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Motivation. For property casualty insurers, loss reserves are by far their largest liability. These are actuarial 
estimates of  future loss payments resulting from accidents that have already occurred. In fact, the actual future 
loss payments may des'late - sometimes substantially - from the amount that was estimated. Senior managers, 
shareholders, rating agencies, and regulators all have an interest in knowing the magnitude of  these potential 
deviations - deviations whose distributions we here call loss reserve u n c e r t M n ~  - -  since firms with large potential 
deviations need more capital or reinsurance than other firms with smaller potential deviations. Actuarial journals 
provide several proposed procedures for measuring loss reserve uncertainty. But in practice they are rarely used, 
since they typically require specialized software and use statistically complex procedures that are unfamiliar to 
most actuaries. Moreover, in at least some cases, these procedures provide estimates of  loss reserve uncertainty 
that depend on vet')" strong assumptions that virtually assume the conclusions obtained. 
Method. In this report I provide a simple method for measuring loss reserve uncertainty that is easily 
implemented with a spreadsheet model, that relies on data available for all US insurers and all lines of  business, 
and that makes relatively few easily accepted assumptions. 
Results. The method for estimating loss reserve uncertainty explained and demonstrated here has five important 
advantages. First, it is simple, and easy to implement. This report even provides the relevant Excel formulas for 
implementing crucial steps in the method. Second, it avoids severe statistical problems that affect numerous m, al 
methods, as explained in detail. Third, the method is validated (rather than merely illustrated) by applying it to 
simulated data in which answers are known, and demonstrating that its estimates agree closely with these known 
answers. Fourth, the measure of  loss reserve uncertainty used here - the standard deviation of  loss reserves as a 
percentage of  the estimated resen-e -- is scalable, so that it can be applied to reserves estimated by other 
methods. Fifth, the resulting measure of  loss reserve uncertainty can be directly compared across different lines 
of  business in a single firm, or for the same Line of  business across different firms. 
Conclusion. The method presented here appears to be the first instance of  a method for estimating loss reser,,es 
and loss reserve uncertainty that is thoroughly validated by comparing its estimates to those of  a simulation with 
known parameters. Its results can assist CEO's, CFO's, Chief Risk Officers, actuaries, rating agencies, regulators, 
and stock analysts in estimating the variability of  loss rese~,es, in estimating a firm's capital adequacy, in 
forecasting the distribution of  possible loss reserve payments during the next calendar year, and in determining 
whether current or past calendar year deviations from expected loss payments are sufficiently large to deseta'e 
special attention. 
Availability. To obtain the model presented here, email Bjll.Panning@.\X'illis.com. 
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1. WHAT LOSS RESERVE UNCERTAINTY IS A N D  WHY IT MATTERS 

1.1 Defining Loss Reserve Uncertainty 
Property-casualty loss reserves are estLmates of  the total future payments that will be required to 

settle claims on accidents that have already occurred. Because such estimates are inherently 

imprecise, for reasons discussed later on, insurers may ultimately pay out more or less to chimants 

than is forecast in the firm's current reserve. Loss reserve uncertainty (LRU) is a measure  of  

the magni tude  of  this potent ia l  difference between forecast and actual loss payments .  

In this paper I propose, explain, and justify a particular method of  estimating loss reserve 

uncertainty. This method has several important virtues. First, it is simple, and so can be 

implemented on a spreadsheet and applied to universally avaihble data. Second, the method is 

accurate, since it addresses and avoids a number of  pitfalls in statistical estimation that would 

otherwise produce biased and misleading results. Third, the resulting estimates are comparable 

across different lines of  business and different firms. Fourth, the measure of  LRU is scalable, so 

that it is applicable to reserves that have been estimated in different ways. FinaUy - and this is 

particularly significant - the method has been thoroughly validated by demonstrating that its 

estimates of  reserves and loss reseta*e uncertainty closely match the known parameters underlying 

I0,000 simulated loss reserve triangles. 

1.2. Why Loss Reserve Uncertainty Matters 

A method for estimating LRU that has these characteristics is likely to be extremely useful to 

insurers, investors, regulators, and raring agencies, for estimating surplus adequacy, for pricing and 

capital allocation, and for determining the potential significance of  reseta~e developments. 

1.2.1. Es t ima t ing  Surplus Adequacy.  

The uncertainty of  an insurer's loss reserve has direct implications for its required surplus or 

reinsurance. The greater an insurer's LRU, the greater the surphis or reinsurance it needs to cope 

with potential scenarios in which ultimate losses exceed forecast losses. In the absence of  an 

accepted measure of  LRU, these various audiences have relied on indirect measures of  surphis 

adequacy such as premium-to-surplus or reseta, e-to-surplus ratios relative to peer companies or to 

industry averages. Such relative evaluations can be quite misleading in an industry that exhibits 

profound swings in pricing and reserve adequacy. 

The problem of  estimating surplus adequacy is a fundamental issue in Enterprise Risk 

Management, which attempts to estimate the total capital needed by an insurer to withstand 
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potential losses from all sources of  risk. Before total enterprise risk can be managed, it must first be 

measured. For most  property casualty firms, the principal sources of risk are loss reserve 

uncertainty, asset risk (principally due to equities), pricing risk (potential differences between 

forecast losses and the incurred losses initially booked), and credit risk on receivables and 

recoverables. O f  these, LRU is often one of  the largest and one of the most difficult to estimate. 

1.2.2. Pricing and Capital Allocation. 

Many insurers allocate capital to different lines of  business and evaluate pricing adequacy by the 

return on capital achieved in each line. Although firms may employ different methods for allocating 

capital among different lines of  business, there is consensus that the capital allocated to a particular 

line should reflect the degree to which estimated losses are uncertain. Consequently, the capital 

allocated to a line of  business should reflect the rapidity with which its reserve runs off and the 

magnitude of uncertainty involved. Measuring loss reserve uncertainty can therefore inform and 

improve capital allocation and pricing. 

1.2.3. Manager ia l  Feedback .  

An insurer's loss reserve is a forecast of  all future loss payments, including those anticipated 

during the next calendar year, from accidents that have already occurred. The measure I propose 

can be adapted to estimate the uncertainty of this calendar year estimate. What  makes this 

important is that this estimated uncertainty provides a useful benchmark against which any 

difference between actual and forecast loss payments can be evaluated. For example, if calendar 

year paid losses are 20% higher than forecast, this is of  httle concern when the standard deviation of  

those forecast losses is 15%. But if, instead, the standard deviation is 6%, then the 20% deviation 

should trigger sigrfificant managerial concern. Since managerial attention is a scarce and valuable 

resource, the ability of  this method to distinguish significant dexfiations from those that are not  

should prove to be quite useful. 

2. PRIOR STUDIES OF LOSS RESERVE U N C E R T A I N T Y  

Given the potential importance of  measuring LRU, it is not surprising that the number  of  papers 

on the subject has grown significantly during the past decade. Relevant papers include Ashe (1986), 

Barnett and Zehnwirth (2000), Braun (2004), Brehm (2002), England and Verrall (1999, 2001, 2002), 

Halliwell (1996), Hayne (2003), Hodes, Feldblum, and Blumsohn (1996), Holmberg (1994), Kloek 

(1998), Mack (1993, 1994, 1995, 1999), Murphy (1994), Taylor (1987, 2004), Taylor and Ashe (1983), 

and VerraU (1994). Rather than describing each paper individually, I shall comment  on this body of 

work taken as a whole. 
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2.1 Chain Ladder Focus 

First, a central assumption of  much of  this literature is that the chain ladder method for 

estimating reserves is the obligatory starting point for estimating reserve uncertainty. For example, 

in their excellent review of  a variety of  models and techniques for estimating reserves and reserve 

uncertainty, England and Verrall (2002) note that a principal objective of  the models they review is 

"to give the same reserve estimates as the chain-ladder technique" (p. 448). By contrast, there are 

relatively few studies like Stanard (1985), Narayan and Warthen (1997), Bametr and Zehnwirth 

(2000), and Taylor (2003) that focus on the key assumptions and comparative adequacy o f  the chain 

ladder method. Here I make no attempt to ensure that my proposed method agrees with the chain 

ladder method in estimating the unknown parameters of  some paid loss triangle. The point is to 

obtain estimares that are correct, whether or not they a Lyree with a widely-used method. 

