolio becomes: 

2 

£(G~, - h,. ,. ,_,.÷,)zBN~,..,. ,_,.+.> 
: ,  = G~,+ "" 

2 

1BNR(r)- ~ IBNR,.o.,,_s.+, ) 
n=l 

The exclusion of  the contracts from the claims portfolio reduces the portfolio hazard rate 

only when 

2 

~.(Gh, -h,..,..r_s.., )IBNR,,.O..,_I+,) < 0 

Table 4.6.1 shows that the exclusion of underwriting year 10 from any of  the three 

arrays would reduce the portfolio average hazard rate. The removal of underwriting year 
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data sets belonging to any of  the first seven underwriting years would have the opposite 

effect. While not included in table 4.6.1, from the reserving analysis the full distribution 

for the hazard rates can be obtained. 

Army 1 

Army 2 

Army 3 

By Array 

Overall 

Underwriting Ultimate 
Year Loss 

1 11 230,0013 0.0515 
2 17,660,00C 0.0548 
3 5,458,00~ 0.0589 
4 9,996,001] 0.0638 
5 82,800,001] 0.0695 
6 5,340,0013 0.0760 
7 9,662,0013 0.0816 
8 40,970,00C 0.0932 
9 77,950,00C 0.1046 
10 5,835,00C 0.1161 
I 2,963.00(1 0.0502 
2 14,650,001] 0.0543 
3 5,535,00C 0.0593 
4 2,787,001] 0.0635 
5 9,692,00C 0.0694 
6 1,623,00~ 0.0759 
7 1,900,00~ 0.0810 
8 2,866,001] 0.0895 
9 1238,00~ 0.0990 
10 55250.00(] 0.1152 
1 21,130,001] 0.0551 
2 9,844,000 0.0604 
3 7,251,00C 0.0626 
4 7,515,00~ 0.0653 
5 7,943,00(] 0.0699 
6 7,859,0013 0.0755 
7 9.352,00C 0.0856 
8 115,200,001] 0.0914 
9 7,536,001] 0.1000 
10 148.000,00(3 0.1147 

Array 1 266,900,00C 0.0906 
Array 2 98,510.00C 0.1034 
Array 3 341,600,00C 

707,000.00C 

Model 7,0(d) 

Hazard rates 
Payment Yearl3 Payment Year 15 Payment Year 17 

0.045( 
0.048~ 
0.0513 
0.055C 
0.059! 
0.064( 
0.0681 
0.0761: 
0.0842 
0.0933 
0.044~ 
0.047[ 
0.051~ 
0.054[ 
0.0592 ~ 
0.0639 
0.0673 
0.073S 
0.081~ 
0.0929 
0.048~ 
0.053~ 
0.054~ 
0.0564 I 
0.0597 
0.0641 
0.0711 
0.075~ 
0.081~ 
0.092~ 
0.0738 
0.0833 

0.0410 
0.0430 
0.0455 
0.0484 
0.0516 
0.0552 
0.0583 
0.0640 
0.0697 
0.0762 
0.0401 
0.0427 
0.0458 
0.0482 
0.0515 
0.0551 
0.0580 
0.0626 
0.0679 
0.0759 
0.0440 
0.0476 
0.0487 
0.0497 
0.0520 
0.0555 
0.0607 
0.0640 
0.0682 
0.0760 
0.0620 
0.0685 

o. 1041 0.0846 0.0700 
0.0992 0.0804 0.0668 

Table  4.6.1 Model 7.0(d): hazard rates for payment years 13,15 and 17. 

5. Concluding Remarks 

Reflective of the practical issues involved in the analysis of  reserves, the related 

literature is extensive and explores a variety of  theoretical frameworks. In general, 

having identified the salient data characteristics and gathered information on specific 

events that could have contributed to claims numbers and magnitudes, at the outset of  

every analysis a suitable analytical approach for the problem at hand has to be selected. 

Apart from any academic interest, it is likely that this search could have motivated some 

of  the developments in reserving analysis, and will continue to do so. Hence, 
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establishing the scope and limitations of  each is important. 

