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Abstract 
While the actuarial literature devoted to stochastic loss reserving has been developing at an impressive 
rate, much of this literature has been devoted to the statistical analysis of summarized loss triangles. 
This restriction limits the benefits that modem statistical techniques can bring to the subject of loss 
reserving. This paper will sketch one possible framework for estimating future claims payments using 
claim-level data. The first part of the paper will discuss the use of covatiates (or "predictive variables") 
to improve one's estimates of future payments, especially in cases where the mix of business being 
analyzed has changed over time. The second part of the paper van describe how the bootstrapping 
technique can be applied to claim-level data to estimate reserve vatiabiliq'. 
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INTRODUCTION 

The  recent  actuarial literature has enjoyed a growing discussion of  statistical methods  for 

performing loss reserve analyses. This discussion has increased the statistical rigor o f  the 

subject, and has expanded the set o f  tools available for estimating reserve variability. 

However,  much  o f  this recent  discussion has been devoted to the statistical analysis o f  

summarized loss triangles. We feel that  this limits the potential  improvements  that predictive 

model ing can bring to the subject. We will focus on  two reasons here. First, summarized loss 

triangles do not  allow the analyst to incorporate  predictive variables in his or her  reserve 

analysis. Second, using summarized data limits the accuracy with which an analyst can 

estimate the variability o f  his or her  loss reserve estimates. It is reasonable to expect that  by 

not  "summariz ing  away" the size-of-loss and loss development  information implicit in fun- 

summarized) claim-level data, potentially bet ter  point  and variability estimates can result. 

Many o f  the comments  in the Discussion o f  England and Verrall 's recent  survey paper  on 

stochastic loss reserving [4] expressed this sentiment.  Shah's commen t  is representative: 

The  triangulation data that  these [Generalized Linear Modeling] techniques 
have been applied to are just a consequence of  history. They come f rom an 
era when  comput ing  power  was expensive. Therefore,  I question the value o f  
actually appl3dng such techniques to such limited data. Such sophisticated 
techniques may be more  useful if  applied to the underlying claims data, as has 
been alluded to by several speakers. In x~iew of  this, there is a danger that  the 
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results may be viewed as more scientific than they really are, and may be 
given more credibility than is truly justified for them. 

Tripp's comment also seems to us to be on the mark: 

Why do we throw away information? ... Looking at the life side of  our 
profession, you realise that work like this takes place at policy level detail If  
you look within the general insurance part of the actuarial profession, there is 
a body of  thinking that has grown up around premium rating and a body of  
thinking that has grown up around reserving. Are we getting 'over-siloed'? 
Could aspects of the methodology and the thinking that has gone into using 
GLMs for premium rating be brought more into play when it comes to 
reserving, where, at present, we tend to use aggregated claims data? I wonder 
whether we are missing out on using information that is available from 
exposure descriptions and from the circumstances of  individual claims. 

Motivated by the concerns expressed in these quotes, this paper is an attempt to develop 

the idea that using un-summarized data will allow one to unleash the full power of  modem 

predictive modeling techniques on the problem of estimating future claim payments. The 

goals of improving one's reserve point estimates as well as variability estimates will be 

discussed sequentially in the two parts of this paper. 

In Part I we review the well known shortcoming of traditional reserving methods when 

applied to books of  business that have changed over time. A danger of  using summarized loss 

triangles is that they can mask heterogeneous loss development patterns. They also prohibit 

the use of  predictive variables that might be correlated with loss development. We sketch a 

reserving technique - inspired by the chain-ladder method - that operates on claim-level data. 

Using simulated data we illustrate how this technique can reflect heterogeneous loss 

development patterns that the chain ladder misses, resulting in an improved estimate. 

We believe that the potential for improved estimates of future loss payments is sufficient 

motivation to consider the use of claim-level data for reserving. Doing so obviously requires 

additional effort (not to mention specialist software that goes beyond spreadsheets). But, as 

Part II of  this paper will discuss, it brings a significant side benefit as well. 

Namely: once we have claim-level data available for analysis, we can employ, the 

bootstrapping technique (a type of simulation that involves repeatedly sampling with 

replacement from one's data) to easily compute confidence intervals around our estimates of 

outstanding losses. Indeed bootstrapping will give us estimates of the entire distribution of 

our outstanding loss estimator, no matter how complex. 

Bootstrapping has been discussed in the recent literature as a promising avenue for 

estimating reserve variability. But because of the summarized loss triangles that serve as a 
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starting point for most current discussions of  reserving, the resampling step of bootstrapping 

is typically applied to the residuals of various models fit to loss triangles. The idea pursued 

here is to resample the underlying data points, and then apply one's chosen reserving 

technique to each of the resulting pseudo-datasets. This is a flexible and perhaps conceptually 

simpler method of  bootstrapping. Also, because its resampling step occurs prior to the 

building of any model, the pseudo-datasets that it employs are not in themselves dependent on 

the correctness of  the model being fit to the data. 

PART I: SUMMARIZED DATA AND THE PROBLEM OF A 
CHANGING MIX OF BUSINESS 

A common criticism of traditional loss reserving techniques is that they can be slow to 

incorporate changes in the company's mix of  business into their estimates of outstanding 

losses. This is the point of  the actuarial road trip joke involving the salesperson with his foot 

on the gas, the underwriter with his foot on the brake, and the actuary navigating by looking 

out the rear window. 

Bomhuetter and Ferguson state the problem well in "The Actuary and IBNR" [1]: 

The product mix can be an important factor, not so much because two 
somewhat dissimilar items are combined, but because they may have 
different rates of growth, For example, a company may have personal and 
commercial automobile loss development experience combined over the 
years although, if  it were looked at separately, commercial business would 
require higher loss development factors. As long as the relative exposure 
between the two categories remains constant there is no problem; however, 
picture the situation if personal automobile increased at a 5% annual rate 
while commercial automobile, although relatively small, is growing at a 25% 
annual rate. 

The obvious thing to do in such a situation would be to analyze commercial and personal 

auto reserves separately. That is, divide the data into two separate loss triangles and proceed 

as usual. This is helpful as far as it goes, but the approach has its limits. Bomhuetter and 

Ferguson continue: 

Of  course, the volume of data is an important factor in determining what 
kinds of breakdowns of the data are feasible. If  the data are subdivided so 
finely that most groups have only a small volume of data, the subdivisions 
may accomplish nothing usefial. Or to quote Mr. Longley- Cook's delightful 
analog3,, "We may liken our statistics to a large crumbly loaf cake, which we 
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may cut in slices to obtain easily edible helpings. The method of  slicing may 
be chosen in different ways-across the cake, lengthwise, down the cake, or 
even in horizontal slices, but only one method of  slicing may be used at a 
time. If we try to slice the cake more than one way at a time, we shall be left 
with a useless collection of crumbs." 

