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Abstract 

The process of loss development has been studied by casualty actuaries for many years. When an 
accident period is closed, the ultimate claim liabilities are unknown because many of the claims are 
still unreported and some that are reported remain unsettled. The difference between ultimate losses 
and reported losses is known as "Incurred But Not Reported" loss or IBNR. The reserve for IBNR 
losses is the largest liability on an insurer's balance sheet. Quantifying the uncertainty in estimates of 
IBNR is of great importance to the financial health of casualty insurance companies. 

Most of the current methods for estimating ultimate losses focus on estimation of loss 
development factors which relate the emergence of losses to the amount of losses already reported. 
This paper presents a model for predicting incremental losses as a function of exposures, calendar 
period and development age. 

A nonlinear regression model is used for estimating the 95% confidence interval of IBNR for an 
accident period. The model predicts the incremental pure premium for a development interval as a 
function of development age, calendar quarter and exposure. The estimated IBNR is the sum of 
forecasted incremental pure premiums. The regression model produces confidence interval estimates 
for the model parameters and for IBNR. 

The regression model is applied to trended losses. We assume that the trend has been estimated 
by some reasonable time series method that produces confidence interval estimates of trend factors. 
Many good methods are available. We use the confidence interval estimate of the trend factors to 
adjust the IBNR estimates for uncertainty in loss trend. 

The model presented here assumes normally distributed residuals. Although the underlying loss 
severities are probably not normal, the central limit theorem implies that this assumption would be 
appropriate if the number of claims is large. Thus, the model will most likely work well for high 
frequency lines of business such as personal auto. 

We will present methods for estimating parameters, confidence intervals for the parameters, and 
the distribution of IBNR. These methods will be illustrated using simulated automobile bodily injury 
liability data. Model predictions will be compared to actual emerged losses. 

Based on a comparison of predicted IBNR to the "actual" IBNR from the simulated data, the 
model appears to produce unbiased predictions and reasonable confidence interval estimates of 
IBNR. We conclude that the distribution of incremental pure premiums is close to normal and there 
is not a significant correlation between development age intervals. Thus, traditional regression 
methods can be used to estimate the distribution of forecasted incremental pure premiums and 
consequently, IBNR. 

Keywords: Non-linear regression, IBNR, reserving. 
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1. I N T R O D U C T I O N  

Many actuaries and their clients are unsatisfied with point estimates of IBNR reserves. 
Better decisions can be made if one has a range of possible outcomes and associated 
probabilities. Confidence interval estimates would satisfy this need. We will introduce a 
nonlinear regression model that produces confidence interval estimates of IBNR. The 
models are fitted to incremental pure premiums - the incremental change in case incurred (or 
paid) losses for an accident period during a development interval divided by the 
corresponding calendar period earned exposures. This approach was inspired by Buhlman's 
complementary loss ratio method as presented by Stanard [3]. 

1.1 Research Context 

The context of this paper is reserving methods and reserving uncertainty and ranges. 

1.2 Objective 

The objective of this research is to produce a model of loss development that models 
losses as a function of exposures, can be applied to either paid or incurred losses, and 
produces a confidence interval estimate of IBNR. 

The current literature includes some papers, e.g., Murphy [1] that present regression 
models to predict age-to-age loss development factors and measure the uncertainty in the 
predicted factors but there are very few that present models of loss dollars. Barnett and 
Zehnwirth [2] is an excellent example of a dollar based model, but it is applied to the 
logarithms of incremental losses and this becomes a problem when there is negative loss 
development. Recoveries lead to negative paid development and case reserve estimation 
errors can result in negative case development. In order to use a log link, it is necessary to 
discard information. Less information is discarded if the analysis is performed on paid losses 
but much of the data in the tail of a case incurred development triangle is negative. Many 
reserving actuaries believe that there is useful information in case incurred losses and they 
often compare estimates derived from paid and incurred data. 

Furthermore, Narayan [4] remarks that dollar based regression models do not take into 
account changing levels of exposure. This is a serious flaw because the amount of loss in an 
accident period is highly correlated to the number of earned exposures. 

Thus, there is a need for a dollar based regression model that can be applied without 
using a log link and that makes appropriate adjustments for changing levels of exposure. 

In this paper, we present a nonlinear regression model that predicts incremental pure 
premiums as a function of development age. The model is applied to losses that have been 
adjusted for loss trend using a separate trend model. The trend model can be any time series 
model that produces confidence intervals for furore trend factors. In the examples, we 
assume that future trend is represented by a geometric Brownian motion process but this is 
not necessarily the only model for future loss trend. Adjusting losses for trend is not 
necessary in a link ratio method because future development is predicted as a function of 
case or paid losses. The link ratios are multiplied by losses which are already stated at the 
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appropriate cost level. The factors produced by our model are applied to exposures so it is 
necessary to adjust losses for trend. 

The model presented in this paper does not require the use of  any link function, so it can 
be applied either to paid or case incurred loss data. Furthermore, since we use pure 
premiums with exposure weights, the model relates losses to exposures. 

1.3 Out l ine  

The remainder of  the paper proceeds as follows. 

Section 2: Presentation of  data. A simulated data set including a loss triangle and earned 
exposures is presented along with some observations. The nonlinear model is presented and 
the estimation of  parameters is explained. 

Section 3: The model is fitted to the simulated data and used to produce confidence 
interval estimates of  ultimate incurred losses for each accident quarter. An analysis of  
residuals is presented. 

Section 4: Conclusions. 

Section 5: References. 

2. B A C K G R O U N D  A N D  M E T H O D S  

A nonlinear regression model will be presented and used to analyze simulated loss 
development data. The model will be fitted to incremental pure premiums. The incremental 
pure premium for an accident quarter/development quarter is def'med as the change in case 
incurred loss during the development quarter divided by the calendar quarter earned 
exposures. 

In section 2.1, we will present the simulated loss development data. The data was 
simulated based on method 4 in Narayan [4] with some modifications. See Appendix B for a 
description of  the method used to simulate the data. Narayan and other authors simulated 
thousands of  sets of  data for the purpose of  comparing methods. We simulated a single 
triangle for the purpose of  showing sample calculations. The simulation is not intended to 
validate the model. The simulated data is intended to resemble personal auto bodily injury 
data in accident quarter/development quarter format. 

Section 2.2 is a presentation of  the nonlinear regression model. 

In section 2.3, we present the mathematics of  estimating confidence intervals for the 
model parameters and IBNR. 

2.1 Loss Deve lopmen t  Data  

Exhibit 2.1.1 shows a small portion of  the simulated loss data in the traditional triangular 
array. The losses shown in Table 1 are cumulative case incurred losses. I.e., the amount 
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shown for each development quarter is the sum of all paid losses from the beginning of the 
accident quarter through the end of the development quarter and the outstanding case 
reserves as of the end of the development quarter. The column to the left of the losses 
shows earned expos~es. The second table shows the incremental pure premiums. These are 
the incremental losses divided by earned exposures. For example, the entry for accident 
quarter 1, development interval 1-2 is (1,713,179-1,244,722)/50,333. 

EXHIBIT 2.1.1 
Tabl 1. Cumulative Losses by Accident Quarter and Development Age 
Accident Earned Development Age 
Quarter E_.~oosures 1_ 2 3 4 

1 50,333 1,244,722 1,713,179 1,996,372 2,065,006 
2 50,801 1,417,101 2,004,222 2,341,886 2,437,727 
3 51,187 1,143,473 1,646,289 2,130,201 
4 51,146 1,055,290 2,268,788 
5 51,527 1,508,450 

5 
2,166,446 

Table 2. Incremental Pure Premiums 
Accident 
Qua~er 

1 
'2 
3 
4 
5 

Earned Development Interval 
Exposures 0-1 1 -._.22 2-3 

50,333 24.73 9.31 5.63 
50,801 27.90 11.56 6.65 
51,187 22.34 9.82 9.45 
51,146 20.63 23.73 
51,527 29.27 

3-__k4 4-_.~s 
1.36 2.02 
1.89 

Exhibit 2.1.2 shows the averages and variances and Pearson correlations of 
incremental pure premiums by development age for some simulated data. The data 
exhibits a typical loss development pattern. We see that the average incremental pure 
premiums start high and decrease rapidly as the development age increases, converging to 
zero. There are some negative incremental losses resulting from recoveries, settling of 
claims for less than the case reserve, and reductions to case reserves. The table also shows 
that the variance decreases as development age increases. Thus, most of the uncertainty in 
loss development is in the early stages. The correlation matrix shows that the correlation 
of incremental pure premiums between different ages is usually insignificant. 
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EXHIBIT 2.1.2 
Sample of Simulated Incremental Pure Premiums - Ages 1-7 

Age 0-1 1-2 2-3 3-4 4-5 5-6 6-7 
Average 28.70 12.13 7.67 4.67 3.49 2.84 2.48 
Variance 87.26 23.19 8.40 3.99 2.81 4.33 3.24 

Pearson Correlations 
0-1 1-2 2-3 3-4 4-5 5-6 6-7 

0-1 1.00 0.38 0.13 0.45 0.14 0.63 0.21 
1-2 1.00 0.31 0.44 -0.01 0.29 0.25 
2-3 1.00 0.15 0.11 -0.01 0.15 
3-4 1.00 0.47 0.45 0.20 
4-5 1.00 0.16 0.00 
5-6 1.00 0.11 
6-7 1.00 

Exhibit 2.1.3 shows a scatter plot of the incremental pure premiums and the average 
incremental pure premiums by age. 