Through the generic model it is possible to give a functional interpretation to the 

claims data variability structure. As settlement speeds and scale variability increase, the 

assumptions and model structures encompassed by GLM models have to be replaced by 

more complex ones. The examples support remarks by Carroll (2003) with respect to the 

importance of  the variance model. An inadequate variance model could lead to incorrect 

conclusions. The purpose of  reserving analysis is not just to model historical claims 

data, but, more importantly, to predict 1BNR and ultimate claim amounts. Both are 

strongly reliant on adequate variance definitions. Since claims records have to fulfil 

accounting requirements, corrections and adjustments to original entries are recorded as 

new transactions, and at unpredictable time lags. This could justify regarding measures 

of cumulative claims as repeated observations of an ongoing process. In this context, 

normal errors assumptions could be made tenable through suitable transformations or 

expectation functions, hence availing analytical approaches such as outlined in 

Lindstrom and Bates (1990). In the examples presented, and with the selected data, 

autoregressive error structures cannot be successfully used. 

The generic model makes random effects models accessible to the problem of 

reserving. With the different variance model structures, it exponentially increases the 

analytical resources that can result from constructing families of  reserving models 

around families of distributions. Graph 5.1 is an example of a template that can be used 

to identify the most suitable model structure for the data of interest and formulate the 

percentage cash flow function. With respect to the underlying assumptions for random 

effect parameters other alternatives are possible. Escobar and West (1992) propose a 

non-parametric approach, where the random parameter is taken from a rich class of  

distributions provided by the Dirichlet process. Lai and Shih (2003) leave the 

distribution of the random effects totally unspecified. The non-linear mixed effects 

models library (NLME) assumes that the random effects and the errors have Gaussian 

distributions. Using a matrix decomposition, Bates and Pinheiro (1998) shows that the 

random effects distribution expressed in terms of the relative precision factors can easily 

deliver the likelihood for the fixed and random effects. The flexibility of Gibbs sampling 

methods (Geman and Geman, 1984) has influenced the decision to implement the 
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examples with BUGS (Spiegelhalter et al., 1995), as applications of Bayesian models 

and MCMC estimation methods. Nevertheless, other approaches in relation to analytical 

platforms, model structures and assumptions, beyond those explored, should be 

considered. 
Transformed Gamma Family (ill + 1,2,~') 

q u  O'+l exp(-v) 
P'= tr(~, +l) 

v = I v = < x , , - ,  

Inv. Transl'. 
Gamma 

(p, +I, xm) 

lnv.Oamma 
(~=l) 

Transf.ormed 
Gamma 

(p, +l,X,~) 

Gamma ] Weibull 
(~=l) (ill =0) 

Exponential 
(p, =0,~ =l) 

Inv. 
Exponential 

(fl, =0,~ =l) 

Transformed Beta Family (,fit, fl:, 2, ~-) 

,', ~(e,)~(e=)t,( l+,,) , . .~_j 

Inv. Weibull 
(p, =0) 

v =  ,4,! 

Transf.ormed 

B= I. IPA:%) 
(e~=,) I . ,  I 

Loglogistic l 

i ,I /<=p:=,/ / 
Paralogistic i I / 

(~= P"P2 =l) [ 

Inv. Pareto 
(~=p, =I) 

Graph 5.1 Examples of families of models for the percentage cash flow function. 
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A P P E N D I X  A 

A.I  I N C R E M E N T A L  PAID C L A I M S  D A T A  

UOd. 
Year 

1 
2 
3 
4 
5 
6 
7 

Development Period 

1 2 3 4 5 6 7 8 9 10 

0 94,984 1,049,297 625,878 541,108 427.352 476,477 354,258 188,400 144,987 
0 147,751 999224 937,426 811,294 436,866 264,148 143,616 102,416 132,920 
0 45,751 442,168 588,627 390,301 231,257 119,690 64.365 73 ,641 93,371 
0 20,252 340,320 596,633 336,142 183,473 90,574 114,241 99,467 51,950 
0 21.655 787,440 992,505 893,315 772.514 795,088 718,526 504213 321,630 
0 221,177 1212,010 1,867,718 1,372,904 1,254,084 1,003,612 696,973 534.547 409,845 
0 192 ,144  749,425 1.174.401 1,500.585 2,079,434 1,675,154 1,972,712 1,372.848 491,984 

(cont.) 

Development Period 

11 12 13 14 15 16 17 18 19 

Und. 
Year 

1 
2 
3 
4 
5 
6 
7 

124,614 111,642 56,210 64,259 33,893 15,440 8,255 22,300 25,173 
109,996 58,163 53,679 54,255 25,631 51,443 56,702 59,857 
53,678 29,044 12259 1 0 , 2 6 7  11,264 9,515 8,859 
45,692 21,824 36,117 54,185 52,194 47,355 

183,470 85.610 73,300 97,350 42,620 
111,090 529,552 403,242 291,414 
212.273 191.729 28,340 

T a b l e  A.1 Simulated data based on the claims experience o f  a mixed portfolio. 