To validate the method I shall use known parameters to simulate thousands of  paid loss triangles 

and determine whether my proposed method is able to accurately estimate these parameters and the 

corresponding simulated reserves and simulated reserve uncertainty. Agreement with the chain 

ladder method is simply irrelevant to this validation procedure, especially since the chain laddet 

method has itself not been definitively validated in a comparable manner. 

2.2 Absence of  Estimation Criteria 
Second, apart from the special place accorded to the chain ladder method, much of  the literature 

seems to assume a kind of  algorithmic democracy, in which one technique for estimating reserves or 

LRU is considered as good as any other. (This assumption reaches its inevitable conclusion when 

the results obtained from different methods are averaged.) With few exceptions, there is no 

discussion of  criteria that must be met in order for estimates of  reserves or LRU to be accurate. The 

notable exceptions here are Ashe (1986), Barnett and Zehnwirth (2000), Halliwell (1996), Taylor 

(1987), and Taylor and Ashe (1983), but even here the relevant issues are typicaUy either assumed or 

discussed very briefly. Here I explain at some length conditions that are crucial to accurate 

estimation, and show specifically what must be done to meet those conditions. 

It is important here to recogruze the significant differences between estimating reserves on the 

one hand and estimating LRU on the other. Some methods for estimating reserves are totally 

incapable of  being extended to estimating LRU. Moreover, there is an enormous difference, at least 

in my view, between methods that principally focus on estimating reserves but only incidentally 

focus on LRU, and methods that principally aim to estimate LRU. The former are especially 

prevalent, and invite strong assumptions with little guidance on ways to test their validity or to 

estimate the sensitivity of  LRU estimates to slight changes in these assumptions. The latter are rare, 

and include the method presented here. 
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2.3 Complexity 

Third, the procedures proposed to estimate LRU are typically quite complex. Moreover, some 

recommended procedures, such as generalized least squares (GLS) and generalized linear models 

(GLM) in fact typically require very strong a priori assumptions about variances and covariances. 

Checking and, when necessary, appropriately modifying these assumptions is indeed feasible, but at 

the expense of  making a complex procedure even more vulnerable to the temptation to over-fir the 

model, thereby "finding" what one has really assumed. Here I utilize a much simpler procedure that 

is less elegant but. in this respect, more robust. 

3. A MEASURE OF LOSS RESERVE U N C E R T A I N T Y  A N D  ITS MERITS 

No single method of  estimating loss reserve uncertainty is appropriate under all circumstances. 

Much depends upon the type and extent o f  data available for such an analysis. For example, 

actuaries within an insurance firm may have access to data that is far more extensive and detailed 

than the data available to external analysts. Given these differences in available data, internal and 

external analysts may appropriately utilize different methods to estimate loss reserve uncertainty. 

Nonetheless, I believe that the results obtained from the method presented here can be applied 

direct]), to reserve estimates obtained using other methods and more extensive data. 

The procedure I propose has two steps. The first is estimating the loss reserve itself, in dollars. 

The second is estimating the standard deviation of  that loss reserve, again in dollars. Because both 

of  these estimates are in dollars, comparisons across lines of  business or across different firms are 

essentially meaningless, since differences in these numbers will ptindpally be affected by differences 

in the volume of  business in each line or each firm. But if we instead express resen, e uncertainty as 

a coefficient o f  variation (the standard deviation of  the estimated reserve as a percentage of  the 

estimated reserve), we arrive at a measure that has three important properties. 

First,  it can  be compared  across different lines of  bus iness  wi thin  a particular firm. A line 

of  business in which the coefficient o f  variation is 6% is clearly less risky (in this respect, at least) 

than one in which the coefficient o f  variation is, say, 15%. 

Second,  this measure  of  L R U  can be compared  across different firms for the same line of  

business .  If  the coefficient o f  variation for workers' compensation is smaller for one firm than for 

another, it is pretty clear that this line of  business is less risky for the first firm than for the second. 

This fact has enormous implications for the measurement of  capital adequacy. 

The results of  both of  these comparisons must be interpreted carefially, since they depend on the 

volume of  business written as well as on supposedly intrinsic differences between different lines of  
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business. As the central limit theory implies, the coefficient of  variation for a line of  business will 

tend to decrease with the volume of  business written. This principle is confirmed by the fact that, 

for a particular line of  business, the coefficient o f  variation for the industry as a whole is typically 

smaller than that same measure for any particular firm. 

Third,  I believe that  this measure  of  L R U  can be appl ied to reserves that  have been  

es t imated  by methods  other  than  the  one r e c o m m e n d e d  here.  My argument here is very 

simple. Suppose that I u~tize the method and data proposed here to forecast future loss payments 

(i.e., the reserve) for some insurer and obtain a value R. Suppose also that the firm's own actuaries, 

utilizing a different method and far more extensive data, obtain an estimated reserve value of  R*, 

where R* = aR (i.e., some positive constant times the value R obtained using the method and data 

recommended here). Under rather broad conditions it is the case that if R* = aR, then the standard 

deviation S* = aS, where S* is the standard deviation of  the R* and S is the standard deviation of  R. 

If  this is so, then it is necessarily true that S*/R* = S/R. In other words, the coefficient o f  variation 

S/R will be (approximately) the same regardless of  the method used to estimate reserves. 

4. DATA N E E D E D  TO MEASURE LOSS RESERVE UNCERTAI NTY 

Comparing LRU across different lines of  business and, in particular, across different firms, 

requires that data that is commonly available and consistently defined. The data utilized here 

consists o f  the paid loss triangles reported in Schedule P, Part 3, o f  the Annual Statement required 

by the National Association of  Insurance Commissioners. This data is publicly available for all 

insurance companies licensed in the United States. 

Table 1 is an example of  such data. The rows of  this table are accident  years: the calendar years 

in which accidents occurred. The columns are deve lopment  years: calendar years in which claims 

payments for those accidents were actually made. A single accident can r.rigger multiple claim 

payments occurring in different development years. For example, an auto accident in November 

1995 could trigger a payment for physical damage to the insured's vehicle in December of  that same 

year, and an additional claim payment, for bodily injury medical costs, in 1996. Litigation, if it 

occurs, may delay claim payments into later )'ears. Table 1 shows that, for all accidents occurring in 

1994, $ 624 million in claims were paid that same year, a cumulative total o f  $ 2.1 billion had been 

paid by the year-end 1996, and $ 2.9 billion by year-end 2003. 
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Table 1: Cumulative Paid Losses (millions) 

Development Year 
Year 

Losses 
Were 

Incurred 
1994 
1995 
1996 
1997 
1998 
1999 
2000 
2001 
2002 
2003 

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 

624 1,595 2,066 2,366 2,559 2,685 2,765 2,818 2,860 2,895 
695 1,503 1,975 2,295 2,496 2,631 2,727 2,784 2,831 

668 1,477 1,968 2,263 2,447 2,562 2,645 2,707 
696 1,540 2,055 2,357 2,551 2,699 2,806 

770 1,670 2,225 2,583 2,822 2,985 
690 1,515 2,051 2,436 2,666 

544 1,321 1,859 2,191 
563 1,355 1,852 

593 1,416 
621 

Table 2: Accident Year x Development Year Cumulative Paid Losses (millions) 

Development Year 
t 0 1 2 3 4 5 6 7 8 9 

0 624 1,595 2,066 2,366 2,559 2,685 2,765 2,818 2,860 2,895 
1 695 1 ,503 1,975 2,295 2,496 2,631 2,727 2,784 2,831 
2 668 1 ,477 1,968 2,263 2,447 2,562 2,645 2,707 
3 696 1,540 2,055 2,357 2,551 2,699 2,806 
4 770 1 ,670 2,225 2,583 2,822 2,985 
5 690 1,515 2,051 2 ,436 2,666 
6 544 1,321 1,859 2,191 
7 563 1 ,355 1,852 
8 593 1,416 
9 621 

In Table 2, which is a reformatted version of Table 1, each row after the first has been shifted to 

the left, and development years have been renumbered, from zero to nine, to represent the number 

of years that have elapsed since the year in which the accident occurred. (I shall refer to these 

development years as DY0, DY1, and so on, and to accident years, also renumbered, as AY0, AY1, 

and so on.) The rearranged data in Table 2 more clearly shows how the claim payments for an 

accident yea develop over time, represented by the number of development years subsequent to the 
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year of  the accident. As before, these are cumulative claim payments. Table 2 is typical o f  the data 

commonly used to estimate loss reserves for a single line of  business. To estimate reserves, one 

must estimate, for all accident years, the difference between the amounts already paid and the 

ultimate amounts that will have been paid when all claims are finally settled. (This may occur well 

after DY9; if'so, then years prior to AY0 will also have to be analyzed, using separate data. Here I 

ignore all prior years.) 