EXHIBIT 2.1.3 

Incurred Incremental Pure Premiums 

1-2 24 

• Incr. PP 

-= -  A v e r a g e  

In the scatter plot, the incremental pure premiums appear to be distributed around the 
average symmetrically. This and the fact that the correlations are not significant imply that 
the data fits the assumptions of regression models as stated in [5] reasonably well. The non- 
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constancy of  the variances is a violation of  the assumptions underlying ordinary regression 
but that problem can be solved by using a weighted regression model. 

A weighted regression model is one in which a weight is assigned to each observation in 
the data. The more weight given to an observation, the more influence it has on the 
parameter estimates. We need to use a weight function that is inversely proportional to the 
variance of  the data. It would also be advantageous to obtain exposure weighted parameter 
estimates. So, we will use weights that are a function of  development age and exposures. 

We will now define some of the variables that will be used in the analysis. First, the 
accident quarter will be represented by t which will take values of  1, 2, ..., 40. The 
development quarters will be represented by x which will be assigned the value of  the 
development age (in quarters) at the end of  the interval. For example, x = 1 will correspond 
to the 0-3 months development interval. Calendar quarters will be represented by u and will 
be calculated as u = t + x -  1. The incremental losses for accident quarter t and development 

interval x will be represented by L,. x . Car months will be represented by c,. 

Appendix A shows the flail set of  simulated loss development data. 

2.2 The  Mode l  

Our model of  incremental pure premiums is a nonlinear regression model. Nonlinear 
regression models are statistical models of  the form: 

y = f ( 2 ,0 )  + g (2.2.1) 

In (2.2.1), ~ is a vector of  predictor variables, 0 is a vector of  parameters, f is a nonlinear 

function, and g is a normal random variable with mean 0. Usually, g is assumed to have a 

constant variance cr 2 . I f  the variance of  the error term is not constant, a weight function 
that is inversely proportional to the variance may be specified. 

The parameters of  a nonlinear regression model are estimated by solving the normal 
equations. This usually requires using a numerical method such as the Gauss-Newton 
algorithm. 

There are many commercial statistical software packages available that will perform the 
calculations and also provide approximate confidence intervals for the parameters and for 
predicted observations. The SAS system was used to perform the calculations to estimate 
confidence intervals for the model parameters and predicted IBNR. 

We fit the following model to the incremental incurred pure premium data: 

y=[aexp(flx)+ r e x p ( d x ) ]  1 + -- ~ (2.2.2) 
W 
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where y = L"x. exp(ru)  is the incremental pure premium for accident quarter t in 
c, 

development age intervalx adjusted for loss trend, u represents the calendar quarter, r is 

the loss trend, tz, f l ,  7 ,  and 8 are the model parameters, w = x 15. c, is the weight function. 

This weight function was selected based on an analysis of the residuals from an unweighted 
regression model. 

We assume here that the trend r has been estimated by some reasonable method and that 
we have confidence interval estimates for the trend factors that we will apply to the IBNR 
estimates. The confidence intervals for the IBNR estimates will be adjusted to reflect the 
uncertainty in the trend factors. 

It is tempting to include loss trend as a fifth parameter in the model in order to obtain 
prediction intervals for trend-adjusted IBNR direcdy. The resulting model equation would 
be 

y=[aexp(,ax)+ rexp(ax)].exp(ru)+ls 
W 

Unfortunately, there are two problems with this model. One is that the model sometimes 
produces unrealistic estimates of trend due to a lack of credibility. The other problem is that 
we would be extrapolating the model instead of interpolating it. Extrapolation can be 
misleading even in the case of linear models and it is strongly discouraged in the case of 
nonlinear models. Of  course, we need to extrapolate the trend factors but there are 
mathematically sound time series models available for this purpose. 

2.3 Estimation of  Parameters 

The SAS system used the Gauss-Newton method to estimate the least squares estimates 
of the model parameters. The following presentation of the mathematics of the Gauss- 
Newton method is based on Seber and Wild [5]. 

To estimate the least squares parameters, we need to minimize the sum of squared errors 
of the n observations: 

(2.3.1) 

In the case of our model, ~ = (tx,fl, y , a )  and f ( x ; 0 )  = aexp(flx)+yexp(ax). We 

find the minimum of S ( 0 )  by setting all of its partial derivatives to 0. 

Minimizing the sum of squared errors is a straightforward procedure for linear models 
but when f is nonlinear we must use numerical methods to estimate the parameters. One 
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commonly used method is the Gauss-Newton method which works well in the case of 
normally distributed residuals. 

<x,;0)' We de e the following ma ces: [[ and 

. . . . .  i(x.;O))' 

F is an n x p matrix where n is the number of observations and p is the number of 

parameters, f (~)has  dimension n x l .  

Suppose e (°) is an approximation to 8 .  We approximate f (~)by the first order terms of 

its Taylor series in a small neighborhood near 8(a): 

e (~)  ~ f ( 8  (a))+ F ( 0 - 8  (a)) (2.3.2) 

The residual vector is r (8)  = y - f  ( 8 (°,) ~ r  (8(a)) - F (8 - 8(°)). Substituting 

S(O)=r'(~)r(~) leads to 

The right hand side of (2.3.3) is minimized with respect to ~ when 

This produces iterative approximations of 8(°): 

~7 ('+0 = 8 (<0 + a (°) (2.3.4) 

To use the Gauss-Newton method, one must provide 8 (0) , the initial approximation to 
8 .  The algorithm will converge provided the first approximation is sufficiently close to the 

fitted value, 0. 

After fitting data to the model presented in Section 2.2, we estimated confidence intervals 
for the parameters and for the predicted observations. Seber and Wild [5] present formulas 
for approximate confidence intervals for the model parameters and for a predicted 
observation. 

The 95% confidence interval for parameter ~ is given by 
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4 +(s . c . ) ' / 2 . t (N-P , .025)  (2.3.5) 

where s 2 is the mean square error and c;i is the i t* diagonal element of (F'WF) -l . 

The 95% confidence interval for a predicted observation corresponding to age x i is given 

by 

::t +s ' (1--+ f'(F'WF)-' f i] l]2.g(N-P, .025)  
\w, ) 

(2.3.6) 

wherefis  the i t* row of F ,  i.e. the vector of estimated first derivatives evaluated atx i and 

Wis a Nx N matrix with w i as the i t* diagonal entry and all other entries equal to 0. 

t ( N -  P,.025) is the value of Student's t distribution for N -  P degrees of freedom and 

probability .025. 

The confidence intervals for predicted observations can be used to produce a confidence 
interval for IBNR. Based on the assumption that the incremental pure premiums for 
different development intervals are independent, the variance of IBNR pure premium is the 
sum of the variances of the incremental pure premiums for the remaining development 
intervals. From equation (2.3.6) we see that the variance of the incremental pure premium 

for one development intervalis s : . ( ~ +  f ' (F 'WF)  -1 f ) .  The expected value of IBNR 

pure premium is the sum of the expected incremental pure premiums. 