A.2 C U M U L A T I V E  PAID C L A I M S  D A T A  

Und. 
Year 

1 

2 

3 

4 

5 

6 

7 

Development Period 

1 2 3 4 5 6 7 8 9 10 
0 94,984 1,144281 1,770,159 2,311,267 2,738,619 3,215,096 3,569,354 3,757,754 3,902,741 
0 147,751 1,146,975 2,084,401 2.895,695 3,332,561 3,596,709 3,740,325 3,842,741 3,975,661 
0 45 ,751  487.919 1,076.546 1,466,847 1,698,104 1,817,794 1,882,159 1,955,800 2,049,171 
0 20,252 360,572 957205 1293,347 1,476,820 1,567,394 1,681,635 1.781,102 1,833,052 
0 21.655 809,095 1,801,600 2,694,915 3,467,429 4,262,517 4,981,043 5,485,256 5,806,886 
0 221,177 1,433,187 3,300,905 4,673,809 5,927,893 6,931,505 7,628,478 8,163,025 8,572,870 
0 192,144 941.569 2.115,970 3,616,555 5,695,989 7,371,143 9,343.855 10,716,703 11208,687 

(cont.) 

Development Period 

11 12 13 14 15 16 17 18 19 
Und. 
Year 

I 

2 
3 
4 

5 

6 
7 

4,027,355 4,138,997 4,195,207 4,259.466 4,293,359 4,308,799 4,317,054 4,339,354 4,364.527 
4,085.657 4,143,820 4,197,499 4,251,754 4,277,385 4,328,828 4,385,530 4,445,387 
2,102,849 2,131.893 2,144,152 2.154,419 2,165.683 2,175,198 2,184,057 
1,878,744 1,900,568 1,936,685 1,990,870 2,043,064 2,090,419 
5,990,356 6,075,966 6,149,266 6,246,616 6,289,236 

8,683,960 9213,512 9,616,754 9,908,168 
11,420.960 I 1,612,689 11.641.029 

Tab le  A.2 Cumulative data based on table A. 1. 
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A.3 P R E L I M I N A R Y  M O D E L  1.0 

A.3.1 M O D E L  1.0 F I T T E D  VALUES OF C U M U L A T I V E  PAID C L A I M S  D A T A  

Und. Development Periods 

Year 1 2 3 4 5 6 7 8 9 10 

55,360 348,100 920,800 1,640,000 2,322,000 2,871,000 3,278,000 3,570,000 3,778,000 3,928,000 
52,840 402,300 1,143,000 2,030,000 2,772,000 3,289,000 3,624,000 3,840,000 3,980,000 4,075,000 
21,410 178,700 547,000 1,017,000 1,413,000 1,681,000 1,848,000 1,953,000 2,019,000 2,063,000 
41,190 183,000 474,200 854,300 1,198,000 1,448,000 1,617,000 1,730,000 1,808,000 1,863,000 
27,850 236,600 774,400 1,641,000 2,657,000 3,610,000 4,386,000 4,970,000 5,393,000 5,698,000 
82,280 563,200 1,597,000 3,037,000 4,550,000 5,878,000 6,928,000 7,713,000 8,290,000 8,711,000 
10,640 152,100 695,400 1,911,000 3,769,000 5.864,000 7,742,000 9,191.000 10,220.000 10.930,000 

Und. 
Year 

1 

2 

3 
4 

5 
6 
7 

(conL) 

Development Periods 

11 12 13 14 15 16 17 18 19 

4,037,000 4,118,000 4,179,000 4,226,000 4,262,000 4,290,000 4,313,000 4,332,000 4,347,000 
4,140,000 4.186,000 4,219,000 4,243,000 4,262,000 4,276,000 4,287,000 4,296,000 
2,093,000 2,113,000 2,128,000 2,139,000 2,147,000 2,153,000 2.157,000 
1,903,000 1,934,000 1,958,000 1,977,000 1,993,000 2,006,000 
5,917,000 6,077,000 6,195,000 6,284,000 6,351,000 
9,022.000 9,254,000 9,428,000 9,562,000 

I 1,410.000 11.740,000 11,970,000 

Table A.3 Fined claims computed by MonteCarlo simulations estimated over 5000 independent 

samples. 

