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Abstract

Casualty excess reinsurance terms are typically stated in fixed attachment and limit amounts. Unless a
lump sum settlement or commutation is made ultimate recoveries are settled years later as total
payments penetrate the excess layer. This paper demonstrates that annuity models incorporating claim
life, late reporting, benefit inflation, and discounting can be formulated with simple functional form
components that lead to closed form solutions, or at least efficient numerical integration solutions, for
exposure rating quantities. Applications are shown to problems such as commutation of existing
claims, prospective reinsurance rating, excess loss development factors, and volatility of excess layers.
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1. INTRODUCTION

Consider a very motivating practical example along the lines of (Ferguson [0]) or
(Bluhmson [1]). Suppose a permanent disability claim is reported to an insurer. The
disabled beneficiary is 40 years old and expected to live 40 more years, annual indemnity and
medical benefits are currently $100,000 but subject to future inflation throughout the life of
the beneficiary. The claim is covered by one reinsurance treaty for $15 million excess of $10
million reinsurance treaty and by a second treaty $25 million excess of $25 million. What is
the gross reserve for the claim, nominal and discounted, respectively? Traditional tools of

life contingencies do a respectable job of answering this type of question (Bowers [2]).

What are the reserves, ceded to each reinsurance treaty and net, nominal and discounted,
respectively? How much should the reinsurers pay to commute the claim? The reinsurers
say the ceded amount will be about 0 since even if average benefit inflation is 4% the
beneficiary would have to live to 82 years old to even begin to penetrate the first treaty layer.
The insurer believes that average benefit inflation will be 11%, mostly driven by exploding
medical expenses, and that both treaty layers will be totally exhausted if the beneficiary lives
to 80. How are the answers affected by uncertainty in mortality and interest rates? For

questions involving IBNR, prospective rating of treaties, and risk adjusted discounting the
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confusion and disagreements are even worse. Actuarial tools have not been well developed

to answer these types of questions.

Large casualty claims, absent of a lump sum settlement, involve long streams of
indemnity and medical payments that can last many decades. The ultimate value of these

claims is highly uncertain due to many risk factors, including:

1. claim life or mortality of the disabled individual
2. inflation of future benefit amounts

3. interest rate (or appropriate discount rate) where present values are calculated

Excess reinsurance layers are generally stated in fixed nominal dollar amounts for
attachment points and limits. Consequently, losses in these layers can be even more
uncertain. This phenomenon has been dealt with through the use of discrete spreadsheet

simulation models in (Bluhmsohn [1]).

However, closed form solutions for exposure rate estimates for excess reinsurance layers
can be obtained if simple analytic functional forms are assumed for components such as

claim life, reporting delay, inflationary trends, etc. of a life contingent annuity model.

1.1 Research Context

The net and ceded problem for annuity reserves was considered in (Ferguson[6]). The
sensitivity of layers of a casualty claim to parameter assumptions has been considered in
(Bluhmsohn [1]), and annuity models for paid tail factor development have been considered
in (Corro [5]). This paper falls primarily into CAS research categories 1.G.3, 1.G.9, 1.G.12,
I.I.1.a, and LI1.b.

1.2 Objective

The techniques demonstrated in this paper connect the methods of life contingencies
(Bowers [2]), as used for annuity calculations, with the methods of loss distributions

(Klugman [8]), as used for per claim layered exposure rating calculations, to solve practical
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casualty reinsurance problems (Carter [4], Kiln [7], Strain [12]). The techniques are also
somewhat applicable to low frequency per occurrence layers, but effectively inapplicable to
high frequency catastrophic clash layers. Applications are demonstrated for commutation of
claims, exposure rating of reinsurance treaties, loss development by layer, and volatility of

excess layers.

1.3 Outline

This paper will explore annuity models with closed form solutions with the help of the
symbolic manipulation and numerical calculation program MATHEMATICA. Attention

will also be paid to parameter uncertainty — in addition to process variance.

Section 2 contains general setup for annuity models and several specific models with
closed form solutions. Then a series of practical applications is presented in Section 3.
Section 4 compares the advantages and disadvantages of closed form models versus
simulation models. Section 5 discussions possibilities for further development of closed

form models.

2. BACKGROUND AND METHODS

2.1 General Framework

The general notation and framework assumptions of this paper are presented in this
section. Some readers, anxious to see the results in action, may benefit by skipping ahead to
the examples in Section 3 and referring to Section 2.2 and Appendix C for model and

formulae details.

The general framework and notation is:
1. A claim is reported at the time R and closed at time R + T, where R = 0 and T >
0, and the units of time are years.
2. Payments on the claim begin at time R and end at time R + T.

3. The survival function for R is Sy(#) = 7 — Fy(?), where Fy(?), is the probability
distribution of R, and similarly the survival function of T'is §(z) = 7 — F(2).