For example, it might be nice to set up separate reserve analyses by both coverage and 

region. But even adding the single additional dimension of  "region" might significandy 

diminish the credibility of the data and thereby threaten the integrity of  one's outstanding loss 

estimate. The goal of the first part of  this paper is to suggest a way beyond this impasse. 

Our discussion of changing mixes of  business is intended only to motivate the method 

discussed below. Hopefully the method's usefulness is not restricted to this scenario. For 

example, it might also be useful when, for example, a company moves into a new region or 

two companies merge. 

E N T E R  PREDICTIVE MODELING 

In modem terms, Longley-Cook's image of  the crumbly cake is an illustration of the bias- 

variance ttadeoff in predictive modeling. Stated briefly, a complex model (or multiple models 

fit on sub-segments of  the data) will make predictions that are less biased, but at the same time 

less certain - i.e., more variable - than a simpler model. The tradeoffis that our model should 

have sufficient complexity to reflect true statistical regularities in the data (thereby reducing 

bias), yet not have so much complexity that random patterns in the data overwhelm the model 

and lead t o unreliable results (high variance). This is perhaps a special case of  Einstein's 

dictum, "Everything should be made as simple as possible, but not simpler." 

An analogy with ratemaking might be helpful. Consider a simple rating plan with the 

following rating factors: 

• Age {<26,26-50, >50years} 
• Credit {bad, average, good} 
• Claim in past 3 years {yes, no} 

This rating plan has 3"3"2=18 cells. The most naive - and over-parameterized - way to 

proceed would be to simply estimate the loss ratio relativity of each of  these cells and base 

one's rating factors on these parameters. Note that this is equivalent to fitting a regression 

model with 17 indicator variables. But as Longley-Cook warns, the data in each of  these cells 
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is ~nlikely to have sufficient credibility to produce stable results. Therefore the variance 

around the resulting rating factor estimates will be large. 

For this reason, the modem approach to ratemaking is to employ Generalized Linear 

Models [GLMs]. Rather than estimate 3"3'2-1=17 parameters, a GLM model in this scenario 

would estimate 2+2+ 1 =5 parameters. Extending Longley-Cook's analogy, we now get to have 

our cake and make multivariate estimates with it too. Rather than estimate each of  the 17 

rating factors each with its own "crumb" of  data, we use the loaf to estimate a more modest 5 

parameters. 

There are three major advantages of deriving one's rating factors from the parameters of a 

multivariate model, rather than estimating them direcdy from small "crumbs" of  data: 

• The resulting rating factors will have less variability (less parameter risk). 
• A larger number of  rating factors can be used without running into Longley-Cook's 

"crumbly cake" problem. 
• Factors such as Age and Credit can be treated as continuous predictive variables, rather 

than being arbitrarily divided into discrete bins. 

Returning to loss reserving, it is good and accepted practice to perform separate reserve 

analyses by line of  business and by such important subdivisions as Workers Comp Medical vs. 

Indemnity claims. As we have discussed, this can only be taken so far. But what if (a) claim 

development patterns vary by a multitude of  factors such as Report Lag, Credit Score, Prior 

Claim, Policy Age... and Co) the mix of  business measured by these factors has changed over 

time? As Bomhuetter and Ferguson point out, it is essential to reflect this shifting mix of 

business in one's analysis. But as Longley-Cook points out, dividing the data by many of these 

dimensions will quickly lead to serious credibility problems. 

In the light of  the ratemaking analogy above, it is perhaps natural to suggest that the way 

forward is to somehow incorporate a multivariate predictive model into one's reserve analysis. 

We will sketch one such model below. This model is offered very much in the spirit of  taking 

a first step. We expect that it could be improved or replaced with a better one. Nevertheless, 

we hope that sketching a sample multivariate loss reserving model that admits covariates will 

spark further thoughts on the subject. 
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T H E  LEVEL OF DATA N E E D E D  

Multivariate loss reserving requires that one analyze disaggregated data, at the policy or 

claim level, rather than summarized loss development triangles. The reason for this is clear: 

predictive variables such as Age, Credit, and Prior Claim pertain to the policy that made the 

claim. To incorporate policy-level variables such as these, policy-level data must be used in the 

analysis. There is no way to "attach" such eovariates to summarized data. Similarly, if we wish 

to incorporate variables such as Report Lag or Injury Type into the analysis, claim-level data 

must be used. Traditional loss triangles do not allow one to use this potentially useful 

predictive information. 

To summarize what has been said so far: 

• The traditional approach of  separating one's data and performing separate analyses on 
the resulting loss triangles is an incomplete answer to the problem of a shifting mix of 
business. 

• A plausible approach to this problem is to incorporate covariates into one's reserving 
technique - that is, build a multivariate reserving model. 

• Doing so requires that we use data at the policy or claim (or indeed claimant) level. 

For the remainder of  this paper phrases such as "reserving using claim-level data" will sem, e 

as shorthand for "reserving using policy- or claim- or claimant-level data". 

MODEL DESIGN 

In this section we propose a claim-level generalization of  the simple chain ladder reserving 

method. As stated above, this is merely one of many possible starting points. For all of its 

faults, the chain ladder has the virtues of  being simple and familiar. Generalizing the chain 

ladder therefore gives us an intuitive way of illustrating the benefits of using claim-level data to 

estimate future claim payments. 

As discussed above, We assume we have data at the policy, claim, or claimant level. Of  

course, the finer the level of  summarization of  one's data, the broader the array of predictive 

variables one can include in one's model. Deciding on the level of  data is a practical decision 

that does not substantially affect the discussion below. Let us therefore assume that our data 

is at the claim level. 
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We therefore assume that we have a database with one record per claim, and multiple 

variables on each record. These variables can be categorized into three types: 

• Predictive variables 
• Target variables 

• Informational variables 

(Credit Score, Injury Type, Policy Age...) 
(Loss at 24 months, Loss at 36 months...) 

(Accident Year, Zip Code, Agent Number...) 

The "informational" variables can sometimes be used to derive further predictive variables 

(e.g., by using zip code to match such demographic variables as Population Density onto the 

records). Other times, they are used simply for analytic purposes (e.g., displaying total losses 

by accident year). 

Let us establish some notation. We attempt to be consistent with the notation of England 

and VerraU. Let Cj denote cumulative losses evaluated as o f j  months. For example C24 

denotes the losses (associated with a particular claim) evaluated as of  24 months. {Cj } will 

serve as the target variables in our model design. 

Let {X1, X 2 . . . .  , XN} represent the predictive variables. Each value of  each predictive 

variable X i will appear on each claim-level record. We also assume that the values of  each of  

the predictive variables are measured either at policy inception, or at the claim report date 

(whichever is appropriate). 

Let U k denote the total ultimate losses for accident year k0 summed across all policies: 

Uk=~C ~. Let R k denote the outstanding losses (ultimate losses minus losses paid to date) for 

accident year k. Let U and R denote the sums of  U k and R k respectively across all accident 

years. The goal of  loss reserving is to calculate an estimate r of R as well as an estimate of  

variability of, or confidence interval around, R. R is often referred to as a "reserve estimate", 

but to distinguish it from the quantity that is actually booked in the financial statements, it is 

probably better to call it the "total outstanding losses" or "total future pa)nments" (see [2]). In 

the remainder of  this paper, the three terms will be used synonymously. 