3. RESULTS AND DISCUSSION 

The model presented in section 2 was fitted to the data presented in section 1. Only data 
for the latest 20 calendar quarters was used to estimate parameters. This is consistent with 
common actuarial practice of using recent calendar quarters rather than all of the available 
data so that predictions are responsive to recent changes in development patterns. We also 
used only data for age>l since we do not need to estimate IBNR for that age interval. Thus, 
590 observations were used to fit the model. 

We used the estimated parameters to produce confidence interval estimates of IBNR for 
each accident quarter. 

In section 3.1 we will show confidence intervals for the estimated parameters. The 
confidence intervals for predicted IBNR will be presented in section 3.2. In section 3.3 we 
present an analysis of the residuals. 

3.1 Conf idence  Interval Es t imates  o f  Parameters  

The estimated parameters and standard errors for our simulated data are: 
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&=3.1994, s(&)=0.5807 

/~ =-0.0754, s(/~) = 0.0096 

= 29.4446, s(~) = 5.5549 

d~=-0.5480, s(8)=0.0767 

(3.1.1) 

A 95% confidence interval for each parameter is of the form 

( # - s  (t~)t ( .025,n- p),  ~ +s  (6})t (.025, n - p)) .  There were 590 observations and we 

estimated 4 parameters. The resulting confidence intervals are: 

&: (2.0596,4.3392) 

/~: (-0.0942,-0.0566) 

~: (18.5334,40.3557) 

8 :  (-0.6986,-0.3974) 

(3.1.2) 

The Mean Square Error from the estimation is 2,987,236. 

An advantage of having confidence interval estimates of the parameters is that when 
more data becomes available, we can test whether the current parameters should be rejected. 
We would reject the current estimates only if the new estimates lie outside the intervals in 
(3.1.2). This procedure will lead to more stable estimates of ultimate losses and IBNR. 

3.2 Confidence Interval Estimates of IBNR 

The estimation of IBNR was performed in two steps. First, we use equation (2.3.6) to 
calculate an expected value and standard error for the incremental pure premium for each 
development quarter until age 40 (for simplification, we assume that this is ultimate). This 
results in deflated IBNR estimates. The second step is to find a confidence interval for the 
inflation adjusted IBNR. This was done using a simulation. 

Step 1: Predicted incremental pure premiums 

The expected value of each predicted incremental pure premium is calculated by substituting 
the estimated parameters from (3.1.1) into the model equation, 

33 = &.exp(/~x) + )~. exp(~x)where x is the age of the development quarter. 

In order to estimate the standard errors, we need the matrix defined in section 2.3: 
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0.000000112875 

-0.000000001771 
(FWF)-I = |  0.000000486556 

[-0.000000010876 

-0.000000001771 

0.000000000031 

-0.000000006728 

0.000000000158 

0.000000486556 

-0.000000006728 

0.000010329411 

-0.000000127258 

-0.000000010876" 

0.000000000158 

-0.000000127258 

0.000000001968 

As an example, we will calculate the IBNR prediction interval for accident quarter 2. 
x = 40 for the remaining development quarter. The expected IBNR pure premium is 

3.1994 x exp(-0.0754 x 40)+ 29.446 x exp (-0.5480 x 40) 

=.15676. 

We will need the above matrix and the derivatives of the model function evaluated at 
x = 40 to calculate the standard error of the predicted IBNR. The derivatives are: 

a f  = exp(flx) 
&z 

af 
- -  = czx.exp (fix) ap 

c3f = exp(ax)  
ay 

Ofl~fs= )'x .exp (ax) 

Evaluating the derivatives at age 40 and the estimated parameters, we obtain: 

fl-~f (40) = 0.0490 

a~--f~ffl (40) = 6.2704 

gO--~fy (40) = 3.02 x 10 -z° 

~ d  (40) = 3.56x10-7 

Let the element in the j,h row and k m column of (F'WF)-' be denoted mjk. We calculate 
t F - 1  f, ( r  wr)  f, from ~2.3.6) as: 
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£ (F'WF)-tf 

Of Of ¢mn Of Of +m13 Of Of +m,4 Of Of 
=m,, 0-7"0-7 0-7"  oat oa 

+m2l Of Of + m== Of Of + m=, of . of + m=, of Of 
 T-d op op op or op oa 

+mn of of +m32of of +m Of of +m cOf Of 

+m,, Of Of Of ~f of Of Of Of 
+m42 "7~e" T~ +m43 ~ "  T -  +m44 08 Oat oo op oo 07 08 08 

= 3.88134x10 -I° 

The weight is w,. = c/xl "5 = 50, 801.40 t's = 12, 851,749. The mean square error is 

2,987,236. t(586,.05 / 2) = 1.96402. Substituting this information into equation (2.3.6) we 

obtain 0.94925 as the width of the 95% confidence interval for the IBNR for accident 

quarter 2. Thus, the confidence interval for the IBNR pure premium is (-0.79249,1.10601). 

The confidence interval for the dollars of IBNR is (-40259,  56186). For an accident 

quarter with more than one development quarter remaining, we would need to repeat these 
calculations for each remaining development quarter and sum the estimated expected values. 
Next, the estimated IBNR will be adjusted for loss trend. 

Step 2: Including trend 

Because we fitted the model to losses trended to the current calendar quarter, the dollars 
need to be adjusted to future cost levels. We also need to adjust the width of the confidence 
intervals for the uncertainty in the trend. 

The trend was estimated from a time series method. The estimated trend had a mean of 

.005 per calendar quarter with a standard deviation of .004,J7 where tis the number of 
quarters projected. We assume that the trend process is a Geometric Brownian Motion. 

There are a number of ways to find the simultaneous confidence interval for loss 
development and trend. For example, we could use a Bonferronni confidence interval but 
this would result in an excessively wide confidence interval. Instead, we performed a 
simulation to estimate the variance of inflation adjusted IBNR. 

We simulated incremental pure premiums before adjusting for inflation from a normal 

distribution with mean fi . exp( f lx )+  ~ .exp(Sx)  and variance given by equation (2.3.6). 

We simulated trend factors for each calendar quarter as a Geometric Brownian Motion with 
drift .005 and volatility .004. The inflation adjusted incremental pure premiums were 
calculated as the product of the simulated unadjusted pure premiums and the simulated 
trend factors. Next, the incremental pure premiums were summed over all remaining 

364 Casualty Actuarial Society Forum, Fall 2006 



A Nonlinear Regression Model of Incurred But Not Reported Losses 

development quarters to obtain IBNR pure premium. The simulation was repeated 10000 
times and the mean and standard deviation of the IBNR was calculated for each accident 
quarter. IBNR pure premium multiplied by exposures produces IBNR dollars. 

Table 3.2.1 shows the results of the simulation. The actual IBNR is the difference 
between the age 40 evaluation (which we treat as ultimate here) and the evaluation at the end 
of the 40 'h calendar quarter from the simulated loss development data. The expected total 
IBNR is 30105084. The standard deviation of the total IBNR is 1350093. The 95% 
confidence interval for total IBNR is (27458951,32751218). The actual total IBNR is 
30120821. 
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Table 3.2.1 

Accident 
Qua~er 

2 50,801 
3 51,187 
4 51,146 
5 51,527 
6 52,348 
7 52,480 
8 53,148 
9 53,924 
10 54,403 
11 54,557 
12 55,083 
13 55,292 
14 55,899 
15 56,067 
16 57,025 
17 57,071 
18 57,317 
19 57,907 
20 58,285 
21 59,096 
22 59,193 
23 59,524 
24 59,745 
25 60,427 
26 60,155 
27 60,568 
28 60,708 
29 60,262 
30 60,606 
31 60,580 
32 60,648 
33 61,159 
34 61,462 
35 61,934 
36 61,716 
37 61,837 
38 62,285 
39 62,728 
40 63,180 

Expected 
Value Deviation' 

Standard; 95% Confidence Interval 

8,190 24,518 
16,643 35,835 
26,310 44,192 
36,541 51,941 
49,099 58,839 
61,528 65,232 
75,340 71,800 
91,671 78,552 

109,065 85,433 
124,874 91,436 
144 622 96,258 
168 450 103,341 
192 189 108,233 
215 948 115,108 
247 643 123 187 
279 736 129 481 
311 248 134 933 
346 819 143 714 
388 878 149 405 
433 974 157 772 
479 592 165 473 
530 342 173 337 
583 879 177 894 
645 944 188 083 
705 701 195 557 
776 239 207 953 
852 632 215 059 
925 896 222 578 