Casualty Actuarial Society Forum, Spring 2005 23



Exposure Rating Casnalty Excess Reinsurance

4. 'The instantaneous rate of payment on a claim at time 7 is P(?) dollars per year,
where P(2) > 0.

5. The cumulative payment through time % where R+7T > # > R, is given by Formula
2.1.1.

Ct, R = th P dt (2.1.1)

0. The risk adjusted present value at time 0 of one dollar paid at time #is D(?) = 0.

7. The earliest time for the claim to close, or equivalently the minimum value for R
+ T, so that C(t, R) = m, whete » > 0, is denoted C”’(}, R).

8. The ground up ultimate nominal claim payment is denoted Y and the layered

payment is Y — A, limited to a minimum of 0 and a maximum of L.

This framework allows for process variance in the report time and claim life, which
are stochastic, but leaves the benefit amount, benefit inflation, and discount rate
deterministic. However, parameter uncertainty can be incorporated for all of these
quantities. The examples in the next section will rely primarily on examination of a few
parameter scenarios. Models including continuous distributions for parameters are also

of interest, but are not demonstrated in this paper.

There are two key exposure rating formulae that form the focus of the rest of this
paper. These formulae transform integration through the layer into an integral through
an interval of time. This is possible since for a given report time the total value of
payments, with or without discount, is a strictly increasing function of time as long as the
claim is open and constant after the claim is closed. First, the expected nominal value of
losses ceded to an excess layer with attachment .4 > 0 and limit L. > 0 is defined by
Formula 2.1.2.

0o LA+L,R)
NX(A, L) =f d Fr(r) j{ P St —R dt (2.1.2)
0 cL,R

Second, the expected present value of losses ceded to an excess layer with attachment .4
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> 0 and limit L > 0 is defined by Formula 2.1.3.

oo LA+LR)
PX(4, I) = f d Fr(r) f( D@ P(t) Syt — Ry dit 2.1.3)
0 CclA,R

Formulae 2.1.2 and 2.1.3 have convenient closed form solutions for some basic but
reasonable models for Sy (#), $,(2), P(2), and D(?).

2.2 Some Basic Models with Closed Form Solutions

Formulae 2.1.2 and 2.1.3 have convenient closed form solutions for some basic
models for Sy, S(?), P(z), and D(#), such as the following extremely simple model
(MOD1):

e R =0, claims reported immediately

e S,#) =¢", exponential distribution for time the claim is open
with mean /

e P() = B e constant payment rate B with constant force of
inflation «

e D(#) = ¢ constant force of discount

Formula 2.1.1 becomes:

B@e*T-1)
Ct,R = 2.2.1)
a
The closure time inversion formula becomes:
1og(”'" + 1)
C_t(m, R) = B (2.2.2)

Formula 2.1.2 becomes:

! {B(B*"““*L) )l'all —(«4 +1)'all @A+B)
B B }

\ (2.2.3)

NX4, L) = 2l—1

Formula 2.1.3 becomes:
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{ d+% d+
ll\(“‘ L;)_T (—aA —B)+B(B+”Z‘+L))1- p

o~ | —

|

(2.2.4)

PX(4, b= al —dl -1

Notice that formulae 2.2.3 and 2.2.4 are pretty simple, involving only basic arithmetic
operations and exponentiation. These formulae are very easy to program in a

spreadsheet.
Next consider a slight generalization to a constant report lag (MOD?2):
e R =y, claims reported with a constant lag

Now the formulae become:

Be?s (e” T _ 1)
Cit,R = (2.2.5)
a
log(M +e‘”)
C'm, Ry = B _ (2.2.6)
a
( “ai -41)
-1 +aABe™) 4l (aA+Be®)+Be®* (1 +aBe™ (A+ L)) 4!
NXA, L) = (2.2.7)
al-1
Formula 2.1.3 becomes:
d+% d+% \
e®I|(1+aABe™ @ (-aA-Be™) +Be™ 1 +aBe™ 4+ D) a | 028
U )
PX(4, L) =
Al ) al-dl-1

So far the solution expressions are pretty simple. For calculation these formulae can
be programmed into spreadsheets or supporting macro programs easily, and use trivial

computing capacity when running.

Another natural extension of the report time assumption leads to MOD3:
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e Sy(?) =e¢", exponential distribution for report time with mean
$

MOD?3 still produces a closed form solution, but the expressions are much longer
and use hypergeometric functions (Appendix A). The reader is cautioned that although
these formulae may superficially seem intimidating, they are still relatively easy to
program for calculation and consume trivial computer resources, typically only a few
hundred floating point calculations, and offer many other advantages over simulation

that will be discussed in Section 4.