A.3.2 M O D E L  1.0 FIXED EF F ECTS  P A R A M E T E R  ESTIMATES,  V A R I A N C E  AND 

D E V I A N C E  

Fixedeffectpa~mete~ 

L D Kc Kd  ~ K~ K,: 

15.7400 4.8810 1.5470 -15.3600 M.2470 -5.0680 -2.8080 
Und. Year Underwriting year~ndom effect paramete~ 

~. d. ~ ,  ka. 

-0.4364 --0.4050 -0.5091 -0.1369 
-0.4592 -0 .3512 -0 .3995 -0.0313 
-1.1480 -0 .0200 -0 .3330  0.0317 
-1.1690 -0.1730 -0.4673 -0.4279 
-0.0342 0 . 6 8 4 6  -0.3858 -0.0858 
0.3919 0 . 0 0 7 8  -0 .4838 -0.0484 
0.6101 2.3000 -0 .1819 0.1548 

a~ 1.85E÷I0 

Deviance 2,980 

Table  A,4 Model 1.0 parameters and diagnostics. 
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A.4 PRELIMINARY MODEL 2.0 

A.4.1 M O D E L  2.0 F I T T E D  VALUES OF C U M U L A T I V E  PAID C L A I M S  D A T A  

Und. Development Periods 
Year 1 2 3 4 5 6 7 8 9 10 

65,520 381,400 962.800 1,665,000 2.323,000 2.855,000 3,255,000 3.547,000 3,759,000 3,914,000 
47,310 385,000 1.127,000 2.026,000 2,778,000 3,299,000 3,634.000 3.84%000 3,985,000 4,077,000 
15.680 155,300 519,400 1,006.000 1,420,000 1,696,000 1,864,000 1,965,000 2,028,000 2.068,000 
17,190 143,400 444,600 847.300 1,211,000 1,473,000 1,645,000 1,756,000 1,828.000 1.876.000 
28,240 238,800 780,300 1.649,000 2,662,000 3,612,000 4,385,000 4.967,000 5,390,000 5,695,000 

81,750 558,800 1,592,000 3,036,000 4.555,000 5,885,000 6,932,000 7,715,000 8,288,000 8,706,000 
14,370 176,900 753,200 1.981.000 3,810,000 5.856,000 7,699.000 9A40,000 10.180.000 10,910.000 

(cont.) 

Und. Development Periods 

Year 11 12 13 14 15 16 17 18 19 

4,029,000 4,115,000 4,181,000 4.232,000 4.272,000 4,303.000 4.329.000 4,350,000 4,367,000 
4,139,000 4,183,000 4,214,000 4,237,000 4.255,000 4.268,000 4.278.000 4,286,000 
2,094,000 2,112,000 2,125,000 2,134,000 2,140,000 2,145,000 2,149,000 
1,908,000 1,931,000 1.948.000 1,960,000 1,969,000 1,976,000 
5,915,000 6,075,000 6,194,000 6,282,000 6,350,000 
9,014,000 9,244,000 9,417,000 9,550,000 

11,420,000 11,770,000 12,020,000 

Table A.5 Fi~ed claims computed by Monte Carlo simulations estimated over 7000 independent 

samples. 

A.4.2 MODEL 2.0 DIAGNOSTICS AND PARAMETER ESTIMATES 

Fixed effectpammete~ 

L D Kc Kd ~ K~ K,, 

14.8900 5 . 0 1 4 0  0 .2660  -13.4400 -3.4710 -5.5230 -2.5030 
Und. Ye~ Underwriting year random effect pa~mete~ 

0.4214 -0.7378 0.7250 -0.0208 -0.5061 

0.3865 -0.4262 0.8981 0.0177 -0.1910 

-0.3060 0.0697 0.9973 0.0297 -1.4670 

-0.3818 -0.0873 0.9274 -0.0648 -0,8611 

0.8153 0.5157 0.8900 -0.0115 -0.0693 

1.2400 -0.1151 0.8002 -0.1619 1.4680 

1.4700 1.9440 1.0560 0 .3943  1.6780 

0 .2 5.87E+09 
Deviance 2,930 

Table  A.6 Model 2.0 parameters and diagnostics. 
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A.5 V A L I D A T I O N  M O D E L  3.0 