1,012,197 233 755 
1,109,304 251 368 
1,213,637 258 802 
1,344,114 277 079 
1,492,000 292 032 
1,660,873 312,021 
1,858,275 333,112 
2,123,409 361,113 
2,514,004 394,000 
3,055,695 450,062 
3,892,584 522,958 

Actual 
Lower U~er IBNR 

-39,864 56,244 -3,686 
-53,593 86,879 20,450 
-60,304 112,925 11,254 
-65,262 138,344 73,738 
-66,225 164,422 98,397 
-66,325 189,381 37,099 
-65,385 216,065 156,305 
-62,287 245,629 237,876 
-58,380 276,511 -95,408 
-54,338 304,086 384,465 
-44,040 333,284 260,118 
-34,095 370,995 299,600 
-19,944 404,322 175,632 
-9,659 441,555 3,570 
6,201 489,086 237,988 

25,957 533,515 224,736 
46,784 575,712 268,971 
65,144 628,493 712,233 
96,050 681,706 428,225 

124,746 743,202 819,832 
155,270 803,915 930,364 
190,607 870,076 564,488 
235,213 932,546 412,411 
277,309 1,014,580 421,418 
322,416 1,088,985 699,647 
368,659 1,183,819 794,518 
431,123 1,274,140 995,212 
489,652 1,362,140 944,400 
554,046 1,470,349 945,867 
616,632 1,601,976 1,084,176 
706,395 1,720,879 1,703,397 
801,049 1,887,178 1,107,447 
919,627 2,064,372 1,133,824 

1,049,324 2,272,423 1,882,576 
1,205,388 2,511,161 1,567,491 

• 1,415,642 2,831,177 1,962,887 
1,741,778 3,286,231 1,938,616 
2,173,589 3,937,801 2,836,989 
2,867,605 4,917,563 3,843,696 
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3.3 Analysis of Residuals 

It is important to examine the residuals from a regression model to check the 
consistency of the data with the assumptions of the model. In this section we will look at 
plots of the residuals to look for patterns. We will also see the results of  a Shapiro-Wilk test 
of normality, a histogram and a probability plot. 

These tests are shown for demonstration purposes only. The data used to demonstrate 
the methodology in this paper is simulated and will pass the normality test. Real data might 
not pass tests of normality but if the deviation from normality is not too extreme, then the 
estimated confidence intervals are still reasonable. 

The unmodified residuals, r~ = Yi - .Fi ,  do not have constant variance because the data do 

not have constant variance. The tests will be performed on studentized residuals, defined as 

~/std (r~). Seber and Wild [5] show the following formula for the standard errors of the 

residuals. 

std(r~)=s.(--~- f,' (F'WF)" f~) (3.3.1) 

Exhibits 3.3.1 through 3.3.3 show the scatter plots of the studentized residuals against 
predicted value, development age, and calendar quarter. The plots do not show any obvious 
patterns and the studentized residuals seem to have constant variance. Thus, the weight 
function appears to be appropriate and there does not appear to be any reason to modify the 
model. 

Exhibit 3.3.4 is a histogram of the smdentized residuals. Exhibit 3.3.5 is a normal 
probability plot (calculated using methodology from [6]). The shape of the histogram 
appears to be consistent with a normal distribution. The probability plot is nearly linear 
which supports the assumption that the residuals have a normal distribution. A Shapiro-Wilk 
test was performed on the residuals and produced a statistic of 0.9983 with a p-value of 
0,8445. Thus, we cannot reject the hypothesis that the residuals have a normal distribution. 
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Ex~bit3.3.1 

Studentized Residuals vs. Predicted Values 
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Ex~bit3.3.2 

Studentized Residuals vs. DevelopmentAge 
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Exhibit 3.3.3 

Studentized Residual vs. Calendar Quarter 
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Exhibit 3.3.5 
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4. CONCLUSIONS 

Our model has satisfied the objective stated in section 1.2. The model could be fitted 
either to paid or case incurred losses. Since the observations are incremental pure premiums 
and the weights axe a function of exposures, the model makes appropriate adjustments for 
changing levels of exposures. By using nonlinear regression, we have avoided the need for a 
log link and we have been able to keep negative observations in the data. The model appears 
to produce unbiased estimates of IBNR and reasonable 95% confidence intervals. 

The plots displayed in section 3.3 indicate that incremental pure premiums have an 
approximately normal distribution. 

The assumptions we made work well with auto bodily injury data. We have assumed that 
the data satisfy the usual assumptions of nonlinear regression models including independent 
normal errors. We have also used a functional form that fits our data well but might not fit 
other lines. We would like to close with a few suggestions for fitting models to other lines. 

The assumption of normal errors should be reasonable for high frequency lines of 
business. The assumption that the errors are uncorrelated should also be reasonable most of 
the time. If these assumptions are rejected, there are nonlinear models that may be used. 
Seber and Wild [5] discuss models with non-normal and autocorrelated errors. 

Seber and Wild [5] has a chapter on growth models which lists many functional forms 
other than the form presented in this paper. Some of these models might fit the pure 
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premiums of other lines of business. Some of the models could be applied to cumulative 
instead of incremental data. 

Another class of models that will fit pure premium development is generalized linear 
models. In this type of model, the development age interval could be represented as a 
categorical variable. These models would allow the analyst to consider a great variety of error 
distributions and error correlation structures. One drawback to this approach is that there 
are more parameters to estimate which means that the confidence interval for IBNR will be 
wider. Dobson [7] is an excellent reference on generalized linear models. 
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A p p e n d i x  A - S imulated  Loss  D e v e l o p m e n t  Data  - Earned  E x p o s u r e s  and 
Incrementa l  Case  Incurred L o s s e s  

Accident Development Quarter 
Quarter Exposures 1 2 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
4O 

3 4 5 6 7 8 9 10 
50,333 1,244,722 468,457 283,193 68,634 101,440 125,515 159,525 68,010 64,419 40,378 
50,801 1,417,101 587,121 337,864 95,841 243,190 65,263 94,623 47,772 188,347 31,533 
51.187 1.143.473 502.816 483.911 174,352 70,477 140.000 86.071 93,975 58,041 -13,132 
51,146 1,055,290 1,213,499 496,421 393,358 173,547 116,010 101.531 115,414 31.102 64,744 
51,527 1,508,450 834,730 302.691 409.622 423,103 143,476 67,506 146,727 146.017 38,057 
52,346 1.192,516 1,074,133 478,010 172,336 69.719 -9,197 206,481 221,841 -2,220 170,525 
52,480 1.067,318 438,952 368.962 214,718 274.665 86,113 39.208 121,683 62,838 8.398 
53,146 758,275 513,455 255,088 159,199 60,798 102,129 97,269 107,077 134.067 86.292 
53.924 1,664,156 31.358 491,390 196,506 202,088 27,387 48,404 -41,016 77.453 57,713 
54,403 1,537,825 422,697 301,334 210,821 254.271 149,386 225,652 104,121 81.082 76.196 
54,557 2,026,667 738,848 252,783 251,618 193,254 96,790 170,517 106,026 -121,070 152,682 
55.083 1,296,855 495,927 439.098 125,722 96,000 111,872 213,356 188,106 123,309 67.820 
55,292 1,995,401 821,508 552,503 226,522 145,695 389,146 333,936 118,922 136,678 104,544 
55.899 2,078,843 786,272 529,533 329,974 179.953 135,260 180,141 106,218 165,608 63,277 
56,067 1,952,667 859,868 632,198 264,522 231,370 216,887 22,205 117,571 81,594 149,627 
57,025 1.258,033 650,068 387.309 183,986 152,797 244.063 68.088 103.095 56,465 80,728 
57.071 1,627,621 320.911 303,800 327,057 236,332 161,152 205,081 147,898 288,069 127.213 
57,317 1,681,507 446.643 359,407 248.809 270.162 229,530 58,483 -7,112 246,925 85.944 
57,907 2,508.300 1,018,661 99.969 436.712 156.983 241.768 303.837 -9.729 194.850 181,037 
58.285 1,238,641 812,792 542.250 329,100 246,551 61.085 173.928 17.813 183,213 64,235 
59,096 1,793,043 482.793 546,164 313,044 353,857 327,614 90.275 235.255 32,150 -8,168 
59.193 1,433.225 532,545 589,099 306.945 330.835 50,915 285,934 84.085 48,543 144.367 
59.524 1,516,012 753,758 581,957 365,421 217,070 239,708 -63,906 191,485 107,079 181,666 
59,745 1,803,164 519,924 295,180 225,283 222,089 122,650 -57,787 170,330 46,008 56,351 
60,427 1,347,360 328,992 357,630 157.580 135,900 -80,274 117,487 208.666 121.095 179,925 
60.155 810,643 604,364 214,555 155.748 114.459 93,877 397 95,471 40,225 82,597 
60.568 1,850.892 980,308 613,338 369,051 298.488 272.379 196.454 107,684 175,612 251.126 
60.708 3,006,298 1.044.056 843,024 581,194 261,303 209.512 255.504 255.482 95,327 -22,389 
60.262 986,119 672.498 590,640 43,019 -8.877 -32,562 119,151 17.117 205,731 144,380 
60,606 2,630.383 1,101.593 805,938 238,565 228,041 253,614 194,571 157.225 190,266 -153.391 
60,580 1,515,313 601,512 511,685 304,718 142,590 143,733 206,446 79,617 -47,845 62,197 
60,648 3.517,816 1,048,147 260.427 466,379 114,732 589.058 125.985 381.048 361,346] 9,249 
61.159 1.673,500 513,290 333,639 305,302 308,506 232.796 81,397 104.474[ 119.655 -44,314 
61.462 1,207,813 739.162 524,302 392,092 363,797 230,703 398,177J 149.413 19,749 166.569 
61,934 2,202,629 528.671 378,846 162.033 150.420 225,454 r 174,285 201,873 193,199 7.944 
61,716 1.051,422 470,986 415.687 433,785 152,892] 263.161 151,337 -23,299 23,005 183,878 
61,837 2,355.630 1,302,388 824.821 307,806 r 79,979 117,519 208,110 162,036 207,896 141,836 
62,285 2,016.667 990,682 153.863J 290,379 -10,658 120,430 7,588 268.320 71,027 123.875 
62,728 1,468.675 925.175[ 157,502 266.297 252.103 380,364 226,500 76,920 43,621 26.222 
63,180 1,952,713 r 712.475 446,253 551,239 361,511 276,575 355,898 -8.263 66,140 96,505 
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Accident 
Quarter Exposures 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
29 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
4O 