In predictive modeling it is typically the case that we are presented with a single target 

variable Y (such as pure premium or claim frequency or size of loss) and multiple predictive 

variables {X1, X 2 . . . . .  XN}. We might fit a GLM model of  the form: 

~ )  = Is ,x ,  + ls~x., + . . . +  !s~,.x~. s ~ . x  
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Where I* denotes E[Y], the expected value of  the target variable Y; and g(.) is the link 

funcdon. 

Here, the situation is not so simple. For one thing, we are presented with multiple target 

variables {C1, C2, ..., Cj } rather than a single target Y. In addition, this (single) target variable 

is t3,pically the quantity we are ultimately interested in predicting. Here, we are interested in 

predicting either losses at ultimate or losses as of a certain development period, such as 10 or 

20 years. Let us assume that for practical purposes, Cj represents losses at ultimate. That is, 

C2~Co 0. (That is, let us assume that no tail factors are needed for our analysis.) Then C 2 is 

what we are ultimately interested in predicting; and {C1, C2, ..., C2_1} are intermediate 

quantities used as stepping stones to estimate Cj. 

The reason for this complexity is that Cj is missing on most of the claim-level records in 

our dataset. Using it as "the" target value analogous to Y in the GLM example above would 

require us to throw away data points for which Y is unknown. Let us frame our discussion in 

terms of  a'n 'example. Suppose we have claim-level records for accident years 1990, 1991,..., 

1999. On the 1990 records, we have losses evaluated as of 12, 24, ..., 120 months. On the 

1991 records, we have losses evaluated as of  12, 24, ..., 108 months; while losses as of  120 

months ate unknown ("missing"). On the 1999 records, we have only losses evaluated as of 

12 months;  {C24, C36, ..., C120} are all missing. 

O f  course we have the option of  using only the AY 1990 claim records to build a single 

GLM model; and use this model to predict the ultimate values of  the 1991-1999 claims. But in 

doing so we would throw away the loss development pattern information that t*aditional 

reserving/nethods rely on. This is not a satisfactory option. 

Many approaches are possible at this point, but we choose to build - continuing with the 

same example - 9 successive GLM models, "layered" one on top of  the other. Speaking 

figuratively, we "regress" C24 on C12; C36 on C24; and so on. Each of these 9 GLM models is 

analogous to the  9 link ratios in the corresponding chain ladder model that could be run on 

the summarized 10-by-10 loss triangle. Let us denote these 9 models M24 , M36 , ..., M120. The 

M36 model will 'take as an input either losses evaluated at 24 months (for AY 1990-98); or the 

predicted value of  the M24 model (for AY 1999). This is analogous to the way a link ratio is 

applied in a chain-ladder analysis. O f  course in addition to Cj_I, the Mj model takes as inputs 

all of  the predictive variables {X1, X2, ... , XN}. 
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Let us make this abstract discussion more concrete. The motivation for introducing 

predictive variables is to capture differences in different claims' expected loss development 

patterns. Given that our basic idea is to "incrementally" model these (potentially 

heterogeneous) development patterns /l h the chain ladder, it makes sense to model each 

claim's development from period j-1 to periodj  as a function of  several covariates: 

Cj 
- -  = ~ ( X l ,  X2 ..... X N )  
C~_t 

For mathematical convenience, we will further assume that this claim-level "link ratio" is in 

fact a (pre-specified) monotonic funct ionfof  a linear combination of  the covariates: 

C--L = f ( a +  fltX, + fl, vX2 +...+ f lNX~)  
C~_~ 

Tiffs is of  course the familiar linear modeling trick: we reduce the job of  estimating the 

function ~ to estimating the parameters {ct, ~1, [32,'.., J3N}" The monotonic function j~') 

might, for example, be the natural exponent function exp(') or the identity function id(.). The 

use of  linear models (as opposed to, say, generalized additive models or neural networks) is not 

essential to the basic idea sketched here. But it is fairly flexible and powerful approach that 

avoids unnecessary complexity. 

The above equation implies that the expected development from period f l  t o j  of  any given 

claim is a generalized linear function of  the covariates {X1, X 2 . . . .  , XN}. We do not need to 

assume that each claim at period j-1 will have the same expected development to period./'. Nor 

do we need to assume that the mix of  these (inhomogeneous) claims will stay the same from 

one accident year to the next. 

Suppose, on the contrary, that we did assume perfect claim homogeneity in the sense that 

all claims have the same expected development. This is tantamount to assuming no variance 

in claim-level link ratios; and this in turn implies that no covariate X/could possibly play a 

statistically significant role in predicting link ratio. Therefore the above equation reduces to a 

constant: 

Cj = f ( t z )  = Link _Ratio 
C j_, 
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Thus the chain ladder's link ratio is equivalent to our generalized linear model form with no 

covariates. 

A few more assumptions will let us use the machinery of Generalized Linear Models to 

estimate the parameters {ct, [31, }2 ..... [SN}. Let us assume that the funcfionfis the exponential 

function. This is equivalent to assuming the log link function from GLM theory. Let us 

further assume that the variance of Cj+ 1 is proportional to its mean. CHris assumption is not 

essential to the general technique we're t34ng to develop. This familiar assumption is being 

made for convenience, and could be altered without substantially affecting the discussion to 

follow.) In other words, we are assuming the over-dispersed Poisson GLM model form: 

k L c -  ]3 

Equivalently, 

E[~j_t]=exp{tr+fliXi +fluX2 +.. .+ fl,vX~,} 

Or, 

c~ = exp{g+ p,x, + #,,x= +...+ #Nx,, }+ a 
Cj_~ 

where 8 is an overdispersed Poisson-dismbuted error term. Given the quantities {C~1, C a, 

X~, X2 . . . . .  X~,-}, we can estimate the parameters {ct, [31, [32,... , }N} of model Mj using any 

standard GLM package. To be explicit, we would make the following specifications: 

• Target: (Cj / Cj.,) 
• Covariates: {X1, X=,..., X\,} 
• Weight: C~, 
• Distribution: Poisson 
• Link: Log 

Recasting the above equation as follows will allow us an alternate way of conceptualizing 

the above model form. Let us multiply both sides of the equation by C5,: 

cj = c,_,. exp{a+ PlX, +fl,~x= +...+#NXN}+e 
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which is equivalent to: 

C~ =exp{log(C,_,)+ct + fl, X, + fl~,X 2 +...+ flNXN }+ e 

This is perhaps a more useful conceptualization of our model. The target variable is C~ 

there is no weight variable, and log(Cfl) se~,es as the "offset term". Explicidy: 

• Target: C; 

* Offset: log(C5, ) 
. Covariates: {X.  X 2 . . . .  , Xx} 

• Weight: none 

• Distribution: Poisson 

• Link: Log 

(Note that all standard GLM packages allow one to specify an offset term.) The offset 

term essentially functions as a regressor whose corresponding "beta" parameter is constrained 

to be 1. This conceptualization illustrates the chain ladder-esque idea that we are building a 

model that estimates the expected value of  Cj as a "generalized linear link function" exp(a + 

~IX1 + ~2X2 +... + ~N XN) applied to C~,, the (known or estimated) losses as of  j-1. 