One concern about the exponential distribution as used for reporting time and claim
life is that it has constant mean residual life (i.e. a claim that begins with expected time
to closure of 20 years but happens to remain open after 60 years, as 5% of such claims
do, still is expected to remain open 20 more years.). Generally beyond some time limit,
for example 100 years, it is reasonable to expect that all claims have been reported and
closed. The functional forms chosen for report time and claim life should have very
low survival probability beyond this time limit. So the exponential distribution model
would tend to be appropriate for situations where average claim life (or report lag) is
relatively short, perhaps 5-10 years or less, but a significant fraction of claims do remain
open for (or are reported at) periods several times longer, perhaps 30-60 years. A

better model for claim life in most situations would be:

2

_7rx
_ e 42

* Si()

, for time the claim is open with mean /

However, the author was unable to find a corresponding continuous probability
distribution for report time that led to a final closed form solution. The author would
be very appreciative to any reader who can find such a model — or any other interesting
model with a closed form solution — and forward it to him. Nevertheless, a closed form
solution can still be obtained by using a less elegant finite discrete model for R. As a

simple example:
e R =0,y or 2s each with probability 7/3 respectively
The last two assumptions for T and R lead to MODG, whose solution formulae are

detailed in Appendix C, along with MOD4 and MODS5, which have the same report lag
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assumptions as MOD1 and MOD2, respectively. This illustrates an important point. In
cases where continuous distributions form expressions so complicated that closed form
solutions cannot be found, a finite distribution can be substituted. Unfortunately these
finite distributions must be limited to a few allowed values to avoid long and unwieldy

expressions with many terms to sum.

Another modeling concern is that report lag and time between report and closure are
independent. In some real world situations claims reported at long lags after an
exposure period would likely involve much older beneficiaries and would tend to
remain open for shorter periods of time than claims reported earlier. A model that
allowed for anti-correlation between T and R might be desirable but will not be

considered in this paper.

3. EXAMPLE APPLICATIONS

This section presents applications to hypothetical situations that are representative of real
world situations.  The solution applications are somewhat simplified for expository
purposes.  In practice closed form annuity models should not be applied with
overconfidence. Much attention should be paid to parameter and model uncertainties.
Prominent reinsurance industry chief executives, with actuarial backgrounds, have pointed
out historical pitfalls due overconfidence in actuarial models (Stanard and Wacek [11]).
Another important consideration is that the models allow for the return on capital and
income taxes through the discount rate (Butsic [3]), with a lower discount rate corresponding

to a higher rate of return or more required capital.

3.1 Individual Claim Commutation Net vs Ceded Exposure Rating

MOD4 is applicable to the example in the introduction. Tables 1 and 2 show the
expected values of the layered losses (See formula details in Appendix A), at benefit inflation
assumptions that vary from 4% to 11%, on a undiscounted and a 3% discounted basis,
respectively. The annuity model itself reduces the spread between expected losses in the
reinsurance layers the 4% and 11% inflation assumptions. For a discounted reserve the

spread is a bit wider since the higher inflation rate simultaneously increases the expected
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losses to the layers and speeds up the timing, decreasing the discount.
Table 1

Example Commutation Loss Nominal Expected Values, MOD 4

Benefit

Inflation 10m xs 0 15m xs 10m 25m xs 25m
4% 7,098,059 4,204,456 2,526,378
5% 7,512,175 5,599,403 4,519,238
6% 7,839,130 6,798,060 6,573,467
7% 8,101,604 7,806,251 8,503,398
8% 8,315,646 8,649,693 10,236,941
9% 8,492,693 9,356,646 11,760,854
10% 8,641,010 9,952,287 13,087,796
11% 8,766,671 10,457,463 14,239,711

Table 2

Example Commutation Loss Present Values at 3% Discount, MOD4

Benefit

Inflation 10m xs 0 15m xs 10m 25m xs 25m
4% 3,804,800 957,399 337,133
5% 4,161,881 1,506,256 786,403
6% 4,481,880 2,083,394 1,395,349
7% 4,768,343 2,656,426 2,106,887
8% 5,025,315 3,207,666 2,871,281
9% 5,256,633 3,728,593 3,652,392
10% 5,465,706 4,215,998 4,426,331
11% 5,655,473 4,669,605 5,178,355

Tables 1 and 2 tend to suggest compromise a nominal reserve value and commutation
value of about $8m and $3m, respectively, for the 15m xs 10m treaty and about $9.5m and

$2.5m, respectively, for the 25m xs 25m treaty.

3.2 Prospective Per Claim Excess Exposure Rating

Consider prospectively rating the $15m xs $10m layer from the example in the
introduction. MODG is applicable to the example in the introduction. Since the layer is per
claim frequency will not affect the exposure rates. Various parameter assumption scenarios

are shown in Table 3 and corresponding exposure rates are shown in Table 4.