A.5.1 M O D E L  3.0 F I T T E D  V A L U E S  OF C U M U L A T I V E  PAID C L A I M S  D A T A  

Und. Development Periods 
Year 1 2 3 4 5 6 7 8 9 10 

65,890 381,500 961,700 1,663,000 2,321,000 2,854,000 3,255,000 3,547,000 3,760,000 3,915,000 
45,370 377,000 1,117,000 2,023,000 2,782,000 3,305,000 3,640,000 3,852,000 3,989,000 4,079,000 
14,930 152,700 516,400 1,005,000 1,421,000 1,698,000 1,866,000 1,967,000 2,029,000 2,068,000 
16,700 142,400 443,800 846,500 1,210,000 1,473,000 1,646,000 1,757,000 1,828,000 1,876,000 
29,470 241,700 782,300 1,649,000 2,664,000 3,614,000 4,386,000 4,967,000 5,389,000 5,692,000 
97,230 611,800 1,662,000 3,081,000 4,555,000 5,852,000 6,887,000 7,673,000 8,259,000 8,695,000 
10,310 147,300 679300 1,884,000 3.745,000 5.856.000 7,748.000 9,202,000 10.230.000 10,940,000 

(cont.) 

Und. Development Periods 

Year 11 12 13 14 15 16 17 18 19 

4,030,000 4,116,000 4,182,000 4,233,000 4.273,000 4,304,000 4,330,000 4,351,000 4,368,000 
4,140,000 4,183,000 4,214,000 4,236,000 4,253,000 4,266,000 4,276,000 4.283,000 
2,094,000 2,112,000 2,124,000 2,132,000 2,139,000 2,144,000 2,147,000 
1,909,000 1,931,000 1,948,000 1,960,000 1,968,000 1,975,000 
5,911,000 6,071,000 6,190,000 6,279,000 6,347,000 
9,020,000 9,266,000 9,454,000 9,600,000 

11.410.000 11,740.000 I 1,970,000 

Table  A.7 Fitted claims computed by Monte Carlo simulations estimated over 25,500 independent 

samples. 

A.5.2 M O D E L  3.0 D I A G N O S T I C S  AND P A R A M E T E R  E S T I M A T E S  

Fixed effect parameters 

L D Kc Kd ,9 K,~ K,, 

14.2900 5.6670 0 .3595 -13.6300 -6.8610 -5.3350 -2.4080 
Und. Year Underwriting year random effect parameters 

t, d, kc kd, 

1.0300 -1 .3860 0 . 6 3 0 5  0.1420 
0.9940 -1 .0300 0 . 8 1 5 2  0.0310 
0.3015 -0 .5548  0 . 9 1 0 9  0.0018 

0.2259 -0 .7370 0 . 8 3 5 9  -0.0281 
1.4240 -0.1191 0.7978 -0.0700 
1.8620 -0.9282 0.6661 -0.0521 
2.0660 1.5820 1.0150 0.2053 

Subset I - o.~ 9.53E+09 

Subset2- a.~ 4.21E+09 

Subset 3 - o .2 J 4.05E+10 
Deviance 2,936 

Table  A.8 Model 3.0 parameters and diagnostics. 
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A.6 V A L I D A T I O N  M O D E L  4.0 

A.6.1 M O D E L  4.0 F I T T E D  VALUES OF C U M U L A T I V E  PAID C L A I M S  DATA 

Und, 
Year 

1 

2 
3 
4 

5 
6 
7 

Development periods 

1 2 3 4 5 6 7 8 9 10 

68.260 386.900 967,500 1,667,000 2,323,000 2,854,000 3,253.000 3,545.000 3,757,000 3,912,000 
47,650 385,200 1,126,000 2,026,000 2,779,000 3,300,000 3.635,000 3,848,000 3.986,000 4,077,000 
14,160 149,000 512.300 1,005,000 1,424,000 1,702,000 1,869,000 1,969,000 2,030.000 2.069,000 
15,730 138.100 438,100 844~00 1,212,000 1,477.000 1,649.000 1,759,000 1.830,000 1,877.000 

28,640 236.300 771,100 1,637,000 2.656,000 3,613,000 4,389,000 4,971,000 5,392,000 5,695,000 
80,580 552,900 1,581,000 3,023,000 4.545,000 5,881,000 6,933,000 7,719,000 8,293,000 8,713,000 
10.650 149,800 685.900 1.892,000 3,749,000 5,853,000 7.740,000 9,195.000 10,230.000 10,930,000 

(cont.) 

