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Abstract 

Motivation. Casualty Actuaries have long been interested in the estimation of ultimate losses and 
ALAE.  The potential variability of the ultimate outcome is critical to understanding the extent of the 
risks faced by the risk-bearing entity that either has adopted or is contemplating the adoption of loss 
and ALAE estimates.  Over the years many people (actuaries and others) have made significant 
contributions to the literature and overall discussion of how to estimate the potential variability of 
ultimate losses, but there is no clear preferred method within the actuarial community.  This research 
paper is an attempt to bring all of the historical research together in one cohesive document. 
Method. The Working Party worked exclusively via e-mail and a private area of the CAS web site.  
After a joint effort to assemble an outline, the Working Party separated into subgroups, each assigned to 
prepare one of the sections of this paper. 
Results. There are many approaches to estimating future payments for property and casualty liabilities, 
many of which have stochastic roots leading to not only an estimate of future payments but also of the 
distribution of those payments.  However, we found no single method that is clearly superior.  We have 
identified some areas of potential future research. 
Conclusions. The actuarial profession does not yet have a single, all-inclusive method for estimating 
the distribution of future payments for property and casualty liabilities.  Much work is yet to be done on 
the issue. 
Availability. A copy of the Working Party’s paper can be found on the CAS web site at 
http://www.casact.org/pubs/forum/05fforum/. 
Keywords. Reserve Variability; Future Payment Variability; Generalized Linear Model; Delta Method; 
Over-Dispersed Poisson Model; Bootstrap; Bayesian Inference; Markov Chain Monte Carlo 

1. INTRODUCTION 

A risk bearing entity wishes to know its financial position on a particular date.  In order to 
do this, among other items it must understand the future payments it will be liable to make 
for obligations existing at the date of the valuation.  For an insurance situation, these future 
payments are not known with certainty at the time of the valuation. 
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The fundamental question that the risk bearing entity asks itself is:   

Given any value (estimate of future payments) and our current state of knowledge, what is the 
probability that the final payments will be no larger than the given value?  

The answer to this fundamental question can be provided by what is usually called the 
cumulative distribution function for the random variable of potential future payments.  
From this, one can easily determine the corresponding probability density function.  We will 
call this probability density function “the distribution of future payments” at the valuation 
point.   Although we might not always be successful, we try to maintain a distinction 
between future payments and “reserves”.  We try (though not always successfully) to use the 
term “reserves” for amounts booked in financial statements.  We are focusing here on the 
total future payments and are not, at this time, considering issues of timing of those 
payments.  Thus, our “distribution of future payments” should not be confused with issues 
relating to payout timing.  

1.1 Research Context 
It has long been recognized that traditional actuarial methods provide single point 

estimates of the amount of future payments.  Those methods are generally deterministic and 
used alone do not provide any direct measure of how close one would expect that estimate 
to be to the final outcome, or even to the mean of possible final outcomes.  Traditional 
actuarial reserve analyses recognize this shortcoming by applying a variety of different 
methods to derive multiple estimates of future payments.  The range of such estimates is 
often used to give insight as to how “solid” the actuary’s estimate selection is and may form 
the basis of the practitioner’s own “range of reasonable estimates” for reserves.  We note 
that such a range is often determined by considering the forecasts of a variety of 
deterministic “traditional” actuarial projection methods.  Those methods usually only 
provide “estimates” of future payments without any additional statistical information.  
However, without such statistical quantification, we cannot determine how likely it is for the 
ultimate “realization” of future payments to be within that “range of reasonable estimates”. 

There has long been interest in translating the subjective “feel” for how “good” a liability 
estimate is to something more concrete, something that can be quantified by a probability 
distribution.  This interest has led to more recent activity to cast the actuary’s forecasting 
methods in a stochastic framework.  A major benefit of such an approach is the existence of 
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a specific statistical model and the possibility of estimating not only the expected value 
(statistical mean), but also the distribution of future payments or other summary statistics of 
the distribution.  

Much work has been done, but in our view, the actuarial community does not yet have 
the answer to the fundamental question set out in Section 1 above.  We believe that our 
community, and other users of actuarial forecasts, can well benefit from a work that 
summarizes the current state of knowledge of estimating the distribution of future payments. 

1.2 Objective 
It is the purpose of this paper to set forth the current state of knowledge regarding the 

estimation of this distribution.  More specifically, the paper addresses the estimation of 
distributions to the extent that they can be quantified by models.  There may be some loss 
liabilities that cannot be quantified by these models, including perhaps asbestosis liabilities 
and similar exposures, and these could considerably increase the uncertainty in the 
distribution beyond what would be calculated by the methods discussed. 

From the outset, we draw sharp distinctions between the “distribution of future 
payments” as we have defined it here and other concepts such as “ranges of reasonable 
estimates” or the “appropriate” number to be used in a financial statement even if the full 
distribution of future payments is known with certainty.  We believe that knowledge of the 
distribution is a prerequisite for any discussion of the variability of potential future 
payments, but is not sufficient to completely answer that question.  In addition to the 
knowledge of that distribution, other factors come into play in the final “booking” of a 
liability number.  Such factors include regulatory requirements, the view of the investment 
community, shareholder and policyholder considerations, to name just a few. 

Though this paper is primarily aimed at the practicing actuary, a thorough understanding 
of the concepts we present will be necessary in order to appropriately interpret statements 
that attempt to quantify the uncertainty in estimates of incurred but yet unpaid losses.  It is 
hoped that all audiences, including regulators, rating agencies, taxing authorities, 
shareholders, management, and actuaries, will benefit from a single vocabulary in describing 
and discussing uncertainty in estimates of future payments. 

We note that the amount recorded on a financial statement as a provision for liabilities 
can be viewed against the landscape provided by the “distribution of future payments” as we 
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have defined it.  Given that distribution, and assuming that it is perfectly correct, it is an easy 
matter to see the likelihood that future payments will fall above or below the recorded 
amount and to calculate the expected (mean) financial consequence of any particular booked 
number. We can also find the probability that the actual or “realized” future payments will 
be in any given range of values with the distribution.  In fact, percentiles of the distribution 
can be used to quantify ranges of reasonable estimates.  

Armed with this tool, the practitioner can not only provide his or her “range of 
reasonable estimates”, but he or she can quantify that range by saying, for example, that his 
or her range covers the area between the twenty-fifth and seventy-fifth percentiles of the 
distribution.  By a p -percentile we mean the value such that there is a p percent probability 
of a lesser realization. 

