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Abstract 
This paper demonstrates a Bayesian method for estimating the distribution of future loss payments 
of individual insurers. The main features of this method are: (1) the stochastic loss reserving model 
is based on the collective risk model; (2) predicted loss payments are derived from a Bayesian 
methodology that uses the results of large, and presumably stable, insurers as its prior information; 
and (3) this paper tests its model on large number of insurers and finds that its predictions are well 
within the statistical bounds expected for a sample of this size. The paper concludes with an analysis 
of reported reserves and their subsequent development in terms of the predictive distribution 
calculated by this Bayesian methodology. 
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1. Introduction 

Over the years, there have been a number of stochastic loss reserving models that provide 

the means to statistically estimate confidence intervals for loss reserves. In discussing these 

models with other actuaries, I find that many feel that the confidence intervals estimated by 

these methods are too wide. The reason most give for this opinion is that experienced 

actuaries have access to information that is not captured by the particular formulas they use. 

These sources of information can include intimate knowledge of claims at hand. A second 

source of  information that many actuarial consultants have is the experience gained by 

setting loss reserves for other insurers. 

As one digs into the technical details of  the stochastic loss reserving models, one finds many 

assumptions that are debatable. For example Mack, [1993], Barnett and Zehnwirth [2000], 

and Clark [2003] all make a number of simplif3dng assumptions on the distribution of an 

observed loss about its expected value. Now it is the essence of  predictive modeling to 

make simplif)dng assumptions. Which set of  simplif3dng assumptions should we use? 

Arguments based on the "reasonability" of  the assumptions can (at least in my experience) 

only go so far. One should also test the validity of  these assumptions by comparing the 

predictions of  such a model with observations that were not used in fitting the model. 
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Given the inherent volatility of loss reserve estimates, testing a single estimate is unlikely to 

be conclusive. How conclusive is the following statement? 

"Yes, the prediction falls somewhere within a wide range." 

A more comprehensive test of  a loss reserve model should involve testing its predictions on 

many insurers. 

The purpose of this paper is to address at least some of the issues raised above, 

• The methodologies developed in this paper WIU be applied to the Schedule P data 

submitted on the 1995 NAIC Annual Statement for each of 250 insurers. 

The stochastic loss model underlying the methods of this paper will be the 

collective risk model. This model combines the underlying frequency and severity 

distributions to get the distribution of  aggregate losses. This approach to stochastic 

loss rese~ing is not entirely new. Hayne [2003] uses the collective risk model to 

develop confidence regions for the loss reserve, but they assume that the expected 

value of the loss reserve is known. This paper makes explicit use of the collective 

risk model to first derive the expected value of the loss reserve. 

Next, this paper will illustrate how to use Bayes' Theorem to estimate the predictive 

distribution of future paid losses for an individual insurer. The prior distributions 

used in this method will be "derived" by an analysis of loss mangles for other 

insurers. This method will provide some of the "experience gained by setting loss 

reserves for other insurers" that is missing from existing statistical models for 

calculating loss reserves. An advantage of such an approach is that all assumptions 

(i.e., prior distributions) ~md data will he clearly specified. 

Next, this paper will test the predictions of the Bayesian methodology on data from 

the corresponding Schedule P data in the corresponding 2001 NAIC Annual 

Statements. The essence of the test is to use the predictive distribution derived 

from the 1995 data to estimate the predicted percentile of losses posted in the 2001 

Annual Statement for each insurer. While the circumstances of each individual 
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insurer may be different, the predicted percentiles of the observed losses should be 

uniformly distributed. This will be tested by standard statistical methods. 

• Finally, this paper analyzes the reported reserves and their subsequent development 

in terms of the predictive distributions calculated by this Bayesian methodology. 

The main body of the paper is written to address a general actuarial audience. My intention 

is to make it clear "what" I am doing in the main body. I will discuss additional details 

needed to implement the methods described in some of the sections in the Appendix. 

2. Exploratory Data Analysis. 

The basic data used in this analysis was the earned premium and the incremental paid 

losses for accident years 1986 to 1995. The incremental paid losses were those reported as 

paid in each calendar year through 1995. 

The data used in this analysis was taken from Schedule P of the 1995 NAIC Annual 

Statement, as compiled by the A.M. Best Company. I chose the Commercial Auto line of 

business because the payout period was long enough to be interesting but short enough so 

that ignoring the tail did not present a significant problem. The estimation of the tail is 

beyond the scope of  this paper. 

I selected 250 individual insurance groups from the hundreds that were reported by A.M. 

Best, based on the following criteria. First, there had to be at least some exposure in each 

of the years 1986 to 1995. Second, the payment pattern had to, in my judgment, "look 

reasonable." 

Occasionally, the reported incremental paid losses were negative. In this case, I treated the 

losses as if they were zero. I believe this had minimal effect on the total loss reserve. 

Let's look at some graphic summaries of the data. Figure 1, below, shows the distribution 

of insurer sizes, ranked by 10-year average earned premium. It is worth noting that 16 of 

the insurers accounted for more than half of the total premium of  the 250 insurers. 

Figure 2, below, shows the variability of  payment paths (i.e., proportion of total reported 

paid loss segregated by settlement lag) for the accident 3,ear 1986. This figure makes it clear 
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that payment paths do vary by insurer. How much these differences can be attributed to 

systematic differences between insurers, versus how much can be attributed to random 

processes, is unclear at this point. 

Figure 3, below, shows the aggregate payment patterns for four groups, each accounting 

for approximately one quarter of the total premium volume. 