Development Quader 
11 12 t3 14 15 16 17 18 19 20 

50,333 55,132 56,286 39,158 54,447 32,780 64,401 47,793 -30,285 60,984 -1,923 
50,801 97,899 120,746 56,487 16,116 50,122 42,810 11,512 77,062 7,181 72,151 
51,187 91.825 66,621 -46,239 10,535 -6,023 59,325 4,497 19.837 5,313 7,916 
51,146 166,882 134,068 17,951 101,782 64,696 64.331 -98,606 -37,817 60.282 -3,207 
51,527 119,089 -11.801 42.615 -73,816 72.867 -9,629 91,001 47.562 22,359 -16,392 
52.348 16,662 112,356 -26,328 108,397 162.915 95,642 107,603 30,439 10,858 99.144 
52,480 95,445 53,315 65,328 34,802 -4,403 -49,160 -32,400 40,083 -11,567 51,725 
53,148 156,630 -14,316 19,746 -8,727 25,872 -1,430 53,704 73,004 -26,364 61,378 
53,924 39,927 78,793 150,847 42,018 83,246 57,028 13,857 62,675 59,835 39,645 
54,403 52,923 759 -8,435 45,026 37,059 126,682 -15,224 47,275 54,888 10,951 
54,557 118,521 48,258 97,730 -8,982 168,831 30,198 100,201 -11,399 27,865 57,843 
55,083 52,455 117,838 19,476 61,249 42,336 -8,884 -42,245 5,514 40,494 -37,779 
55,292 108,005 101,991 50,016 -10,580 23,714 -14,118 101,221 66,648 131,158 33,186 
55.899 31,057 -37,318 t04,948 67,958 -7.386 95,217 -34.104 130,890 -6.798 28,246 
56,067 94.694 -5,199 55,050 -107,620 33,005 35,708 113,029 -23.751 33,324 82,253 
57.025 34,439 -82.833 -7,708 78,608 49,459 91,763 -36.547 48,994 3,417 39.090 
57,071 119,713 127,702 t20,055 98,658 33,349 36,053 79,890 72,189 80,971 2,954 
57,317 -42,024 90,633 88,686 69,705 102,187 89.757 114,280 125,545 21,101 58,920 
57,907 26,467 57,494 37,776 -1,643 120.996 -11,362 45,765 162,032 -7,833 9,218 
58.285 54,460 168.172 60,942 33,469 43,582 95,785 136,815 7.129 146,101 8,598 
59,096 108,307 118,119 130,671 t2,719 66,407 -49,728 103.805 -23,377 13,446 24,913 
59.193 170,747 121,252 122,821 -25,894 96,750 89,657 52,946 49,775 ~ 120,953 
59,524 205,422 -10.765 87.080 7.915 20,942 82.590 86,042 ~ 86,539 3,828 
59.745 57.883 -9,148 57,563 76,990 72,758 63,851 ~ 75,261 -8.698 -11.311 
60,427 98,081 67,455 30,353 194.721 26,902 16,334~ 62,868 80,394 2,462 19,806 
60,155 -5,192 53,749 114.555 37,095 35,3341 7,140 62,927 39.025 48,072 -549 
60,568 166,593 82,674 70,339 7 0 , 9 7 ~  79,356 -84,843 22,923 76,726 79,929 35,373 
60,708 188,567 168,677 129,1791 58,308 47,794 96,191 128,506 49,566 -28,134 58,887 
60,262 104,592 80,640] 95,315 34,245 49,974 81,604 39,399 32,106 55,537 -46,734 
60,606 99,495.r 58,402 48,409 56,793 -4,451 19,091 .5,279 19,722 53,159 39,365 
50,5801 139,467 180,552 45,404 72,414 3,441 36,563 126,913 50,865 37,834 56,248 
60.648 79,096 136,515 178,105 91,579 20,394 100,918 56,855 43,922 -7,463 34.194 
61,159 54.143 -81,040 20,949 1.608 60,381 111,910 13.739 102,704 27,132 104.321 
61.462 97,706 108,206 14,850 59,003 54,189 69,831 65,128 23,821 43,958 -11,047 
61,934 59,384 69,087 148,809 136,211 71,394 4,055 126,075 52,993 84,082 56,630 
81,715 139,013 56,147 92,809 125,058 7,067 90,151 101,031 27,566 -17,295 58,929 
61,837 4,048 253,659 157,930 58,979 100,435 19,044 -20,740 51,891 112,978 -55,242 
62,285 145,307 110,498 149,791 87,189 164,906 27,941 11,832 73,887 77,094 14,150 
52,728 133,332 164,332 -10,897 106,455 136,006 141,784 83,994 79,801 71,479 -24,821 
63,180 120,876 1,859 149,325 -46,560 52,798 85,751 68,371 100,238 --48,006 133,049 
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Accident Development Quarter 
Quarter Exposures 21 22 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
2O 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