In addition it is easy to see how that amount compares to various statistics of the 
“distribution of future payments” such as the mean, mode, median, or other function of that 
distribution.  It is not, however, the purpose of this paper to define the “appropriate” point 
along a distribution to be recorded in financial statements. 

We stress the importance of this distinction between the distribution of future payments 
and the reserve number booked in a financial statement.  The former provides a view of the 
range of possible outcomes and their likelihood (a landscape).  Even if this distribution is 
completely known, it appears that current accounting guidance does not provide sufficient 
direction to arrive at a single “reserve” that should be booked.     

Another distinction that we must make is between the distribution and a summary 
statistic of the distribution.  Whereas a distribution describes a range of possible outcomes, a 
summary statistic is a particular value that conveys some information about the entire 
distribution.  Examples of common summary statistics are the mean (average or expected 
value), mode (most likely value), and the median (the “middle” value or fiftieth percentile).  
In a situation where we are completely certain about a distribution then a well defined 
summary statistic such as the mean is completely known, even if the actual future outcome is 
at present unknown and unknowable.  We note that accounting guidance for reserves seems 
to direct us to a point on the distribution (an estimate of the amount that will ultimately be 
paid) rather than to a particular summary statistic. 

It thus appears necessary to rely on imprecise concepts such as “best estimate” or “range 
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of reasonable estimates” when talking about an estimate of future payments in an accounting 
context.  We note that the distribution of future payments has a specific statistical meaning 
and actually exists separately from the professional estimating that distribution, whereas the 
“range of reasonable estimates” is properly completely determined by the practitioner 
making the estimate and then only by the specific context (accounting definition) in which 
the reserves are being set.  The “distribution of future payments” depends on neither the 
professional estimating it nor the methods used in that estimation.  However, the methods 
used by the practitioner will affect his or her estimate of that distribution.  In contrast, the 
“range of reasonable estimates” is completely determined by the practitioner and his or her 
methods and his or her interpretation of accounting guidance.  The apparently vague 
accounting guidance as to the definition of “reserve” thus seems to make “reasonable” in 
this context subjective.   

It appears that it is necessary to introduce the concept of “range of reasonable estimates” 
because the accounting guidance appears to require the booking of an estimate of future 
payments and because the actual amount of future payments is currently unknown.  The 
“range of reasonable estimates” seems to be a surrogate for the more precise distribution of 
future payments often determined in reference to the projections or forecasts from a range 
of deterministic methods, and appears to be an attempt to communicate the dispersion of 
that distribution.  The range itself remains subjective since “reasonable” itself is not defined 
and left up to the individual practitioner, though, as mentioned above, the practitioner can 
use percentiles in determining his or her range. 

The discussion of how to incorporate the distribution of future payments into the final 
liability booked or into a “range of reasonable estimates” is probably not as advanced as the 
theory on calculating that distribution.  Rather than risking the omission of a significant 
paper on the issue, and recognizing the ever-expanding scope of discussions of ranges and 
the amounts to be booked we do not provide specific references on this topic.  We do note, 
however, that the entire CAS call for reserving papers in 1998 was on the subject of the 
actuary’s best estimate of reserves.  In addition, the 2003 call for reserving papers included 
the issue of range.  The corresponding fall editions of the Forum contain the papers received 
as a result of these calls and can be the start of an interested reader’s research on this topic. 

This is not to say that the estimation of the distribution of future payments is a matter of 
science that can be done with precision.  Much to the contrary, as we will discuss in this 
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paper there is now no recognized way to estimate that distribution.  All the known 
approaches have their strengths and weaknesses, but none completely assess all sources of 
uncertainty.  It is quite possible that a complete solution to this problem is impossible, given 
the unknown and unknowable nature of insured liabilities.  However, in discussing the 
uncertainty of future payments it is necessary that all parties know what various terms mean 
and how close to an ideal methodology a particular approach comes. 

That is the primary purpose of this paper. 

1.3 Sources of Uncertainty 
Setting the objective as identifying the distribution of future payments allows us to 

specifically identify sources of uncertainty in those estimates.  These sources of uncertainty 
should be kept in mind when evaluating any estimate of the distribution of future payments. 

1.3.1 Process Uncertainty 

In all but the most trivial estimation situations, the amount of future payments is not 
known with certainty.  This uncertainty exists even if the practitioner is perfectly certain of 
the entire process generating future payments.  An example of this process uncertainty is the 
uncertainty we face when trying to predict the outcomes of the roll of a fair die.  We know 
that there are only six possible outcomes (one through six), each with the same likelihood.  
Even with this perfect knowledge of the underlying process, there is still unavoidable 
uncertainty as to what the next roll of the die will be.  In insurance situations insurers try to 
aggregate a large number of independent risks so that the “law of large numbers” can be 
applied, reducing the uncertainty inherent in estimating the aggregate value of a large 
number of claims.  However, even with such a large number of independent risks, process 
uncertainty still exists. 

1.3.2 Parameter Uncertainty 

Quite often a practitioner may elect to use a certain statistical distribution as a model for 
the distribution of future payments.  Such distributions are often described in terms of a 
limited number of variables known as parameters.  For example, the familiar normal 
distribution is completely determined by its mean and variance (two parameters).  Even if 
the distribution is the correct one to use, the practitioner must still estimate the proper 
parameters.  Parameter uncertainty refers to the uncertainty in the estimates of the 
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parameters. 

Returning to our die example, if we knew the future values we are to estimate were 
generated by the roll of a die, but we were uncertain as to whether or not the die were fair, 
this uncertainty would be an example of parameter uncertainty.  We have the right “model” 
(roll of a die) but do not know the parameters (the chance of observing any given side).  
Often statistical estimation methods allow the practitioner to measure the amount of 
uncertainty inherent in particular parameter estimates. 

1.3.3 Model or Specification Uncertainty 

Probably the most difficult uncertainty to quantify in estimating the distribution of future 
payments lies in model or specification uncertainty.  This is the uncertainty that the true 
process generating future payments actually conforms to a particular model selected.  In 
nearly every stochastic model, the modeling begins by making the assumption that the 
underlying process follows the model.  There is thus little possibility that the model itself can 
detect this source of uncertainty in the estimate of the distribution of future payments. 

Taking our die analogy, an example of model uncertainty would be a situation where each 
roll is the roll of one of six “loaded” dice, with the choice of the particular die determined by 
the prior roll.  Here no single loaded die model would accurately model the next roll. 

There are numerous examples of model or specification uncertainty in traditional 
estimation techniques.  Those techniques, as do most of the estimation methods currently in 
use, make the explicit assumption that past experience is a valid guide to future payments.  A 
substantial portion of the paper by Berquist and Sherman1 addresses ways to adjust 
traditional methods in situations where changes in the underlying environment invalidate 
that critical assumption.  In effect, that paper provides ways to at least address the issue of 
model or specification error in traditional estimation analyses. 