5. T H E  SOURCES OF LOSS RESERVE U N C E R T A I N T Y  

Property-casualty loss reserves are estimates - forecasts -- o f  the total future payments that will 

be required to settle claims on accidents that have already occurred. The actual future payments may 

deviate from the forecast amount for several reasons, each of  which reflects a different risk. 

5.1 Types of  Risk 

To distinguish between the different types of  risk that are practically important in estimating 

LRU, it may be helpful to consider a simple phenomenon with which we are all familiar: flipping a 

coin. Let us postulate that we receive payoffs that correspond to the proportion of  heads that are 

flipped. In the first place, even if we know for certain that the probability of  flipping heads is p, the 

fact remains that the proportion of  heads actually flipped can deviate substantially from p. This is 

process risk. By contrast, pa rameter  risk reflects the fact at the true probability of  flipping heads 

is unknown to us, and must either be assumed or inferred from the outcomes we observe. We may, 

for example, infer that a coin with five heads in ten flips is fair and another with eight or nine flips in 

ten is biased. Parameter risk reflects the possibility that in both instances we may be wrong. In 

most practical situations we are exposed to both process risk and parameter risk, and find it difficult 

to distinguish between the two. 

Note, by the way, that it is process risk that gives rise to parameter risk. If a coin with a true 

probability of  1/2 of  flipping heads always produced five heads in ten flips, then parameter risk would 

not exist. 

FinaUy, the inferential process -- inferring whether a coin is biased by observing the outcome of  

multiple flips -- itself relies on a crucial assumption that is seldom made explicit: that the probability 

of  the coin flipping heads is constant and independent of  prior and subsequent flips. If, by contrast 

(as many gamblers assume), the probability of  flipping heads is mean-reverting, so that flipping tails 

is more likely after a long series of  heads, or if (by contrast) outcomes are positively serially 

correlated, so that flipping tails becomes even more likely after a preceding series of  tails, then the 

previously described inferences from observed outcomes are too simple to reflect reality. The point 
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here is that making inferences from the outcomes we observe depends upon an exphcit or implicit 

mental model o f  how those outcomes are generated. If our mental model is wrong, and assumes 

serial correlation where it is absent or assumes the absence of  serial correlation where it is present, 

we may draw the wrong conclusions from what we observe. This possibility that our mental model 

is wrong is called model  risk. All three types of  risk - process risk, parameter risk, and model risk - 

are important in estimating loss reserve uncertainty. 

5.2 Process Risk 

Some degree of  uncertainty is inherent in the process of  settling claims payments. The amount 

actually paid in a given development year is a complex result of  numerous factors - among them the 

uncertain outcomes and costs o f  medical diagnoses and treatments, and of  court proceedings or 

settlement negotiations. None of  these factors can be easily forecast. Consequendy, even at an 

aggregate level, attempts to predict future claim payments are inescapably imprecise. Process risk 

explains why our models fit past paid losses only imperfecdy, and why they require an error term in 

the prediction equation discussed below. 

5.3 Parameter Risk 

Actuarial methods necessarily use past experience to forecast future patterns. But past 

experience can be misleading. The culprit here is the relatively short period of  time - ten years - 

covered by a r)~pical paid loss mangle, so that parameter estimates are derived from a relatively small 

number of  observations. The paid losses in the triangle are all affected by process risk, but the small 

number of  observations creates substantial sampl ing  error. The result is that past data may, simply 

by chance, reflect unusuaUy favorable or unfavorable claims experience, and thereby affect the 

model parameters we are trying to estimate. 

As an example, consider the step in the chain ladder method in which one of  several weighting 

methods is used to produce a ratio of  cumulative losses in DY5 to cumulative losses in DY4. This 

and other similar ratios are key parameters in the chain ladder model. But note that in DY5 there 

are only five cumulative AY losses from which ratios can be formed. I f  one or more of  these five 

cumulative loss numbers is affected by an unusually large, or unusually small, daim pa}maent in DY5 

or in any preceding DY, then the resulting ratio will be atypically large or small. As this example 

suggests, this problem of  sampling error is more acute for firms and lines of  business that have few 

claims invohdng large payments than for firms with many small claims. Sampling error is likely to be 

less relevant to private passenger auto than to, say, product hability or D&O. 

Especially in low-frequency high-severity lines of  business, then, sampling error can lead to 

distorted estimates of  key loss reserve parameters. This important consequence of  sampling error 
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can be called parameter risk, since it pertains to the accuracy with which we can use past data to 

estimate key parameters in our model of  reserves or reserve uncertainty. Unlike process risk, which 

is inherent in the claims setdement process, parameter risk reflects our ignorance of  the true 

parameters that characterize that process and the consequent need for. us to use imperfect data to 

estimate them. 

5.4 Model  Risk 

All reserve estimates require extrapolation from the past to the future. We use data from the past 

to create a model o f  the evolution of  claims payments, and we then use this model to forecast future 

payments. Implicit in this process axe two crucial assumptions. One is that we have correctly 

modeled the past: that we have included all the relevant variables and specified the correct functional 

form of  the model. A second implicit assumption is that the pattern of  future claims payments will 

continue to conform to this model. That is, the way claims are settled in the future will closely 

resemble the way they have been settled in the past. This implicit assumption may become 

misleading if there are fundamental changes - known as regime changes  - in the claims settlement 

process at a particular firm (perhaps as a consequence of  regulatory or judicial decisions), or in the 

types of  claims being settled (which may change over time due to changes in business mix). These 

two components of  reserve uncertainty can be called model risk, since they pertain to the capability 

of  a model to correctly extrapohte from the parameters of  past experience to estimates of  future 

payments. 

Regime changes that have occurred in the past can often, although not invariably, be identified 

and corrected by means of  a thorough analysis o f  the differences (residuals) between the fitted 

values of  past paid losses obtained from a model and the actual paid losses that have been observed. 

(The paper by Barnett and Zehnwirth (2000) provides an excellent example of  the analysis of  

residuals.) If these residuals exhibit a trend or a sudden temporal shift, then there is good reason to 

suspect that a regime change has occurred. This possibility can be confirmed by testing a more 

advanced model that incorporates temporal changes in the value of  key parameters. Unfortunately, 

there are tradeoffs in introducing additional variables, since doing so is likely to increase our estimate 

of  LRU. Introducing additional variables may better fit past loss payments, but at the expense of  

greater uncertainty in forecasting future loss payments. The brutal fact is that a simplified but 

imperfect model of  past losses may be superior to a more complex model in its ability to precisely 

forecast future loss payments. 
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It is important to note, however, that regime changes occurring in the future can im, alidate the 

results o f  our analysis, which consist of  forecasts and estimates concerning that future. The risk 

measures proposed here implicitly assume a stable future environment, and do not  incorporate the 

risk o f  future regime changes. If such changes do occur, then the results obtained by the method 

presented here may become totally irrelevant to the changed circumstances. 

5.5 Summary 
Process risk essentially reflects the fact that some aspects of  the claims setdement process are 

inherently unpredictable. Pa rame te r  risk reflects the fact that, even if we have a correct model o f  

the evolution o f  paid losses, our estimates o f  the parameters of  this correct model will necessarily be 

somewhat imprecise. Mode l  risk reflects the possibility that the model we are using may itself be 

incorrect, so that our ability to predict future loss payments from past paid losses may be impaired. 

A satisfactory approach to estimating LRU should address all three o f  its sources. In particular, it 

should provide systematic ways to avoid, minimize, or detect model risk in the past, and it should 

quantify both process and parameter risk. 

