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Abstract

While the actuarial literature devoted to stochastic loss reserving has been developing at an impressive
rate, much of this literature has been devoted to the statistical analysis of summanzed loss triangles.
This restriction limits the benefits that modern statistical techniques can bring to the subject of loss
reserving. This paper will sketch one possible framework for estimating future claims payments using
claim-level data. The first part of the paper will discuss the use of covariates (or “predictive variables™)
to improve one’s estimates of future payments, especially in cases where the mix of business being
analyzed has changed over time. The second part of the paper will describe how the bootstrapping
technique can be applied to claim-level data to estimate reserve variability.
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INTRODUCTION

The recent actuarial literature has enjoyed a growing discussion of statistical methods for
performing loss reserve analyses. This discussion has increased the statistical rigor of the

subject, and has expanded the set of tools available for estimating reserve variability.

However, much of this recent discussion has been devoted to the statistical analysis of
summarized loss triangles. We feel that this limits the potential improvements that predictive
modeling can bring to the subject. We will focus on two reasons here. First, summarized loss
triangles do not allow the analyst to incorporate predictive variables in his or her reserve
analysis. Second, using summarized data limits the accuracy with which an analyst can
estimate the variability of his ot her loss resetve estimates. It is reasonable to expect that by
not “summarizing away” the size-of-loss and loss development information implicit in (un-

summarized) claim-level data, potentially better point and variability estimates can result.

Many of the comments in the Discussion of England and Verrall’s recent survey paper on

stochastic loss reserving [4] expressed this sentiment. Shah’s comment is representative:

The triangulation data that these [Generalized Linear Modeling] techniques
have been applied 1o are just a consequence of history. They come from an
era when computing power was expensive. Therefore, I question the value of
actually applying such techniques to such limited data. Such sophisticated
techniques may be more useful if applied to the underlying claims data, as has
been alluded to by several speakers. In view of this, there is a danger that the
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results may be viewed as more scientific than they really are, and may be
given more credibility than is truly justified for them.

Tripp’s comment also seems to us to be on the mark:

Why do we throw away information? ... Looking at the life side of out
profession, you realise that work like this takes place at policy level detail. If
you look within the general insurance part of the actuarial profession, there is
a body of thinking that has grown up around premium rating and a body of
thinking that has grown up around reserving. Are we getting ‘over-siloed’?
Could aspects of the methodology and the thinking that has gone into using
GLMs for premium rating be brought more into play when it comes to
reserving, where, at present, we tend to use aggregated claims data? I wonder
whether we are missing out on using information that is available from
exposure descriptions and from the circumstances of individual claims.

Motivated by the concerns expressed in these quotes, this paper is an attempt to develop
the idea that using un-summarized data will allow one to unleash the full power of modern
predictive modeling techniques on the problem of estimating future claim payments. The
goals of improving one’s reserve point estimates as well as varability estimates will be

discussed sequentially in the two parts of this paper.

In Part I we review the well known shortcoming of traditional reserving methods when
applied to books of business that have changed over time. A danger of using summarized loss
triangles is that they can mask heterogeneous loss development patterns. They also prohibit
the use of predictive variables that might be correlated with loss development. We sketch a
reserving technique — inspired by the chain-ladder method — that operates on claim-level data.
Using simulated data we illustrate how this technique can reflect heterogeneous loss

development patterns that the chain ladder misses, resulting in an improved estimate.

We believe that the potental for improved estimates of future loss payments is sufficient
motivation to considet the use of claim-level data for reserving. Doing so obviously requires
additional effort (not to mention specialist software that goes beyond spreadsheets). But, as
Part II of this paper will discuss, it brings a significant side benefit as well.

Namely: once we have claim-level data available for analysis, we can employ . the
bootstrapping technique (a type of simulation that involves repeatedly sampling with
replacement from one’s data) to easily compute confidence intervals around our estimates of
outstanding losses. Indeed bootstrapping will give us estimates of the entire distribution of

our outstanding loss estimator, no matter how complex.

Bootstrapping has been discussed in the recent literature as a promising avenue for

estimating reserve variability. But because of the summarized loss triangles that serve as a
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starting point for most current discussions of reserving, the resampling step of bootstrapping
is typically applied to the residuals of various models fit to loss triangles. The idea pursued
here is to resample the undetlying data points, and then apply one’s chosen reserving
technique to each of the resulting pseudo-datasets. This is a flexible and perhaps conceptually
simpler method of bootstrapping. Also, because its resampling step occurs prior to the
building of any model, the pseudo-datasets that it employs are not in themselves dependent on
the correctness of the model being fit to the data.

PART I: SUMMARIZED DATA AND THE PROBLEM OF A
CHANGING MIX OF BUSINESS

A common criticism of traditional loss reserving techniques is that they can be slow to
incorporate changes in the company’s mix of business into their estimates of outstanding
losses. This is the point of the actuarial road trip joke involving the salesperson with his foot
on the gas, the underwriter with his foot on the brake, and the actuary navigating by looking

out the rear window.

Borhuetter and Ferguson state the problem well in “The Actuary and IBNR” [1]:

The product mix can be an important factor, not so much because two
somewhat dissimilar items ate combined, but because they may have
different rates of growth. For example, a company may have personal and
commercial automobile loss development expetience combined over the
years although, if it were looked at separately, commercial business would
require higher loss development factors. As long as the relative exposure
between the two categories remains constant there is no problem; however,
picture the situation if personal automobile increased at a 5% annual rate
while commercial automobile, although relatively small, is growing at a 25%
annual rate.

The obvious thing to do in such a situation would be to analyze commercial and personal
auto reserves sepatately. That is, divide the data into two separate loss triangles and proceed
as usual. This is helpful as far as it goes, but the approach has its limits. Bornhuetter and

Ferguson continue:

Of coutse, the volume of data is an important factor in determining what
kinds of breakdowns of the data are feasible. If the data are subdivided so
finely that most groups have only a small volume of data, the subdivisions
may accomplish nothing useful. Or to quote Mr. Longley- Cook’s delightful
analogy, “We may liken our statistics to a large crumbly loaf cake, which we
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may cut in slices to obtain easily edible helpings. The method of slicing may
be chosen in different ways-across the cake, lengthwise, down the cake, or
even in honzontal slices, but only one method of slicing may be used at a
time. If we try to slice the cake more than one way at a time, we shall be left
with a useless collection of crumbs.”