Trying a number of models and seeing which ones are most consistent with the data can 
also help reduce specification uncertainty. 

Any estimate of the distribution of future payments should at least acknowledge this 
source of uncertainty, though its true measurement may be impossible. 

 
1 See Berquist and Sherman [5]. 
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1.4 Outline 
The remainder of this paper sets out the work of the Working Party on Quantifying 

Variability in Reserve Estimates.  Section 2 discusses the scope of what we are attempting as 
well as provides a uniform glossary that we will use to communicate our results.  Section 3 
discusses criteria for reviewing models, while Section 4 gives a broad taxonomy of models 
currently in use.  Section 5 discusses results of various models, while Section 6 points out 
some areas of future research.  We finish with a list of caveats and limitations to this work in 
Section 7.  

2. SCOPE, TERMINOLOGY, AND NOTATION 

The purpose of this paper is to discuss, compare, and contrast – using a unified notation 
– existing ways of estimating the distribution of future payments and quantifying the 
variability of estimates of future loss and allocated loss adjustment expense payments  for 
property and casualty insurance exposures.   This paper does not give consideration to 
premiums or expenses contingent upon losses (such as those associated with reinsurance 
contracts or retrospectively rated policies), nor does this paper address issues associated with 
the timing of future payments like discounting. 

It is not within the scope of this paper: 

• to propose best practices for determining the distribution of future payments for loss 
and allocated loss adjustment expense; nor 

• to recommend the level within the distribution of future payment estimates that should 
be recorded on a company’s financial statements; nor 

• to present original estimation methods and/or techniques.   However, it is anticipated 
that this paper will be used as a platform to support future such research. 

 

2.1 Terminology 
Bootstrap Analysis:2  The bootstrap is a resampling (see Resampling Methods below) 

technique in which  new samples are drawn from given observed data.  Each sample is 
drawn with replacement and is the same size as the original sample.  Bootstrapping is 
performed in order to study a statistic such as the mean of a variable.  The statistic is 

N

                                                 
2 See S-Plus 6 for Windows Guide to Statistics[55].  
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calculated for each of the  new samples, producing a bootstrap distribution for the 
statistic.  The theory underlying bootstrapping describes how the bootstrap distribution can 
be used to make inferences about the statistic from the original distribution

N

3.  

Decay model:  A model in which the variable being analyzed declines over time.  A 
common example from physical science is that of exponential decay, where the quantity 

 remaining at time t  is the solution of the differential equation )(tf )(tfdtdf α−= , where 
α  is a constant.   

Deterministic:  This is a process whose outcome is known once the key parameters are 
specified.  Examples are many of the laws of Newtonian Mechanics.  Deterministic is an 
antonym of “stochastic.” 

Distribution of Future Payments:  This term is used for the range of possible outcomes 
and their likelihood.  In this paper the word “distribution” as applied to future payments 
means the distribution of the sum of all future payments rather than the time distribution of 
the individual payments. 

Future Payment Estimation Model:  See “Model.” 

Latent Liabilities:  Present or potential liabilities due to emerge in the future which are not 
represented in historical data. 

Liability:  The actual amount that is owed and will ultimately be paid by a risk-bearing 
entity for claims incurred on or prior to a given accounting date.4 

Mean Squared Error (MSE):  The expected value of the squared difference between an 
estimator of a random variable and its true value is referred to as the MSE. 

Mean Squared Error of Prediction (MSEP):  The average of the squares of the differences 
between observations not used in model fitting and the corresponding values predicted by 
the model. 

                                                 
3  See Efron, B. & Tibshirani, R.J.[15].   
4 While reserves and liabilities are sometimes used interchangeably, they are given separate definitions in 

this paper, and used differently throughout, to help clarify the concepts discussed.  
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Method:  A systematic procedure for estimating future payments for loss and allocated 
loss adjustment expense.  Methods are algorithms or series of steps followed to determine an 
estimate; they do not involve the use of any statistical assumptions that could be used to 
validate reasonableness or to calculate standard error.  Well known examples include the 
chain-ladder (development factors) method or the Bornhuetter-Ferguson method.  Within 
the context of this paper, “methods” refer to algorithms for calculating future payment 
estimates, not methods for estimating model parameters. 

Model:  A mathematical or empirical representation of how losses and allocated loss 
adjustment expenses emerge and develop.  The model accounts for known and inferred 
properties and is used to project future emergence and development.   An example of a 
mathematical model is a formulaic representation that provides the best fit for the available 
historical data.  Mathematical models may be parametric (see below) or non-parametric.  
Mathematical models are known as “closed form” representations, meaning that they are 
represented by mathematical formulas.  An example of an empirical representation of how 
losses and allocated loss adjustment expenses emerge and develop is the frequency 
distribution produced by the set of all reserve values generated by a particular application of 
the chain ladder method.  Empirical distributions are, by construction, not in “closed form” 
as there is no underlying requirement that there be an underlying mathematical model. 

Model (or Specification) Uncertainty:  The risk, or variability, inherent in estimating the 
distribution of future payments for loss and allocated loss expense derived from the chance 
that the true process generating future payments does not conform to the particular model 
selected.5 

Over-Dispersed Poisson Models (ODP):6 Models for estimating future payments of 
claims in which the incremental claim payments  are “over-dispersed” Poisson 
random variables with: 

),( dwq

                                                 
5 In common vernacular, actuaries and statisticians generally use the term “parameter uncertainty” to 

include both parameter uncertainty and model uncertainty as defined in this paper.  The two risks are 
separated here in order to distinguish the portion that is readily measurable (assuming a given model) 
from the portion that is not.  They are also separated to emphasize the fact that all models used by 
actuaries make assumptions about the claim process that are critical to the estimates they produce.  See 
Shapland [58], p. 326. 

6 See England and Verrall [18], p.449. 
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     E  and dwwd yxmdwq ==)],([ wdmdwq φ=)],([Var , where φ  > 1 

and  is the accident period and  is the development period as defined in the Notation 
Section 2.2. 

w d

Example: Let Y  be a Poisson random variable with mean and variance φm , where φ > 
1.  Then X  = Y⋅φ  is an over-dispersed Poisson random variable with mean  and 
variance 

m

m⋅φ . 

Parameter Uncertainty:  The risk, or variability, in estimating the distribution of future 
payments for loss and allocated loss expense derived from the potential error in the 
estimated model parameters, assuming the process generating the claims is known (or 
assumed to be known).  This type of uncertainty exists even if the process is known with 
certainty. 