6. CRITERIA FOR ACCURATELY ESTIMATING RESERVES A N D  
RESERVE U N C E R T A I N T Y  

The method presented here uses linear regression to fit past loss pa)anents, forecast future loss 

payments, and estimate LRU. But the use o f  linear regression - or any other method,  for that 

matter -- will not  produce accurate estimates o f  reserves and LRU unless certain crucial problems 

are avoided or corrected. Despite their huge potential impact on estimates o f  loss reseta, es and 

LRU, and the enormous attention devoted to them by even elementary econometrics texts, these 

problems are typically assumed away if they are discussed at all. Here I describe these problems, 

their relevance, and what can be done about them. 1 

6.1 Linear Regression 

In linear regression we initially assume a simple relationship between some dependent variable Y 

(here specified as paid losses) and one or more independent variables X. The relationship between 

the two is represented by the equadon Y = ~X + ~, where ~ is one or more parameters to be 

estimated, and ~ is an error term that represents random disturbances or deviations from the 

z In this section I rely heavily on Kennedy (2003), a superb elementat 3, presentation of the essentials of econometrics, 
and on Greene (2000), one of the most widely used advanced texts. 
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predicted relationship between Y and X. In the simplest possible model, X consists o f  a single 

independent variable. I shall refer to this as model 1. 

In this simple model, process risk is represented by E, which consists o f  disturbances that are 

assumed to have an expected value of  zero and a standard deviation that is constant across all 

observat ions .  Parameter risk is reflected in the fact that the resulting estimated value o f  [3, 

represented by b, is assumed to be correct, so that b = }, which may not  be true. Finally, model risk 

is represented in several ways. For example, model 1 directly assumes that the relationship between 

Y and X is indeed linear, that all variables pertinent to Y are included in ~ and that J3 is constant. 

All of  these may in fact be false, but  can typically be checked by thoroughly examining the residuals 

from the model - the deviations between actual and fitted paid losses. 

6.2 Bias 

If important variables affecting Y are omitted from model 1, the error term is likely to have a 

nonzero mean, the fitted and forecast values from the model will be biased - their estimated values 

will systematically deviate from their true values. In the absence o f  specific data concerning the 

omitted variables, we can take their influence into account by adding an intercept term to the 

original model, which now becomes Y = c( + ~X + ~. I shall refer to this model as model 2. Since 

the unnecessary use o f  an intercept term affects our estimate o f  LRU, we should use model 2 only 

when there is convincing evidence that the error terms from model 1 have a mean that significantly 

differs from zero. 

6.3 Varying Parameters 

Another  source o f  model risk is change over time in the value o f  ~. This may occur due to 

changes in (a) the firm's claims settlement process, Co) judicial decisions or regulatory requirements, 

(c) the composition o f  the firm's policyholders in that line of  business, or (d) the structure o f  a 

firm's reinsurance program (since paid losses are reported net of  reinsurance recoverable). These 

and other possible changes may produce sudden or gradual changes over time in the true value ~, 

but  these changes that will not  be reflected in its estimated value b. Fortunately, situations o f  this 

sort exhibit a characteristic pattern of  residuals, and can be corrected by using a slightly more 

complex model in which ~ is assumed to change linearly over dine, so that ~ --- ~,, + ~lt, where t = 

0, 1, . . . n is a time index. When this is substituted into the original model we have a new model, 

which I shall refer to as model 3: Y = ~ + ~ltX + *. If ~1 =0, then this model collapses into the 

original, simpler model 1. 
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6.4 Correlated Disturbances 

Linear regression models assume that the disturbance terms for each obse~,ation are 

uncorrelated with one another. For the data in Table 2, it sensible to assume - as many others have 

-- that the disturbances in different accident years are uncorrelated. The important question is 

whether  the disturbance terms within the same accident year are correlated across development 

years. I win show that they are in cumulative data. 

Suppose that, for a given line o f  business and a given accident year, the expected paid losses are 

$40, $30, $20, and $10 in development years zero through three. However, in any given 

development year the actual paid losses will deviate from these expected paid losses due to a variety 

o f  random factors whose net effect in those development years is ,,, ~1, '2, and e3, respectively. 

There are good reasons for assuming that these four random terms are independent o f  one another 

and o f  all other similar random terms affecting other accident years and development yeas .  

However, if we create a table o f  cumulative paid losses, as in Table 2, we will create correlations 

among these random terms, since the new disturbance term for AY1, for example, is now ¢. + ~1, 

which is clearly positively correlated with E,,, the disturbance term for AY0. In cumulative data, then, 

an unusually large disturbance in any development year will be reflected in all subsequent cumulative 

paid losses for that accident year. 

The tTpical consequence o f  correlated disturbances, explained in both Kennedy and Greene, is 

that a given model will appear to fit the historical data better than it actually does, so that process 

error will be underestimated. This, in turn will result in LRU being underestimated as well. 

Fortunately, the remedy for the correlated disturbances in cumulative paid loss triangles is simple: 

we should use incremental paid losses rather than cumulative ones. Consequently, the data we will 

utilize to estimate reserves and reserve uncertainty will be incremental, like that shown in Table 3, 

which is derived from Table 2. (The boxes in Table 3 are explained later.) Hal.lowell's (1996) 

alternative solution is discussed below. 
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Table 3: Accident Year x D e v e l o p m e n t  Year  Inc remen ta l  Pa id  Losses (millions) 

Development Year 
t 0 1 2 3 4 5 6 7 8 9 

o 62----TI 971 
1 695 808 473 
2 668 !809  491 
3 6961844 515 
4 770 900 555 
5 690 825 536 
6 544 777 537 
7 563 792 497 
8 593 ~823 
9 62__1 1 _ _  

300 193 126 80 
319 201 135 96 
295 184 115 83 
302 194 148 107 
358 239 162 
384 231 
332 

53 42 
57 47 
63 

35 

6.5 H e t e r o s k e d a s t i c i t y  

Linear regression assumes that the disturbance terms for past observations are homoskedasdc - 

i.e., have a constant variance or standard deviation as measured here in dollars (and not  in 

percentage terms). This assumption is clearly violated in paid loss triangles like Table 3, for the 

variability of  disturbances typically decreases from one devdopment  year to the next. 

Heteroskedasde (non-constant) disturbances reduce the precision of  reserve est~nates and especially 

o f  estimates o f  LRU. 

There are two remedies for heteroskedasticity that are relevant to the problem at hand. One  is to 

use a procedure known as Generalized Least Squares (GLS), which is a variation of  linear regression 

that incorporates the use of  an assumed or estimated variance-covafiance matlax of  disturbances 

(Halliwell, 1996; Taylor and Ashe, 1983). One  typical assumption, for example, is that the standard 

deviation of  disturbances is proportional to the observed losses themselves. Besides its complexity, 

there is a fundamental problem with the use of  GLS for estimating reserves and LRU. Whether the 

variance-covariance matrix is assumed or estimated, the use of  GLS introduces additional parameter 

risk that is not  taken into account in the est~nate of  LRU. Moreover, however useful GLS may be 

in increasing the accuracy of  resetwes estimates, when it is applied to the problem of  estimating LRU 

it comes dangerously close to assuming precisely what we are trying to estimate. 

A second and far simpler remedy is to assume - quite plausibly - that the standard deviation of  

disturbance terms is constant within the same development year. What  this implies, in practice, is 

the need to perform separate regressions on each development year. While this procedure may be 
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less elegant than performing a single comprehensive regression for the whole paid loss triangle, it 

avoids the need to make problematic assumptions about variances and covariances. 

6.6 Zero Correlation Between Disturbances and Independent Variables 
Halliwell (1996) correctly points out that the classical linear regression model required that the 

independent variables be non-stochastic. However, both Greene (2000) and Kmenta (1977, pp. 

297ff.) demonstrate that this stringent and seldom-met condition can be replaced by one that is far 

less demanding, namely, that the disturbance terms be independent o f  the values of  the independent 

variables. However, even if the correlation is slightly positive rather than zero, the effect on the 

resulting estimates o f  reserves and LRU is imperceptible, as I shall demonstrate later on. 

6.7 Implications and Summary 

In using linear regression to estimate reserves and LRU, it is essential to avoid the various pitfalls 

just described. If  one or more of  these problems do occur, then estimates of  reserves and LRU may 

be seriously affected. It should be noted that this conclusion applies not only to the use of  linear 

regression, but to the use of  other estimation procedures as well. 