Figure I 
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Ranked by 10-Year Average Annual Net Premium 

Insurers ranked 1-6, 7-16, 17-40 and 41-250 each accounted for about one quarter 

of the total premium 
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F i g u r e  2 
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• Each plot represents approximately one quarter of the total premium volume. 

• The variabilit 3, of the incremental paid loss factors increases as the size of  the 

insurer decreases. 
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• Segment 1 - Insurers ranked 1-6, Segment 2 - Insurers ranked 6-16, 

Segment 3 - Insurers ranked 17-40, Segment 4 - Insurers ranked 41-250. 

• There is no indication of any systematic differences in payout patterns by size of 

insurer. 
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3. A Stochastic Loss Reserve Model 

The goal of  this paper is to develop a loss reserving model that makes testable predictions. 

And then actually perform the tests. Let's start with a more detailed outline of how I 

intend to reach this goal. 

The model for the expected payouts ~ be fairly conventional. It ~ be similar to 

the "Cape Cod" approach first published by Stanard [1985]. This approach 

assumes a constant expected loss ratio across the 10-year span of the data. 

2. Given the expected loss, the distribution of actual losses around the expected Hill 

be modeled by the collective risk model - a compound frequency and severity 

model. As mentioned above, this approach has precedents with Hayne [2003]. 

This Hill conclude Section 3. 

3. In Section 4, I will turn to estimating the parameters for the above models. The 

initial estimation method ~ be that of maximum likelihood. 

I will then discuss testing the predictions of the model in Section 5. Initially, the 

tests will be on the same data that was used for fitting the models. ('The tests on 

data in the 2001 Annual Statements will come later.) As mentioned above, the test 

will consist of calculating the percentiles of each of the observed loss payments and 

testing to see that those predictions are uniformly distributed. 

As we proceed, I will focus on the 40 largest insurers. I do this because, in my judgment, 

the models are responding mainly to random losses for the smaller insurers. As we shall 

see, the results of the fitted models for the 40 largest insurers will form the basis for the 

Bayesian analysis that will be applied to each insurer, large and small. Implicit in this 

approach is the assumption that main systematic differenc.es in the loss payment paths are 

somehow captured by the largest 40 insurers. 

Let's proceed. 
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Assume that the expected losses are given by the following model; 

E [Paid LossAr,t~a ] = Premium.4r x E L R  x Devta , 

where: 

(1) 

A Y  (1986 = 1, 1987 = 2,...) is an index for accident year. 

Lag = 1, 2, ..., 10 is the settlement lag reported after the beginning of the accident 

year. 

Paidgoss is the incremental paid loss for the given accident year and settlement lag. 

Premium is the earned premium for the accident year. 

E L R  is an unknown parameter that represents the expected loss ratio. 

Dev~a is an unknown parameter that depends on the settlement lag. 

As with Stanard's "Cape Cod" method, the EL/{ parameter will be estimated from the 

data. 

The "Cape Cod" formula that I used to estimate the expected loss is by no means a 

necessary feature of this method. Other formulas, like the chain ladder model, can be used. 

A common adjustment that one might make to Equation 1 is to multiply the ELR by a 

premium index to adjust for the "underwriting cycle." I tried this, but it did not 

appreciably increase the accuracy of the predictionsfir this data and limepeffod. Thus I chose 

to use the simpler model in this paper. But one should consider using a premium index in 

other circumstances. 
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Le t  X ar ,~  be a random variable for an insurer's incremental paid loss in the specified 

accident year and settlement lag. Assume that X.~r,~ has a compound negative binomial 

(CNB) distribution, which I will now describe. 

• Let Zt~, be a random variable representing the claim severity. Allow each claim 

severity distribution to differ by settlement lag. 

• Given E[Paid Loss]At, ~ ,  define the expected claim count, ~-Ar.~, by 

(2) 

• Let NAt.z** be a random variable representing the claim count. Assume that the 

distribution of  NAr.z,g is given by the negative binomial distribution with mean 

2.arab, and variance '~Ar.~ + c. 2 ,ar .~ .  

• Then the random variable XAra~, is defined by 

X.y,~, = Z~,,, + Z,~, z +... + Z~,~.,,.~. 

While the above defines how to express the random variable, X.ay,~a, in terms of  other 

random variables NAra,g and Zt~, later on we will need to calculate the likelihood of  

observing x ava ~ for various accident years and settlement lags. The details of  how to do 

this are in the technical appendix. Here I will give a high-level overview of  what will be 

done below. 

The distributions of  Z ~  were derived from data reported to ISO as part of  its regular 

increased limits ratemaking activities. Like the substantial majority of  insurers that 

report their data to ISO, the policy limit will be set to $1,000,000. T h e  distributions 

varied by setdement lag with lags 5-10 being the most severe. See Figure 4 below. For 

this application I discretized the distributions at intervals b, which depended on the size 

of  the insurer, b was chosen so the 2 j4 (16,384) values spanned the probable range of  

losses for the insurer. 
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2. I selected the value of 0.01 for the negative binomial distribution parameter, c. My 

paper, Meyers [2006], analyzes Schedule P data for Commercial Auto and provides 

justification for this selection. 

3. Using the Fast Fourier Transform (FFT), I then calculated the entire distribution of a 

discretized XA.y.~,, rounded to the nearest multiple of b. The use of Fourier 

Transforms for such calculations is not new. References for this in CAS literature 

include my joint paper, Heckman and Meyers [1983], along with Wang [1998]. 