Parametric Family of Distributions:  A collection of distribution functions where each 
member is specified by a fixed number of variables called parameters.7  For example, the 
mean and variance specify each member of the family of univariate normal distributions. 

Parametric Model:  A statistical model where the random samples are assumed to be 
distributed according to a given parametric family of distributions.  One goal of the 
modeling process is to determine the value of the parameters.  Examples of parametric 
models include the Pareto and lognormal distributions.  

Prediction Error:  The square root of the MSEP.  It is a measure of how well a model 
predicts observations not used in fitting the model. 

Process Uncertainty:  The risk, or variability, in estimating the distribution of future 
payments for loss and allocated loss adjustment expense resulting from the random nature 
of loss and allocated loss expense occurrence and settlement patterns.  More generically, 
process uncertainty is the randomness of future outcomes given a known distribution of 
possible outcomes.8 

                                                 
7 See Klugman, Panjer, and Willmot [34], page 45. 
8 For example, for a roll of a pair of “fair” dice, both the process and the possible outcomes are known in 

advance, yet the process uncertainty of the result from a specific roll of the dice still remains.   
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Pseudo-data:  Generally refers to data that is “free data” in the sense that it can be 
obtained without additional experimental effort.  The resampled data referred to in the 
Resampling Methods discussion below is an example.  

Q-Q Plot:  A quantile is the fraction (or percentage) of points below a given value.  For 
example, the 0.1 (or 10%) quantile is the point at which 10% of the data fall below and 90% 
fall above that value.  The Q-Q plot is a plot of the quantiles of one dataset against another 
(to test if they have the same distribution), or a dataset against a know distribution, such as 
the normal (to test if the data has the specified distribution). 

Range of Reasonable Estimates:  It is the range of estimates of the future payments, each 
estimate arising from a different, yet reasonable, model or method.  Future payment 
estimates can also arise from knowledge other than that provided by the data.  In contrast to 
the “distribution of future payments”, the “range of reasonable estimates” is completely 
determined by the practitioner using all available input and applying professional judgment. 

Resampling Methods:9  In statistical analysis, the researcher is interested in obtaining not 
only a point estimate of a given statistic, but also an estimate of its variance and a confidence 
interval for the parameter’s true value.  Traditional statistics relies on the central limit 
theorem and normal approximations to make these estimates. 

With the development of modern computers, researchers can use resampling methods to 
estimate standard errors, confidence intervals, and distributions for a statistic of interest.  
Resampling involves drawing a number of repeated samples, each sample itself drawn from 
the observed data.  The statistic of interest is recalculated on the resampled data.  The theory 
of resampling describes how the distribution of the statistic from the resampled data enables 
one to make inferences about the distribution of the statistic from the original data. 

Reserve:10 An amount selected for a specific purpose (for example, the amount to be 
carried in the liability section of a risk-bearing entity’s balance sheet) which is a point 
estimate of the actual amount that is owed and will ultimately be paid by a risk-bearing entity 

                                                 
9 This definition uses material from S-Plus 6 for Windows Guide to Statistics, Volume 2, Insightful 

Corporation, Seattle, Washington. 
10 While reserves and liabilities are sometimes used interchangeably, they are given separate definitions in 

this paper and used differently throughout, to help clarify the concepts discussed. 
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for claims incurred on or prior to a given accounting date.  In the field of Finance, the term 
reserve refers to a segregation of retained earnings rather than an amount carried for a 
liability.  

Risk (from the risk-bearing entity’s point of view):  The uncertainty11 (deviation from 
expected) in both timing and amount of the future claim payment stream.12,13  This definition 
is different from that in Finance, which defines risk14 as the “measurable probability of losing 
or not gaining value.” 

Specification Uncertainty:   See “Model Uncertainty.” 

Standard Deviation:   The square root of the variance of a distribution or sample. 

Standard Error:  The estimated standard deviation of a probability distribution. When 
applied to the distribution of future payments, it includes both parameter uncertainty and 
process uncertainty. 

Stochastic:  Describing a process or variable that is random, that is, whose behavior 
follows the laws of probability theory.  Stochastic is an antonym of  “deterministic.”  

Variance of a Distribution:  The expected value of the square of the difference between a 
random variable and the expected value of the random variable. 

Variance of a Sample:  The average of the sum of the squares of differences between 
sample values and the sample average.  The sum of the squares can be divided by n or n-1, 
where n is the sample size.    

2.2 Notation 

                                                 
11 In section 3.6.1 of ASOP No. 36, sources of uncertainty are described and include the following: 

random chance; erratic historical development data; past and future changes in operations; changes in 
the external environment; changes in data, trends, development patterns and payment patterns; the 
emergence of unusual types or sizes of claims; shifts in types of reported claims or reporting patterns; 
and changes in claim frequency or severity. 

12 If the loss reserves are discounted, this would add an additional source of uncertainty to the expected 
value of the future payment stream.  For purposes of the paper, “interest rate risk” will be ignored and 
reserves are assumed to be undiscounted. 

13 See Shapland [58], p. 325. 
14 Dictionary of Finance and Investment Terms, Sixth Edition (2003), Barron’s Educational Series. 
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This paper describes many of the future payment estimation models in the actuarial 
literature.  Many such models visualize loss statistics as a two dimensional array.  The row 
dimension is the annual period by which the loss information is subtotaled, most commonly 
an accident year or policy year.  For each accident period, , the  element of the 
array is the total of the loss information as of development age .

w ),( dw

d 15 Here the development 
age is the accounting year16 of the loss information expressed as the number of time periods 
after the accident or policy year.  For example, the loss statistic for accident year 2 as of the 
end of year 4 has development age 3 years.   

 
For this discussion, we assume that the loss information available is an “upper triangular” 

subset of the two-dimensional array for rows nw ,,2,1 …= .  For each row, , the 
information is available for development ages 1 through 

w

1+− w

n

n .  If we think of year  as 
the latest accounting year for which loss information is available, the triangle represents the 
loss information as of accounting dates 1 through .  The “diagonal” for which w  
equals a constant, , represents the loss information for each accident period  as of 
accounting year .

n

+ d

k w

k 17 
 

The paper uses the following notation for certain important loss statistics:  

),( dwc : cumulative loss from accident (or policy) year  as of age d . Think 
“when” and “delay.” 

w

)(),( wUnwc = : total loss from accident year  when end of triangle reached.  w

),( dwR : future development after age  for accident year , i.e., = 
. 

d w

),()( dwcwU −

),( dwq : incremental loss for accident year  from  - 1 to . w d d

)(df : factor applied to  to estimate ),( dwc )1,( +dwq  or more generally any 
factor relating to age . d

)(dF : factor applied to  to estimate  or more generally any ),( dwc ),( nwc

                                                 
15 Depending on the context, the (w,d) cell can represent the cumulative loss statistic as of development 

age d or the incremental amount occurring during the d, ,th development period. 
16 The development ages are assumed to be in yearly intervals for this discussion.  However, they can be 

in different time units such as months. 
17 For a more complete explanation of this two-dimensional view of the loss information see the 

Foundations of Casualty Actuarial Science [21], Chapter 5, particularly pages 210-226. 
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cumulative factor relating to age d . 