HOW TO HANDLE IBNR 

Note: this short section, and the appendix it refers to, outlines a method for extending the 

model design to handle IBNR claims. The authors suggest skipping it on the first reading. 

Indeed, this section can be skipped altogether if the reader takes the attitude that the model 

outlined can be used for losses on reported claims only; with IBNR claims being estimated in a 

separate analysis. 

This model design also allows us a way of incorporating incurred but not reported (IBNR) 

losses into our model. For simplicity, let us assume that all claims that are unreported at 12 

months are reported by 24 months. Therefore there will be records in our data with C12=0 

and C24>0. In the M24 model, we add to the database one record for each in-force 1999 

policy that had no claim as of 12 months from its effective date. On this record, we would 

force the offset term log(Clz) to be zero. We would also include on all records an indicator 

variable X 0 as a covariate in M24 that takes on the value 1 if C12=0 , and 0 otherwise. Finally, 

we would neutralize all predictive variables that measure claim-level information. 
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("Neutralize" typically means that we recode missing variables to the median value.) As with 

all of the other AY 1999 records in the database the values of {C24 , C36 , ..., C120} are all 

missing. 

Doing this will "allocate" a portion of  the 12"-)24 IBNR (estimated from the AY 1990- 

1998 data) to each 1999 m-force policy that has no claim reported as of 12 months. The Y0 

parameter of  the X 0 indicator functions in place of  the offset term, which was forced to be 

zero on each of  the 1999 zero-claim records. In other words, exp(¥~ is the. average expected 

12--)24 IBNR for each AY 1999 policy. The expected IBNR for an individual policy is 

e~%xP( a + ~1X1 + ~2X2 + ' "  + ~N XN) = exp(a + 3'0 + ~1X1 + ~2X2 +.-. + [~N XN). The 
successive models M.s6, M,s,... will "develop" this allocated IBNR loss along with the other 

losses. 

An example might clarify this discussion. Suppose that the total IBNR (as of  24 months) 

from AY 1990-98 was $400,000 and that during this time period, there were 4000 policies 

without claims as of 12 months. This is an average of $100 per claim-free policy. The value of  

'/0 would therefore be log(100)m4.6. 

Note that this method of  treating IBNR assumes that the covariates {X1, X2, ..., XN} 

affect the allocation and development of  IBNR in the same way that they affect the 

development of  other losses. We could refine the model by including the interactions 

{X0*X1, Xo*X2, ... } as further model covariates. These covariates would be non-zero only 

for the records co~responding to policies with no losses as of  12 months. This idea is more 

full)' exp~cated in the Appendix. 

SIMULATION APPROACH 

We will now apply the above model to a (very rudimentary) simulated dataset. The 

advantage of  using simulated data is twofold. First, by construction we know which covariates 

are truly related to the various claims' differential development over time. Because of this, we 

can illustrate the operation of  the model without the distr;action of  haxq_ng to convince 

ourselves that a set of  covamtes is reasonably complete or significantly correlated with the 

claims' differential loss development. 
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Second, we can simulate our data "to ultimate", and set aside the (otherwise unknown) 

losses at ultimate as a standard against which we can compare our model's predictions with the 

predictions of  the traditional chain-ladder model. 

Of  course a major disadvantage of using simulated data is that our sample results will give 

little indication of  the degree to which out proposed model will produce improved predictions 

on real-world data. 

However, it is our hope that the potential of this approach will be intuitive to many readers. 

The authors' experience in building predictive models for ratemaking and underwriting 

applications suggests that it is nearly always possible to find traditional and non-traditional 

predictive variables that are significantly correlated with size-of-loss. Given that Larger claims 

are known to develop more slowly, one expects that that many of these same predictive 

variables will be correlated with loss development patterns. 

SIMULATION ASSUMPTIONS 

We illustrate our model with a simulated dataset that is very simple, yet with sufficient 

structure to illustrate the potential advantage of  this model over the traditional chain ladder. 

By construction, our claim-level dataset has the following characteristics: 

• Near -homogenei ty  of data: the claims in our book of  business all have identical 
expected loss development patterns except for one characteristic: whether the 
policyholder that made the claim had "good" credit or "bad" credit. 

• Differential development:  The claims of  bad credit policies are expected to develop 
more slowly than the claims of  good credit policies. 

• Changing mix of business: A greater proportion of  bad credit policies have been 
written in recent years. 

As Bomhuetter and Ferguson point out, the differential loss development of  bad/good 

credit policies' claims would present no special problem to the traditional methods were it not 

for the changing mix of  business. However, the greater proportion of  bad credit policies 

written in more recent years implies that the overall development patterns will shift from year 

to year. In particular, the expected development pattern for the most recent accident year will 

not be adequately represented by an average development pattern derived from the prior 

accident years' claims in a loss triangle. 

Casualty Actuarial Society Forum, Fall 2006 123 



Loss Reserving Using Claim-Level Data 

The simulation incorporates the idea that a measurable quantity - here, credit - is 

correlated with loss development. Therefore by including credit in our reserving model, we 

are reflecting the shifting mix of  business in our analysis. Put another way, the shifting 

proportion of bad credit policies is a "leading indicator" of  a slow-down in the book's loss 

development. Using credit as a covariate in our reserving model allows us to quantify this 

slow-down, rather than judgmentally adjust for it after a traditional reserving exercise. 

We simulate 5000 data points, each representing one daim. By design there are 500 claims 

for each of  the accident years 1990, 1991, ..., 1999. Each of the 5000 records has 10 loss 

fields C12, C24 . . . .  , C120. We will describe how the values of  {C12, C24, ..., C120} are assigned 

to each claim. 

Finally, two simplifying assumptions are made. First, we assume that there is no IBNR: all 

claims are reported by 12 months from the beginning of  the accident year. (See the discussion 

above and the Appendix for a discussion estimating IBNR in the current model framework.) 

Second, weassume that losses are fully developed as of 120 months: for each accident year k, 

U~=Zq20- 

Next we describe our simulation of  the loss fields {C12 , C24, . . . ,  C120}. We draw the losses 

at 12 months (C1,.) from a lognormal distribution; and then successively apply 9 randomly 

generated "link" factors to these losses. The means and standard deviations of the 

distributions used to generate the losses and link factors were selected by judgment. 