For e‘xample, it might be nice to set up separate reserve analyses by both coverage and
region. But even adding the single additional dimension of “region” might significantly
diminish the credibility of the data and thereby threaten the integrity of one’s outstanding loss
estimate. The goal of the first part of this paper is to suggest a way beyond this impasse.

Our discussion of changing mixes of business is intended only to motvate the method
discussed below. Hopefully the method’s usefulness is not restricted to this scenario. For
example, it might also be useful when, for example, a company moves into a new region or

two companies merge.

ENTER PREDICTIVE MODELING

In moderm terms, Longley-Cook’s image of the crumbly cake is an illustration of the bias-
variance tradeoff in predictive modeling. Stated briefly, a complex model (or multiple models
fit on sub-segments of the data) will make predictions that are less biased, but at the same time
less certain — i.e., more variable — than a simpler model. The tradeoff is that our model should
have sufficient complexity to reflect true statistical regularities in the data (thereby reducing
bias), yet not have so much complexity that random patterns in the data overwhelm the model
and lead to unreliable results (high variance). This is perhaps a special case of Einstein’s
dictum, “Everything should be made as simple as possible, but not simpler.”

An analogy with ratemaking might be helpful. Consider a simple rating plan with the

following rating factors:

o Age (<26, 26-50, >50 years}
e Credit {bad, average, good}
¢ Claim in past 3 years {yes, no}

This rating plan has 3-3-2=18 cells. The most naive — and over-parameterized — way to
proceed would be to simply estimate the loss ratio relativity of each of these cells and base
one’s rating factors on these parameters. Note that this is equivalent to fitting a regression

model with 17 indicator variables. But as Longley-Cook warns, the data in each of these cells
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is ﬁx‘llikely to have sufficient credibility to produce stable results. Therefore the variance
around the resulting rating factor estimates will be large.

For this reason, the modern approach to ratemaking is to employ Generalized Linear
Models [GLMs]. Rather than estimate 3-3-2-1=17 parameters, a GLM model in this scenario
would estimate 2+2+1=5 parameters. Extending Longley-Cook’s analogy, we now get to have
our cake and make multivariate estimates with it too. Rather than estimate each of the 17
rating factors each with its own “crumb” of data, we use the loaf to estimate a more modest 5

parameters.

There are three major advantages of deriving one’s rating factors from the parameters of a

multivariate model, rather than estimating them directly from small “crumbs” of data:

¢ The resulting rating factors will have less variability (less parameter risk).
A larger number of rating factors can be used without running into Longley-Cook’s
“crumbly cake” problem.

¢ Factors such as Age and Credit can be treated as continuous predictive variables, rather
than being arbitrarily divided into discrete bins.

Returning to loss reserving, it is good and accepted practice to perform separate reserve
analyses by line of business and by such important subdivisions as Workers Comp Medical vs.
Indemnity claims. As we have discussed, this can only be taken so far. But what if (a) claim
development patterns vary by a multitude of factors such as Report Lag, Credit Score, Prior
Claim, Policy Age... and (b) the mix of business measured by these factors has changed over
time? As Bornhuetter and Ferguson point out, it is essential to reflect this shifting mix of
business in one’s analysis. But as Longley-Cook points out, dividing the data by many of these
dimensions will quickly lead to serious credibility problems.

In the light of the ratemaking analogy above, it is perhaps natural to suggest that the way
forward is to somehow incorporate a multivariate predictive model into one’s reserve analysis.
We will sketch one such model below. This model is offered very much in the spirit of taking
a first step. We expect that it could be improved or replaced with a better one. Nevertheless,
we hope that sketching a sample multivariate loss reserving model that admits covariates will
spatk further thoughts on the subject.
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THE LEVEL OF DATA NEEDED

Multivariate loss reserving requires that one analyze disaggregated data, at the policy or
claim level, rather than summarized loss development triangles. The reason for this is clear:
predictive variables such as Age, Credit, and Prior Claim pertain to the policy that made the
claim. To incorporate policy-level variables such as these, policy-level data must be used in the
analysis. There is no way to “attach” such covarates to summarized data. Similarly, if we wish
to incorporate variables such as Report Lag or Injury Type into the analysis, claim-level data
must be used. Traditional loss triangles do not allow one to use this potentially useful

predictive information.
To summarize what has been said so far:

e The traditional approach of separating one’s data and performing separate analyses on
the resulting loss triangles is an incomplete answer to the problem of a shifting mix of
business.

e A plausible approach to this problem is to incorporate covariates into one’s reserving
technique — that is, build a multivariate reserving model.

¢ Doing so requires that we use data at the policy or claim (or indeed claimant) level.

For the remainder of this paper phrases such as “reserving using claim-level data” will serve
as shorthand for “reserving using policy- or claim- or claimant-level data”.

MODEL DESIGN

In this)s::ction we propose a claim-level generalization of the simple chain ladder reserving
method. As stated above, this is merely one of many possible starting points. For all of its
faults, the chain ladder has the virtues of being simple and familiar. Generalizing the chain
ladder therefore gives us an intuitive way of illustrating the benefits of using claim-level data to
estimate future claim payments.

As discussed above, we assume we have data at the policy, claim, or claimant level. Of
course, the finer the level of summarization of one’s data, the broader the array of predictive
variables one can include in one’s model. Deciding on the level of data is a practical decision
that does not substantially affect the discussion below. Let us therefore assume that our data
is at the claim level.
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We therefore assume that we have a database with one record per claim, and multiple

variables on each record. These variables can be categorized into three types:

e Predictive variables (Credit Score, Injury Type, Policy Age...)
e Target variables (Loss at 24 months, Loss at 36 months...)
¢ Informational vatiables (Accident Year, Zip Code, Agent Number...)

The “informational” vatiables can sometimes be used to derive further predictive variables
(e.g-, by using zip code to match such demographic variables as Population Density onto the
records). Other times, they are used simply for analytic purposes (e.g., displaying total losses

by accident year).

Let us establish some notation. We attempt to be consistent with the notation of England
and Verrall Let C denote cumulative losses evaluated as of j months. For example C,,
denotes the losses (associated with a particular claim) evaluated as of 24 months. {C; } will

serve as the target variables in our model design.