)(wG : factor relating to accident or policy year  – capitalized to designate 
ultimate loss level. 

w

)( dwh + : factor relating to the diagonal  along which + d  is constant. k w

),( dwe : a mean zero random fluctuation which occurs at the ,  cell. w d

)(xE : the expectation of the random variable x . 

)(xVar : the variance of the random variable x . 

What are called factors here could also be summands, but if factors and summands are 
both used, some other notation for the additive terms would be needed. The notation does 
not distinguish paid vs. incurred, but if this is necessary, capitalized subscripts  P and  I could 
be used. 

Finally, we use many abbreviations throughout the remainder of this report.  Most of these 
abbreviations are defined below. 

     
 
AIC:  Akaike Information Criteria 
APD:  Automobile Physical Damage  
BIC:  Bayesian Information Criteria 
BF:  Bornhuetter-Ferguson 
BUGS: Bayesian Inference Using Gibbs Sampling 
CL: Chain Ladder 
CV: Coefficient of Variation 
ELR:  Expected Loss Ratio 
EPV:   Expected Process Variance 
 

GB: Gunnar-Benktander 
GLM:  Generalized Linear Models  
MCMC:  Markov Chain Monte Carlo 
MLE:  Maximum Likelihood Estimate 
MSE:  Mean Squared Error 
MSEP: Mean Squared Error of Prediction 
ODP:  Over-Dispersed Poisson 
OLS: Ordinary Least Squares 
SSE:  Sum of Squared Errors 
VHM: Variance of Hypothetical Mean  
 

 

3. PRINCIPLES OF MODEL EVALUATION AND ESTIMATION 
OF FUTURE PAYMENT VARIABILITY 

Historically, the problem of quantifying a probability distribution for a defined group of 
claim payments has been solved using “collective risk theory.”18   Actuaries have built many 

                                                 
18 There are a number of good books and papers on the subject, including, but not limited to, Bühlmann [9], 

Gerber [22], and Seal [57]. 
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sophisticated models based on this theory, but it is important to remember that each of 
these models makes assumptions about the processes that are driving claims and their 
settlement values.  Some of the models make more simplifying assumptions than others, but 
none of them can ever completely capture all of the dynamics driving claims and their 
settlement values.  In other words, none of them can ever completely eliminate model 
uncertainty. 

While it is possible to estimate some portions of model uncertainty, developing criteria 
for evaluating different models will necessarily need to focus on parameter and process 
uncertainty.19  Indeed, a fundamental question for evaluating a model is: “How well does it 
measure and reflect the uncertainty inherent in the data?”  It is not simply a matter of 
calculating statistics to measure the uncertainty. The evaluation criteria must focus on how 
well the uncertainty is measured.  Thus, another fundamental question is: “Does the model 
do a good job of capturing and replicating the statistical features found in the data?”  
Unfortunately, no single criterion will answer these questions. 

As noted earlier, the goal of this paper is to set forth the current state of knowledge 
regarding the models used to estimate the distribution of future payments for a given block 
of claims (or equivalent).  Many of the approaches to estimating a distribution of future 
payments involve fitting a statistical model to the available loss development data.20  This will 
henceforth be called a future payment estimation model or model.  A number of different modeling 
techniques can be used to fit statistical models to a dataset.  Furthermore, any given 
technique can be used to specify a multitude of models.  Therefore, the analyst needs to have 
available the tools and concepts needed to evaluate each candidate future payment estimation 
model.  Based on these evaluations, the analyst can select the most appropriate models and 
modeling methodologies. 

Section 3.1 will enumerate a number of principles and considerations (which we will 
collectively refer to as criteria) relevant to evaluating a future payment estimation model.  
Once a model has been specified there will typically be one or more techniques available for 
estimating the variability around the model’s estimate of future payments.  Section 3.2 will 
discuss three of these techniques. 

 
19 Shapland [58], p. 337. 
20 This is not limited to methods for evaluating loss development triangles. 
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3.1 Model Selection and Evaluation 
Recall the three concepts of uncertainty discussed earlier:  process, parameter, and model 

uncertainty.  All three of these concepts are relevant for the purpose of estimating the 
variability of a model-based estimate of future payments.  Of these three kinds of 
uncertainty, process uncertainty is often times (although not necessarily) the smallest when 
modeled statistically, yet the focus of the analyst should be to minimize the other two:  
parameter and model uncertainty.  The goal of modeling insurance losses is not to minimize 
process uncertainty, as this is simply a reflection of the underlying process that is generating 
the claims.  While some datasets exhibit a relatively small amount of process uncertainty, 
others can generate a large amount of process uncertainty. The goal of the analyst should be 
to select a statistical model(s), with the help of the criteria discussed below, which most 
accurately describes the process uncertainty in the data while also minimizing the parameter 
and model uncertainty.21 

The general criteria for evaluating a model statistically can be quite numerous.  
Unfortunately, there is no single criterion that establishes a supreme model in every case.  
Instead, one must collectively review a variety of criteria in order to narrow the list to the 
best model(s) for each data set.  Therefore, we present several of the most useful criteria for 
the practicing actuary.  For ease of discussion, the criteria to be discussed have been 
segregated into three groups, listed roughly in order from the most “general” to the most 
“specific:” 

• Criteria for selecting an appropriate modeling technique, 

• Overall model reasonability checks, and 

• Model goodness-of-fit and prediction error evaluation. 

 

3.1.1.  Criteria for Selecting an Appropriate Modeling Technique 

The criteria for selecting a modeling technique are a blend of the pragmatic and the 
theoretical.   

                                                 
21 The process of finding the “best” statistical model is a departure from the common practice of using 

multiple models to “define” a range by using the highs and lows from among the models used. It is also 
quite possible to end up with competing models that reflect different aspects of the historical information 
or different views on likely future outcomes. 
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Criterion 1:  Aims of the Analysis.  Will the procedure achieve the aims of the analysis?  For 
example, if the analyst requires an estimate of the distribution of future payments, a 
stochastic future payment estimation model is likely to be preferred over a simpler, 
traditional estimation method such as the chain ladder. 