The immediate implications for modeling reserves and LRU can be summarized as follows: (a) if 

bias appears to be a problem, use model 2 rather than model 1; (b) if the model parameters appear 

to change over time, use model 3; (c) to avoid correlated errors, use incremental paid loss triangles; 

(d) to avoid heteroskedasticit3, , analyze different development years separately; (e) the use of  non- 

stochastic independent variables, as advocated by Halliwell (1996) is unnecessary provided that there 

is no correlation between disturbances and the independent variables. 

7. ESTIMATING LOSS RESERVES 

I will present the full procedure for estimating reserves in this section, and for estimating LRU in 

the next one. In both, the presentation will focus initially on DY0 through DY7 and subsequendy 

on DY8 and DY9, where data is minimal and extrapolation from the results for preceding DY's 

becomes necessary. 

7.1 Fitting and Forecasting Losses for DY1 to DY7 

The procedure I use here is linear regression. As explained in the previous section, we will 

analyze each DY separately. The independent variable X used to fit each DY is the column of  paid 
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losses in DY0, shown in the left box in Table 3. We will illustrate the procedure by fitting DY2, the 

right box in Table 3, as the dependent variable. In model 1, these are the only two variables) 

In the absence of  specialized statistical software, one would typically perform the linear 

regression in Excel to obtain the regression coefficients and fitted values. Then  one would obtain 

forecast values and, finally, calculate their forecast standard deviations. This final step can be 

especially complex. Here I introduce a method first suggested by Salkever (1976), later 

recommended t~y Kennedy, and described briefly but clearly by Greene (pp. 308-310), that makes it 

possible to do all three steps simultaneously. 

Tab le  4: Fi t t ing and  Forecas t ing  DY2 

I v I I  x I 
DY2 DY0 D9 D8 

471 
473 
491 
515 
555 
536 
537 
497 

624 0 0 
695 0 0 
668 0 0 
696 0 0 
770 0 0 
690 0 0 
544 0 0 
563 0 0 
593 0 -1 
621 -1 0 

b 0.77 477 456 
s% 0.03 62 62 

RZ, sec,t 0.99 59.0 
t-stat is t ic  24.3 7.7 7.4 

Table 4 shows the key steps in the Salkever algorithm. First, augment  the dependent variable Y 

with zeros so that it is the same length as DY0. Second, for each of  the zeros added to Y, create 

2 Some readers have asked why I don't propose using DY 1 and DY2 in estimating DY3, and so on. The answer is 
simple: very soon one has more variables than observations. This point is actually a specific case of an important 
and more general principle: increasing the number of independent variables can actually increase loss reserve 
uncertainty by reducing degrees of freedom. 
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additional columns in the independent variable X, in each of  which there is a single entry, -1, 

corresponding to one of  the zeros in Y. These additional variables are known as "dummy"  

variables, and so I have labeled them as D9 and D8, since their nonzero entries correspond to AY9 

and AY8. In this example X now consists o f  three variables. Third, perform the linear regression 

(LINEST in Excel, with no intercept). The results are shown at the bot tom of  Table 4, with one 

slight difference from those obtained in Excel: I have reversed the left-to-right order o f  the first two 

rows of  regression results, so that they now appear in the same order as the three variables in X, 

thereby doing what Microsoft should have done. 

7 .2  R e s u l t s  

The first column of  results is identical to what one would have obtained by simply regressing Y 

against X. The estimated regression coefficient b is 0.77, which indicates that the losses in DY2 are 

about 77% of  those in DY0. The standard error o f  b, in the second row, tells us that b has an 

estimated standard deviation o f  0.03. The t-statistic, in the fourth row, is the ratio o f  b to its 

standard error. As a general rule o f  thumb, t-statistics with absolute values greater than 2.0 are 

considered significandy different from zero. The two numbers in the third are R z and the standard 

error o f  the estimate, which is the estimated standard deviation o f  the error terms, the differences 

between fitted and actual values o f  Y. In the absence of  an intercept R z is typically high, so the 

standard error o f  the estimate is a better measure o f  goodness of  fit. 

Tab le  5: Fi t ted Values  & Regres s ion  Coefficients  
For  E a c h  D e v e l o p m e n t  Year 

D e v e l o p m e n t  Year 
t 0 1 2 3 4 5 6 7 

0 800 480 303 
1 890 534 337 
2 855 513 324 
3 891 535 338 
4 986 592 374 
5 884 530 335 
6 697 418 264 
7 722 433 
8 760 
9 

187 124 85 54 
208 138 95 61 
200 133 91 58 
209 139 95 
231 153 
207 

b 1.28 0.77 0.49 0.30 0.20 0.14 0.09 
seb 0.05 0.03 0.02 0.01 0.01 0.01 0.00 
s e , ,  91 59 40 15 12 9 4 
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The real value o f  the Salkever procedure lies in the remaining two columns o f  regression results. 

The regression coefficients in the first row are the forecast  pa id  losses  for AY9 and AY8, 

respectively, and the values in the second row are the corresponding forecast  standard errors) 

The results from applying this procedure to DY1 through DY7 are summarized in Table 5. The 

top part shows the fitted values of  past loss payments; the lower part shows the regression 

coefficients and other summary measures of  goodness of  fit. (In all cases R 2 was 0.99.) For DY1 

through DY7, all estimated coefficients b were relatively precise, as indicated by their small standard 

errors. In each DY goodness of  fit, as measured by the standard error of  the estimate, is likewise 

small relative to the average paid loss. Particularly noteworthy, though, is the fact that the standard 

error of  the estimate varies dramatically across development years. This validates our concern about 

heteroskedasticity, described in section 6.5. 

1.4 

;~ L2 

1.o 

• ~ 0.8 
~ 0.6 

~ 0.4 

~ 0.2 

0.0 

Figure  1= M o d e l  I P ayou t  P a t t e rn  

%___ 
, , , , , , , 

0 1 2 3 4 5 6 7 8 9 10 
D e v e l o p m e n t  Year  

The overall pattern of  the regression coefficients is shown in Figure 1. These regression 

coefficients can be used in a fashion similar to chain ladder link ratios. The regression coefficient 

for any given DY is the estimated incremental dollars paid in that DY relative to the dollars paid in 

DY0. In DY1, for example, one can anticipate paying, on average, about 28% more than was paid 

out in DY0. For  a g iven  AY, then,  the  r ema i n i ng  p a y m e n t s  c an  be  e s t ima t ed  by add ing  up  

the  coeff icients  for the  r e m a i n i n g  DY's  and  t hen  mul t ip ly ing  by the  a m o u n t  pa id  in DY0. In 

this example, the sum of  the coefficients is 3.43 when one includes the tail. For AY9 the estimated 

3 Readers who attempt to replicate these results may obtain slightly different parameter estimates, since the data in 
Tables 3 and 4 are rounded values. The actual data is available from the author on request. 
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remaining paid losses are 3.43 times the $621 million loss in DY0, or $2.130 billion, so that the 

estimated ultimate AY total is $2,751 billion. 

7 .3  A n a l y s i s  o f  R e s i d u a l s  

Tab le  6: Res idua ls  f rom Fit ted Values  

D e v e l o p m e n t  Year  
t 0 1 2 3 4 5 6 7 

0 171 -9 -3 5 
1 -82 -62 -18 -7 
2 -47 -22 -29 -16 
3 -47 -19 -36 -15 
4 -86 -37 -16 8 
5 -59 5 49 24 
6 80 119 68 
7 70 64 
8 63 

2 -5 -1 
-4 1 -3 

-18 -8 4 
10 12 
9 

Table 6 shows the residuals -- the difference between actual and fitted values - for the data 

analyzed here. Two questions are central to the analysis o f  these residuals. First, do they exhibit 

patterns that may alert us to variables or unusual conditions not  reflected in Model 1? Second, are 

the magnitudes o f  any particular residuals significant or noteworthy? 