Casualty Actuarial Society Forum, Spring 2005 29



Exposure Rating Casnalty Excess Reinsurance

Table 3

Example Scenarios

Average Benefit Average Annual
Scenario  Claim Life Inflation Discount Report Lag Benefits
1 30 5% 0% 1 75,000
2 30 5% 0% 1 150,000
3 30 5% 0% 3 75,000
4 30 5% 0% 3 150,000
5 30 5% 3% 1 75,000
6 30 5% 3% 1 150,000
7 30 5% 3% 3 75,000
8 30 5% 3% 3 150,000
9 30 9% 0% 1 75,000
10 30 9% 0% 1 150,000
11 30 9% 0% 3 75,000
12 30 9% 0% 3 150,000
13 30 9% 3% 1 75,000
14 30 9% 3% 1 150,000
15 30 9% 3% 3 75,000
16 30 9% 3% 3 150,000
17 50 5% 0% 1 75,000
18 50 5% 0% 1 150,000
19 50 5% 0% 3 75,000
20 50 5% 0% 3 150,000
21 50 5% 3% 1 75,000
22 50 5% 3% 1 150,000
23 50 5% 3% 3 75,000
24 50 5% 3% 3 150,000
25 50 9% 0% 1 75,000
26 50 9% 0% 1 150,000
27 50 9% 0% 3 75,000
28 50 9% 0% 3 150,000
29 50 9% 3% 1 75,000
30 50 9% 3% 1 150,000
31 50 9% 3% 3 75,000
32 50 9% 3% 3 150,000
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Table 4

Scenario Estimates, MODG6

Expected Loss

Expected Loss

Scenario 15m xs 10m xs 0 Exposure Rate
1 1,909,437 8,561,971 22.3%
2 4,605,080 17,123,942 26.9%
3 2,210,921 9,462,441 23.4%
4 5,097,247 18,924,882 26.9%
5 451,287 3,521,110 12.8%
6 1,534,216 7,042,221 21.8%
7 517,975 3,664,810 14.1%
8 1,676,107 7,329,619 22.9%
9 5,809,299 49,344,415 11.8%
10 8,347,250 98,688,829 8.5%
11 6,447,687 59,075,990 10.9%
12 9,016,099 118,151,980 7.6%
13 2,124,825 12,390,469 17.1%
14 3,765,838 24,780,937 15.2%
15 2,347,693 13,970,214 16.8%
16 4,036,931 27,940,428 14.4%
17 7,010,277 56,319,066 12.4%
18 9,718,957 112,638,132 8.6%
19 7,402,612 62,242,194 11.9%
20 10,091,418 124,484,387 8.1%
21 1,597,912 8,284,288 19.3%
22 3,164,089 16,568,576 19.1%
23 1,675,854 8,622,376 19.4%
24 3,248,388 17,244,752 18.8%
25 10,630,733 5,168,591,731 0.2%
26 12,127,826 10,335,447,376 0.1%
27 11,041,391 6,187,721,601 0.2%
28 12,472,307 12,372,969,781 0.1%
29 3,856,218 138,561,666 2.8%
30 5,439,707 277,122,982 2.0%
31 3,989,718 156,227,807 2.6%
32 5,555,503 312,455,115 1.8%

Aside from the extreme Scenarios 25-32, which have both high benefit inflation and high
average claim life, possibly raising doubts about the implicit assumption of primary rate

adequacy, the exposure rates in Table 4 seem to cluster around the 15% to 25% range. In
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practice these exposure rates would need to be reduced by primary insurer underwriting
expenses not passed to the reinsurer and the fraction of losses resulting from severe
disability claims that are capable of penetrating the layer. TFor example if primary
underwriting expense credit is 20% and only about 30% of losses in the underlying casualty
exposures are severe disability then the rate, then range of final cession rates corresponds to
about (100% - 20%) x 30% = 24% of the exposure rate, for a cession rate range of about 4%
to 6%. Another possible refinement would be to use a lower discount rate for the excess

layer to account for a higher cost of capital.

3.3 Prospective Non-Catastrophic Per Occurrence Exposure Rating

Although the technique in this paper does not readily lend itself to the per occurrence
context, allowing for several dramatically different values in the annual benefit provides a
crude adaptation to low frequency multiple claim occurrence situations. The simplifying
assumption can be made that each claim clashing into the layer from the same occurrence is
identical with the same benefit amount, lifetime, and discount. Then for a fixed number of
claims the single claim model can be used with the total annual benefit for all of the claims
substituted for the annual benefit. Although this does not let the claim characteristics vary
for a given occurrence, it is easy to let them vary by the number of claims from a given
occurrence. This is highly desirable as in many situations multiple claim occurrences tend to
result in more severe and longer term disabilities. Tables 5 and 6 show this technique using

MODG with the fixed assumptions that benefit inflation is 6% and the discount rate is 3%.