Criterion 2:  Data Availability.  Does the analyst have access to the data elements required 
by the model and in sufficient quantity?  Consideration should be given to whether the 
model under consideration requires unit record-level data or summarized “triangle” data, 
whether exogenous predictive information (such as historical inflation rates) is needed, and 
whether the data at hand has sufficient credibility for the model under consideration. 

Criterion 3:  Non-Data Specific Model Evaluation.  The analyst should consider whether a 
particular model is appropriate based on general (non-data specific) background knowledge.  
Considerations include:   

• Has this model been validated against historical data that is similar to the data at 
hand?   

• Has this model been verified to perform well against a dataset that contains 
known results and that contains similar features to those expected to underlie the 
data to be analyzed? 

• Are the assumptions of the model plausible given what is known about the 
process generating this data?  Examples of such assumptions include the 
independence of accident years, similar development patterns across accident 
years, and constant claims (non-wage) inflation. 

Criterion 4:  Cost/Benefit Considerations.  It is possible that two or more models of varying 
cost or complexity produce reasonable results.  If this is the case, it is likely that the analyst 
would elect to use the simplest and cheapest of these models.  If a more costly or complex 
model is expected to produce more complete or accurate results, then the analyst must 
decide whether the marginal accuracy justifies the marginal cost.  Other considerations 
include 

• Can the analysis be performed using widely available software, or would specialist 
software be required? 

• How much analyst time and computer time does the procedure require? 
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• How difficult is it to describe the workings of the procedure to junior staff or the 
user of the model output? 

3.1.2 Overall Model Reasonability Checks 

By overall model reasonability checks, we mean “what measures can we use to judge the 
overall quality of the model?”  For this, we suggest a number of criteria that can be used to 
test whether the summary statistics from the model are sound.22  Two of the key statistics 
that can be produced for many models are the standard error of the distribution of future 
payments23 and the coefficient of variation (i.e., the standard error divided by the estimated 
mean). 24  While some of these criteria do not help distinguish between models, they do help 
determine if the overall model is sound and thus gets onto the “models to be analyzed” list. 

Criterion 5: Coefficient of Variation by Year.  For each (accident, policy or report) year, the 
coefficient of variation (estimated standard error as a percentage of estimated liabilities) 
should be the largest for the oldest (earliest) year and will, generally, get smaller for the more 
recent years.  

Criterion 6: Standard Error by Year.  For each (accident, policy or report) year, the standard 
error (on an absolute unit basis) should be the smallest for the oldest (earliest) year and will, 
generally, get larger for the more recent years.25  To visualize this, remember that the 
liabilities for the oldest year represent the future payments in the tail only, while the liabilities 
for the most current year represent many more years of future payments including the tail.  
Even if payments from one year to the next are completely independent, the sum of many 
standard errors will be larger than the sum of fewer standard errors. 

Criterion 7: Overall Coefficient of Variation.  The coefficient of variation (standard error as a 
percentage of estimated liabilities) should be smaller for all (accident, policy or report) years 
combined than for any individual year. 

                                                 
22 Shapland [58], pp. 334-337. 
23 The standard error for an unknown distribution is analogous to the standard deviation for a known 

distribution. 
24 These standard error concepts assume that the underlying exposures are relatively stable from year to 

year – i.e., no radical changes.  In practice, random changes do occur from one year to the next which 
could cause the actual standard errors to deviate from these concepts somewhat.  In other words, these 
concepts will generally hold true, but should not be considered hard and fast rules in every case. 

25 For example, the total reserves for 1990 might be 100 with a standard error of 100 (coefficient of 
variation is 100%), while the total reserves for 2000 might be 1,000 with a standard error of 300 
(coefficient of variation is 30%). 
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Criterion 8: Overall Standard Error.  The standard error (on an absolute unit basis) should 
be larger for all (accident, policy or report) years combined than for any individual year.26 

Criterion 9: Correlated Standard Error & Coefficient of Variation.  The standard error should 
be smaller for all lines of business combined than the sum of the individual lines of business 
– on both an absolute unit basis and as a percentage of total liabilities (i.e., coefficient of 
variation).  

Criterion 10: Reasonability of Model Parameters and Development Patterns.  For all modeling 
techniques the estimated parameters should be checked for consistency with actuarially 
informed common sense.  In particular the signs and relative magnitudes of the parameters 
should be checked against common sense.  Similarly, the loss development patterns implicit 
in the model’s parameters should be checked for reasonability and consistency with one’s 
expectations. 

Criterion 11: Consistency of Simulated Data with Actual Data.  Whenever simulated data is 
created based on a particular model, it should exhibit the same statistical properties as the 
real data.  In other words, the simulated data should be statistically indistinguishable from 
real data. 

Criterion 12: Model Completeness and Consistency.  It is possible that other data elements or 
background knowledge could be integrated with the model results, thereby resulting in a 
more accurate prediction.  For example, one might wish to incorporate one’s knowledge of a 
changing inflation rate or claims settlement practice into the model.  Similarly, one’s prior 
expectations of an accident year’s ultimate loss ratio could be integrated into the analysis 
through Bornhuetter-Ferguson or Bayesian methodology. 

A significant portion of any liability estimate is the portion of the assumptions that lay 
beyond the actual data triangle.  The assumptions for future development, trends, normality, 
etc. should be consistent with the modeled historical assumptions.  This is not to say that 
assumptions cannot change going forward; they can.  This is simply to say that they should 
do so in an explainable manner that is consistent with the modeled historical assumptions. 

 

3.1.3 Model Goodness-of-Fit and Prediction Error Evaluation 

                                                 
26 Strictly speaking, this criterion assumes that the individual years are not negatively correlated. 
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By model goodness-of-fit and prediction error evaluation, we mean “what measures can 
we use to judge whether a model is capturing the statistical features in the data?”  In other 
words, does the model provide a good fit to the data compared to other models?  For this, 
we suggest a number of criteria that can be used to test statistical goodness of fit and the 
general model assumptions. 

Criterion 13: Validity of Link Ratios.  Venter27 shows that link ratios are a form of 
regression and how they can be tested statistically.  All models based on link ratios need to 
be tested in order to validate the entire approach. Standard statistical methods for testing 
regression models can be used for this and for regression models of future payments in 
general. 