Tab le  7: S tandard ized  Res idua l s  

D e v e l o p m e n t  Year  

t 0 1 2 3 4 5 6 7 

0 1.9 -0.2 -0.1 
1 -0.9 -1.0 -0.5 
2 -0.5 -0.4 -0.7 
3 -0.5 -0.3 -0.9 
4 -0.9 -0.6 -0.4 
5 -0.6 0.1 1.2 
6 0.9 2.0 1.7 
7 0.8 1.1 
8 0.7 

0.3 0.1 -0.6 -0.3 
-0.5 -0.3 0.1 -0.8 
-1.1 -1.6 -0.9 1.1 
-1.0 O.9 1.3 
0.5 0.8 
1.5 
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Table 6 provides a basis for answering the first question, and Table 7, which shows standardized 

residuals (residuals divided by the DY standard error), facilitates answering the second. Table 7 

shows, for example, that only one standardized residual has an absolute value greater than 2, which 

can be expected to occur about five percent of  the time, or in about two instances of  the 42 values 

shown in the table. Although the signs of  the residuals show a suspicious pattern across accident 

years, the magnitude of  the deviations is not sufficiently great to add additional variables to the 

analysis. (It is also the case, as numerous studies have shown, that we psychological anticipate that 

truly random variables will be even more "random" than is in fact the case. The signs and 

magnitudes of  the residuals in Table 7 are quite consistent with an assumption of  random residuals.) 

The fact that an extensive discussion of  the art of  residual analysis is beyond the scope of  this 

paper should by no means obscure its fundamental importance. The estimation of  loss reserves and 

LRU should not be a mechanical application of  a standard algorithm to standard data. As 

experienced actuaries and analysts know, the scientific model-building that lies at the core of  

actuarial science must necessarily be accompanied by skillful judgment in determining how those 

models are applied and interpreted for particular firms and lines of  business. 

7.4 Forecasting the Tails 

Table 8 shows the forecast future paid losses obtained from applying model 1 to the data in 

Table 3 as well as the estimated payments for the tails, DY8 and beyond. The procedures used to 

obtain these tail estimates makes two important assumptions. The first is that the regression 

coefficients from DY4 and beyond decrease exponentially. Figure 1 already demonstrated that this 

assumption does not hold for earlier DYs. Focusing on DY4 and beyond makes it possible to apply 

this procedure to lines of  business with long tails. The second assumption is that the rate of  

exponential decay can be estimated from the coefficients already obtained for DY4 through DY7. I 

now describe the two steps needed to derive forecasts from these assumptions. 

In step one we extrapolate the regression coefficients already obtained to DYs beyond DY7. 

Because we have assumed that the coefficients decrease exponentially, it is appropriate to use 

logarithmic regression. We create a variable W that consists of  the regression coefficients for DY4 

through DY7, shown previously in Table 5. We also create a variable V consisting simply of  the 

numbers 4, 5, 6, and 7. Then we obtain estimates a and b of  the coefficients c~ and 13 in the 

logarithmic regression lnW = c~ + [3V + ,. From this we obtain b, the estimated value of  13, which is 
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the logarithm of the rate of exponential decay. In this analysis I use d = expCo ) = 0.66 as the 

esth'nated rate at which the coefficients decrease from one year to the next in the tail: 

Table 8: Forecast  Future  Paid Losses  

Development  Year 

t 0 I 2 3 4 5 6 7 8 9 Tail 

0 48 

1 27 53 

2 35 24 47 

3 61 43 29 57 

4 105 67 47 31 62 

fi 137 94 60 42 28 56 

6 163 108 74 47 32 21 42 

7 274 169 112 77 49 33 22 44 

8 456 288 178 118 81 52 35 23 46 

9 796 477 302 186 124 85 54 37 24 48 

Development 
Year Total  796 933 863 696 600 517 390 305 230 504 

In step two we create robust forecasts of  the paid losses in subsequent development years by 

using an average of  three separate forecasts. For each accident year, the paid loss for DY8 is 

forecast as P8 = (P4 d4 + Ps d~ + Pc, dZ)/3. The three terms in parentheses are three different forecasts 

of  P8 created from the actual or forecast paid losses in DY4, DY5, and DY6. The forecasts for P9 

are made in the same way, except that the exponents of  d are each increased by one. Finally, the 

forecast value for the tail, consisting of  paid losses for all development years after nine, is calculated 

as the forecast for Pit, multiplied by l / ( l -d) ,  the formula for the sum of the infinite exponentially 

decreasing series (l + d + d 2 + ...). The results of  this procedure have already been shown in Table 

8. The estimated reserve for these data, based on Model I, is $5,835 million. 

4 Technically, unless the logarithmic regression perfectly fits the data, one should include a slight adjustment for the 
error term in order to obtain the mean estimated value ofb. By deliberately failing to include this adjustment I 
instead obtain the median value of b, which is presumably more robust. In most cases the difference is miniscule 
and difficult to explain to a non-technical audience. 

Casualty Actuarial Society Forum, Fall 2006 257 



Measuring Loss Reserve Uncertainty 

8. E S T I M A T I N G  LOSS R E S E R V E  U N C E R T A I N T Y  

As in estimating loss reserves, here we deal first with DY1 through DY7, and then tackle DY8 

and beyond. We will first estimate the uncertaint 3, o f  the total forecast payments for each DY. 

Then we will estimate total LRU by appropriately aggregating the uncertainties obtained for each 

DY. 

8.1 E s t i m a t i n g  t h e  U n c e r t a i n t y  o f  D Y  F o r e c a s t  T o t a l s  

For DY1 there is only one future payment to be forecast, and we can obtain that forecast and its 

forecast standard deviation directly from the Salkever method. 

Table  9: Calculat ing the Standard Deviat ion of  Forecas t  Paid  Losses  for DY2 

Step 1: Assemble  the Input  Data: X, X0, s, I 

DY0 

X= i 624 I The  s tandard  error o f  the  

695 I es t imate ,  se,,,, shown  in 
i 
668 I Tables  4 and 5: 

696 [ s--- 59 

770 I 

690 I The  Identi ty Matrix I 

544 I (for DYn it is n x n) 

563 I 
- 

X0 = 593 I I= 

621 I 

Step 2: Calculate the Variance-Covariance 

Matrix VCV 

VCV = s2[I + X#I 'X)"Xo ' ]  

= [ 3,838 369 J 
369 3,872 

Step 3: Calculate the square root o f  the 

sum of  the entries in the VCV matrix 

(I~ VCV) t/2 = 8,447 t/~ = 92 

This  is the s tandard  deviat ion of  the sum 
of forecast  paid  losses for DY2 

For subsequent DYs the problem is more complex, since forecast future payments within a DY 

share the same parameters and are therefore correlated since they share common parameter risk. 

What this means, in concrete terms, is that if the regression coefficient b is too high relative to its 

true value 9, then all forecasts will be too high, and so will be correlated with one another, although 

not perfectly. When we estimate LRU we must take into account not only the forecast standard 

errors for each entry in the lower right portion of  the loss resela, e mangle, but also the estimated 
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covariances among these forecasts. Fortunately, the Salkever procedure provides a relatively simply 

way to do this. 

The estimation procedure for DY2 and subsequent DYs is shown in Table 9. The input data are 

shown at the top of  the table. One is the column of paid losses in DY0. Recall that in Table 4 the 

first eight entries of  DY0 were used to fit the eight paid losses already observed in DY2, and the 

remaining two entries were used to forecast future paid losses. Here we need to split DY0 into two 

separate parts, which we label X and ~ ,  to correspond to the notation used by Greene (2000, p. 

309). Another input, s, is the standard error of  the estimate for DY2, already reported in Tables 4 

and 5. Finally, we need an identity matrix I, a square matrix of size n, where n is the number of  the 

DY, with one's on its main diagonal and zero's elsewhere. From these inputs we obtain VCV= s2[I 

+ X,(X'X)-'~,'], the variance-covariance matrix for forecast errors. We then sum these entries and 

take the square root of  that result to obtain the standard deviation of the DY2 sum of forecast paid 

losses, which here is 92. 

The standard deviations of  the sum of forecast paid losses for DY3 to DY7 are calculated in the 

same way. s Note that as we move from one DY to the next we must increase the number of  entries 

in ~ ,  by one, correspondingly decrease the number in X by one, and increase the dimension of  I by 

one. The results are reported in Table 11, to which we shall return after we first obtain standard 

dexfiations for paid losses in DY8 and beyond. 