23 24 25 26 27 28 29 30 
50,333 1,844 47,936 8,281 51,891 37,771 -4,045 27,774 14,035 871 56,156 
50,801 21,390 63,117 23,327 -12,069 14,680 41,491 15,434 11,107 19,559 10,661 
51,187 54,081 7,552 40,110 30,494 -6,797 730 29,749 25,467 30,419 7,913 
51,146 75,821 112,075 30,277 20,160 57,926 74,676 -23,786 20,074 6,919 18,023 
51,527 43,305 960 47,240 -7,478 -5,993 -31,465 45,344 28,740 25,218 10,956 
52,348 8,403 24,816 14,994 56,326 7,418 22,099 3,600 -46,942 78,616 16,230 
52,480 35,360 38,631 16,046 53,285 18,835 12,820 23,495 5,427 33,480 2,394 
53,148 27,648 103,471 -2,524 -3,970 71,300 28,587 -3,460 9,452 -8,909 -6,737 
53,924 54,178 71,192 59,018 52,434 -25,919 50,456 75,803 43,181 -2,099 17,733 
54,403 33,351 24,839 42,521 28,870 17,470 10,409 -7,892 -29,828 2,882 200 
54,557 65,973 -5,380 53,959 15,744 -3,427 4,913 8,390 -24,473 -32,538 52,557 
55,083 63,685 -10,583 64,637 78,643 30,741 11,856 15,134 1,757 18,412J 31,248 
55,292 82,088 7,445 121,478 -32,097 41,168 47,156 49,125 9,275J 44,273 23,737 
55,899 50,701 .22,139 55,822 44,064 65,745 -5,697 71,653J 59,301 .11,011 8,634 
56,067 -18,731 -14,131 44,114 86,453 31,838 25,910_.J -15,473 17,799 -2,589 34,604 
57,025 -22,239 89,127 13,948 20,393 -2,351[ 8,374 31,029 39,339 -8,451 1,222 
57,071 57,279 36,946 39,534 90,362J 14,387 -29,765 30,222 16,053 17,682 35,591 
57,317 79,551 77,137 47,330.r 29,128 -40,416 46,964 9,795 23,656 43,627 .433 
57,907 .36,342 .51,199j .629 38,859 .20,756 54,574 72,098 36,775 39,504 31,052 
58,285 43,739j- -6,134 54,269 25,913 .16,757 8,755 7,972 43,674 .3,448 64,314 
59,096r 75,294 .34,942 88,190 124,206 62,976 77,091 39,748 40,729 43,609 89,136 
59,193 11,060 75,017 61,132 105,644 56,274 15,014 .2,897 80,213 53,917 118,331 
59,524 29,866 45,800 38,868 68,925 7,687 -61,021 30,638 39,572 45,399 .11,739 
59,745 46,041 33,062 16,682 40,849 .18,453 7,949 58,613 48,743 .17,040 8,158 
60,427 25,489 .35,072 29,365 1,481 46,825 .43 39,986 80,497 51,650 .27,268 
60,155 136,480 50,523 73,985 .15,999 21,991 43,033 32,821 8,902 29,994 41,090 
60,568 .2,199 34,675 135,124 6,514 15,272 62,756 66,009 .10,230 .37,723 3,901 
60,708 115,933 100,646 55,828 25,764 .3,515 9,366 .23,401 89,137 46,630 75,698 
60,262 70,050 48,884 59,346 53,211 .3,141 6,048 29,235 13,746 38,350 43,614 
60,606 100,823 ..80,196 .23,695 19,793 20,686 .29,950 .5,204 99,580 36,328 56,872 
60,580 42,546 19,448 19,949 .29,940 17,116 55,736 756 21,693 8,254 48,025 
60,648 74,650 86,062 71,446 138,2o6 .8,941 75,564 27,495 84,913 .26,461 74,757 
61,159 16,045 110,447 129,009 -45,715 68,665 7,394 20,046 33,159 7,386 18,884 
61,462 4,309 -26,370 107,835 127,369 15,493 -50,769 -7,521 -25,623 -1,506 18,283 
61,934 83,466 73,782 56,185 -32,328 -38,556 27,399 -11,618 54,166 26,555 -750 
61,716 -27,140 93,574 66,551 13,086 30,072 -12,666 -11,496 -7,722 13,375 17,919 
61,837 30,283 14,515 -30,671 -60,204 31,067 15,254 78,382 95,606 7,715 9,987 
62,285 95,225 114,060 54,619 -67,884 7,563 -31,075 -36,590 9,379 78,245 14,113 
62,728 4,900 -81 43,622 78,577 92,489 28,945 -16,724 67,108 17,473 -6,230 
63,180 -21,730 80,710 55,218 15,476 39,584 3,858 18,112 22,462 13,209 33,635 
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Accident Development Quader 
Quarter Exposures 31 32 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
2O 
21 
22 
23 
24 
25 
28 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
4o 

33 34 35 36 37 38 39 40 
50,333 34,276 3,835 43,711 -1,640 29,076 13,319 -2,630 8,678 3,188 -5,821 
50,801 27,835 -5,203 29,996 -2,058 -5,783 18,323 -5,364 5 , 1 8 8 ~  
51,187 17,345 51,332 18,327 1,471 34,161 24,299 - 18,828 2..__.~.~,407 5,774 14,876 
51,146 23,792 20,703 18.035 26,068 48,501 -5,982 5,236J 30,317 -20,445 1,381 
51,527 52,198 -30,522 43.073 32,051 -18,894 33 ,613~ 54,075 34,899 24,632 -39,868 
52,348 35,800 -10,345 46,979 51,773 - 9 , 4 0 9 [  -22,677 20,537 25,987 12,417 62,164 
52,480 15,761 7,390 33,982 13,579.r 24,407 19,471 .3,988 .10,108 9,185 .1,869 
53,148 3,334 24,196 20,30~ 24,861 40,319 12,113 .13,820 42,130 35,297 15,405 
53,924 12,418 56,9583 52,833 26,726 32,933 5,232 29,185 37,027 45,244 8.695 
54,403 43,3351 .31,285 -54,687 .16,646 15,567 .15,554 .9,313 -13,437 29,191 736 
54,557[" 72,266 95,758 6,189 7,910 61,208 28,223 28,531 49,899 16,681 17,830 
55,083 39,707 25,525 25,741 13,780 17,106 49,171 1,081 16,032 24,045 16,702 
55,292 20,470 -17,379 28,954 5,100 45,000 38,726 -19,480 78,077 44,212 9,911 
55,899 22,377 1,924 -9,766 47,354 18,223 454 8,891 20,907 2,586 7,758 
56,067 -35,330 -18,262 -26,548 38,756 13,302 -9,275 -3,005 47,269 -34,312 -3,364 
57,025 12,632 12,743 38,517 4,169 12,911 -1,785 -20,735 78,244 30,557 -779 
57,071 38,585 45,591 11,315 -28,333 15,402 24,202 -25,715 11,080 9,528 36,913 
57,317 20,486 28,330 4,385 -14,482 35,357 22,167 -4,089 2,423 1,184 60,888 
57,907 68,328 82,874 121,115 -32,249 19,414 73,240 23,233 39,217 78,051 -12,467 
58,285 42,726 28,751 58.837 7,617 7,172 72,846 1,544 -5,147 29,124 8,197 
59,096 33,319 44.155 -39.904 29,104 50,092 10,920 13.243 23,352 35,124 14,389 
59,193 -24,229 54,258 48,576 51,990 44,191 48,506 57,887 -6,941 -18,202 -21,329 
59,524 48,463 18,459 7,095 13,631 6,314 18,901 46,450 -16,939 43,202 56,548 
59,745 35,148 16,789 -7,315 -9,671 21,791 14,107 28,696 9,512 8,829 15,567 
60,427 -18,598 26,696 11,564 14,065 -29,491 2,041 18,738 47,090 -6,041 -23,085 
60,155 -8,915 52,310 915 813 56,718 -15,282 -26,165 20,384 20,458 18,977 
60,568 22,553 42,332 9,009 -7,442 2,140 93,063 88,561 40,159 °5,060 -262 
60,708 -14,237 65,453 25,751 12,368 -49,710 41,335 -49,9t9 -30,620 69,756 11,831 
60,262 49,917 32,539 -8,986 48,452 15,625 28,530 15,743 23,349 -5,595 42,937 
60,606 60,504 65,845 93,343 -27,623 -3,656 51,672 33,114 50,928 101,765 39,729 
60,580 -47,046 46,028 24,302 56,096 -8,692 27,322 28,081 6,079 -23,284 20,008 
60,648 63,634 122,152 -1,646 -37.185 -19,352 96,570 10,367 35,026 41,909 50,868 
61,159 30,616 8,972 11.306 39,325 10,365 32,535 50,209 7,522 34,812 25,278 
61,462 19,812 3,141 33,675 12,108 -21,383 18,639 44,897 46,331 -32,125 -14,164 
61,934 -30,866 32,254 88,375 36,930 62,025 72,476 54,286 -50,512 12 -6,728 
61,716 -35,620 -2,115 31,594 37,150 -2,481 26,166 14,732 19,708 19,340 5,106 
61,837 35,752 60,881 -13,187 -21,121 39,280 -1,210 -23,822 11,76t 42,508 39,751 
62,285 -10,410 21,570 35,964 -13,033 -26,726 -20,093 -11,908 65.799 -11,499 -2,260 
62,728 70,218 -25,147 46,379 5,606 39,349 -13,438 70,889 53,260 -18,834 -12,364 
63,180 65,404 13,053 28,027 -40,448 -2,637 3,059 -7,238 41,295 -7,643 14,249 

Casualty Actuarial Society Forum, Fall 2006 375 



A Nonlinear Regression Model of Incurred But Not Reported Losses 

Appendix  B - Simulat ion Mode l  Used  to Generate  the Data  

The simulation model used to generate the loss and exposure data is based on method 3 
in Narayan [4] with some modifications. In this appendix, we will present an outline of  the 
model and the SAS code used to produce the data. Note that the SAS program will not 
produce the same data every time it is run because the random number seeds were 
randomized. 