Let {Xj, X5, ..., XN} represent the predictive variables. Each value of each predictive
variable X; will appear on each claim-level record. We also assume that the values of each of
the predictive variables are measured either at policy inception, or at the claim report date
(whichever is appropmate).

Let U, denote the total ultimate losses for accident year £, summed across all policies:
U,=YC.. Let R, denote the outstanding losses (ultimate losses minus losses paid to date) for
accident year £ Let U and R denote the sums of Uy and R, respectively across all accident
years. The goal of loss reserving is to calculate an estimate  of R as well as an estimate of
variability of, or confidence interval around, R. R is often refetred to as a “reserve estimate”,
but to distinguish it from the quantity that is actually booked in the financial statements, it is
probably better to call it the “total outstanding losses™ or “total future payments” (see [2]). In
the remainder of this papet, the three terms will be used synonymously.

In predictive modeling it is typically the case that we are presented with a single target
variable Y (such as pure premium or claim frequency or size of loss) and multiple predictive
variables {X), X5, ..., Xnj}. We might fit a GLM model of the form:

g = BX +BX+ .+ BXy = X
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Where u denotes E[Y], the expected value of the target variable Y; and g()) is the link

function.

Here, the situation is not so simple. For one thing, we are presented with multiple target
vatiables {C}, G, ..., ; } rather than a single target Y. In addition, this (single) target variable
is typically the quantity we are ultimately interested in predicting. Here, we are interested in
predicting either losses at ultimate or losses as of a certain development petiod, such as 10 or
20 years. Let us assume that for practical purposes, Cj represents losses at ultimate. That is,
C=Cy (That is, let us assume that no tail factors are needed for our analysis) Then () is
what we are ultimately interested in predicting; and {Cj, G, ..., (4} are intermediate
quantities used as stepping stones to estimate Cj.

The reason for this complexity is that Cy is missing on most of the claim-level records in
our dataset. Using it as “the” target value analogous to Y in the GLM example above would
require us to throw away data points for which Y is unknown. Let us frame our discussion in
terms of an 'example. Suppose we have claim-level records for accident years 1990, 1991,.. .,
1999. On the 1990 records, we have losses evaluated as of 12, 24, ..., 120 months. On the
1991 re;:ords, we have losses evaluated as of 12, 24, ..., 108 months; while losses as of 120
months are unknown (“missing”). On the 1999 records, we have only losses evaluated as of

12 months; {Cy4, Csg, ..., Cyoo} are all missing.

Of course we have the option of using only the AY 1990 claim records to build a single
GLM model; and use this model to predict the ultimate values of the 1991-1999 claims. But in
doing so we would throw away the loss development pattern information that traditional

reserving methods rely on. This is not a satisfactory option.

Many approaches are possible at this point, but we choose to build — continuing with the
same example — 9 successive GLM models, “layered” one on top of the other. Speaking
figuratively, we “regress” Cy4 on Cyq; C36 on Cyy; and so on. Each of these 9 GLM models is
analogous to the 9 link ratios in the corresponding chain ladder model that could be run on
the summarized 10-by-10 loss triangle. Let us denote these 9 models My, M3, ..., My5o. The
M;4 model will take as an input either losses evaluated at 24 months (for AY 1990-98); or the
predicted value of the M,, model (for AY 1999). This is analogous to the way a link ratio is
applied in 2 chain-ladder analysis. Of course in addition to (4, the M; model takes as inputs
all of the predictive variables {X;, X,, ..., Xn}-
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Let us make this abstract discussion more concrete. The motivation for introducing
predictive variables is to capture differences in different claims’ expected loss development
patterns. Given that our basic idea is to “incrementally” model these (potentially
heterogeneous) development patterns 4 la the chain ladder, it makes sense to model each

claim’s development from period /-1 to period ; as a function of several covariates:

Ci
c =X, X X )

For mathematical convenience, we will further assume that this claim-level “link ratio” is in

fact a (pre-specified) monotonic function fof a linear combination of the covariates:

C,
Cl =fla@+BX,+ By X, +..+ ByX})

-1

This is of course the familiar linear modeling trick: we reduce the job of estimating the
function @ to estimating the parameters {o, By, Ba,..., Bn}- The monotonic function f{)
might, for example, be the natural exponent function exp(’) or the identity function id(-). The
use of linear models (as opposed to, say, generalized additive models or neural networks) is not
essential to the basic idea sketched here. But it is fairly flexible and powerful approach that

avoids unnecessary complexity.

The above equation implies that the expected development from period /-1 to / of any given
claim is a generalized linear function of the covariates {X;, X5, ..., Xp}. We do not need to
assumne that each claim at period j-1 will have the same expected development to period 7. Nor
do we need to assume that the mix of these (inhomogeneous) claims will stay the same from

one accident year to the next.

Suppose, on the contrary, that we did assume petfect claim homogeneity in the sense that
all claims have the same expected development. This is tantamount to assuming no variance
in claim-level link ratios; and this in turn implies that no covariate X, could possibly play a
statistically significant role in predicting link ratio. Therefore the above equation reduces to a

constant:

C; .
c L= f(a) = Link _ Ratio

Jj=1
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Thus the chain ladder’s link ratio is equivalent to our generalized linear model form with no

covariates.

A few more assumptions will let us use the machinery of Generalized Linear Models to
estimate the parameters {«, By, 2,..., Byy}- Let us assume that the function fis the exponential
function. This is equivalent to assuming the log link function from GLM theory. Let us
further assume that the variance of C,; is proportional to its mean. (This assumption is not
essential to the general technique we’re tying to develop. This familiar assumption is being
made for convenience, and could be altered without substantially affecting the discussion to

follow.) In other words, we are assuming the over-dispersed Poisson GLM model form:

log[El:gj D =a+ B X, + By X, +.t By Xy

Jj=1

Equivalently,

=

C.
Cl =expla+ B X, + By X, +..+ B X }+6

-1

whete 8 is an overdispersed Poisson-distributed error term. Given the quantities {C,,, C,
X, X5, ..., X}, we can estimate the parameters {a, By, Bs,..., BN} of model Mj using any
standard GLM package. To be explicit, we would make the following specifications:

e Target: G/ G

e Covarates: {X, X,, ..., Xy}
e  Weight: Cy

o Distribution: Poisson

e Link: Log

‘Recasting the above equation as follows will allow us an alternate way of conceptualizing
the above model form. Let us multiply both sides of the equation by C,;:

C,=C,, cexpla+ B X, + By X, 4.+ By Xy e
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which is equivalent to:

op =exp{]og(Cj_l )+a+,6‘,X, +0.X, +...+,8NXN}+£

This is perhaps a mote useful conceptualization of our model. The target variable is C,

there is no weight variable, and log(C-1) serves as the “offset term”. Explicitly:

Target: C

[ J .

o  Offset: lojg(Cf,)

¢ Covanates: {X, X, - X3}
¢ Weight: none

e Distribution: Poisson

e Link: Log

(Note thac all standard GLM packages allow one to specify an offset term.) The offset
term essentially functions as a regressor whose corresponding “beta” parameter is constrained
to be 1. This conceptualization illustrates the chain ladder-esque idea that we are building a
model that estimates the expected value of C; as a “generalized linear link function” exp(x +
B1X1 + BaX5 +... + By X applied to C,,, the (known or estimated) losses as of /1.