Und. Development Periods 

Year 11 12 13 14 15 16 17 18 19 

4.028,000 4,114,000 4,181,000 4,232.000 4,272.000 4.305,000 4.331.000 4,352.000 4,369,000 
4,139,000 4,183,000 4,214,000 4,237,000 4.254,000 4.268.000 4,278,000 4,286,000 
2,094,000 2,111,000 2,122,000 2.131,000 2,137.000 2,141,000 2,145,000 
1,909,000 1,931,000 1,946,000 1,958,000 1,966,000 1,973,000 
5,912,000 6,071,000 6,188,000 6,276,000 6,343,000 
9,021,000 9,251,000 9,424,000 9,556,000 

11,420,000 I 1,750,000 11,980.000 

Table  A.9 Fitted claims computed by Monte Carlo simulations estimated over 25,500 independent 

samples. 

A.6.2 M O D E L  4.0 D I A G N O S T I C S  AND P A R A M E T E R  E S T I M A T E S  

Fixed effect parameters 

L D Kc Kd K,, K.+ 

15.2900 5 . 6 8 5 0  0 .6367 -14.4900 -4.4210 -2.4880 
Und. Year Underwriting year random effect parameters 

t,. a.. ~, ~, 

0.0272 -1 .3800 0.3547 0.0661 
-0.0102 -0 .9854 0 . 5 4 4 9  -0.0122 
-0.7086 -0.2573 0.6872 -0.0329 
-0.7808 -0.5506 0.5905 0.0138 
0.4234 -0 .1890 0.5087 0.0121 
0.8493 -0.8225 ' 0.4171 0.0846 
1.0600 1.6470 0 . 7 4 7 9  0.0277 

~2 1.06E+10 

P 0.0025 
Deviance 2.902 

Table  A.10 Model 4.0 parameters and diagnostics. 
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Multilevel Non-Linear Random Effects 

A.7 F I N A L  M O D E L  5.0 

A.7.1 M O D E L  5.0 F I T T E D  V A L U E S  O F  C U M U L A T I V E  PAID C L A I M S  D A T A  

Und. Development Periods 
Year I 2 3 4 5 6 7 8 9 10 

65,470 380,000 959,800 1,662,000 2.322,000 2,855,000 3,256,000 3,549,000 3361,000 3,915,000 
45,730 377.900 1.118,000 2,023,000 2,782,000 3,305,000 3.640,000 3,853,000 3,989,000 4,079,000 
14,630 150,600 513.300 1,004,000 1,423,000 1,700.000 ],868,000 1,969,000 2,030,000 2,069.000 
16,030 138,600 438,300 844,500 1,212,000 1,477,000 1,649,000 1,759,000 1,830,000 1,877,000 
28,820 240,200 780,900 1,648,000 2,661,000 3,611,000 4,385,000 4,968,000 5,391,000 5,696,000 
84,690 567,600 1,601,000 3,038,000 4,549,000 5,875,000 6.924,000 7,710,000 8.288,000 8,711,000 
13,570 171,000 738,800 1.964.000 3.803.000 5.864.000 7.714.000 9.153.000 10.190,000 10.910.000 

(cont.) 

Development Periods 
11 12 13 14 15 16 17 18 19 

Und. 
year 

l 

2 

3 

4 

5 

6 

7 

4,030,000 4,115,000 4,181,000 4,231,000 4.271,000 4,303,000 4,328.000 4,349.000 4,365,000 
4,141,000 4,183,000 4,214,000 4,236,000 4,253,000 4,266,000 4,276,000 4.283,000 
2,094,000 2,112,000 2.124,000 2.132.000 2,138,000 2,143,000 2.146,000 
1,908,000 1,930,000 1,946,000 1,958,000 1,966,000 1,973,000 
5,916,000 6,076,000 6,195,000 6,284,000 6,351,000 
9,023,000 9,256,000 9,433,000 9,568,000 

11.410.000 11,750,000 12,000,000 

T a b l e  A.11 Fitted claims computed by Monte Carlo simulations estimated over 25,500 independent 

samples. 

A.7.2 M O D E L  5.0 D I A G N O S T I C S  AND P A R A M E T E R  E S T I M A T E S  

Fixed effect parameters 

L D Kc Kd .9 t oo~_ K,, Ko. 