Outline of  the simulation methodology: 
1. Initialize the values for exposures at 50,000 per quarter and the inflation index at 

unity. 
2. For each of  the 40 accident quarters: 

a. Generate a random number of  exposures from a Brownian motion process. 
b. Generate a random frequency from a Normal distribution. 
c. Generate a random number of claims from a Poisson distribution with a 

parameter equal to the product of  the exposures and the frequency. 
d. Generate an inflation index from a geometric Brownian motion. 
e. Initialize ultimate loss to zero. Then, for each claim 

i. Generate a random loss severity from a Lognormal distribution, 
multiply it by the inflation index and add it to the ultimate loss. 

3. For each accident quarter, 
a. calculate 40 random increment factors from the formula: 

incr = .33.age -uS +(.07.age -'7). Normal(O,1). This is not guaranteed to 

add up to unity but the simulated values add up very close to unity. This 
procedure is similar to step (i) in Narayan's method 4 except that we are 
using a random decay pattern instead of  a constant pattern. 

b. Multiply the ultimate loss by the increment factors to produce random 
incremental losses for 40 development quarters. 

SAS code." 

*random number seed; 
%let seed=0; 

*exposure parameters (Geometric Brownian Motion); 
%let expostart = 50000; 
%let grthmean = 0.005; 
%let grthstdv = .005; 

*frequency parameters 
%let frqmean = .01; 
%let frqstdev = .001; 

(Normal); 

*untrended severity parameters (LogNormal); 
%let mu = 8; 
%let s = 1.4; 

*inflation parameters 
%let cpi0 = I00; 
%let cpimu = .006; 

(Geometric Brownian Motion); 
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%let cpisig = .0035; 

/* First data step - generate exposures and ultimate losses for 40 
accident quarters.*/ 

data tril; 
*initialize exposures and cpi; 
expos = &expostart; 
cpi = &cpi0; 
do aqtr=l to 40; 

*generate exposures by brownian motion; 
expos = round(expos * (i + &grthmean + 
&grthstdv*rannor(&seed))); 

*generate a normally distributed claim frequency; 
freq = &frqmean + &frqstdev*rannor(&seed); 

*generate a Poisson number of claims; 
clms = ranpoi(&seed, freq*expos); 

*generate an inflation index by geometric brownian motion; 
cpi = cpi*exp(&cpimu + &cpisig*rannor(&seed)); 

*calculate aggregate loss (ultloss); 
ultloss = 0; 
do clmnum = 1 to clms; 
*calculate loss severity and add it to ultloss 

ultloss = ultloss + 
round(exp(&mu+&s*rannor(&seed))*cpi/&cpiO); 
end; 

output; 
end; 

proc sort data=tril; by aqtr; 

/* Second data step - calculate incremental incurred losses for 40 
development quarters for each accident quarter to produce a decumulated 
loss development data set. */ 

data decumtri; 
set tril; 
do age=l to 40; 

decay = .33*age**(-1.25) + (.07*age**(-.7))*rannor(&seed); 
incr_inc = ultloss*decay; 
time = aqtr + age - I; 
output; 

end; 

run; 
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Multilevel Non-Linear Random Effects 

Claims Reserving Models 

And 

Data Variability Structures 
Graciela Vera 

Abstract 

Characteristic of  many reserving methods designed to analyse claims data aggregated by contract 

or sets of  contracts, is the assumption that features typifying historical data are representative of 

the underwritten risk and of future losses likely to affect the contracts. Kremer (1982), Bomheutter 

and Ferguson (1972), de Alba (2002), and many others, consider models with development 

patterns common to all underwriting years and known mean-variance relationships. Data amenable 

to such assumptions are indeed rare. More usual are large variations in settlement speeds, exposure 

and claim volumes. Also typifying many published models are Incurred But Not Reported (IBNR) 

predictions limited to periods with known claims, frequently adjusted with "tail factors" generated 

from market statistics. Of concern could be analytical approach inconsistencies behind reserves for 

delay periods before and after the last known claims, under reserving and unfair reserve allocation 

at underwriting year, array or contract levels. 

As applications of Markov Chain Monte Carlo (MCMC) methods, the models proposed in this 

paper depart from the neat assumptions of quasi-likelihood and extended quasi-likelihood, and 

introduce random effects models. The primary focus is the close dependency of the 1BNR on data 

variability structures and variance models, built with reference to the generic model derived in 

Vera (2003). The models have been implemented in BUGS (http://www.mrc-bsu.cam.ac.ulCougs) 

Keywords: Markov Chain Monte Carlo, Non-linear Random Effects and GLM, Reserving. 

1. I N T R O D U C T I O N  

Insurance data reflect and react to financial uncertainty associated with external 

events, quantifiable time varying factors such as inflation and interest rate fluctuations, 

and non-quantifiable factors such as variations in litigation practices and underwriting 

policy terms. In an interesting historical account of  legislative changes introduced in 

Israel to deal with inflation, Kahane (1987) illustrates how external events can be given 

functional interpretation in a reserving model. Further examples can be found in Taylor 
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(2000). Data distortions due to external events could undermine all stochastic 

assumptions. Concerned with the analysis of  claims data, from the simplest aggregation 

levels, such as class of business, to multiple-nested groups, this paper deals with the 

construction of  claims reserving models capable of capturing variability structures in a 

claims portfolio. 

Hierarchical or multi-level claims reserving models are potential source of wide- 

ranging contribution to claims portfolio analysis beyond reserving. Identification of the 

causes of  data variability with reference to hierarchical model structures could provide a 

statistical framework for parametric analyses of claims across a number of underwriting 

years. This would enhance our ability to construct more discriminating models, set 

initial parameter values, review and update our assumptions on risk premium 

calculations, related management strategies for commutations, portfolio composition, 

analysis, etc. 

1.1 Research Context 

As one of the simplest claims reserving methods, the chain ladder has motivated an 

extensive body of work intended to establish statistical basis for the problem of 

reserving. Models that fall within the category of generalized linear models (GLM) 

(McCullagh and Nelder (1989)), such as Renshaw (1989), Renshaw and Verrall (1998), 

Verrall (1991), Wright (1990), Mack (1991) and many others, have extended the 

research beyond assumptions of  lognormality and explored applications from 

exponential family distributions. Carroll (2003) remarks "there are many instances 

where understanding the structure of variability is just as central as understanding the 

mean structure". The IBNR definition given in this paper is integral to the definition of 

the model itself, and its value is highly sensitive to model specification. Hence, the 

emphasis of  this research is in the identification of suitable representations for the mean 

and data variability structures beyond assumptions of known and specific mean-variance 

relationships. 

Reserving model structures depend on the intended use o f ~ e  predicted reserves and 

on the sector of  interest in the claims portfolio, such as insurance class, contract, specific 

loss, etc. The data assessment should determine the selection of the analytical approach. 
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For instance, an insurance contract provides cover against the hazards listed in the 

contract. Premium calculations reflect policy management expenses, expected returns 

and risk premiums for all the perils covered by the contract. Risk premium analyses, in 

general, are carried out by peril, ignoring the fact that a particular event could 

simultaneously hit more than one kind of cover. When reserve analysis of  all perils with 

a single model is viable, it could deliver, for example, relative cost measures capable of  

generating more competitive commercial premiums, hence allowing cover assessment 

on statistical basis, identification of cross-subsidies and unexplored niches, etc. 

Within the context of  hierarchical models, claims data can be differently interpreted 

depending on their levels of aggregation. For instance: 

• Each underwriting year data set could be described as a set or cohort of 

longitudinal data. 

• A claims array could be considered single-level longitudinal data for more than 

one subject. 

• A book of business segmented by class, type of loss and underwriting year, 

could be treated as multilevel longitudinal data or as multiple nested groups of 

single level longitudinal data. 