F1

HOW TO HANDLE IBNR

Note: this short section, and the appendix it refers to, outlines a method for extending the
model design to handle IBNR claims. The authors suggest skipping it on the first reading.
Indeed, this section can be skipped altogether if the reader takes the attitude that the model
outlined can be used for losses on reported claims only; with IBNR claims being estimated in a

separate analysis.

This model design also allows us a way of incorporating incurred but not reported (IBNR)
losses into our model. For simplicity, let us assume that all claims that are unreported at 12
months are reported by 24 months. Therefore there will be records in our data with C;,=0
and C,,>0. In the My, model, we add to the database one record for each in-force 1999
policy that had no claim as of 12 months from its effective date. On this record, we would
force the offset term log(C,,) to be zero. We would also include on all records an indicator
variable X as a covatiate in M,, that takes on the value 1 if C;,=0, and 0 otherwise. Finally,

we would neutralize all predictive vatriables that measure claim-level information.
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(“Neutralize” typically means that we recode missing variables to the median value)) As with
all of the other AY 1999 records in the database the values of {C,4, Gy, -.., Cipp} are all

missing.

Doing this will “allocate” a portion of the 12->24 IBNR (estimated from the AY 1990-
1998 data) to each 1999 in-force policy that has no claim reported as of 12 months. The y,
‘parameter of the X; indicator functions in place of the offset term, which was forced to be
zero on each of the 1999 zero-claim records. In other words, exp(y,) is the average expected
12->24 IBNR for each AY 1999 policy. The expected IBNR for an individual policy is
eexp(a + 13X + BoXsy +... + By X)) = expla + yg + By Xy + ByXs +... + By Xn)- The
successive models M, M,... will “develop” this allocated IBNR loss along with the other

losses.

An example might clarify this discussion. Suppose that the total IBNR (as of 24 months)
from AY 1990-98 was $400,000 and that during this time period, thete were 4000 policies
without claims as of 12 months. This is an average of $100 per claim-free policy. The value of
Yo would therefore be log(100)=4.6.

Note that this method of treating IBNR assumes that the covanates {X, X, -.., Xn}
affect the allocation and development of IBNR in the same way that they affect the
development of other losses. We could refine the model by including the interactions
{Xo* X1, Xo*X,, ...} as further model covariates. These covariates would be non-zero only
for the records corresponding to policies with no losses as of 12 months. This idea is more
fully exp}i,ﬁ'.g\ted in the Appendix.

SIMULATION APPROACH

We will now apply the above model to a (very rudimentary) simulated dataset. The
advantage of using simulated data is twofold. First, by construction we know which covariates
are truly telated to the various claims’ differential development over time. Because of this, we
can illustrate the operation of the model without the distracdon of having to convince
ourselves that a set of covarates is reasonably complete or sxgmﬁcantly correlated with the

claims’ dlffetentml loss developmcnt
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Second, we can simulate our data “to ultimate”, and set aside the (otherwise unknown)
losses at ultimate as a standard against which we can compate our model’s predictions with the

predictions of the traditional chain-ladder model.

Of course a major disadvantage of using simulated data is that our sample results will give
little indication of the degtee to which out proposed model will produce improved predictions

on real-world data.

However, it is our hope that the potential of this approach will be intuitive to many readers.
The authors’ experience in building predictive models for ratemaking and underwriting
applications suggests that it is nearly always possible to find traditional and non-traditional
predictive variables that are significantly correlated with size-of-loss. Given that larger claims
are known to develop more slowly, one expects that that many of these same predictive

variables will be correlated with loss development patterns.

SIMULATION ASSUMPTIONS

We illustrate our model with a simulated dataset that is very simple, yet with sufficient
structure to illustrate the potential advantage of this model over the traditional chain ladder.

By construction, our claim-Jevel dataset has the following characteristics:

¢ Near-homogeneity of data: the claims in our book of business all have identical
expected loss development patterns except for one characteristicc whether the
policyholder that made the claim had “good” credit or “bad” credit.

¢ Differential development: The claims of bad credit policies are expected to develop
more slowly than the claims of good credit policies.

¢ Changing mix of business: A greater proportion of bad credit policies have been
written in recent years.

As Bornhuetter and Ferguson point out, the differential loss development of bad/good
credit policies’ claims would present no special problem to the traditional methods were it not
for the changing mix of business. However, the greater proportion of bad credit policies
written in mote recent years implies that the overall development patterns will shift from year
to year. In particular, the expected development pattern for the most recent accident year will
not be adequately represented by an average development pattern derived from the prior

accident years’ claims in a loss triangle.
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The simulation incorporates the idea that a measurable quantity — here, credit — is
correlated with loss development. Therefore by including credit in our reserving model, we
are reflecting the shifting mix of business in our analysis. Put another way, the shifting
proportion of bad credit policies is a “leading indicator” of a slow-down in the book’s loss
development. Using credit as a covariate in our reserving model allows us to quantify this

slow-down, rather than judgmentally adjust for it after a traditional reserving exercise.

We simulate 5000 data points, each representing one claim. By design there are 500 claims
for each of the accident years 1990, 1991, ..., 1999. Each of the 5000 records has 10 loss
fields Cyy, Coy, ..., Cizo. We will describe how the values of {Cy,, Cyg, ..., Cjao} are assigned
to each claim.

Finally, two simplifying assumptions are made. First, we assume that there is no IBNR: all
claims are reported by 12 months from the beginning of the accident year. (See the discussion
above and the Appendix for a discussion estimating IBNR in the current model framework.)