14.8300 5.2000 1.8770 -13.5100 -4.1220 1.6200 -4.4750-2.2010 
Und. Year Underwriting year random effect parameters 

1, d. kn,. kd  

0.4881 -0.8916 -0.8796 0.0577 

0.4528 -0.5451 -0.6994 -0.0371 

-0.2402 -0.0258 -0.5958 0.0205 

-0.3172 -0.1816 -0.6650 0.0317 

0.8829 0.3530 -0.7180 0.0166 

1.3100 -0 .3071  -0.8147 -0.0499 
1.5340 1.8580 -0.5337 0.1329 

0.2 5.05E÷09 

Deviance 2,928 

Tab le  A.12 Model 5.0 parameters and diagnostics. 
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Mullilevel Non-La'near Random Effects 

A.8 F IN A L  M O D E L  6.0 

A.8.1 M O D E L  6 .0  F I T T E D  VALUES OF C U M U L A T I V E  PAID C L A I M S  DATA 

Und. Development Periods 
Year 1 2 3 4 5 6 7 8 9 I 0 

66,200 383,900 964,400 1,663,000 2,317,000 2,848,000 3.249,000 3.542,000 3,755,000 3,912,000 

135,300 641,200 1,389,000 2,138,000 2,748.000 3,197,000 3,517,000 3.745.000 3,908.000 4,027,000 
35,860 237,300 618,100 1,046,000 1,401,000 1,652,000 1,820,000 1.931,000 2,006,000 2.057,000 
59,230 265,600 575,400 903,400 1,188,000 1,410,000 1,575.000 1,697,000 1,787,000 1,854,000 
24,320 220,100 747,500 1,618.000 2,651,000 3,620,000 4,404,000 4.988,000 5.407,000 5,704,000 

165,500 810,000 1,909,000 3,252,000 4,598.000 5,790,000 6,773,000 7.554,000 8,166,000 8.642,000 
8,110 125.600 616.800 1,796,000 3.698.000 5.889.000 7,832.000 9,285,000 10.280.000 10.940,000 

(cont.) 

Development Periods 

11 12 13 14 15 16 17 18 19 

Und. 
Year 

1 

2 
3 
4 

5 
6 
7 

4,028,000 4,116,000 4,182,000 4,234,000 4.275,000 4,307.000 4,334,000 4,355,000 4,372.000 
4,116,000 4.183,000 4,235,000 4,275,000 4,308,000 4,334,000 4,355,000 4,372,000 
2,093,000 2,119,000 2,139.000 2,153,000 2.164,000 2,173,000 2,180,000 
1,905,000 1,945,000 1,975,000 2,000.000 2,019,000 2.035,000 
5,917,000 6,070.000 6,182,000 6,266,000 6,329,000 
9,015,000 9,309,000 9,543.000 9,731,000 

11.380.000 11.670.000 11.870,000 

Table  A.13 Fitted claims computed by Monte Carlo simulations estimated over 25,500 independent 

samples. 

A.8.2 M O D E L  6.0 D I A G N O S T I C S  AND P A R A M E T E R  E S T I M A T E S  

Fixed effect parameters 

L n Kc rd ¢ a; ~; a; K, K., 

15.8000 4.5610 1.2320 -12.9600 -1.9120 1.1780 15.6300 -0.1581 -6.3830 -1.3110 
Und. Year Underwriting year random effect parameters 

I, a, I,e, kd  

1 

2 
3 
4 
5 
6 
7 

-0.4813 -0.3208 -0.2500 -0.0844 
-0.4805 -1.0340 -0.3300 0.0070 
-1.1870 -0.3798 -0.1589 0.0487 
-1.2220 -0.9034 -0.3593 -0.0150 
-0.0970 1.0910 -0.0505 -0.0292 

0.3991 -0.3295 -0.3438 0.0398 
0.5364 2.9920 0.1889 0.0295 

o-' 109,600 

Deviance 2,887 

Table  A.14 Model 6.0 parameters and diagnostics. 
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APPENDIX B Multi/eve~ Non-Linear Random Effects 

B.I A R R A Y S  1 T O  3: C U M U L A T I V E  PAID C L A I M S  D A T A  

Und. 
Year 

1 

2 
3 
4 

5 
6 
7 
8 

9 
10 

Development Period 

I 2 3 4 5 6 7 8 9 10 

1,965,120 4,455,720 5,125,260 6,208,080 6,365,400 7,566,780 8,134,380 8,300,640 8,491,200 9,072,840 
508.829 7,957,659 10,395,008 11,627,118 12,659,049 13,512,509 13,813,936 14,609,422 14,836,855 15,095,843 

1,070,272 2,117,478 2,876,979 3,141,005 4,127,612 4,337,374 4,503,876 4,522,524 4,543,644 4,560,720 
983,295 2,957,869 5,140,518 6,369,315 6,326,691 7.867,792 7,356,575 7,656,758 7,817.554 7,844,431 