Table 5
Example Per Occurrence Undiscounted, MODG6

Number of Claims Annual Benefit Average
From Occurrence Probability Per Claim Claim Life
1 50.00000% 50,000 10
2 25.00000% 75,000 14
3 12.50000% 100,000 18
4 6.25000% 125,000 22
5 3.12500% 150,000 26
6 1.56250% 175,000 30
7 0.78125% 200,000 34
8 0.78125% 225,000 38
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Table 6
Example Per Occurrence 3% Discounted, MOD6

Number of Expeced Loss Expected Loss
Claims 15m xs 10m xs 0 Exposure Rate
1 1 650,485 0.0%
2 6,799 1,490,633 0.5%
3 170,650 2,799,830 6.1%
4 752,307 4,706,863 16.0%
5 1,653,234 7,378,498 22.4%
6 2,625,240 11,031,574 23.8%
7 3,522,071 15,949,257 22.1%
8 4,297,517 22,502,976 19.1%
Overall 223,824 2,045,413 10.9%

3.4 Excess Layer Paid Loss Development

Empirical triangles of loss development for excess layers are extremely sparse (Pinto [9]).
Worse still they are more vulnerable than ground up triangles to changes over time in
average claim severities. It has shown how a loss distribution can be interpreted to be an
annuity density assuming a constant payment rate and this can then be used to produce tail
factors for loss development (Corro [5]). The framework of this paper can be used to
estimate loss development factors for excess layers. The expected amount paid in the layer
at time T can be determined by limiting the claim life time limits of integration to T in

Formula 2.1.2 as shown in Formula 3.4.1.

T Min(7,C! (4+L,R))
NXTA, L, T) = f d Fr@r) PO St(t— R dt (3.4.1)
0 Min(7, ! (4,R))

NXT(A, L, T) /| NXT(A, L, Infinity) is a reasonable proxy for the expected percentage of

ultimate losses paid by time 7.
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Figure 1 shows the paid development patterns for MODG6 using Scenarios 3 and 12, and
the overall average for all of the scenarios in Table 3. Scenario 3 does not begin to penetrate
the layer until 36" year after inception, but totally exhausts the layer by the 58" year.
Scenario 12 begins to penetrate the layer in the 17" year and exhausts the layer by the 31
year. Any of the Scenarios will produce 0 losses in the layer for many years and then exhaust
the layer in a relatively quick period of time thereafter, even accounting for the stochastic
pattern of reporting time and claim life. The timing of the layer payment is very sensitive to
the scenario assumptions. For overall paid development percentages it would make sense to
average over all the scenarios. These percentages can then be used in loss development
factor, Bornhuetter-Ferguson, or other aggregate loss reserving methods. Generally, the
Bornhuetter-Ferguson would need to be used as actual paid loss experience for the layer is

very sparse and generally O for a long period of time after inception.

Figure 1
Example Paid Development Patterns for $15m xs $10m, MODG6
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3.5 Excess Layer Case Incurred Loss Development

Whereas estimating paid loss development with an annuity model is straightforward in
principal, the incurred loss development problem is very ambiguous. Case reserves should
generally always reflect expect ultimate loss, and the only systematic development over time
should be due to late reporting of claims and possibly the unraveling of tabular discount.
However, it is often the case that case reserves at any point in time reflect an implicit
discounting beyond that sometimes allowed for tabular discount. The expected case
discounted amount paid in the layer up to time T can be determined by limiting the report
time and payment time limits of integration to T in Formula 2.1.3 as shown in Formula
3.5.1.

T Min(7,C" (A+L,R))
PXTA, L, T = f d Fg(r) D@ Pt) Stt— R dt (3.5.1)
0 Min(7,C~! (4,R))

The expected discounted case incurred amount in the layer based on claims reported
through time T can be determined by limiting the report time limits of integration to T in

Formula 2.1.3 as shown in Formula 3.5.2.

' (A+L,R)
PXTR(A, L, T) = f d Fr(r) f D@ P@®) Sr(t — R dt (3.5.2)
0 cL4,R

Assuming case adjusters have a pretty good idea of ultimate nominal amount on cases
reported, but effectively apply an implicit discount to the layered reserve ( NXT(A, L, T) +
¢ (PXTR(A, I, T) — PXT(A, 1, T)) ) / NX(A, L) is a reasonable proxy for the ratio of case
incurred losses to ultimate losses incurred at time 1. In this expression case reserves at time
T correspond to the expected nominal total payments to date in the layer and the discounted
expected future payments in the layer. This is not the same as combining the expected
ground-up payments to date at time T with the discounted reserve and then layering. There
is an argument for the latter but it requires a much more complicated expression and tends

to greatly delay the recognition of any reserves in the layer.
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Figure 2 shows all scenario averages for paid and case incurred development patterns.
Only the scenarios with the 3% discount, Scenarios 5-8, 13-16, 21-24, 29-32, are used for the
case incurred patterns. The incurred line shows a jagged pattern early on. This is due to the
three discrete values allowed for report time. The report times are very early relative to the
actual payments in the layers. Of course, MODG could be easily modified to include more

report times and later report times.