Second, we assume that losses are fully developed as of 120 months: for each accident year £,
Ue=2Ci20

Next we desctibe our simulation of the loss fields {Cy5, Cyy, -.., Ciog}. We draw the losses
at 12 months (C,) from a lognormal distribution; and then successively apply 9 randomly
generated “link” factors to these losses. The means and standard deviations of the

distributions used to generate the losses and link factors were selected by judgment.

In more detail, the 5000 values of Cy, were drawn from a lognormal distribution with

parameters =8 and 0=1.3:
log(C\2) ~ n(8, 1.3)

For good credit claims, the values of {GC,, ..., C,} were determined by the following
algorithm:

Cin = G * (link# * ¢))
The similar algorithm for bad claims is:
Cin = C; * (link™ * ¢))

where
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link®™* = {1.8, 1.17, 1.13, 1.08, 1.05, 1.03, 1.02, 1.015, 1.008}
and link"™ = (link***-1)¥1.25 + 1:

" link®™ = {2, 1.2125, 1.1625, 1.1, 1.0625, 1.0375, 1.025, 1.01875, 1.01}.

Finally, ¢; is a normally distributed “shock” term with mean 1 and a standard deviation that
is a functdon of the value of the link ratio.

The development patterns (1/LDF) implied by the above expected link ratios are graphed
below. This graph illustrates that by construction, bad credit claims develop more slowly than
good credit claims.
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In summary, each claim at each time period is assigned its own randomly generated link
ratio; but the expected link ratios for bad/good credit claims are the ones stated above. (A word
about motivation: the number of claims, size-of-loss distribution, and the general magnitude
of the link ratios were judgmentally chosen to result in a summarized loss triangle similar to an
actual Workers Comp loss triangle studied by one of the authors. The differing link™ and
link®* development patterns were selected purely judgmentally.)
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So far, we have discussed the “homogeneity” and “differential development” assumptions.
Regarding the “changing mix of business”, we randomly apply the “bad” and “good” link

ratios in the following proportions across the accident years:

shifting exposure base
%bad credit %good credit

1992 40% 60%
1993 45% 55%
1994 50% 50%
1995 55% 45%
1996 60% 40%
1997 65% 35%
1998 70% 30%
1999 75% 25%

Note that the simulation approach we have laid out allows us to assign values of UGz Gig
<oy Cp} to each claim, regardless of accident year. We will apply both our model and the
traditional chain ladder to the data elements that would be available in an actual reserving
exercise — namely those that form the upper half of the loss triangle. At the same time, we can
use the data elements that would be unknown in an actual reserving exercise — the lower half
of the triangle — as the “truth” against we can judge the success of both our method and the

chain ladder.

The simulated data, summarized to the accident year level, is displayed below:

Losses in $1000's
@12 @24 @48 @60 @72 @96 @108 @120 ultimate
10,700 10,875 10,970 0
10,942 11,123 23 99
11,444 k11,739 295

12,210 567
9,571 763
12,397 1,634
10,757 2,217
11,187 3,460
12,204 5,229
11,432 _8,105
22,369

1964 1209 1149 1.094 1060 1.036 1.022 1017 1.009 1.000
3436 1750 1.448 1260 1152 1.087 1.049 1.026 1.009  1.000

Link ratios
LDFs

The “unknown” data elements (those that would be known as of 12/31/2000 or after) are
shaded, and will not be used to fit models. Note that the “ultimate” column is the same as the
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“at 120 months” column, and represents the “true”, though unknown ultimate losses (#).
Similarly, the “o/s” column represents the “true” outstanding losses as of 12/31/1999 (r).
Thus the “true” value that we wish to estimate is =) 0, =$22.369M.

Note that the link ratios computed from this summarized data are essentially weighted
averages of the link™ and lnk®™* ratios stated above. This is representative of the way
important patterns can be “summarized away” when the data is summarized to the triangle

level.

MODEL RESULTS

We applied our sequence of 9 Poisson GLM models to the 5000 simulated data points.

The exact steps of this process are sketched below:

Step 1: Regress the 4500 data points with non-missing values of C,, (i.e. the claims from
AY 1990-98) on credit score, using log(C},) as the offset term. This model is then applied to
the 500 claims with unknown values of L,, (i.e. the AY 1999 claims) to produce predicted values
of G,

Step 2: Regress the 4000 data points with non-missing values of Cy; (ie. the claims from
AY 1990-97) on credit score, using log(C,,) as the offset term. This model is then applied to
the 1000 claims with unknown values of L;; (i.e. the AY 1998-99 claims) to produce predicted
values of C,, Note that the AY 1998 values of Cj; are based on actwa/ values of C.,; whereas
the AY 1999 values of C, are based on predicted values of C,,.

Step 9: Regress the 500 data points with non-missing values of C,,, (i.e. the claims from
AY 1990) on credit score, using log(C,,s) as the offset term. This model is then applied to the
4500 claims with unknown values of C, (i.e. the AY 1991-99 claims) to produce predicted
values of C,,,, Note that the AY 1990 values of C,,,are based on actual/ values of C,,,; whereas
the AY 1991-99 values of C),,are based on predicted values of C, .

Step 10: The ultimate loss estimate is the sum of C,, across all claims and across all
accident years: #=3 3 C,,,. The estimate of total outstanding losses r equals # minus the total
claims paid as of 12/31/1999.
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The way in which the model M; is applied to the predicted values of model M, is analogous
to the way the chain ladder’s link ratios are multiplied together to produce loss development

factors.

The results of these 10 steps, summarized to the accident year level, are displayed below.

They can be compated to the display of the “truth” above:

GLM predictions (shaded)

Losses in $1000's

@36 @48 @60 @72 @84 @108

ultimate

3,522 8,850 10,473 -
3,527 9,011 10,705 11,222 99
3,681 9,428 10,274 10,833 11,738 294
3,780 9,791 12,214 572
2,912 7,629 9,573 765
3,724 9,850 12,392 1,629
3213 8,540 [9; 10,745 2,205
3,335 8,896 11,202 3,475
3,596 19,665 12,212 5,237
3,327 [ 8,999 11,384 _8.057
22,333
implied
link 1.954 1208 1.152 1.093 1.059 1.036 1.023 1.017 1.009  1.000
LDF 3422 1751 1450 1.258 1.151  1.087 1.049 . 1.026 1009  1.000

Note that the implied LDFs at the bottom of this display were calculated by dividing the
predicted ultimate values by the losses for that accident year as of 12/31/99. The implied link
ratios were then derived from the implied LDFs.