In more detail, the 5000 values of C12 were drawn from a lognormal distribution with 

parameters gt= 8 and o= 1.3: 

log(C12) ~ n(8, 1.3) 

For good credit claims, the values of  {C~4, ..., C~z,} were determined by the following 

algorithm: 

Cj+l = Cj * ( l i n k f l  °°e * ei) 

The similar algorithm for bad claims is: 

Cj+l = C i * (link bad * ej) 

where 
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link ~ a  = {1.8, 1.17, 1.13, 1.08, 1.05, 1.03, 1.02, 1.015, 1.008} 

and link b~a = (link~'°a-1)*1.25 + 1: 

• link b'a = {2, 1.2125, 1.1625, 1.1, 1.0625, 1.0375, 1.025, 1.01875, 1.01}. 

Finally, ej is a normally distributed "shock" term with mean 1 and a standard deviation that 

is a function of the value of the link ratio. 

The development patterns (1/LDF) implied by the above expected link ratios are graphed 

below. This graph illustrates that by construction, bad credit claims develop more slowly than 

good credit chinas. 

Loss Development Patterns 

i 

Loss Reserving Using Claim-Level Data 

2 4 6 8 10 

de~lopment pedod 

In summary, each claim at each time period is assigned its own randomly generated link 

ratio; but the e:,pectedlink ratios for bad/good credit claims are the ones stated above. (A word 

about motivation: the number of  claims, size-of-loss distribution, and the general magnitude 

of the link ratios were judgmentally chosen to result in a summarized loss triangle similar to an 

actual Workers Comp loss triangle studied by one of the authors. The differing link b'a and 

link ~"~a development patterns were selected purely judgmentally.) 
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So far, we have  discussed the "homogenei ty"  and  "differential deve lopment"  assumptions .  

Regarding the  "changing  mix o f  business",  we randomly apply the "bad"  and "good"  link 

ratios in the following proport ions  across the accident years: 

1990 30% 70% 
1991 35% 65% 
1992 40% 60% 
1993 45% 55% 
1994 50% 50% 
1995 55% 45% 
1996 60% 40% 
1997 65% 35% 
1998 70% 30% 
1999 75% 25% 

Note  that  the  simulation approach we have laid out  allows us to assign values o f  {C12, C24, 
• .., C12,,} to each claim, regardless of acddentyear. W e will apply bo th  our  mode l  and the  

traditional chain ladder to the data elements  that would be available in an actual reserving 

exercise - namely  those  that  fo rm the upper  half  o f  the loss triangle. At  the  same time, we can 

use the data elements  that  would  be u n k n o w n  in an actual resenting exercise - the  lower half  

o f  the triangle - as the " t ruth"  against we can judge the success o f  bo th  our  m e t h o d  and  the 

chain ladder. 

The  simulated data, summar ized  to the accident 3,ear level, is displayed below: 

3,522 6,562 7,766 8,85~ 9,627 10,144 10,473 10,700 10,875 10,970 10,970 0 
3,527 6,623 7,876 9,011 9,817 10361 10,705 10,942 11,123 ~ i ( :  11,223 99 
3,681 6939 8235 9,428 10274 10933 11,194 11,444,ii~635~!~:1~g: 11,739 295 
3,780 7,152 8539 9,791 10666 11 262 11 642 ! 1  902:12,10ff 1272i~':; 12,210 567 
2,912 5,563 6 644 7 629 8,329 8,808 19 484~[:.!i~':~. ! 9,571 763 
3,724 7,167 8 573 9,850 10,763 i1'393 12,397 1,684 
3,213 6,202 7,423 8,540 ~ ,:9,337 9 ; 8 8 5  10~3211-~10,~73"~ i0;65(}" i 0 , ~  10,757 2,217 
3,335 8,445 7727 11,187 3,460 
3,596 12,204 5,229 
3,327 9;~?,!:10,483:. ,~ ~0 ~ " :  ~j ! !~:  i;1,~323 ~ ,t::!,~2 11,432 8,105 

22,369 

1.964 1 . 2 0 9  1.149 1.094 1.060 1.036 1.022 1.017 1.009 1.000 
3.436 1.750 1.448 1.268 1.152 1.067 1.049 1 .026  1.009 1.000 

The  " u n k n o w n "  data elements (those that  would be known as o f  12 /31 /2000  or after) are 

shaded,  and will no t  be used to fit models.  No te  that  the  "ult imate" co lumn  is the  same as the 
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"at 120 months" column, and represents the "true", though unknown ultimate losses (uk). 

Similarly, the "o / s"  column represents the "true" outstanding losses as of 12/31/1999 (rk). 

Thus the "true" value that we wish to estimate is 0=)~ 0k =$22.369M. 

Note that the link ratios computed from this summarized data are essentially weighted 

averages of the link ~ and link ma ratios stated above. This is representative of  the way 

important patterns can be "summarized away" when the data is summarized to the triangle 

level. 

MODEL RESULTS 

We applied our sequence of 9 Poisson GLM models to the 5000 simulated data points. 

The exact steps of  this process are sketched below: 

Step 1: Regress the 4500 data points with non-missing values of C24 (i.e. the claims from 

AY 1990-98) on credit score, using log(Clz) as the offset term. This model is then applied to 

the 500 claims with unknown values of  La4 (i.e. the AY 1999 claims) to producepredictedvalues 

of C24. 

Step 2: Regress the 4000 data points with non-missing values of  C3, ~ (i.e. the claims from 

AY 1990-97) on credit score, using log(C24 ) as the offset term. This model is then applied to 

the 1000 claims with unknown values of Lu, (i.e. the AY 1998-99 claims) to produce predicted 

values of Cue Note that the AY 1998 values of C36 are based on actualvalues of Ca4; whereas 

the AY 1999 values of C.~c, are based on predicted values of C24- 

Step 9: Regress the 500 data points with non-missing values of  C1~, (i.e. the claims from 

AY 1990) on credit score, using log(C1,Q as the offset term. This model is then applied to the 

4500 claims with unknown values of C~2 . (i.e. the AY 1991-99 claims) to produce prrdicted 

values of C~,. Note that the AY 1990 values of C~2, are based on actualvalues of C~.s; whereas 

the AY 1991-99 values of  C1_,, are based on predicted values of Cu,s. 

Step 10: The ultimate loss estimate is the sum of Cta, across, all daims and across all 

accident years: u=Y.Y. C12,,. The estimate of  total outstanding losses r equals u minus the total 

claims paid as of  12/31/1999. 
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The way in which the model Mjis applied to the predicted values of  model Mj_I is analogous 

to die way the chain ladder's link ratios are multiplied together to produce loss development 

factors. 

The results of these 10 steps, summarized to the accident year level, are displayed below. 

They can be compared to the display of  the "truth" above: 

22,333 

link 1.954 1,208 1.152 1.093 1.059 1.036 1.023 1.017 1.009 1.000 
LDF 3.422 1.751 1.450 1.255 1.151 1.087 1.049 . 1.026 1,009 1.000 

Note that the implied LDFs at the bottom of this display were calculated by dividing the 

predicted ultimate values by the losses for that accident year as of 12/31/99. The implied link 

ratios were then derived from the implied LDFs. 