Figure 2
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Table 7

Example Loss Development Patterns, MODG6

% of Ultimate Paid

% of Ultimate
Case Incurred

All Discounted

Years From Scenario
Inception Scenario 12 Scenario 3 All Scenario Average Average
1 0.0% 0.0% 0.0% 17.0%
2 0.0% 0.0% 0.0% 23.7%
3 0.0% 0.0% 0.0% 30.7%
4 0.0% 0.0% 0.0% 31.6%
5 0.0% 0.0% 0.0% 32.6%
6 0.0% 0.0% 0.0% 41.0%
7 0.0% 0.0% 0.0% 42.2%
8 0.0% 0.0% 0.0% 43.5%
9 0.0% 0.0% 0.0% 44.8%
10 0.0% 0.0% 0.0% 46.2%
11 0.0% 0.0% 0.0% 47.6%
12 0.0% 0.0% 0.0% 49.1%
13 0.0% 0.0% 0.0% 50.6%
14 0.0% 0.0% 0.0% 52.1%
15 0.0% 0.0% 0.0% 53.7%
16 0.0% 0.0% 0.0% 55.3%
17 0.0% 1.0% 0.1% 57.0%
18 0.0% 4.5% 0.5% 58.8%
19 0.0% 8.3% 1.0% 60.7%
20 0.0% 14.9% 1.8% 62.6%
21 0.0% 22.3% 3.1% 64.5%
22 0.0% 31.1% 5.0% 66.6%
23 0.0% 41.9% 7.5% 68.6%
24 0.0% 53.4% 10.5% 70.6%
25 0.0% 65.4% 13.8% 72.7%
26 0.0% 74.2% 17.1% 74.6%
27 0.0% 81.7% 20.7% 76.6%
28 0.0% 89.6% 25.2% 78.6%
29 0.0% 93.2% 30.2% 80.4%
30 0.0% 96.9% 35.6% 82.1%
31 0.0% 100.0% 40.5% 83.7%
32 0.0% 100.0% 44.8% 85.3%
33 0.0% 100.0% 48.9% 86.7%
34 0.0% 100.0% 52.8% 87.9%
35 0.0% 100.0% 56.8% 89.2%
36 1.1% 100.0% 60.7% 90.3%
37 4.0% 100.0% 64.3% 91.3%
38 6.9% 100.0% 67.4% 92.2%
39 11.8% 100.0% 69.7% 93.1%
40 17.0% 100.0% 72.1% 94.0%
41 22.6% 100.0% 74.7% 94.7%
42 29.6% 100.0% 77.7% 95.4%
43 36.4% 100.0% 80.3% 96.1%
44 43.0% 100.0% 82.6% 96.6%
45 49.5% 100.0% 84.5% 97.1%
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47

49
50
51
52

54
55
56
57
58
59
60

Exposure Rating Casnalty Excess Reinsurance

55.8% 100.0% 86.1% 97.6%
61.9% 100.0% 87.6% 98.0%
67.8% 100.0% 89.1% 98.4%
73.5% 100.0% 90.6% 98.7%
79.0% 100.0% 92.1% 99.0%
84.3% 100.0% 93.6% 99.3%
89.0% 100.0% 95.0% 99.5%
92.0% 100.0% 96.2% 99.7%
94.9% 100.0% 97.4% 99.8%
97.1% 100.0% 98.5% 99.9%
98.3% 100.0% 99.3% 100.0%
99.5% 100.0% 99.8% 100.0%
100.0% 100.0% 100.0% 100.0%
100.0% 100.0% 100.0% 100.0%
100.0% 100.0% 100.0% 100.0%

3.6 Comparison of Different Reinsurance Treaties

A table like Table 4 can be useful in comparing reinsurance treaties with different

underlying exposures or even different treaty terms. Even when actuarial models for

reinsurance may be unreliable for absolute numerical estimates, these may be very valuable at

determining relative differences in expected losses due to differences in underlying

exposures or contract terms (Stanard [10]). Suppose the details known about Treaties A and

B are:

38

Both treaties cover the layer $15m xs $10m on an effectively per claim basis, as

clash effects are expected to be trivial.

Treaty A covers very much younger beneficiaries and claims will tend to remain

open about 50 years versus 30 years for B.