4. Whenever the probability density of a given observation xm, a~ a given 

E EPaid LossAr.~ ], was needed I rounded the XAr.~g tO the nearest multiple of h and 

did the above calculation. The resulting distribution function is denoted by: 

(3) 

This specifies the stochastic loss reserving model used it this paper. The parameters that 

depend on the particular insurer are the ELR and the 10 Dev~, parameters. I will now turn 

to showing how to estimate these parameters, given the earned premiums and the Schedule 

P loss triangle. 

Clark [2003] has taken a similar approach to loss reserve estimation. Indeed, I credit Clark 

for the inspiration that led to the approach taken in this section and the next. Clark used the 

Weibull and loglogistic parametric models where I used Equation I above. In place of the 

CNB distribution described above, Clark used what he calls the "overdispersed Poisson" 

(ODP) distribution 1. He then estimated the parameters of his model by maximum 

likelihood. This is where I am going next. 

] A random variable has an overdispersed Poisson distribution if it is an ordinary Poisson random variable 
times a constant scaling factor. 
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F i g u r e  4 
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4. Maximum Likelihood Est imation of Model Parameters 

The data for a given insurer consists of eamed premium by accident year, indexed by 

A Y =  1, 2,..., 10, and a Schedule P loss mangle with losses {xAy.~ } and 

Lag = 1,...,(11 - AY). With this data, one can calculate the probability, conditional on the 

parameters ELR and DevAr.~, of obtaining the data by the following equation. 

})-- fl 
AY=I  Lag=l 

(4) 

Generally one calls L( . )  the likelihood function of the data. 

For this model, maximum likeLihood estimation refers to finding the parameters E L R  and 

DevL,, that maximize Equation 4 (indirectly through Equation 1). There are a number of 

mathematical tools that one can use to do this maximization. The particular method I used 

is described in the Appendix. 

After examining the empirical paths plotted in Figures 2 and 3, I decided to put the 

following constraints in the Dev~, parameters. 

1. Dev 1 <_ Dev v 

2. Devj >_ Devj. 1 for j  = 2, 3, ...,9. 

3. DevT/Dev s = Devs/Dev 9 = Devg/Devlo. 

1o 

4. ~ Dev~ =1. 
i=1 

The third set of constraints was included to add stability to the tail estimates. They also 

reduce the number of free parameters that need to be estimated from eleven to nine. The 

last constraint eliminated an overlap with the ELR parameter and maintained a conventional 

interpretation of that parameter. 

Figure 5 plots the fitted payment paths for each of the 250 insurers. You might want to 

compare these pa}xnent paths with the empirical payment paths in Figure 2. 

Figure 6 gives histograms of the 250 ELR estimates. 
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Figure 5 
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Note the wide variability of the fitted payment paths for the smallest insurers. 
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Figure 6 

Maximum- Likelihood Estimates of  the ELR Parameters 
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5. Testing the Model 

Given parameter estimates, E L R  and DeVAy.L,~, one can use the model specified by Equations 

1-3 above to calculate the percentile of an), observation x.ar.L.,, by first calculating the 

expected loss, then the expected claim count, and finally the distribution of losses about the 

expected loss by the CNB distribution. Whatever the expected losses, accident year or 

settlement lag, the percentiles should be uniformly distributed. One can also include the 

calculated percentiles of several insurers to give a more conclusive test of  the model. 

The hypothesis that any given set of  numbers has a uniform distribution can be tested by the 

Kolmogorov-Smimov test. See (for example) Klugman, Panjer and Willmot (KPW) [2004, 

p.428] for a reference on this test. The test is applied in our case as follows. Suppose you 

have a sample of numbers, F1, F 2 . . . . .  F,, between 0 and 1, sorted in increasing order. One 

then calculates the test statistic: 

If  D is greater than the critical value for a selected level, at, we reject the hypothesis that the 

F,'s are uniformly distributed. The critical values depend upon the sample size. Commonly 

used critical values are 1.22/x~n for at = 0.10, 1 .36 /~n  for at = 0.05, and 1 .63 /~n  for 

a = 0.01. 

A graphical way to test for uniformity is a p-p plot, which is sometimes called a probability 

plot. A good reference for this is KPW [2004, p.424]. The plot is created by arranging the 

observations F,, F 2 . . . . .  F,, in increasing order and plotting the points (i/ (n+ l ),F) on a 

graph. I f  the model is "plausible" for the data, the points will be near the 45 ° line running 

from (0,0) to (1,1). Let da be a critical value for a Kolmogorov-Smimov test. Then the p-p 

plot for a plausible model should lie within + da of the 45 ° line. 

A nice feature ofp-p  plots is that they provide, to the trained eye, a diagnosis of problems 

that may arise from an iU-fitting model. Let's look at some examples. Let x be a random 

sample of  1,000 numbers from a lognormal distribution with parameters/~ = 0 and G =  2. 

Let's look at some p-p plots when we mistakenly choose a lognormal distribution with 
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different/a's and o's. On Figure 7a, sort(plnorm(x, Ia, o)) on the vertical axis will denote the 

sorted Fi's predicted by a lognormal distribution with parameters/a and ¢y. 

F i g u r e  7a 

S a m p l e  p - p  p lo t s  
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On the first graph,/a and aare the correct parameters, and the p-p plot lies on a 

45 ° line as expected. 

On the second graph with or= 1, the low predicted percentiles are lower than 

expected, while the high predicted percentiles are higher than expected. This 

indicates that the tails are too light. 
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• On  the third graph with o" = 4, the low predicted percentiles are higher than 

expected, while the high predicted percentiles are lower than expected. This 

indicates that the tails are too heavy. 

• On  the fourth graph, with/a = 1, almost all the predicted percentiles are lower 

than expected. This indicates that the predicted mean is too high. 