Finally, the results of a chain ladder exercise are displayed in the following table:

Chain Ladder predictions (shaded)

Losses in $1000's
@60 @72

@12 @84 @96 @108 @120 ultimate

3,522 6,562 10,700 10,875 10,970 10,970 -
3527 6623 7,876 9011 9817 10,361 10,942 11,123 | 11,220 97
3681 6,939 8235 9428 10274 11,444 11,733 289
3780 7,52 8539 9,791 : 12,200 558
2912 5563 6,644 9,536 728
3,724 7,167 12,298 1,535
3213 6,202 10,637 2,007
3,335 11,031 3,304
3,596 11,873 4,898
3,327 [ 10,793 _ 7,466
20,972
implied
link 1906 1.192 1146 1.090 1.055 1.0383 1.022 1.016 1.009  1.000
LDF 3244 1702 1428 1246 1143 1.083 1048 1.025 1.009  1.000

(Note that this calculation can be verified by the reader in a spreadsheet. The spreadsheet-
based results will differ from the above o/s loss estimate by $2000 (0.01%). This is due to
rounding errors: the above table was generated by a computer program using un-rounded

losses in the upper triangle.)
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For convenience, the results of both methods — together with the simulated “truth” — are

displayed below:
Losses in $1000's
@12 @4 @3 @I58 @60 @72 @84 @% @108 @120 C-L _ truth proposed
7766 8,850 9,627 10,144 10,473 10,700 10,875 10,970 10,970 0 0 0
7876 9,011 9817 10,361 10,705 10,942 11,123 11,220 97 99 99
8235 9,428 10274 10,833 11,194 11,444 11,734 289 295 294
8539 9,791 10,866 11,262 11,642 12200 558 567 572
6644 7629 5329 8,808 9537 728 763 765
8573 9,850 10,763 12298 1,535 1,634 1629
7423 8,540 10637 2097 2217 2205
7,727 11,031 3304 3460 3475
11,873 [ 5220 5237
10,792 8105 _ 8057
20972 22,369 22333
1146 1090 1055 1.083 1022 1.016 1.009 1.000

1428 1.246 1143 1.083 1.048 1.025 1.009 1.000

1149 1.094 1060 1.086 1.022 1.017 1.009 1.000
1448 1260 1.152 1.087 1.049 1.026 1.009 1.000

1152 1.093 1059 1036 1.023 1.017 1.009 1.000
1450 1.258 1.151 1087 1.049 1.026 1.009 1.000

Because the chain ladder is slow to pick up the changing mix of business (i.e., increasing
proportion of bad credit policies that produce slower-developing claims), its estimates are too
low for each accident year. This effect is most pronounced for the later accident years
(shaded). In this example, the chain ladder’s total outstanding loss estimate is approximately

6% too low.

By comparison, the proposed method’s total outstanding loss estimate is almost exactly
cotrect. It goes without saying that this is because our Josses were simulated to develop in the
multiplicative fashion assumed by the chain ladder; and because by construction only one
covariate — credit — has a statistically significant relationship with loss development. Of course
real-world data present no such conveniences. The above results are thetefore suggestive at
best. Still, the point remains that the proposed method is able to reflect changes in the mix of
business (assuming that these changes can be measured by covariates capable of being

collected and put into a2 model) that the chain ladder misses.

THE PROPOSED METHOD IS A PROPER GENERALIZATION OF
THE CHAIN LADDER

By now it should be clear that the proposed loss reserving framework is intended to
function as a GLM/micro-data-based analog of the chain ladder. One can go further and state
that it is a true generalization of the chain ladder, in the sense that it produces the same results

as the chain ladder when no covariates ate present.
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We verified this with the simulated data analyzed above. That is, we simply fit the above
sequence of 9 GLM models, replacing the credit variable with a constant. The proposed
method results in exactly the same results as the chain ladder. These results are summarized

below.

losses true true our chain
@ 12/99 ultimate o/s method ladder

22,369 20,972 20,972
-6.26% -6.25%

It is generally a bad idea to exclude a statistically significant covariate from the GLM
models. Here we see that doing so reproduces the chain ladder’s (understated) reserve
estimate. This lends a statistical perspective to where the chain ladder goes wrong when

applied to a book of business whose development patterns have changed over time.
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PART II: THE PROBLEM OF ESTIMATING RESERVE
VARIABILITY

From a statistical perspective, R is an estimator of outstanding losses. It is a function of the
values of the random variables {C,,, X}, X,, ..., X} for each data point. In other words, it is
a complicated function of several random variables. Like any such estimator, it has a
probability distribution that is a complicated function of the distributions of the underlying

random variables.

As we have demonstrated above, it is faitly straightforward to calculate the expected value
of R. This is our outstanding loss estimate. It summarizes what the data (and our model) tells
us to expect about the amount of future claim payments. But we would also like a measure of
how strongly we should believe this estimate. To do this, we need further information — other
than the expected value — about the distribution of our estimator of outstanding losses. For

example, what are the cutoffs of a 95% confidence interval around the estimate?

This problem — sometimes referred to as the problem of reserve variability — has received a lot
of attention in the recent loss reserving literature. The recent report of the CAS Working
Party on Quantifying Variability in Reserve Estimates [2] puts the matter this way:

A sk bearing entity wishes to know its financial position on a particular
date. In order to do this, among other items it must understand the future
payments it will be liable to make for obligations existing at the date of the
valuation. For an insurance situation, these future payments are not known
with certainty at the time of the valuation.

The fundamental question that the tisk bearing entity asks itself is:
Given any value (estimate of future payments) and our current state of knowledge, what is
the probability that the final payments will be no larger than the given value?

A full answer to this question would involve the assessment of model risk, and is beyond
the scope of this paper. But even a limited answer would go beyond supplying a mere
confidence interval or variability estimate. Ideally, we would like an estimate of the entire
probability distribution of the outstanding loss estimator.