Criterion 14:  Standardization of Residuals.  It is most useful to analyze a model’s 
“standardized” or “normalized” residuals.  A standardized residual is the difference between 
a data point’s actual value and modeled value, divided by an estimate of the value’s standard 
deviation.  Ideally, such residuals will be normally distributed, with a mean of zero and 
standard deviation of one.   

Many (if nearly all) models of the loss process make assumptions about the underlying 
distribution of the losses.  In general, they either make a simplifying assumption that the 
losses themselves or their logarithms are normally distributed or that the remaining “noise” 
after the underlying distribution has been modeled and parameterized is normally 
distributed.28  A model’s standardized residuals should be checked for normality. Outliers 
and heteroscedasticity29 should be analyzed with particular care.  Normality can be checked, 
for example, by producing a Q-Q plot.  Alternately, a histogram of the standardized residuals 
can be produced, along with a superimposed standard normal distribution.  If desired, the 
kernel density estimation technique can be applied to the histogram of standardized residuals 
in order to produce a smoothed estimate of the residuals’ distribution.  This distribution 
estimate can then be visually compared with the superimposed standard normal distribution. 

                                                 
27 See Venter [71]. 
28 Not all models assume normality in the residuals. For example, GLM models can model the data 

structure without assuming a form for the distribution. 
29 A model’s standard residuals are “homoscedastic” when they are equal, or have a similar spread, for all 

variables.  A model’s standard residuals are “heteroscedastic” when then have a different spread for some 
variables.  A plot of the residuals will usually allow the user to determine their scedasticity.  Most 
standard formulas assume homoscedasticity, so when heteroscedasticity is present, the standard error 
estimates will usually be biased to the low side. 
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Criterion 15:  Analysis of Residual Patterns.  In addition to the normality and outlier checks, 
residuals can be checked against various dimensions of interest.  In particular it is good 
practice to plot standardized residuals against the following x-dimensions: 

• Development period; 

• Accident period; 

• Calendar period; and 

• Fitted value. 

Ideally, the residuals at each value of the x dimension of interest will be randomly 
scattered around zero.  Non-random patterns might indicate the need for additional 
parameters or an alternate model. 

Criterion 16:  Prediction Error and Out-of-Sample Data.  Perhaps the best way to evaluate any 
predictive model is to test the accuracy of its predictions on data that was not used to fit the 
model.  In an extreme case, one can fit a model containing x  parameters to a loss 
development array containing x  data points.  The fit will be perfect, and therefore the 
residuals will all be zero.  In this extreme case, all of the residual analysis tests (Criteria 14 
and 15) will be trivially satisfied.  However, it is unlikely that such a model would make good 
predictions going forward.  In cases such as this, the model is said to “over-fit” the data. 

One way to guard against over-fit is to set aside part of one’s data in the model fitting 
process, and use this data to evaluate the model’s predictive accuracy.  Such a dataset is 
called a “holdout sample” or “out-of-sample data”.  For example, one might set aside the 
most recent one or two calendar periods (“diagonals”) of data from one’s loss triangle.  The 
model can be used to provide predicted values for each holdout data point, and these 
predicted values can be compared with the actual values. 

Criterion 17:  Goodness-of-Fit Measures.  In addition to using holdout data, one can evaluate 
competing models by using various goodness-of-fit measures.  The purpose of model 
selection is to find the model that best fits the available data, with model complexity being 
appropriately penalized.  Such measures therefore analytically approximate validation on out-
of-sample data.  They do so by combining some measure of the model’s overall “error” 
(using a loss function such as squared error loss or log-likelihood) and an offsetting penalty 
for the number of model parameters relative to the number of data points available.  
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Goodness-of-fit measures include: 

• Adjusted sum of squared errors (SSE):    is defined as the sum of the squares 
of the differences between the modeled loss and the actual loss.  Adjusted  
equals  divided by , where  is the number of data points and 

SSE

n

SSE

SSE 2)( Kn − K  is 
the number of parameters in the model.30 

• Akaike Information Criterion (AIC):  The  states that one competing model 
is better than another if it has a lower value of 

AIC

Kl 2)log(2 +− .  log(  denotes 
the log of the maximum likelihood. 

)l

• Bayesian Information Criterion (BIC):  The  states that one competing model 
is better than another if it has a lower value of 

BIC

Knl )log()log(2 +− . 

Each of these concepts provides a quantitative measure that ideally enables one to find an 
optimal tradeoff between minimizing model bias and predictive variance. 

Criterion 18:  Ockham’s Razor and the Principle of Parsimony.  This is a philosophical principle.   
When choosing between competing models, the principle of parsimony states that all else 
being equal, the simpler model is preferable.  While it is important to find the best model 
and add enough parameters to capture the salient features in the data, it is equally important 
not to over-parameterize.   

Criterion 19:  Predictive Variability.  What one ultimately wants is an estimate of future 
payments involving as little uncertainty as possible.  Furthermore, one would like to quantify 
the uncertainty in one’s future payment estimate.  Ideally this would take the form of 
providing the probability distribution of the future payment estimate.  An alternate approach 
would be to estimate the standard error of the future payment estimate.  Section 3.2 outlines 
three general approaches to estimating this variability. 

Criterion 20:  Model Validation.  Another way to validate a model is to systematically 
remove the last several diagonals from the triangle and make the same forecast of ultimate 
values without the excluded data.  This post-sample predictive testing, or validation, is 
important for determining if the model is stable or not. 

 

                                                 
30 This measure was suggested by Venter [72]. 
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3.2 Methods for Evaluating Variability 

3.2.1 Possible Approaches 

The methods used to calculate distributions of future payments are grouped into three 
general categories: analytical evaluation of incremental data, bootstrap simulations and 
Bayesian models. 

3.2.2 Analytical Evaluation 

This subsection outlines the procedures for measuring variability in respect of future 
payments. Such variability estimation can be implemented for future payment estimates that 
are to emerge in each of the future periods, for each of the accident years, and for all the 
accident years combined.  Note that the analytical approaches described here are only for a 
single line of business; in other words, no correlations among multiple lines of business will 
be taken into account here in evaluating future payment variability.  The procedure outline 
presented below is largely based upon Clark31 and England and Verrall32 . 

1. Data Requirement.  The variability of future payment estimates can be estimated 
from a data triangle of incremental payments.  Let q  denote the incremental 
payment for accident year  and development year , and  the expected value 
of .   A distributional form is chosen for , which could be an over-
dispersed Poisson, negative binomial, gamma, or many others. 