8.2 Estimating the Standard Deviations of Forecast Tail Paid Losses 

Salkever's method, applied to DY1 through DY7, provided forecasts of  future paid losses (shown 

in Table 8) as well as standard errors (standard deviations) for these forecast values, are shown in 

Table 10. The table also shows the estimated standard errors of  forecast losses for DY8 and 

beyond, which we calculated as follows. 

As with regression coefficients, the assumption is that the standard errors decrease exponentially 

in the tail. As before, we use logarithmic regression to estimate the rate of decrease. Here, however, 

the dependent variable U consists of  the average standard error for each DY from DY1 to DY7, and 

the independent variable T consists of the numbers from 1 to 7. For the regression lnU = ct + J3T + 

~, we obtain an estimate b such that the rate of  decrease g = exp(b) = 0.61. In a manner identical to 

the one used for paid losses, we forecast the standard deviations for DY8 in each AY as E8 = (E4g 4 

+ Esg 3 + E,gZ)/3, an average of  three forecasts. Here each E within parentheses is the standard 

s The Excel array formula for VCV, where range names are shown in boldface type, is this: V C V =  S*(l .2+ 
~ fULT~fULT(XZ E RO,MINVERSE ~ ~ fULT(TRAN SPOSE(X) ,X))),TRANSPOSE (XZ E RO))). 

Casualty Actuarial Society Forum, Fall 2006 259 



Measuring Loss Reserve Uncertain(y 

error o f  the forecast (for cells with forecast values) or the standard error o f  the estimate (for cells 

with observed values). 

Tab le  10: S tandard  Errors  of  Forecas t  Pa id  L o s s e s  

D e v e l o p m e n t  Year  
t 0 1 2 3 4 5 6 7 8 9 Ta i l  
0 5 
1 2 5 
2 3 2 5 
3 5 3 2 5 
4 10 5 4 2 5 
5 13 10 5 4 3 5 
6 16 12 10 4 4 2 5 
7 42 16 12 10 4 4 2 5 
8 62 42 16 12 10 5 4 2 5 
9 96 62 43 16 12 10 5 4 3 5 

The last step requires that we obtain the standard errors o f  the sum of  forecast paid losses for 

development )Tears eight, nine, and the tail. To do this requires that we estimate what the variance- 

covariance matrices for those years might look like. We can in fact do this by examining the 

matrices already calculated for earlier development years. 

The function of  the variance-covariance matrix is to reflect interrelationships among the forecast 

errors. These interrelationships exist because the various forecast values all depend upon a common  

underlying parameter, [3, whose esfmate ,  b, may incorporate error. Any error in b will 

simultaneously affect all the forecast values. Moreover, as the number  of  observations on which 

estimates of  } is based decreases, the interrelationships among forecast errors increase. 

Were it not  for these interrelationships among forecast errors, we could very easily calculate the 

standard deviation o f  total forecast paid losses by assuming that these forecasts and their errors were 

independent. In this case, the standard de~qation of  total forecast paid losses for development year 

n, which has n forecast values, would be o* = (noi2) '/' = o,n '~, where o* is the standard deviation of  

total forecast paid losses assuming independence, and o i is the standard error o f  individual forecasts, 

here assumed to be equal (which is approximately true). In fact, however, we need to take into 

account the fact that the off-diagonal elements in the variance-covariance matrix are non-zero. Here 

we assume that these elements are identical in value (again, approximately true) and equal to koi z, 

where k is some constant to be estimated. In this case, the correct standard deviation of  total 

forecast paid losses, o, is o,(n+kn(n-1)) '/2. If we now calculate the ratio o f  o to o* we obtain the 
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quanti ty ( l + k ( n - l ) )  '/', wlfich is a multiplier: i t  is the amoun t  by which  o*, which  assumes 

independence ,  mus t  be mult ipl ied to obtain o, which  does not. This approximat ion,  w h e n  applied 

deve lopmen t  years one  through seven, p roduces  results that  are nearly an exact  ma tch  to those 

obta ined by having the actual variance-covariance matrix. 

The  key to applying this me thod  is having  a value for k, wi thout  which the mult ipl ier  cannot  be 

calculated. The  procedure  used here  was, first, to obta in  the value of  k f rom the variance-covariance 

matrices calculated for deve lopment  years one  th rough  seven, second, to use l inear regression to fit 

these values to an independen t  variable consis t ing  o f  the number  one through seven, and  third, to 

forecast  values of  k for deve lopmen t  years e ight  and nine and for the tail, for which the independen t  

variable was nine plus the tail 's weighted average length in years. 6 

T a b l e  11: S t a n d a r d  E r r o r s  o f  F o r e c a s t  P a i d  L o s s e s  
By  D e v e l o p m e n t  Yea r ,  T o t a l  R e s e r v e ,  a n d  C a l e n d a r  Y e a r  

D e v e l o p m e n t  Year 1 2 3 4 5 6 7 8 9 tail 

A. Sum of  Forecast  Paid  Losses  796 933 863 696 600 517 390 305 230 504 

B. Standard Deviat ion of Forecast  96 92 81 37 34 33 17 18 15 45 

C. Coefficient of  Variat ion (=B/A)  12% 10% 9% 5% 6% 6% 4% 6% 6% 9% 

D.  Calendar Year 2004 Forecast  Paid Losses  

E. Standard Devia t ion  of CY Forecast  

F. CY Coefficient  of Variat ion ( - -E /D)  

Total 

5,835 

175 

3.0% 

2,070 

124 

6.0% 

8.3 Results 

Table 11 shows the combined  results o f  a p p l # n g  these-procedures.  Line A shows the sum o f  the 

forecast paid losses for each deve lopmen t  year, as previously reported in Table  8. Line B shows the 

6 Recall that d is the estimated ratio, in the tail, of the paid loss in one development year to the paid loss in the prior 
development year, so that d < 1. The average length of the tail, L, is calculated as a ratio in which the numerator is the 
infinite series 1 +2d+3d2+4d3+..., and the denominator is the infinite series l+d+d2+d3+ . . . .  The numbers 1, 2, and 
so on are the number of years subsequent to development year 9 in which payments occm, and each year is weighted by 
the percentage of total tail payments occttrrmg in that year. The denominator is total tail payments. The value of the 
numerator is 1/(l-d) 2, and the value of the denominator is 1/(l-d), so that the value of their ratio, L, is 1/(l-d). 
Consequently, for purposes of estimating k to calculate the multiplier for the tail, the number of the tail development 
year is 9 + 1/(1-d), which in this case is 12. 
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standard deviations o f  the values in line A. These differ from the values shown in Table 10, which 

are the standard dexfiations o f  the individual components  of  the sums in line A. Both, however, 

reflect parameter risk as weU as process risk. The Total in line B is obtained by taking the square 

root of  the summed squares o f  the values in that row. This assumes independence, which is 

appropriate since by using incremental paid losses we have eliminated correlations across 

development years. 

Line C shows the coefficients of  variation, the standard deviations divided by the forecast paid 

losses. For the total estimated reserve of  $5.8 billion, the standard deviation of  $175 million is 

approximately 3.0% of  the reserve. The fact that a consistent methodology was here used to 

estimate both the reserve and its standard deviation underscores a point made earlier: even  if o ther  

methods or in fo rma t ion  are u s e d  to obta in  a different  e s t ima ted  reserve,  this  e s t ima te  of  

loss reserve uncer ta in ty ,  the  coefficient o fvar ia t ion ,  shou ld  none the l e s s  r e m a i n  valid. 

Line C also validates the concern about heteroskedasticity discussed in section 6.5. In Table 5 we 

shows that the standard deviations of  the disturbance terms in our regression results varied 

considerably, in dollar terms, across different development years. Line C shows that 

heteroskedasticiry remains even when the standard dexdation of  the disturbance terms are expressed 

as a percentage o f  forecast paid losses (i.e., as coefficients o f  variation). What  this means is that the 

convenient assumptions often utilized in generalized linear models (GLM) or generalized least 

squares (GLS) may not  be valid. In practice, these estimation procedures focus principally on 

estimating loss reserves, so that estimates of  LRU are purely secondat T. By contrast, the model 

presented here focuses principally on estimating LRU, and estimates o f  loss reserves are o f  

secondary importance. 7 

Table 11 also shows, in line D, the sum of  the forecast paid losses for calendar year 2004, which 

consists of  the sum of  the forecast losses in Table 8. The standard deviation o f  this value, shown in 

line E, is $124 million, or about 6% of  the estimated calendar year total forecast payments o f  $2.07 

billion. This calendar year measure of  LRU can be especially important for helping managers to 

determine whether actual calendar year paid losses (for AY1 to AY9) deviate sigmficandy from their 

forecast total. 