I f  a random variable X has a continuous cumulative distribution function F(x), the F/'s 

associated with a sample {xi} will have a uniform distribution. There are times when we 

want to use a p-p plot with a random variable X, which we expect to have a positive 

probability at x = 0. The left side of  Figure 7b shows a p-p plot for a distribution with 

P r { X = 0 }  = 0.25. The Kolmogorov-Smimov test is not applicable in this case. However 

we can "transform" the Fi's into a uniform distribution by multipl)dng the F i = F(xi) by a 

random number that is uniformly distributed whenever x i = 0. We can then use the 

Kolmogorov-Smimov test of  uniformity. The right side of  Figure 7b illustrates the effect 

of  such an adjustment. All of  the p-p plots below will have this adjustment. 

Figure 7b 

Sample p-p plots 
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Now let's try this for real. 

Figure 8 gives a p-p plot for the percentiles predicted for the data that was used to fit each 

model for the top 40 insurers. Overall there were 2,200 ( -  40 x 55) calculated 

percentiles. The Kolmogorov-Smimov D statistic for this sample was 0.042. This is 

higher than the critical values of 0.035 at the cr = 1% level and 0.029 at 5% level. So we 

must reject the hypothesis that our model gives a good fit to the data. By examining 

Figure 8, we see that the fitted model has tails that are a bit too heavy. 

Let me make a personal remark here. In my many years of fitting models to data, it is a 

rare occasion when a model passes such a test with data consisting of thousands of 

observations. I was delighted with the goodness of fit. Nevertheless, I investigated 

further to see what "went wrong." Figure 9 shows p-p plots for the same data segregated 

by settlement lag. These plots appear to indicate that the main source of the problem is in 

the distributions predicted for the lower settlement lags. 

Figure 10 shows p-p plots for the percentiles predicted for the data used in fitting the 

smallest 210 insurers. Suffice it to say that these plots reveal serious problems with using 

this estimation procedure with the smaller insurers. I think the problem lies in fitting a 

model with nine parameters to noisy data consisting of 55 observations. On the other 

hand, the procedure appears to work fairly well for large insurers with relatively stable loss 

payment patterns. See Figures 2, 3, 5 and 6. I suspect the same problem with small 

insurers occurs with other many-parameter models such as the chain ladder method. 
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Figure 8 

P-P Plot for the Top 40 Insurers 
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• The Kolmogorov-Smirnov D statistic for this sample of 2,200 observations was 

0.042. Compare this with the critical value of 0.035 at the 1% level and 0.029 at 

the 5% level. The sample consisted of 2,200 individual observations. 

• The lines that are 0.035 above and below the 45 ° lines enclose the confidence 

band for the p-p plot at the 1% level. 
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Figure 9 

P-P Plots for the Top 40 Insurers by Settlement Lag 
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Figure 10 

P-P Plots by Settlement Lag for Insurers Ranked 41-250 
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These p-p plots reveal serious problems with fitting the model to smaller insurers. 
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6. Predicting Future Loss Payments Using Bayes' Theorem 

The failure of the model to predict the distribution of losses for the smaller insurers and the 

comparatively successful predictions of the model on larger insurers leads one to ask the 

following. Is there any information that can be gained from the larger insurers that would be 

helpful in predicting the loss payments of the smaller insurers? That is the topic of this 

section. 

Let Q = {ELR, Dev~ Lag = 1, 2,..., 10} be a set of models, indexed by co, that determine 

the expected losses in accordance with Equation 1. These models are distinguished only by 

the values of their parameters, and not by the assumptions or methods that were used to 

generate the parameters. Using Equation 4, one can combine each expected loss model 

to E Q with the parameters as assumptions underlying Equations 2 and 3 to calculate the 

likelihood of the a given loss triangle {xAr~,}. Each likelihood can be interpreted as: 

L = Probability {data[model}-- Pr{{xAv,t~} 0}.  (6) 

Then using Bayes' Theorem one can then calculate: 

Probability {model I data} ~ Probability {data [model} ×Prior {model}. 

Stated more mathematically: 

CO 

Each co E ~ will consist of forty {DevL,,, } combinations taken from maximum likefihood 

estimates of the top 40 insurers above. I judgmentally selected equal probabilities for each 

co.E f2. Each of the forty {Dev~,} combinations will be independently crossed with nine 

potential ELRs starting with 0.600 and increasing by steps of 0.025 to 0.800. Thus ~ has 

360 parameter sets. I judgmentally selected the prior probability of the ELRs after an 

inspection of the distribution of maximum likelihood estimates. See Figure 11 and Table 1 

below. 
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Figure 11 

Comparing the Selected Prior Distribution of  E L R  with the 

Maximum Likelihood Estimates of  ELR for the Top  40 Insurers 
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Table 1 

Prior Probabilities for ELR 

E L R  Prior E / ~  Prior E L R  Prior 
0.600 3/24 0.675 4/24 0.750 1/24 
0.625 4/24 0.700 3/24 0.775 1/24 
0.650 5/24 0.725 2/24 0.800 1/24 
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So we are given a loss triangle {x, ar.t,,}, and we want to find a stochastic loss model for our 

data. Here are the steps we would take to do this. 

2. The posterior probability of each co E D is given by 

go~n 

In words, the final stochastic model for a loss triangle is a mixture of all the models to E f~, 

where the mixing weights are proportional to the posterior probabilities. 

Here are some technical notes. 

• In doing these calculations for the 250 insurers, it happens that almost all the weight 

is concentrated on at most a few dozen models. So, instead of including all models 

to in the original f l ,  I sorted the models in decreasing order of posterior probability 

and dropped those after the cumulative posterior probability summed to 99.9%. 