Treaty A’s younger beneficiaries tend to require a much lower annual medical
benefit, bringing the total annual benefit closer to 75,000, versus 150,000 for
Treaty B.

Treaty B benefits are much more dominated by higher inflation medical expenses

leading to an overall benefit inflation of about 9% versus about 5% for Treaty A.

Both treaties involve $100m subject premium, 20% underwriting expense credits,
and 30% of losses coming from serious disabilities, and a market cession rate of
2.8%.
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Given a choice which treaty should the reinsurer participate in? As the details say
nothing about reporting lag or discount the relevant scenarios are 17, 19, 21, 23 for
Treaty A and 10, 12, 14, 16 for Treaty B. The exposure rate ranges for these groups of
scenarios are 11.9% to 19.4% and 7.6% to 15.2%, respectively. The corresponding
cession rate ranges are 2.9% to 4.7% and 1.8% to 3.6%, respectively. Since the market
cession rate is just below the modeled range for Treaty A but above the modeled range
midpoint for Treaty B, Treaty B appears to be the more attractive offer. The layer
exposure to longer average claim life for Treaty A tends to dominate the higher benefit

and higher benefit inflation of Treaty B.

3.7 Excess Layer Frequency, Severity, and Variance

Excess layer frequencies, severities, and variances can be calculated from the distribution
of ultimate layer amount, and it is easy to determine this distribution from derivative of
Formula 2.1.2 (Appendix B). The excess loss functions NX and PX only accounted for
variability (MOD1-6) in the claim life and the report lag (MOD3, 6). Variability in the other
parameters, such as benefit inflation, has been dealt with through scenario testing in the
previous examples. The ultimate layer amount distribution underlying MODG is given by

Equation 3.7.1.
( n (4 a2 s2+10g2 (LBL +ez a s))

1 al A
- 2
Flayer 10ss(L) = 3 !—e 44212 (B +62aS]al
\
,r(az s2+10g2(aBL+eas)) .
—e 4a2 2 (4L 405 242 (3.7.1)
\ B )

|
)

For Scenario 1 from Section 3.2, 25% of all claims penetrate the layer and 6.2% of claims
exhaust the layer. The average severity of claims penetrating the layer is 1,909,437 / 25% =
7,637,748.
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The cumulative ultimate amount density underlying MODG is given by Equation 3.7.2.

flayer loss(L) = 6al?
n (4 e s2+10g2 (LBL +¢32’ a S)) xS
e 4a212 (log(LL +e2“s)—2as)(LL +(e2“)“12
B B
e2as B+al
7 log? (%L +1) (3.7.2)
e  4dP 1og(“—BL +1)
+ +
B+al
s x (a2 s2+log2(”—BL +e* s))
(LL +e"s)2”‘12 e 4a2 12 (log(LL +e“s)—as)
B B
e’S B+al

The conditional second moment of the layer loss is given by Equation 3.7.3.

(1- F(25000000)) (25000000 — 10000000) + [22000000(7. —10000000)* f(L)d L
1- F(10000000)

(3.7.3)

Numerically this is 8.85 x 10", making the severity variance 3.02 x 10" and the severity
standard deviation 5,490,000. If the number of ground-up claims is Poisson with mean 10,
then the number of claims penetrating the layer is Poisson with mean 2.5 and variance 2.5.

The total layer variance is then easily determined by the standard formula:
E[N]Var[L]+Var[N]E[L]* = 2.5 (3.02 x 10”) + 2.5 (7,637,748)* = 2.21 x 10",

and total layer standard deviation is 1.48 x 10’, for a coefficient of variation of 1.48 x 10"/
7,637,748 = 195%.
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The analysis above omitted the very important considerations of parameter uncertainty in
the benefit amount, claim life, report lag, and benefit inflation. These can be incorporated
by running the calculation for all of Scenarios 1-32 in Table 3. Each scenario can be given
equal weight and the total variance for the layer is then the average variance for each

scenario plus the variance of the scenario layer means.

The analysis above can also be performed fairly easily on a discounted basis for MODI1,
2, 4, 5 where the report lag is fixed. However, when the report time is stochastic the
discounted basis analysis becomes much harder because the discounted layered amount of
the claim is no longer uniquely determined by the total discounted amount of the claim.
Two claims with the same total discounted amount, but different report times, can have

different layered amounts, nominal or discounted.

4. CLOSED FORM MODELS VERSUS SIMULATION

Closed form solutions, or even numerical integration solutions, are often much more
computationally efficient than simulation. This higher efficiency makes testing many
different parameter assumptions much easier. Such solutions also avoid concerns about
structural patterns or biases in pseudorandom numbers. Simulation also may require
tremendous amounts of memory or disk storage space if simulated data is not tabulated in
bins during the simulation. The primary limitation of models with closed form, or numerical
integration, solutions is that they do not allow for the kind of opened ended structural
formulations that may include all sorts of special limitations or dependencies and can always

be programmed into a simulation.