Finally, the results of a chain ladder exercise are displayed in the following table: 

3,327 10,793 
20,972 

link 1.906 1.192 1.146 1.090 1.055 1.033 1.022 1,016 1.009 1.000 
LDF 3.244 1.702 1.428 1.246 1.143 1.083 1.048 1.025 1.009 1.000 

(Note that this calculation can be verified by the reader m a spreadsheet. The spreadsheet- 

based results will differ £rom the above o/s loss estimate by $2000 (0.01°/0). This is due to 

rounding errors: the above table was generated by a computer program using un-rounded 

losses in the upper triangle.) 
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For convenience, the results of both methods - together with the simulated "truth" - are 

displayed below: 

3,522 6,562 7,766 8,850 9,627 10,144 10,473 10,700 10,875 10,970 
3,627 6,623 7,876 9,011 9,817 10,361 10,705 10,942 11,123 
3,681 6,939 8,235 9,428 10,274 10,833 11,194 11,444 
3,780 7,152 8,539 9,791 10,666 11,262 11,642 
2,912 5,563 6,644 7,629 8,329 8,808 
3,724 7,167 8,573 9,850 10,763 
3,213 6,202 7,423 8,540 
3,335 6A45 7,727 
3,596 6,975 
3,327 

1.906 1.192 1.146 1.090 1.055 1.033 1.022 1.016 1.009 1.000 
~ ; ~  1.428 1.246 1.143 1.063 1 .048 1.025 1.009 1.000 

1.964 1.209 1.149 1.094 1.060 1.036 1 .022 1.017 1.009 1.000 
3.436 1.750 1 .449 1.260 1.152 1.087 1.049 1.026 1.009 1.000 

1.954 1 .208 1 .152 1.093 1 .059 1.036 1.093 1 .017 1.009 1.000 
3.422 1.751 1.450 1.258 1.151 1.067 1.049 1.026 1.009 1.000 

I0,970 O 
11,220 9¢  9 :  99 
11,734 289 29S 294 
12,200 558 567 572 
9,537 728 763 765 

12,298 1 ,535  1,634 %629 
10,637 2,097 2,217 2.205 
11,031 3,304 3,460 3,475 
11,873 ~ 5,229 5,237 
I0,792 ~ 8,105 

20,972 22,369 22,333 
I -5.25~ -o.15~ I 

Because the chain ladder is slow to pick up the changing mix of  business (i.e., increasing 

proportion of bad credit policies that produce slower-developing claims), its estimates axe too 

low for each accident year. This effect is most pronounced for the later accident years 

(shaded). In this example, the chain ladder's total outstanding loss estimate is approximately 

6% too low. 

By comparison, the proposed method's total outstanding loss estimate is almost exactly 

correct. It goes without saying that this is because our losses were simulated to develop in the 

multipiicative fashion assumed by the chain ladder; and because by construction only one 

covariate - credit - has a statistically significant relationship with loss development. Of  course 

real-world data present no such conveniences. The above results axe therefore suggestive at 

best. Still, the point remains that the proposed method is able to reflect changes in the mix of 

business (assuming that these changes can be measured by covariates capable of being 

collected and put  into a model) that the chain Ladder misses. 

THE PROPOSED METHOD IS A PROPER GENERALIZATION OF 
THE CHAIN LADDER 

By now it should be clear that the proposed loss reserving framework is intended to 

function as a GLM/micro-data-based analog of  the chain ladder. One can go further and state 

that it is a true generalizanon of the chain ladder, in the sense that it produces the same results 

as the chain ladder when no covaxiates are present. 
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We verified this with the simulated data analyzed above. That is, we simply fit the above 

sequence o f  9 GLM models, replacing the credit variable with a constant. The proposed  

method  results in exactly the same results as the chain ladder. These results are summarized 

below. 

It is generally a bad idea to exclude a statistically significant covariate f rom the GLM 

models. Here we see that doing so reproduces the chain ladder's (understated) reserve 

estimate. This lends a statistical perspective to where the chain ladder goes wrong when 

applied to a book of  business whose  development  patterns have changed over time. 
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PART II: THE PROBLEM OF ESTIMATING RESERVE 
VARIABILITY 

From a statistical perspective, R is an estimator of  outstanding losses. It is a funct ion o f  the 

values o f  the r andom variables {Cn, )(i, Xa, ...,  Xx} for each data point. In other  words,  it is 

a complicated funct ion o f  several r andom variables. Like any such estimator, it has a 

probability distribution that  is a complicated function o f  the distributions o f  the under l ) ing  

r andom variables. 

As we have demonst ra ted  above, it is fairly straightforward to calculate the expected value 

o f / L  This is our  outstanding loss estimate. It summarizes what  the data (and our model)  tells 

us to expect about  the amount  o f  future claim payments.  But  we would also like a measure o f  

how strongly we should believe this estimate. To do this, we need further informat ion - o ther  

than the expected value - about  the distribution of  our estimator o f  outstanding losses. For  

example, what  are the cutoffs o f  a 95% confidence interval around the estimate? 

This p rob lem - sometimes referred to as the problem of  reserve vaffability - has received a lot 

of  at tention in the recent  loss reserving fiterature. The  recent  report  of  the CAS Working  

Party on  Quantifying Variability in Reserve Estimates [2] puts the matter  this way: 

A risk bearing entity wishes to know its financial position on  a particular 
date. In order  to do this, among other  items it mus t  unders tand the future 
payments  it will be liable to make for obligations existing at the date of  the 
valuation. For  an insurance situation, these future payments are not  known 
with certainty at the time o f  the valuation. 

The  fundamenta l  question that  the risk beat ing entity asks itself is: 
Given any value (estimate of future payments) and our current state of knowkdge, what is 
the probability that the finalpayments udll be no larger than the given value? 

A flail answer to this quest ion would involve the assessment of  model  risk, and is beyond 

the scope of  this paper. But  even a limited answer would go beyond supplying a mere 

confidence interval or variability estimate. Ideally, we would like an estimate o f  the entire 

probability distribution of  the outstanding loss estimator. 

This seems like a lot to ask. After  all, bo th  the loss distribution underlying our claims data 

as well as our estimators of  outstanding losses are fairly complex. Surprisingly, m o d e m  

statistics supplies us with  a simulation-based technique - called bootstrapping - that  allows us to 

estimate this distribution with fairly little effort. 
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E N T E R  T H E  BOOTSTRAP 

The Boots t rap was int roduced by Bradley Ef ron  in the late 1970s. Since then, it has 

become  a commonly  used technique in any number  of  problems in applied statistics. The  

classic text is Ef ron  and Tibshirani [3]. Put  briefly, boots t rapping is a simulation-based 

technique for estimating potentially "difficult" distributional properties - such as the standard 

deviation or the 90 ~ percentile - of  potentially complex estimators. We  typically do not  know 

the " t rue"  distribution o f  such estimators. The  basic idea of  the Boots t rap is therefore to use 

the actual, empirical distribution (i.e., the data) as a proxy for the true, u n k n o w n  distribution. 