• When calculating the final model for any of the top 40 insurers, I excluded that 

insurer's parameters {DevzJ from ~ and added the parameters for 4P'  largest 

insurer in its place. I did this to reduce the chance of overfitting. 

The stochastic model of Equation 8 is not the end product. Quite often, insurers are 

interested in statistics such as the mean, variance, or a given percentile of the total reserve. I 

will now show how to use the stochastic model to calculate these "statistics of interest." 

At a high level, the steps for calculating the "statistics of interest" are as follows. 

1. Calculate the statistic conditional on ro for each accident year and settlement lag of 

interest. 

2. Aggregate the statistic over the desired accident years and settlement lags for each go. 

3. Calculate the unconditional statistic by mixing (or weighting) the conditional 

statistics of Step 2, above, with the posterior probabilities of each to. 
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These steps should become dearer as we look at specific statistics. Let's start with the 

expected value. 

1. For each accident year and settlement lag, calculate the expected value for each to 

using Equation 1. 

E[Paid Lo.rs ar.~l r_.o] = Premium m, × ELR(to)x Dev~(to). 

2. To get the total expected loss for each to, sum the expected values over the desired 

accident ),ears and settlement lags. 

.ay,,t~ 

3. The unconditional total expected loss is the posterior probability weighted average of  

the conditional total expected losses, with the posterior probabilities given by 

Equation 8. 

Note that for each o2, the conditional expected loss will differ. Our next "statistic of 

interest" will be the standard deviation of these expected loss estimates. This should be of 

interest to those who want a "range of reasonable estimates." 

The first two steps are the same as those for finding the expected loss above. In the third 

step we calculate E[PaidLoss] as above but, in addition, we calculate the second moment: 

3. SM[E[Paid l-.~.]J= E E[Paid Lo.r.rl~]2×Pr{~{xAr..~}}. Then: 

As the second example begins to illustrate, the three steps to calculating the "statistic of  

interest" can get complex. 
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Our third statistic of interest is the standard deviation of the actual loss. Before we begin, it 

will help to go over the formulas involved in finding the standard deviation of sums of 

losses.  

First, recall from Equation 2 that our model imputes an expected claim count, ;~ar.~ by 

dividing the expected loss by the expected claim severity for the settlement lag. 

Next recall the following bullet from the description of the CNB distribution above. 

• Let NAr.~ be a random variable representing the claim count. Assume that the 

distribution of NAra~ is given by the negative binomial distribution with mean 

"~'AY, Iwg and variance ~AY,Log + C" ~Y,t*g" 

The negative binomial distribution can be thought of as the following process. 

1. Select the random number, Z, from a gamma distribution with mean 1 and 

variance c.. 

2. Select NAya~, from a Poisson distribution with mean Z.A.Ar.z,¢ 

Consider two alternatives for applying this to the claim count for each settlement lag in a 

given accident year. 

1. Select zindependentlY for each settlement lag. 

2. Select a single Z and apply it to each settlement lag. 

If  one selects the second alternative, the multivariate distribution of {Nara~,} is called the 

negative multinomial distribution. This does not change the distribution of losses of an 

individual settlement lag. It  does generate the correlation between the claim counts by 

settlement lag. 

I will assume that the multivariate claim count for settlement lags within a given accident 

year has a negative multinomial distribution. The thinking behind this is that the Z is the 

result of  an economic process that affects how many claims occur i n a given ),ear. 

Clark [2006] provides an alternative method for dealing with correlation between settlement 

lags. 
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Let Fz~ be the cumulative distribution for Z~a. Mildenhall [2006] shows that (stated in the 

notation of this paper) the distribution of  __~"Xm',L,, has a CNB distribution with expected 

claim count 2At,r0, = ~ 2Ar,~ * and claim severity distribution 
t,g 

F~,.~. = ~xA~.~  .Fz~ I Z X . ~ . ~  • 
1~g t~ 

Now let's describe the three steps to calculate the standard deviation of the actual loss. 

1. For each accident year and settlement lag, calculate the expected claim count, 

X ar,~(to) using Equation 2. 

2. The aggregation for each co takes place in two steps. 

a. Calculate the first and second moments of each accident year's actual loss. 

Z[Pai~ Los, , ,  I,o] : XA,.To, (CO)" Z [ZT., ]. 

SM[Paid Lo-,,,, I co] = &-.:,, (<") sM[z,,,.~o, ] + 0  + <) &,.T,, (<<') ~ z [ZA:.To, ]". 

b. Sum the first and second moments over the accident years. 

Z[Pai<; LO'ICO] : E E[Paid Lo',-- I <"]' 
A Y  

SM[Paid LOssl col -- E SM[Paid ~ ' , d  co]. 
A Y  

3. E[Paid Loss]= E E[Paid Lo.ioq x  r{col{xAy.,  } }. 
O)E i'~ 

SM[Paid Loss]-- ~, SM[Paid Lossico]xPr{coi{xAr,~}}. 

Standard Deviation[Paid Loss]= ~SM[Paid Loss]- E[Paid Loss] 2 . 
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The final "statistic of interest" is the distribution of actual losses. We are fortunate that the 

CNB distribution of each individual XAra, ais already defined in terms of its Fast Fourier 

Transform (FFT). To get the FFT of the sum of losses, we can'simply multiply the FFTs of  

the summands. Other than that, the three steps are similar to those of calculating the 

standard deviation of the actual losses. To shorten the notation, let X denote PaidLass. 

1. For each accident year and settlement lag, calculate the expected claim count, 

2Ar.~(to ) using Equation 2. 