5. POSSIBLE FURTHER DEVELOPMENTS

5.1 Other Models and Standardized Software Modules

There are several obvious areas for improvement on the models presented in this paper.

e The most important area for improvement is probably incorporating good

functional forms for stochastic uncertainty in the parameters.

e Also, of interest probability models for report lag R and claim life T. It
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would be desirable to have simple functional forms that fit actual
mortality or decrement experience tables well and possibly even involve a

dependence relationship between R and T.

e Another concern is that in many situations long term disability claims
have large medical expense early on. The models in this paper assume
that the initial annual benefit simply increases with inflation. An extra

benefit amount paid only at the time of report could be added.

The most burdensome part of using these models is actually finding models with closed
form or efficient numerical integration solutions and programming software to calculate the
solution values. Once found, the solutions can be programmed into standardized software
modules, or macros in spreadsheets, and efficiently used. A major concern is debugging
such modules - and even verifying the solution itself — as the complexity of the solution
expressions can easily hide errors. A key tool that greatly facilitates debugging is testing the

software calculation for several key properties that must hold (Appendix C).

5.2 Simplified Benchmarks for Non-actuaries

The mathematical sophistication required to define models, find solutions, and program
them is on par with that of a credentialed actuary or a Ph.D. in a mathematical science. For
practical use by managerial decision makers the model solutions must be turned into
numerical exhibits and/or graphs, fixed in print or interactively generated through user
friendly software. Since the initially there is a significant cost in high skilled labor to produce
the software, care should be taken in determining what practical situations typically arise and
what kind of condensed presentation will be most useful. Tables 1-6 and Figure 1 are very

modest examples of such formats and much more can be done.

6. CONCLUSIONS

Annuity models offer a practical solution to problems of analyzing casualty excess
reinsurance. Finding models with closed form solutions or easy numerical integration has
been greatly facilitated by the advent of software, such as MATHEMATICA, capable of

performing mathematical symbolic manipulation and efficient numerical analysis. These
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models are not subject to several problems of simulation analysis such as: biases of random
number generators, large overly complex spreadsheets, extremely long times to run
simulations and test parameters, and huge sizes of output. The primary challenge in
implementation is to define a reasonable model that has closed form and then program a
calculation module in a spreadsheet. Once the module is checked for reliability, spreadsheet
analyses, including parameter sensitivity and graphical inspection, may be done in small
simple spreadsheets that use very little computational capacity. Annuity models, like most
actuarial models, will never be “right” and should not be blindly relied on for point
estimates. However, if used properly these models do facilitate the understanding of
qualitative effects, and the quantification of relative differences and magnitudes of

uncertainty.
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Appendix A — Other Model Solutions

MOD3
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function where (a)y =a (a + 1)...(a + k- 1).
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MODS5
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(A.G)

NX(A,L) and PX(A,L) are simply the formulas for MOD5 averages over the values 0, s, 2s

substituted for s.
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Appendix B — Converting Limited Pure Premiums into Loss Distributions

The nominal expected losses in a layer are equal to the integral of the survival function in
the layer. Therefore the distribution can be derived from the derivative with respect to L of
the expected losses in the layer [0, L].

'L
NX@, L) =j(; (1= Ftotal 10ss(D) d 1 B.1)

dNX@, L)
Fotal 10ss(L) =1 — B.2)
dL
Formula B.2 is particularly useful, as it allows easy conversion of the limited pure premium
into the loss distribution. Assuming a constant report time s, the total discounted losses in a
layer is an increasing function of the total losses in the layer, and hence uniquely determined
by the total losses in the layer.

!(Ls)
PV(L) = f( D) P dt (B.3)

Fiscounted total loss(L) = Ftotal loss (PV_I(L)) (B.4)

When the report time is stochastic determining the loss distribution is more difficult.
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Appendix C —Test Checklist for Solution Software

48

The following questions should all be answered affirmatively to check a solution
calculation program. Affirmative answers do not guarantee correctness, but negative
answers indicate an errot.

1.

Ntk LN

Do PX(A, L) and NX(A, L) both increase as L increases and decrease as A
increases?

Does PX(A, L) = NX(A, L) when D(t) = 1 for all t?

Is PX(A, L) < NX(A, L) when D(t) <1 for all t?

Is PX(A, L) > NX(A, L) when D(t) > 1 for all t?

Does PX(A, L) increase when D(t) increases for all t?

Does NX(A, L) increase as P(t) increases for all t?

Does NX(A, L) increase as S (?) increases for all t?
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