Once  this conceptual  leap is made,  many otherwise intractable problems become fairly 

straightforward exercises in statistical computing.  

A n  analogy lies at the heart  of  bootstrapping.  Jus t  as our  actual distr ibution is one o f  an 

infinite n u m b e r  ofpossibk draws f rom the " t rue"  theoretical distribution; we can take a large 

n u m b e r  o f  resamples of  our actual distribution to form an arbitrarily large n u m b e r  o f  "pseudo- 

datasets". 

[Actual distribution : "true" distribution :: resampled datasets : actual distribufior~ 

Just  as we would know everything we need to know about  the "true" distribution if  we 

could draw a large number  of  samples f rom it, we can estimate m u c h  o f  what  we would like to 

know about  the " t rue"  distribution by treating the actual distr ibution as a proxy, and drawing 

multiple resamples f rom it. 

We  can illustrate this idea by applFing it to a very simple p rob lem for which we know the 

answer in advance. Suppose we draw 500 observations X={X1, . . . ,  Xs,~, } f rom a normal  

distribution with ~t=S000 and o=100: n(5000,100). Let  ra denote  the sample average o f  this 

data: 

1 5ooo 
m = - - E X  i 

tit i = l  

m is an estimate o f  the true value 8, just as we derived an estimate o f  the " t rue"  outstanding 

losses in the previous sections, ra therefore tells us "what  we th ink"  about  the true value o f  ~t 

based on  the data. We would also like a measure o f  "how sure we are". In this simple 
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example, the obvious thing to do is construct  a confidence interval by appealing to the 

elementary fact that: 

a ioo 
s.d.(m) =-~nn = ~ = 4.47 

Let  us apply boots t rapping to this problem to see how close we can come to the answer 

(4.47) that  we know in advance. 

The  following table records some facts about  our data: 

• # obs: 500 

• Mean: 4995.79 
• Stdev: 98.78 
• 2.5 m % a ~ :  4812.30 
• 97.5 'h %~: 5195.58 

We can resample f rom this dataset a large n u m b e r  of  times to create multiple "pseudo-  

datasets". "Resampling" means sampling with replacement  as many times as there are points  

in your initial dataset (here, 500). Explicitly: pull a point  at r andom from {X1,... , Xs, N,}; 

record it; throw it back in; repeat  this until  we have out  first pseudo-dataset  containing 500 

observations. Let  us denote  this pseudo-dataset  Ji'~l. 

We now repeat this process as many times as we would like, say 999 additional times. We 

therefore have 1000 pseudo-datasets .X'~ .... ~1~,~,- We can compute  the sample average m on 

each one o f  these datasets. Denote  these {m* t ... .  m%N~ }. These  1000 estimates consti tute an 

estimate o f  the a~'stdbution of  our est imator m. With  this distribution {m* t .... re%K,, } in hand,  

we can very easily estimate nearly any distributional property o f  ra that  we would like. In 

particular: the sample standard deviation o f ra  based on  our  1000 resamples is 4.43: 

1 I000( 1 io0o -~2 

s .d . (m)=~i~i tm*i--~-~,~_im*,J  = 4 . 4 3  

This differs f rom the true value (4.47) by less than a percentage point.  

Boots t rapping in this toy example is therefore a complete  success. The  key point  to note  is 

that the unlike our analytic formula for s.d.(m), the boots t rapping technique does not  assume 

any knowledge of  the underlying distribution o f  X. All that was required was comput ing  
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power. Because o f  this, it is possible to execute essentially the same process on the loss data 

analyzed in the previous sections. 

BOOTSTRAPPING RESERVE ESTIMATES 

Having introduced the concept  and run through a simple example, there is little to say in 

this section, other  than to report  the results. Let S denote our database o f  5000 claims. We 

resampled S 500 times to get the 500 pseudo-datasets ~'1 .... S*s, .. We then ran the above 9 

GLM models on  each o f  these 500 pseudo-datasets and computed  outstanding losses on each 

pseudo-dataset: {R*I,..., R's,,,}. Although it might seem excessive to fit 4500 GLM models 

to estimate the distribution o f  outstanding losses, doing so took less than 15 minutes on  a 

standard laptop equipped with the shareware statistical software package R. 

The estimated distribution of  the outstanding loss estimator R is plotted below: 

total reserves -a l l  10 years 

I I I I I I I 

19000 20000 21000 22000 23000 24000 25000 

The bars are simply a histogram o f  the 500 estimates o f  outstanding losses. The solid curve 

is a superimposed normal distribution. The dotted curve is a kernel density estimate o f  the 

distribution underl3fing the histogram. Some basic statistics o f  this distribution are reported 

below: 

• Mean: $21.751M 

• Median: $21.746M 

• Stdev: $0.982M 

134 Casualty Actuarial Society Forum, Fall 2006 



Loss Reserving Using Claim-Level Data 

• C.V.: 4.5% 

This kernel density estimate in the graph suggests that the distribution of  our outstanding 

loss estimator is normal, to a reasonable degree of  approximation. The fact that the mean is 

nearly equal to the median reinforces this judgment. Therefore a 950/0 confidence interval 

around our reserve estimate can be calculated in one of two ways: 

• Record the 2.5 and 97.5 percentiles of  the bootstrap distribution. 
• Calculate 21.751M _+ (1.96)*(0.982M). 

Both of these methods produce the same answer, to within the nearest $100K: 

($19.8M, $23.7M) 

In short (ignoring model risk), we have 95% confidence that the true outstanding loss is 

within + 9% of our estimated value. We remind the reader that this result is based on a 

rudimentary simulation, and is only intended to be suggestive. 

DISCUSSION 

Before concluding this paper, we would like to make four points about the bootstrapping 

technique illustrated above. First, bootstrapping is uncommonly generous to the practitioner 

in that it gives one an estimate of  the entire distribution of an arbitrarily complex estimator 

without asking for any knowledge of  the distributions underlying the data. Nearly an 3 , question 

we would tTpicaUy ask about the outstanding loss distribution (standard deviation, skewness, 

percentiles, probability of nfin...) can be addressed with mere computation. 

Second, the bootstrap method illustrated above is not specific to our GLM-based reserving 

technique. Indeed, if the claim-level data is available, one can also use this technique to 

bootstrap chain-ladder, Boruhuetter-Ferguson, or any other reserve estimates. To do this, we 

would summarize each of our pseudo-datasets to the triangle level; and apply our favorite 

technique to each of  the resulting triangles. The 1000 outstanding loss estimates (assuming 

1000 pseudo-datasets, as in the above illustration) resulting from each of  the 1000 pseudo- 

triangles will constitute the distribution of  our outstanding loss estimate. 