9,979,594 26,286,414 25,263,483 40,239,973 51,246,513 54,472,139 55,800,837 56,658.302 59,561,780 
55,668 1,586,037 1,764,809 2,888,328 3,158.562 3,445,626 3,459,794 3,604,995 

2,128,880 4,827,030 5,552,365 6,725,420 6,895,850 8,197.345 8.812,245 
2.528.789 8,400,695 12,219,988 21,139,396 23,109,446 22,292,555 
1,613.864 10,075.000 12,091,140 28,449,598 34,707,350 

110,580 576,687 1,887,649 2,244,074 

(cont.) 

Development Period 

Und. II 12 13 14 15 16 17 18 19 
Year 

9,298,740 9,640,380 9,681,600 

15,216,319 15,361,081 

4.572,331 

Tab le  B.1 Array  1 : Simulated data based on the claims experience o f  a marine hull portfolio. 

Und. 
Year 

1 

2 
3 
4 
5 
6 
7 
8 

9 
10 

Development Period 

1 2 3 4 5 6 7 8 9 10 

445,841 1,654.609 1.605.300 2.004,723 2,299.800 2,275,241 2.470,159 2.579.168 2,641.868 2.744.127 
2,426,373 7.352.166 8,950.532 10.167,845 11,756,358 12.137.425 12.030~761 12.970,026 13.607,600 14,532.427 

184,480 318.830 1.296.062 2.733,415 2,650,811 3.010.199 3,168,834 3,349,023 3.431.900 3.493.316 
601.693 1,084,468 1,510,596 1,606.829 1.910.257 1.973.043 2,274,886 2,320.886 2,304,771 2.407,211 
968.366 2,530.871 4,608.428 4,912,525 6.271.612 6.799,211 5,466,992 6,770,634 7.779,669 
239.105 326.614 670,735 905.967 913.090 1.131,129 1,090,519 1,100,114 
361.246 1.078.435 1,205,746 1.478.083 1,461,000 1.547.928 1,587,804 
742.335 1,392.375 1,937,655 1,865.055 2.282,175 2.388.270 
228,34l 704,498 798.463 815.165 1,013.800 

1.589,527 15.936.500 22.331.091 28.741.729 

(cont.) 
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Mu/lilevel Non-Ia'near Random Effects 

Und. Development Period 
Year I1 12 13 14 15 16 17 18 19 

I 

2 

3 
4 
5 
6 
7 
8 
9 
10 

2,786,141 2.870.495 2.871,777 
12.130,088 12.131,811 
3,542.361 

Table  B.2 Array 2: Simulated data based on the claims experience of  a marine cargo portfolio. 

Und. Development Period 
Year 1 2 3 4 5 6 7 8 9 10 

I 

2 

3 
4 

5 
6 
7 
8 
9 
10 

3.232,205 9,881.808 12.905,347 14,832,451 15.314.642 16.405.052 17,591,239 17,993,791 18,352.169 18.500.158 
1,262,978 2,979,101 3,119,301 4,617,621 5,884,276 6,241,315 6,659,795 6,818,432 7,164,468 7,544,540 
1,099,101 3,367.582 4,078,680 4.335.973 5,855,806 5.875.321 5,977,392 6,129,768 6,185,657 6,205,646 

731,599 2,554,623 3,586.046 4,168.936 3,762,376 5,081,203 4,686,750 5,777.092 6.108.501 5,983.210 
175,251 1.581.689 2,116.488 3.455.030 4,284,402 4,794.982 4.848,263 5,275.530 5.010.701 

1.339,210 3,824.400 4.704.740 5.565,181 5,412,190 6.389.658 6,517.524 7.284.369 
590.921 1,263.060 1,812,106 3.441.064 4,204,651 5,155.490 5.213.434 

20.698,911 43.203.529 63.631,429 70.713.997 89,249.817 85.287.218 
790,164 2,944,098 4,609.088 4.747,316 5,511,068 

9.900.060 17,916,636 50.167.809 62.132,660 

(cont.) 

Und. Development Period 
Year I1 12 13 14 15 16 17 18 19 20 

1 

2 
3 
4 
5 
6 
7 
8 
9 
IO 

18,733.437 19,496.439 19.567.234 
7.689,022 7.771,566 
6,240,897 

Table  B.3 Array 3: Simulated data based on the claims experience of  an aviation hull portfolio. 
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