I hasten to observe that the Coefficient o f  Variation (Table 11, Line C) and the Calendar Year 

Coefficient o f  Variation (Table 11, Line F) are both atTpically low. Although I have deliberately not  

identified the firm nor the line of  business analyzed here, I will point out that this firm has a high 

volume of  business in this line and deliberately targets its exposures to the less risky end of  the risk 

7 This distinction is not trivial. Estimates of loss reserves may in fact be improved by using estimates of LRU that 
are relatively correct hut nonetheless absolutely wrong by orders of magnitude. 
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spectrum. In a subsequent report I will describe the typical parameters and risk measures for the 

principal firms in each line of  business. 

Finally, I simply note that the Calendar Year Coefficient o f  Variation (CYCV), 6%, shown in 

Table 11 Line F, is greater than the Total Reseta,e Coefficient o f  Variation (CV) shown at the far 

right o f  line C. This result is consistent with what one would anticipate, since the Total Reserve CV 

includes all forecast future loss payments, which are imperfectly correlated, whereas the entry on line 

F includes only the forecast future loss payments occurring in the next calendar year. The Total 

Reserve CV is therefore considerably more diversified than the CYCV, and consequently is smaller. 

9. VALIDATING T H E  RESULTS 

Here I validate the results just obtained by demonstrating that the same methods accurately 

estimate the future paid losses and LRU's of  10,000 simulated paid loss triangles with known 

parameters and outcomes. 

To create simulated paid loss triangles I begin with an underlying deterministic payout pattern in 

which paid losses decrease exponentially from an initial value in DY0 that is identical for all accident 

),ears. (In this particular simulation, paid losses in each DY are half those in the preceding one.) I 

then add to each of  these expected payments a random deviation drawn from a normal distribution, 

with a mean of  zero and a standard deviation that increases linearly from 10% of  the expected paid 

loss in DY0 to 100% in DY9 and 110% in DY10 and beyond. The simulations in fact generate the 

entire path of  paid losses to the point where they become miniscule. Consequently, the ultimate 

paid losses can, in principle and in fact, depart considerably from the expected values established by 

the underlying pattern, and the standard deviations of  these simulated variations can be calculated. 

The results o f  the simulation are shown in Table 12. The first half of  the table reports the 

accuracy of  the method used here in forecasting DY sums of  future loss payments. Line A shows 

the DY sums of  expected future loss payments before random disturbances are added. Line B 

shows the average, over the 10,000 scenarios, of  the simulated DY sums of  future loss payments. 

Section C reports the results of  using the procedure used in this paper to estimate DY sums of  

forecast future loss payments. 

When the independent variable is stochastic, and consists o f  the simulated loss payments in 

development )'ear zero, the results are only trivially different from those obtained by using as the 

independent variable the expected (i,e., deterministic) loss payments in DY0 as if they were in fact 

known. This  confirms the assert ion in sect ion 6 that  the  use  o f  a s tochas t i c  i ndependen t  

variable is not  a problem if its d is turbances  are i n d e p e n d e n t  of  those  that affect  the 
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dependent  variable. The admittedly ad hoc procedure used here to calculate the tail values 

overestimates them somewhat. This is undoubtedly due to the fact that us ing  the exponential  

decay function to project tail payments  rules out negative payments ,  while the s imulat ion 

does not. Nonetheless, forecasts of  paid losses in the next calendar year, shown in the last column 

in Table 12, are remarkably accurate. 

Table 12: Monte Carlo Results for Estimating Reserves and Reserve Uncertainty 

DY: 1 2 3 4 5 6 7 8 9 10+ Total CY 

DY Sum of Future Loss Payments 
A. Underlying mean values 400 400 300 200 125 75 44 25 14 16 1,598 800 

B. Average simulated values 399 401 301 200 124 75 44 25 14 16 1,599 799 

C. Average forecast values 

-- using stochastic X 397 397 298 198 124 75 43 34 22 33 1,622 796 

-- using fixed X 400 400 300 200 125 75 44 34 22 33 1,633 802 

Standard Deviation ¢SD~ of DY Sum of Future Loss Pavments 

D. True SD from parameters 80 85 69 50 34 21 13 8 5 5 151 112 

E. SD of simulated payments 80 85 71 50 34 21 13 8 5 5 152 112 

F. Parameter risk multipliers 1.1 1.1 1.2 1.3 1.4 1.6 

G. True SD plus parameter risk 89 77 60 43 30 21 

H. Estimated SD 

-- using stochastic X 91 97 82 62 45 32 19 18 13 31 189 127 

-- using fixed X 82 92 79 61 44 31 19 17 13 31 180 118 

The second part of Table 12 verifies the accuracy of the procedure for estimating the standard 

deviations of forecast future loss payments. Line D shows the actual standard deviations used in the 

simulation, and line E shows the standard deviation of the simulated losses. As one would hope 

from a properly conducted simulation, the two are virtually identical. Line F shows the multipliers 

for parameter risk obtained from the modeled variance-covariance matrices, and line G shows the 

true standard dexfiations in line D multiplies by the corresponding values in line F. These values in 

line G are the values one would hope to obtain in estimating LRU. The actual estimates obtain, 

both with a stochastic X and a fixed X, are shown in section H. The two sets of  estimates in this 

section agree closely with each other and with the target values in line G. However, it appears that 

using a fixed X, as recommended by Halliwell (1996) ~ improves the estimates for DY1 and 

DY2. For the total reserve, both stochastic and fixed X's produce a similar result, and substituting 
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one for the other would have an imperceptible effect on the coefficient o f  variation (CV). For 

stochastic X the CV is 11.65%, and for fLxed X it is 11.02%. 

10. SUMMARY A N D  CONCLUSIONS 

The method I have presented here for estimating loss reserve uncertainty - the coefficient of  

variation o f  estimated future loss payments -- has a number  o f  merits. First, it can be used to 

address significant issues in surplus management,  in pricing and. capital allocation, and in the 

management  o f  uncertainty. Second, it uses a measure o f  loss reserve uncertainty that facilitates 

comparison across different lines o f  business and can be applied to reserve estimates obtained 

through alternative methods. Third, it uses a publicly-available source o f  data that facilitates 

comparison across different fu'ms. Fourth, the method avoids a number  of  serious pitfalls that can 

distort estimates o f  reserves or LRU. Fifth, the method is simple, at least as compared to some of  

the alternative methods advocated in the rdevant  literature. In particular, its use o f  Salkever's 

method provides an extremely useful shortcut for obtaining results. And sixth, the method 

accurately captures the key parameters of  simulated paid loss trajectories. The reserve estimates are 

extremely accurate, and the estimates of  reserve uncertainty, which include parameter risk, agree 

closely with benchmark calculations. 

At the same time, the method proposed here has important limitations. First, I have used linear 

regression as a model for forecasting future loss payments. Linear regression is often advocated as a 

maximum likelihood procedure for estimating model coefficients. This is indeed the case when 

residuals are assumed to have a normal dismbution. Here I make no such assumption, and so rely 

on linear regression as a procedure that estimates parameters so as to minimize squared error 

between fitted and actual values of  the dependent variable. This is quite legitimate, but  potentially 

disturbing to statistical perfectionists. Second, I make no assumption concerning the nature of  the 

distribution o f  disturbances. The inferences from the model I present concern only the mean and 

standard deviation o f  loss reserves. The information needed to derive, say, an 80 'h percentile o f  the 

distribution o f  ultimate loss payments cannot be obtained from the method presented here. 

I hope that I have convinced readers that the method presented here for estimating loss reserve 

uncertainty that is both accurate and reasonably simple to implement. I also hope that my 

presentation o f  it is accessible to a large number  o f  professional colleagues, who are invited to apply 

it in their own work and to extend it to novel uses. 
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