2. The aggregation for each to takes place in two steps. 

a. Calculate the FFT, 

l l - A Y  I l l - A Y  

for each accident year. 

b. The FFT for the sum of all accident years is given by: 

A Y  

3. The distribution of actual losses is obtained by inverting the FFT: 

o.~fl 

See the Appendix for additional mathematical details of  working with FFTs. 

Figures 12 and 13 below show each of the three statistics for two insurers for the 

outstanding losses for accident years 2,...,10 up to settlement lag 10. The insurer in Figure 

12 has ten times the predictive mean reserve as the insurer in Figure 13. Figure 14 plots the 

predictive coefficient of variation against the predictive mean reserve. The decreased 

variability that comes with size should not come as a surprise. The absolute levels of 

variability will be interesting only if I can demonstrate that this methodology can predict the 

distribution of future results. That is where I am going next. 

186 Casualty Actuarial Society, Forum, Fall 2006 



Estimating Predictive Distributions for Loss Reserve Models 

Figure 12 

Predictive Distribution of Actual Losses for Total Reserve 
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• Predictive Mean = 401,951,000 (roughly ten times that in Figure 13). 

• Coefficient of  Variation for the Actual Loss = 6.9%. 
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Figure 13 

Predictive Distribution of Actual Losses of Total Reserve 
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• Predictive Mean = 40,277,000 (roughly one tenth of  that in Figure 12). 

• Coefficient of  Variation for the Actual Loss = 12.6%. 
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Figure 14 

Predictive Coefficient of Variation Plotted 

With the Predictive Mean for 250 Insurers 
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7. Testing the Predictions 

The ultimate test of a stochastic loss reserving model is its ability to correcdy predict the 

distribution of future pa3~nents. While the distribution of future payments will differ by 

insurer, when one calculates the predicted percentile of the actual payment, the distribution 

of these predicted percentiles should be uniform. 

To test the model, we examined Schedule P from the 2001 NAIC Annual Statement. The 

losses reported in these statements contain six subsequent diagonals on the four 

overlapping years from 1992 through 1995. Earned premiums and losses in the 

overlapping diagonals for the 1995 and 2001 Annual Statements agreed in 109 of the 250 

insurers, so I used these 109 insurers for the test. 

Using the predictive distribution described in the last section, I calculated the predicted 

percentile of the total amount paid for the four accident years in the subsequent six 

settlement lags. These 109 percentiles should be uniformly distributed. Figure 15 shows 

the corresponding p-p plot and the confidence bands at the 5% level as determined by the 

Kolmogorov-Smirnov test. The plot lies well within that band. While one can never 

"prove" a model is correct with statistics, one gains confidence in a model as we fail to 

reject the model with such statistical tests. I believe this test shows that the Bayesian CNB 

model deserves serious consideration as a tool for setting loss reserves. 
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Figure 15 

P-P Plot of  Predicted Percentiles for 

Paid Losses from 1996 to 2001 
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• The critical values for a Kolmogorov-Smimov test at the 5% level are +13.03%. 
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8. Comparing the Predictive Reserves with Reported Reserves 

This section provides an illustration of the kind of analysis that can be done externally with 

the Bayesian methodology described in this paper. Readers should exercise caution in 

generalizing the conclusions of this section beyond this particular fine of business in this 

particular time period. 

This paper makes no attempt to pin down the methods used in setting the reported reserves. 

However there are many actuaries that expect reported reserves to be more accurate than a 

formula derived purely from the paid data reported on schedule P. As stated in the 

introduction to this paper, those who set those reserves have access to more information 

that is relevant to estimating future loss pa3~nents. 

The comparisons below will be performed to two sets of insurers - the entire set of  250 

insurers and the subset of 109 insurers for which the overlapping accident years 1992-95 

agree. Testing the latter will enable us to compare the predictions based on information 

available in 1995 with the incurred losses reported in 2001. 

The first test looks at aggregates summed over all insurers in each set. Table 2 compares the 

predictions of this model with the actual reserves reported on the 1995 annual statement. 

The "actual reserve" is the difference between the total reported incurred loss, as of 1995 for 

the "initial" reserve, and 2001 for the "retrospective" reserve, minus the total reported paid 

loss, as of 1995. 

Table  2 

Predicted and Reported Loss Reserves 

Reported 1995 Reserve (000) 

Predictive Initial Retrospective 
Mean (000) @ 1995 @ 2001 

250 Insurers AY 1986-1995 14,873,303 16,221,998 - 9.1% - -  

109 Insurers AY 1992-1995 1,798,794 1,976,299 - 9.9% 1,842,104- 2.4% 

o For the 250 insurers, the reported initial reserve was 9.1 Y0 higher than the predictive mean. 

For the 109 insurers the corresponding percentage was 9.9%. The lowering of the 
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percentage reserves from 1995 to 2001 to 2.4% suggests that for the industry, reserves were 

redundant for Commercial Auto in 19952. 

For the remainder of this section let's suppose that the expected value of the Bayesian CNB 

model described above is the "best estimate" of future loss payments. From the above, 

there are two arguments supporting that proposition. 

1. Figure 15 in Section 7 above shows that the Bayesian CNB model successfully 

predicted the distribution of payments for the six years after 1995 well within the 

normal statistical bounds of error. 

2. The final row of Table 2 shows that the expected value predicted by the Bayesian 

CNB model, in aggregate, comes closer to the 2001 reserve than did the reported 

reserves for 1995. 

Now let's examine some of the implications of this proposition for reported reserves. 