This seems like a lot to ask. After all, both the loss distribution underlying our claims data
as well as our estimators of outstanding losses are fairly complex. Surprisingly, modern
statistics supplies us with a simulation-based technique — called boosstrapping — that allows us to
estimate this disttibution with faitly little effort.
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ENTER THE BOOTSTRAP

The Bootstrap was introduced by Bradley Efron in the late 1970s. Since then, it has
become a commonly used technique in any number of problems in applied statistics. The
classic text is Efron and Tibshirani [3]. Put brefly, bootstrapping is a simulation-based
technique for estimating potentally “difficult” distributional properties — such as the standard
deviation or the 90" percentile — of potentially complex estimators. We typically do not know
the “true” distnbution of such estimators. The basic idea of the Bootstrap is therefore to use
the actual, empirical distribution (i.e., the data) as a proxy for the true, unknown distribution.
Once this conceptual leap is made, many otherwise intractable problems become fairly
straightforward exercises in statistical computing.

An analogy lies at the heart of bootstrapping. Just as our acfwa/ distribution is one of an
infinite number of possible draws from the “true” theoretical distribution; we can take a large
number of resamples of our actual distribution to form an atbitrarily large number of “pseudo-
datasets”.

[Actual distribution : “true” distribution :: resampled datasets : actual distribution]

Just as we would know everything we need to know about the “true” distribution if we
could draw a large number of samples from it, we can estimraze much of what we would like to
know about the “true” distribution by treating the actual distribution as a proxy, and drawing

multiple resamples from it.

We can illustrate this idea by applying it to a very simple problem for which we know the
answer in advance. Suppose we draw 500 observations X={X,,..., X,,} from a normal
distribution with p=5000 and 6=100: #(5000,100). Let = denote the sample average of this
data:

m is an estimate of the true value 1, just as we derived an estimate of the “true” outstanding
losses in the previous sections. # therefore tells us “what we think” about the true value of

based on the data. We would also like a measure of “how sure we are”. In this simple
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example, the obvious thing to do is construct a confidence interval by appealing to the
elementary fact that:

Let us apply bootstrapping to this problem to see how close we can come to the answer
(4.47) that we know in advance.

The following table records some facts about our data:

e #obs: 500

¢ Mean: 4995.79
e Stdev: 98.78
o 25705k 4812.30
o 97.5% 04k 5195.58

We can resample from this dataset a large number of times to create multiple “pseudo-
datasets”. “Resampling” means sampling with replacement as many times as there are points
in your initial dataset (here, 500). Explicitly: pull a point at random from {X,,..., Xj,};
record it; throw it back in; repeat this until we have our first pseudo-dataset containing 500
observations. Let us denote this pseudo-dataset X*,.

We now repeat this process as many times as we would like, say 999 additional imes. We
therefore have 1000 pseudo-datasets X*,.... X*,,,,. We can compute the sample average 7 on
each one of these datasets. Denote these {#*,.... #*,,}. These 1000 estimates constitute an
estimate of the distribution of our estimator ». With this distribution {m*,.... »*,,,} in hand,
we can very easily estimate nearly any distributional property of 7 that we would like. In
particular: the sample standard deviation of 7 based on our 1000 resamples is 4.43:

1 0 [ o 2
sdm)=oos (m*,.—m m*k) ~4.43
i=l k=1

This differs from the true value (4.47) by less than a percentage point.

Bootstrapping in this toy example is therefore a complete success. The key point to note is
that the unlike out analytic formula for s.d.(z), the bootstrapping technique does not assume
any knowledge of the underlying distribution of X. All that was required was computing
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power. Because of this, it is possible to execute essentially the same process on the loss data

analyzed in the previous sections.

BOOTSTRAPPING RESERVE ESTIMATES

Having introduced the concept and run through a simple example, there is little to say in
this section, other than to report the results. Let S denote our database of 5000 claims. We
resampled § 500 times to get the 500 pseudo-datasets §*,.... §*;,. We then ran the above 9
GLM models on each of these 500 pseudo-datasets and computed outstanding losses on each
pseudo-dataset: {R*,,..., R*;,}. Although it might seem excessive to fit 4500 GLM models
to estimate the distribution of outstanding losses, doing so took less than 15 minutes on a

standard laptop equipped with the shareware statistical software package R.

The estimated distribution of the outstanding loss estimator R is plotted below:

total reserves - all 10 years
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L J
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The bars are simply a histogram of the 500 estimates of outstanding losses. The solid curve
is a superimposed normal distribution. The dotted curve is a kernel density estimate of the

distribution underlying the histogram. Some basic statistics of this distribution are reported

below:
e Mean: $21.751M
e Median: $21.746M
e Stdev: $0.982M
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e CV.: 4.5%

This kernel density estimate in the graph suggests that the distribution of our outstanding
loss estimator is normal, to a reasonable degree of approximation. The fact that the mean is
nearly equal to the median reinforces this judgment. Therefore a 95% confidence interval

around our reserve estimate can be calculated in one of two ways:

e Record the 2.5 and 97.5 percentiles of the bootstrap distribution.
e Calculate 21.751M + (1.96)*(0.982M).

Both of these methods produce the same answer, to within the nearest $100K:

($19.8M, $23.7M)

In short (ignotring model risk), we have 95% confidence that the true outstanding loss is
within £ 9% of our estimated value. We remind the reader that this result is based on a
rudimentary simulation, and is only intended to be suggestive.

DISCUSSION

Before concluding this paper, we would like to make four points about the bootstrapping
technique illustrated above. First, bootstrapping is uncommonly generous to the practitioner
in that it gives one an estimate of the entire distribution of an arbitrarily complex estimator
without asking for azy knowledge of the distributions underlying the data. Neatly any question
we would typically ask about the outstanding loss distribution (standard deviation, skewness,

percentiles, probability of ruin...) can be addressed with mere computation.

Second, the bootstrap method illustrated above is not specific to our GLM-based reserving
technique. Indeed, if the claim-level data is available, one can also use this technique to
bootstrap chain-ladder, Bornhuetter-Ferguson, or any other reserve estimates. To do this, we
would summarize each of our pseudo-datasets to the triangle level; and apply our favorite
technique to each of the resulting triangles. The 1000 outstanding loss estimates (assuming
1000 pseudo-datasets, as in the above illustration) resulting from each of the 1000 pseudo-
triangles will constitute the distribution of our outstanding loss estimate.

Third, bootstrapping has been the subject of some discussion in the recent loss reserving

literature. But there is an important difference between these discussions and the technique
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llustrated here. To the best of our knowledge, these discussions have been offered in the

context of analyses of summarized loss triangles, not claim-level data.