Third, bootstrapping has been the subject of some discussion in the recent loss reserving 

literature. But there is an important difference between these discussions and the technique 
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illustrated here. To the best of our knowledge, these discussions have been offered in the 

context of analyses of summarized loss triangles, not claim-level data. 

The excellent survey paper by England and Verrall [4] is an example. England and Verrall 

apply a GLM model to a summarized loss triangle, and resample the standardized residuals of 

this model. They resample the distribution of  residuals (there will be 55 data points for a 10- 

by-10 loss mangle) a large number of  times. Each time they add the pseudo-dataset of  

residuals to the original loss mangle to form a pseudo-history to which they can again apply 

their GLM. Doing so allows them to estimate the prediction error of  their estimate. 

The difference between England and Verrall's approach and the approach illustrated here is 

generic, and found in most textbook discussions of bootstrapping. When bootstrapping 

model predictions, it is possible either to bootstrap cases (our approach) or residuals (England- 

Verrall). When dealing with small loss mangles it is not meaningful to bootstrap cases. 

However bootstrapping cases is meaningful when claim-level data is available. 

As noted in the final paragraph of  the introduction, our approach of  resampling cases 

occurs prior to any reserving model being fit to the data. In other words, the very validity of 

our pseudo-datasets does not depend on the adequacy of the model being fit. In this sense, 

the cases-based resampling strategy is less sensitive to the correcmess of ones model than the 

residual-based resampling strategy. 

One final comment: bootstrapping is not the last word on the topic of reserve variability. 

In particular, nothing we have said addresses the problem of modelfisk. Suppose, for example, 

that we bootstrapped the traditional chain ladder applied to our simulated data. The 

bootstrapped confidence interval would not reflect the bias due to excluding the credit 

covariate in our reserving model. What is perhaps the biggest challenge in reserve variability is 

therefore left untouched by this discussion. Still, by giving us a practical way of estimating the 

predictive distribution of outstanding losses, bootstrapping potentially allows one to devote 

more attention to model risk. 

CONCLUSION 

The traditional summarized loss mangle is in general not a "sufficient statistic" for 

estimating outstanding losses. There will be times when we can do better by basing reserve 

and reserve variability estimates on un-summarized claim-level data. 
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As the first half of  our paper illustrates, loss mangles can suppress heterogeneous loss 

development patterns that could be used to improve our predictions of outstanding losses. At 

the same time, summarized data does not allow us to use predictive variables that might be 

correlated with different loss development patterns. 

Fttrthermore, as noted in the second half of  our paper, loss mangles potentially summarize 

away variability information that could be used to make improved estimates of reserve 

variability. Using claim-level data allows us to bootstrap cases, not merely residuals from 

models applied to loss mangles with small numbers of observations. 

In short, the use of  claim-level data, together with relevant predictive variables, has the 

potential to improve actuaries' estimates of  outstanding losses. In addition, it makes available 

a powerful and conceptually simple method for estimating reserve variability. 
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APPENDIX: ADDING IBNR TO T H E  MODEL 

This appendix outlines a method by which one can enhance the model to predict INBR 

losses. Alternately, one can simply use the model outlined in the body of  this paper to model 

the development of reported claims (as is done in the simulation example to follow); and build 

a separate model to estimate IBNR. 

The 12--)24 model (M24) not modified to reflect IBNR takes the form: 

C24 =exp{Iog(Cn)+ ct + fl, X, + flNX2 +... + fluX u }+ g. 

The idea is to introduce a record for each policy with no losses as of 12 months (C1_,=0) 

from its effective date. (Note that the other records in our database are at the claim level.) We 

set the offset term log(Clz) on these records to be zero. We also include on all records an 

indicator variable X, that takes on the value 1 if Cn=0, and 0 otherwise. Finally, on the (claim- 

free) policy-level records we would neutralize all predictive variables that measure claim-level 

information. ("Neutralize" might mean that we recode missing values of  a variable to the 

median value of  that variable.) 

For the 1990-98 policy-level records, we let {C24, C u,, ..., Cta,} equal the total IBNR 

evaluated at these various evaluation points. As with all of  the other AY 1999 records in the 

database the values of  {C=4, C3,, ..., C1,~,} are all missing. We add the indicator variable X, in 

the model. At this point our model takes the form: 

C24 = exp{log(Cn)+ g+7oXo +fl, Xl +flnX2 + . . . + f l n X n } + e  

Note that in this model form, the offset term only "applies" to the claim-level records with 

a non-zero value of  C1,; similarly, the term y ~ ,  "applies" only to the policy-level records with 

Cn=0. The remaining terms apply to both types of  records. In other words, each of the [3 

parameters simultaneously models development of  losses reported as of 12 months, as well as 

allocates IBNR losses at 24 months. 

If this dual functioning of  the [3 parameters is unsatisfactory, it is possible to let the [3 

parameters only model the development of reported claims (as in the original model with no 

IBNR component) by introducing interaction terms. Suppose that X1...Xx_p are the policy- 

level covariates (such as policy age and credit score) in the model. (Claim-level variables such 
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as report lag or injury type do not apply to policy-level records.) We add the interaction terms 

X.*X>..  X,,*X~:p into the model: 

C24 =exp{log(C,2)+ a + yoX o + ISjX, +... + f luX ~ + 7~o * X, +... + yu_,/Yo * X ~_t,}+ e 

If  this seems somewhat complex, it is because we have really designed "two models in 

one". The 12--)24 development of a claim C*~= is given by the following equation: 

C'24 = exp{log(C*,2 )+ a +/31 X, + ... +flt¢ X u } 

All of  the terms with X,  drop out because X,, is assumed to be 0 on (claim-level) records 

with non-zero Cn. In other words, we are back to the model form given at the beginning of  

this appendix. 

On the other hand, the allocated IBNR at 24 months for a policy with no loss at 12 months 

is given by the following equation: 

C24 = exp{a +70+(fl, +YI)X, +...+ (flu_,,+yu_,,)Xu_,, + r}  

Here × denotes the terms {[3x~+lXx~+t + ... + ~,-X,x}. These terms reduce to a constant × 

because the claim-level variables {X,x~+~ ...Xx} were neutralized on the policy-level records. 

In addition, note that the offset term was forced to be zero on these policy-level records. 

It might be helpful to note that exp{~t+y,,+x} is the average IBNR allocated to each of the 

policies that were claim-free as of  12 months. The multiplier exp{(~t+y~)Xl+...+(~x.p+~,x_ 

~)X.x.p} adjusts each policy's allocated IBNR based on the values of  the policy-level covariates 

Xv..X.x>. As with expected claim development, the fact that the allocation of IBNR is 

"tailored" to the individual policy according to that policy's characteristics allows the model to 

reflect changes in the mix of  business being analyzed. 

Models M 3 6  , . . . ,  Mt,~, can similarly be modified to handle the further emergence and 

development of  IBNR. 
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