There are many actuaries who argue that reported reserves should be somewhat higher than 

the mean. See, for example, Paragraph 2.17 on page 5 of Report of  the Insurer Solvency 

Working Part 3, of  the International Actuarial Association [2004]. Related to this, I recently 

saw a working paper by Grace and Leverty [2006] that tests various hypotheses on insurer 

incentives. 

If  insurers were deliberately setting their reserves at some conservative level, we would 

expect to see that the reported reserves are at some moderately high percentile of the 

predictive distribution. Figure 16 shows that some insurers appear to be reserving 

conservatively. But there are also many insurers for which the predictive percentile of the 

reported reserve is below 50%. But by 2001, the percentiles of the retrospective reserve for 

1995 were close to being uniformly distributed. 

2 There are some potential biases in these figures. First, the predictive means may be somewhat understated 
since they ignore development after ten ),ears. Second, the downward development from 1995 to 2001may 
continue in future years. 
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Figure 16 

Predictive Percentiles of Reported Reserves 
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The greater number of  insurers reserved above the 50 m percentile indicates that some 

insurers have conservative estimates of their loss reserves posted in 1995. 

The right side of this figure shows that the spread of the reserve percentiles spans all 

insurer sizes. 
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I f  there is a bias in the posted reserves, we would see corrections in subsequent years. The 

109 insurers for which we have subsequent development provide data to test potential bias. 

To perform such a test, I divided the 109 insurers into two groups. The first group 

consisted of  all insurers that posted reserves in 1995 that was lower than their predictive 

mean. The second group consisted of  all insurers that posted reserves higher than their 

predictive mean. 

As Figure 17 and Table 3 show, the first group shows an upward adjustment and the second 

group shows a more pronounced downward adjustment. The plots show that we cannot 

attribute these adjustments to only a few insurers. However, there are some insurers in the 

first group that show a downward adjustment, and other insurers in the second group that 

show an upward adjustment. 

The fact that the total adjustments only go part way to the predictive mean suggests that 

some insurers may be able to make more accurate estimates with access to information that 

is not provided on Schedule P. 
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Figure 17 

Analysis of Subsequent Reserve Changes for 109 Insurers 
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Table 3 

Summary Statistics for the Plots Above 

Reported Reserve @ 1995 

< Predictive Mean (000) > Predictive Mean (000) 

Number of Insurers 66 43 

Total Predictive Mean 926,134 872,660 

1995 Reserve @ 1995 803,175 1,173,124 

1995 Reserve @ 2001 856,393 985,711 
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9. Surm,nary and Conclusions 

This paper demonstrates a method, which I call the Bayesian CNB model, for estimating 

the distribution of future loss payments of individual insurers. The main features of  this 

method are as follows. 

• The stochastic loss reserving model is based on the collective risk model. While other 

stochastic loss reserving approaches make use of the collective risk model, this 

approach uses it as an integral part of  estimating the parameters of the model. 

• Predicted loss payments are derived from a Bayesian methodology that uses the results 

of  large, and presumably stable, insurers as its "prior information." While insurers do 

indeed differ in their claim payment practices, the underlying assumption of this 

methodology is that these differences are reflected in this collection of large insurers. 

• Loss reserving models should be subject to testing their predictions on future 

payments. Tests on a single insurer are often inconclusive because of the volatile 

nature of  the loss reserving process. But it is possible to test a stochastic loss reserving 

method on several insurers simultaneously by comparing its predicted percentiles of  

subsequent losses to a uniform distribution. This paper tests its model on 109 insurers 

and finds that its predictions are well within the statistical bounds expected for a 

sample of  this size. 

• By making the assumption that the Bayesian C2X/B model provides the "best estimate" 

of future loss payments, the analysis in this paper suggested that there are some 

insurers that post reserves conservatively, while others post reserves with a downward 

bias. Readers should exercise caution in generalizing these conclusions beyond this 

particular line of business in this time period. 

I view this paper as an initial attempt at a new method for stochastic loss reserving. To 

gain general acceptance, this approach should be tested on other lines of insurance and by 

other researchers. This method requires considerable statistical and actuarial expertise to 

implement. It also takes a lot of  work. In this paper, I have tried to make the case that we 

should expect that such efforts could )deld fruitful results. 
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Appendix 

This appendix gives the mathematical details that implement the methodologies described in 

Sections 3 and 4. 

A.3.1 Discretizing the Claim Severity Distributions 

The first step is to determine the discretization interval length h. h, which depended on the 

size of the insurer, was chosen so the 2 TM (16,384) values spanned the probable range of 

annual losses for the insurer. Specifically, let h, be the sum of the insurer's ten-year premium 

divided by 2 TM. The b was set equal to 1,000 times the smallest number from the set 

{5, 10, 20, 25, 40, 50, 100, 125, 200, 250, 500, 1000} that was greater than b~/lO00. This last 

step guarantees that a multiple, m, of  ,5 would be equal to the policy limit of  1,000,000. 

The next step is to use the mean-preserving method (described in KPW, p. 656) to discretize 

the claim severity distribution for each settlement lag. Letpa a represent the probability of a 

claim with severity h'i for each settlement lag. Using the limited average severity (LAS~) 

function determined from claim severity distributions provided by ISO, the method 

proceeds in the following steps. 

1. poa**= l-L~S~(h)/h. 

2. P,.z,, = (2"LAS~ (h't) - LASza (h'(i- 1)) - LASt~ (h'(i + 1)))/h for i = 1, 2 ..... m-1. 

3. p,,.~ = 1 - ~ p ; .~ .  
i=0 

2 TM 1 4. p i k = O f o r i = m +  l, . . . ,_ - . 

A.3.2 Calculating the Conditional Density of the CNB  Distribution 

Tho pu ose of  section is to show how to calculate I E[Pai  ]). 
The calculation proceeds in the following steps. 