The excellent sutvey paper by England and Verrall [4] is an example. England and Verrall
apply 2 GLM model to a summarized loss triangle, and resample the standardized residuals of
this model. They tesample the distribution of residuals (there will be 55 data points for a 10-
by-10 loss triangle) a large number of times. Each time they add the pseudo-dataset of
residuals to the original loss triangle to form a pseudo-history to which they can again apply
theit GLM. Doing so allows them to estimate the prediction etror of their estimate.

The difference between England and Verrall’s approach and the approach illustrated here is
generic, and found in most textbook discussions of bootstrapping. When bootstrapping
model predictions, it is possible either to bootstrap cases (our approach) or residuals (England-
Verrall). When dealing with small loss triangles it is not meaningful to bootstrap cases.
However bootstrapping cases is meaningful when claim-level data is available.

As noted in the final paragraph of the introduction, our approach of resampling cases
occurs prior to any reserving model being fit to the data. In other words, the very validity of
our pseudo-datasets does not depend on the adequacy of the model being fit. In this sense,
the cases-based resampling strategy is less sensitive to the correctness of ones model than the

residual-based resampling strategy.

One final comment: bootstrapping is not the last word on the topic of reserve variability.
In particular, nothing we have said addresses the problem of mode/ risk. Suppose, for example,
that we bootstrapped the traditional chain ladder applied to our simulated data. The
bootstrapped confidence interval would not reflect the bias due to excluding the credit
covariate in our resetving model. What is perhaps the biggest challenge in reserve vatiability is
thetefore left untouched by this discussion. Sdll, by giving us a practical way of estimating the
predictive distribution of outstanding losses, bootstrapping potentially allows one to devote

more attention to model risk.

CONCLUSION

The traditional summarized loss triangle is in general not a “sufficient statistic” for
estimating outstanding losses. There will be times when we can do better by basing reserve

and reserve varability estimates on un-summarized claim-level data.
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As the first half of our paper illustrates, loss triangles can suppress heterogeneous loss
development patterns that could be used to improve our predictions of outstanding losses. At
the same time, summariZed data does not allow us to use predictive variables that might be

correlated with different loss development patterns.

Furthermore, as noted in the second half of our paper, loss triangles potentially summarize
away variability information that could be used to make improved estimates of reserve
variability. Using claim-level data allows us to bootstrap cases, not merely residuals from

models applied to loss triangles with small numbers of observations.

In short, the use of claim-level data, together with relevant predictive variables, has the
potential to improve actuaries’ estimates of outstanding losses. In addition, it makes available

a powerful and conceptually simple method for estimating reserve variability.
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APPENDIX: ADDING IBNR TO THE MODEL

This appendix outlines a method by which one can enhance the model to predict INBR
losses. Alternately, one can simply use the model outlined in the body of this paper to model
the development of reported claims (as is done in the simulation example to follow); and build

a separate model to estimate IBNR.

The 12224 model (M,,) not modified to reflect IBNR takes the form:

C,, =expflog(Cp, )+ a+ B X, + B X, +..+ By Xy }+e

The idea is to introduce a record for each policy with no losses as of 12 months (C,,=0)
from its effective date. (Note that the other records in our database are at the claim level.) We
set the offset term log(C,,) on these records to be zero. We also include on all records an
indicator variable X, that takes on the value 1 if C;,=0, and 0 otherwise. Finally, on the (claim-
free) policy-level records we would neutralize all predictive variables that measure claim-level
information. (“Neutralize” might mean that we recode missing values of a variable to the

median value of that variable.)

For the 1990-98 policy-level records, we let {C,,, Cy ..., Ciz} equal the total IBNR
evaluated at these vatious evaluation points. As with all of the other AY 1999 records in the
database the values of {C,,, Cy, ..., Ci»,} are all missing. We add the indicator variable X, in
the model. At this point our model takes the form:

Cy =expllog(Cp )+ a+y Xo+ B X, + Bu X, +t ByX y }+e

Note that in this model form, the offset tetm only “applies” to the claim-level records with
a non-zero value of C,,; similarly, the term v,X, “applies” only to the policy-level records with
C,;=0. The remaining terms apply to both types of records. In other words, each of the B
parameters simultaneously models development of losses reported as of 12 months, as well as
allocates IBNR losses at 24 months.

If this dual functioning of the B parameters is unsatisfactory, it is possible to let the §
parameters only model the development of rgporfed claims (as in the orginal model with no
IBNR component) by introducing interaction terms. Suppose that X;... X, are the policy-

level covariates (such as policy age and credit scote) in the model. (Claim-level variables such
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as report lag or injury type do not apply to policy-level records.) We add the interaction terms
X*X,... X*X, nto the model:

Cy =exP{l°g(Clz)+a+70Xo +AX + .+ By Xy +y X * X, LS Y. € *XN-,;}""E

If this seems somewhat complex, it is because we have really designed “two models in

one”. The 12->24 development of a claim C',, is given by the following equation:
C'u= exp{log(C'nz)+a+,B,Xl +...+ﬂNXN}

All of the terms with X, drop out because X, is assumed to be 0 on (claim-level) records
with non-zero C,;. In other words, we ate back to the model form given at the beginning of
this appendix.

On the other hand, the allocated IBNR at 24 months fot a policy with no loss at 12 months
is given by the following equation:

C24 = CXP{Q’ +70+(ﬂ| +7|)X1 +...+ (ﬂN—l’+y’V'l’)X""’ + K}

Here x denotes the terms {By,., Xy, + .- + BaXy}- These terms reduce to a constant x
because the claim-level variables {X,,, ...X\} were neutralized on the policy-level records.

In addition, note that the offset term was forced to be zero on these policy-level records.

It might be helpful to note that exp{a+y,+x} is the average IBNR allocated to each of the
policies that were claim-free as of 12 months. The multiplier exp{(8,+y,)X,+...+(Bx R
»Xx,} adjusts each policy’s allocated IBNR based on the values of the policy-level covariates
X,...Xxy As with expected claim development, the fact that the allocation of IBNR is
“tailored” to the individual policy according to that policy’s characteristics allows the model to

reflect changes in the mix of business being analyzed.

Models M, ..., M;,, can similarly be modified to handle the further emergence and
development of IBNR.
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