Davinian and Giltinan (1993 and 1996) provide an introduction to the theory of non- 

linear random effects models and an overview of various techniques for the analysis of  

non-linear models with repeated observations. More recently, Pinheiro and Bates (2000) 

reviews the theory and applications of linear and non-linear mixed effect models to the 

analysis of  grouped data. 

In this paper it is shown that the generic model in Vera (2003), briefly outlined 

below, is key to the extension of random effect models to the analysis of  reserves. If  the 

claims process for underwriting year w is reported at times t,,t: ..... re, such that 

o < t, < t: < ... < t . ,  and t, is the final settlement period, the generic model is given in terms 

of a percentage cash flow and a ultimate claim amount functions, denoted respectively 

by P~.,, and Cw. P,..,, = ~r(w,z)dz ,  where ,:(w,t) is a probability density function taking 
0 
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t ,  

values from positive real numbers, s..,, = I - P , . , ,  = ITr(w,z)dz, P,..,,-<1 for j<e and 

P..,, = 1 otherwise. Finally, h...,, and H...,, are the instant and cumulative hazard rate 

funct ions ,  de f ined  for underwri t ing  year  w and p a y m e n t  year  r ( r  = w + delay time - 1 ) by  

Io(,°(l-p.,)) I =( c )lop..,) 
h., r .,+1 = ( 

"- 1BN~/[,~_..,, ) ~ - ~ S  ) . . . . . . .  

H...,_.,+, = -In(l-P.  ........ ) 

0.1) 

Hence, the following are alternative representations of  the claims process for cumulative 

data Y..~_.., : 

Y. ........ = C.P... ...... (1.2) 

r.. ...... = c . . ( l -  o x p ( - < . . _ . . , ) )  0 . 3 )  

Y.. ..... = C. 0-S.. ,  ...... ) (1.4) 

Equivalently, for incremental data y.,  . . . .  

_ , p  y ........ - c ,  ( , .  . . . . .  - P ,  . . . . . . . .  ) 

y ........ = C . ( e x p ( - H . , . ~ _ . ) - e x p ( - H . , ,  . . . . .  )) 

=C * S - S  Y . . . . . . . . .  ( . . ,  . . . . . . . . . . . .  ) 

(1.5) 

(1.6) 

(1.7) 

The underwriting year and array I B N R  and reported I B N R  projections are respectively 

IBNI~..,,_..+O = C. S.,,_.,+j 
u 

I B N R ( r )  = ~=I1BNR~ ........ ) 

RIBN~. .  . . . . .  ) = IBNt~...,_.,+,) + (C.,S.. ...... - Y. ...... , ) 
u 

easNR(3)  = ~ e a ~ N ~  ......... ) 

(1 .8)  

(1 .9)  

where u is the number of  underwriting years in the array. R I B N R  links the reserving 

analysis to the accounting processes, by adjusting the I B N R  by the difference between 

the total claim amount incurred to date and its estimate. Due to the additional noise 
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induced by the adjustment, (1.9) is only applied in the final stages of the reserving 

analysis. In contrast to many published reserving methods, an important aspect of  the 

models is the unrestricted 1BNR projection periods, since the period before the last claim 

is generally unknown. The above equations could make explicit, and potentially 

highlight, the sources of  data variability. Settlement speeds differences between 

underwriting years should be captured by Pw.,-,.,, Hr ..... , or S, ..... ,. Although exposure 

levels are largely determined by underwriting volumes and contract terms, neither 

necessarily random, to accelerate convergence and formulate the final model variance 

function, random effects are introduced in C,. When more than one claims array are 

analyzed, the additional aggregation level and source of variability is array,  indexed by 

subscript r. 

1.2 Objective 

The examples' aim is to show that more than one model could fit historical data, but 

not all may reliably predict the reserves. The reliability of the I B N R  and ultimate claim 

amount predictions depends on the models' capacity to extract from the data claims 

volume and settlement speeds measures. This is possible when the variability of both 

can be represented parametrically and formulated into the variance model. The scope of  

the models is made evident by their formulation and by the data. As the variability in 

settlement speeds and claims volumes increase the underlying assumptions of  GLM are 

no longer sustainable, and more complex variance models and random effect parameters 

for the mean response become essential. To illustrate the process of  constructing 

variance models two data sets are selected. One is a claims array simulated from a 

mixed portfolio, and the second consists of  three arrays simulated from a marine hull, 

marine cargo and aviation hull portfolios. The second, selected to exacerbate the 

variability encountered in the first, in addition to large claims volume differences 

between underwriting years, contains also 20 negative incremental claims entries. 

Since the concepts of  population models (Zeger, Liang and Albert (1988)) are 

intended to average random variability between subjects, they are implemented around 

the percentage cash flow function. They can be used to obtain average (or array) I B N R  

predictions for a given ultimate loss. Other array or average results are the weighted 

average array or portfolio hazard rates. They provide thresholds, useful to quantify the 
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impact on the claims portfolio of excluding from it underwriting contracts associated 

with particular underwriting years or arrays. 

1.3 Outline 

The paper structure is as follows. Section 2 introduces random effect models for one 

array with a general formulation of  non-linear random effects models, and translated 

into a Bayesian framework in section 2.1.1. Noted in section 2.2 are amendments 

necessary to formulate multi-array models. 

The models selected to analyze the two data sets are presented in sections 3 and 4 

respectively. Denoted 1.0 and 2.0, in section 3.1 two preliminary models for one array 

are given, followed by numerical examples in section 3.3. The examples identify 2.0 as 

the basis for further analysis to construct the final models. In section 3.4.5 the results 

from two validation and two final models are discussed. Also in two stages, in section 4 

multi-array models are constructed for two mean response functions denoted 

respectively 7.0 and 8.0. The preliminary models, used to establish data variability 

structures, are introduced in section 4.1, followed by numerical examples in section 4.2. 

For mean response functions 7.0 and 8.0, results for precision parameters ~r :,  a~ and 

~r~ are obtained, identifying the three model versions by (a), (b) and (c). The final 

models, defined in section 4.3, are analyzed in section 4.5. They emphasise the 

contribution the generic model makes to the analysis of reserves, and to random effects 

models and variance models in general. 

Section 4.4 extends the claims array average percentage cash flow definition given 

in section 3.2 to introduce portfolio model average for the percentage cash flow. As 

immediate by-products of the reserving analysis, hazard rates are discussed in section 

4.6. The claims' hazard rate profile, essential for further portfolio analyses, can be used 

also as a portfolio management template. Discussion on the contribution made by the 

models proposed is given in section 5. 

For the models in section 3, the results are fully reported in appendix A. Given the 

size of the data used in section 4, the reported results in this section are restricted to 

IBNR and ultimate claim amount projections for the selected preliminary and final 

models. 
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2. G E N E R A L  F O R M U L A T I O N  O F  N O N - L I N E A R  R A N D O M  

E F F E C T S  M O D E L S  

In non-linear hierarchical models, inter and intra-underwriting year variations are 

analysed as a two-stage process. In the first, the intra-underwriting year variation is 

defined by a non-linear regression model for the underwriting year covariance structure. 

In the second stage, the inter-underwriting year variation is represented by both, 

systematic and random variability. The models can be constructed within a Bayesian 

hierarchical structure by noting that the intra-underwriting variation is associated with 

the sampling distribution, while the prior distribution is relevant to the inter- 

underwriting variation. Because the models' notation will depend on the number of 

aggregation levels, in sections 2.1 and 2.2 the array and multi-array analytical 

frameworks are respectively given. 

2.1 Analytical Framework For a Claims Array 

For the purpose of defining the general model, ignoring whether claims are 

cumulative or incremental, the observation at development time t of response vector for 

underwriting year w is simply denoted by y, j ,  and the model is defined as follows: 

y..., =/aw., (#.) + a'.,., (2.1) 

where &,, is a non-linear function common to the entire array, while parameter vector #,. 

is specific to underwriting year w. t = t, ..... t.. ; with t.. representing the last period with 

known claims to date, w= l,...,u, and u is the number of  cohorts or underwriting years in 

the claims array. Hence 
yw=[y,..,,,...,yw.,.. ] r 

&. = [,u..,, ,..., &..,.. ] r 

c,. = [~,, ...,e,.,, ] r 

and 

cov(e,.)=a'R~. (2.2) 

R. is the intra-underwriting year covariance matrix for underwriting year w. 
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