1. Set ~z_~ ={po.t~,...p2,,_,t~, }. 

2. Calculate the Fast Fourier a'ransfo= (rvr)  of ~., %~. (~). 

3. Calculate the expected claim count, A.~Ya~g, for each accident year and settlement lag 

using Equation 2, AAr.~ - E [  Paid LossAy.~ ] / E [ Z ~  ]. 
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4. Calculate the FFT of each aggregate loss random variable, X.,ya~,, using the formula 

This formula is derived in KPW [2004, Equation 6.28]. Note the different but 

equivalent parameterization. The probability generating function for the negative 

binomial distribution is given in Appendix B of KPW. It is written as 

P~ (~:) = (1 - fl (~:- 1))-'. In this paper's notation A = f l .r  and c = 1/r. 

5. Calculate q.4r,~ = * - '  (~  4r.£a (~l.4r,£a )) , the inverse FFT of the expression in 

Step 4 above. 

6. Set i equal to the multiple of b that is nearest to xAva~ ~. Then 

(~VB(X4y.£,,,lU[Paid L°ss.4g.£a])= thei  ~b component of~'L4Y.~;. 

Note that calculating this probability requires one to first calculate a vector of length 16,384 

by inverting an FFT and reading off a single component. (To increase efficiency, one should 

calculate Oz~ ' ( ~ )  for each settlement lag in advance.) Using the R computing language 

('aax~'.r-pro)ect.orK~ on my 3GHz personal computer with 1GB Ram, I estimate it takes 

about 1/20 a' of a second to evaluate a single CNB probability. Evaluating a likelihood for a 

loss triangle with 55 x,~ra~s 1,000 times (typical for what follows below) takes about 45 

minutes. Implementing this methodology requires the patience that I was fortunate to 

develop in the early days of actuarial computing. 
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A.4 Maximizing the Likelihood for the C N B  Model 

The purpose of this section is to show how to find the E L R  and {Dev i } parameters that 

maximize the likelihood 

10 l l - A Y  

L ( { x A r . ~ } ) =  I - [  r I  CNB(xm ' .~[E[Pa idL°s sAr .La] ) '  (4) 
AY=I  Lag=l 

subject to the following constraints in the Dev~ parameters. 

1. Dev 1 < Dev z. 

2. Devj > Dev~ for./" = 2, 3 . . . .  ,7. 

3. Deur/Devs = Devs/Dev9 = Devg/Devlo. 

10 

4. E Devl =1. 
i=1 

The maximization was done using the R programming language 0p#m function using the 

Nelder-Mead parameter search method. This method is described in KPW [2004, p.664] 

and is considered tobe  robust but slow. At this stage of the research, I value "robust" over 

"fast." 

Primarily because of habits I developed using Excel Solver, I elected not to use standard 

constraints provided by the function. Instead I coded a "tdev to De/ '  function that mapped 

all of ~ginto a subset of R n that satisfied those constraints. Here is a description of 

tdev to Dev. 

1. Dev~ = e -a'd / 2 .  

2. Dev'z = Dev; .( l + e-'~'~ ). 

t ~ ' ~  t s -ldev. 3. Dev i -- Min 1 -  Devj ,Devi_ 1 -e ' for i=2,...,7. 
j=~ ./ .J 

) ] 4. Dev s = Min 1 -  Devj ,Dev,_ 1 • e for i=8, 9, 10. 
D, J=* ) J 

lo 

s. V,,,=D</Xv,4. 
j=l 

lo 

6. E L R = t d e v ~ . E D e v  5 . 
j=! 
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As noted in the previous section, the CNB model requires a lot of time to calculate. This 

time can be sigr0ficandy reduced if one has a good set of starting values for the optim 

function. To get these starting values, I replaced the CNB distribution with the 

"overdispersed Poisson" (ODP) distribution given in Clark [2003] to find the 

ELR and {Dev i } parameters that maximize the logarithm of following expression. 

l l - A Y  

L({xm, ~ } )  = fl'° 1-'I EFPaidL LossAr,~jT. ex*r~'E[P'at~"ra~]-e['°~ t~"*"~] 
~IY=I /.ag =1 

The maximization proceeds in the following steps. 

1. Pick a starting vector in g E R 9 e.g. (1,1,1,1,1,1,1,1,1). 

2. Set ~=tdev to Dev(~) and use it to calculate E[Paid Loss~y.t~ ]. 

3. Use E[PaidLassAr.ta]to calculate the ODP likelihood above. 

4. Use the Nelder-Mead algorithm to calculate an updated vector i .  

5. Return to Step 2 and repeat until convergence. 

6. After convergence is obtained with the ODP likelihood, use the current i as a 

starting value for the CNB likelihood in Equation 4. 

7. Set ~ =racy to Deu(g) and use it to calculate E[PaidLossAr,ta]. 

8. Use E[PaidLossAr.ta]to calculate the CTVB likelihood above. 

9. Use the Nelder-Mead algorithm to calculate an updated vector i .  

10. Return to Step 7 and repeat until convergence. 

11. Set ~ =tdev to Dev(~) to obtain the maximum likelihood estimate of 

Z .Rand{D,,}. 

Run time was short for the ODP. For the CNB, I found that it generally took, on average, 

1,000 iterations of  Steps 7-10 to achieve R's optim function default convergence criteria. 

With the warning that individual results may vary, I felt comfortable in limiting the number 

of iterations to 300. 

I am providing code to calculate the above maximum likelihood estimates on sample data to 

be placed on the CAS website with the publication of this paper. 
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