),( dw

d

),( dw

w wdm

),( dwq q

2. A structural form is chosen for , which could be either non-linear in the 
parameters or modeled in a generalized linear model.   

wdm

a) With a generalized linear model, a link function needs to be specified for the 
relationship between  and the parameters.  wdm

b) While modeling m  in a non-linear model, the emergence of incremental 
payments needs to be modeled by selecting an appropriate reserve estimation 
method.  Section 4 surveys various methods used to obtain an estimate of future 
payments.  

wd

3. The parameter estimation for the linear or non-linear model requires setup of a 

                                                 
31 See Clark [10]. 
32 See England and Verrall [18]. 
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maximum likelihood function and maximization of the function with respect to 
relevant parameters. For the generalized linear model, most statistical software 
packages have built-in procedures to do the estimation, and the user only needs to 
choose the link function and the distributional form. For the estimation of the non-
linear model, a functional form should be specified for the percentage loss 
emergence. 

4. The variability of future payment estimates can be measured by the variance of the 
distribution of future payments, which is denoted by .  As stated 
earlier, the variance of the distribution of future payments for accident year  and 
total future payments, denoted respectively by  and , can 
be evaluated within the framework of the above stated parametric models.  Several 
points should be noted here.  

)],(ˆ[Varf dwq

,*)] [Varf

w

(ˆ[Varf wq (*,*)]q̂

a) The variance of the distribution of future payments is decomposed into process 
variance and the variance of parameter estimates, or mathematically, 

(*,*)][Var(*,*)]ˆ[Varf qq ≈ (*,*)]ˆ[Var q+ .   

b) The calculation of the variance of the distribution of accident year future 
payment estimates should take into account any correlations between the 
predicted values for different development periods of the same accident year, in 
addition to the variance of each of the individual predicted values.  

c) The variance of the distribution of the total future payments is the sum of the 
variances for each accident year future payment estimate and the covariances 
between accident year future payment estimates.  

The variance of the distribution of future payments can be numerically derived through 
some approximation method.  Appendix A gives the analytical forms for these variances for 
which approximation through the delta method is used in the derivation.  

3.2.3 Bootstrap Evaluation 

The residuals saved from estimating the generalized linear models or nonlinear models 
can be used for the bootstrap simulation to obtain the distribution of future payments.  For 
instance, one way of bootstrapping is sampling with replacement from the scaled Pearson 
residuals and constructing a large number of (equal to the number of simulations, ) N
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pseudo past triangles.33  For each of the  pseudo loss triangles, their corresponding lower 
triangles of future incremental losses are estimated by following the procedures outlined in 
Section 3.2.2.  For each accident year, the mean of future payments, the parameter variance 
and the process variance can then be calculated from the future triangles.  Note that the 
parameter variance thus derived from the simulation needs to be adjusted by a factor equal 
to 

N

N

)( pnn − .  England and Verrall describe the calculation of the standard error34 of the 
bootstrap future payment distribution.  The mean and standard error obtained from the 
bootstrapping should then be compared to the corresponding values calculated through the 
analytical approach to check for errors.    

,(w

w

A simplified bootstrap simulation procedure that yields identical results has also been 
discussed in England and Verrall35.  The authors propose using the standard chain-ladder 
method in the simulation to obtain the future incremental loss triangles (the lower triangles) 
as well as the past triangles (the upper triangles) instead of going through the complicated 
procedures of solving the maximum likelihood functions of the over-dispersed Poisson 
models.  The detailed bootstrap procedure is outlined in Appendix 3 of England and Verrall 
36.As compared with the analytical approach, one obvious advantage of the bootstrap 
simulation is that it not only gives the future payment means and standard errors but also 
provides the distribution of future payments.  The percentile distribution of future payments 
and the histogram of overall future payments and future payments for each accident year can 
easily be obtained from the simulated pseudo data sets. 

3.2.4 Bayesian Evaluation 

A promising, though less frequently discussed, approach to estimating future payments 
and future payment variability is the use of Bayesian modeling.  At a high level, Bayesian 
modeling can be viewed as an extension of classical or “frequentist” modeling in which the 
analyst is willing to consider distributions on the parameters of one’s statistical model.   

Let us sketch the outlines of the frequentist modeling paradigm.  Suppose one has a 
candidate model ( θqp ) for the terms  in a loss development array.  denotes 
the incremental losses for accident year  from development period 

)dq ),( dwq

1−d  to  and d θ  

                                                 
33 See England and Verrall [16]. 
34 See England and Verrall [16,18]; England and Verrall call this the prediction error. 
35 See England and Verrall [16,18]. 
36 See England and Verrall [18]. 
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denotes the vector of parameters to be estimated from the available data 

)}1,(,),1,2(,),1,2(),,1(,),2,1(),1,1({ nqnqqnqqq ……… − .  Suppose maximum likelihood is 
used to derive the estimate MLEθ  of θ .  The missing terms of the array (i.e., the elements of 
the future payments), { }nn,nnnn RRRRRR 2,,31,3,2 ,...,,...,,., −= , can be then estimated by 
calculating ( ){ }MLEdwRp θ, .  

q θ

( )θqp

( )θp ( )θp

( )θp ( )θ'p

q ( )θRp

θ

|(
)()|

)()|(
( θ

θθθ(
)|)('

θθθ qθp ≡ qp
dpq

pq
p ∝=

p

p

∫

∫= θθθ dqpRp )|()|()qRp |(

The frequentist paradigm therefore takes the parameterized model ( )θqp  as 
fundamental.  The data  are used to estimate , and this estimate is then used, via the 
model formula, to make forecasts or inferences. 

The Bayesian paradigm expands this conceptual framework by treating the parameter 
vector θ  as a further set of random variables.  Therefore just as the (observed) random 
variables  admit of the probability distribution q , the (unobserved) random variables 
θ  admit of a further probability distribution .   is known as a prior probability 
distribution. 

The key insight of the Bayesian paradigm is that the data q can be used to refine or update 
the prior distribution  to a posterior distribution .  This updating is performed via 
Bayes Theorem. 

)() θp  (3.1)

Notice that the first factor on the right side of the equation is the statistical model from 
the frequentist paradigm.  This statistical model is also known as the likelihood function.  
Rather than filtering the data  through the model  to produce a point estimate of 
θ , the data is used to refine the distribution of  via Bayes Theorem. 

The posterior distribution can in turn be used to generate the distribution of future 
claims, R : 

 (3.2)

A concrete example of Bayesian loss estimation is provided by Verrall37.  The 
“frequentist” model Verrall begins with is the over-dispersed Poisson ( ODP ) model 
described in England and Verrall 38:   

                                                 
37 See England and Verrall [17]. 
38 See England and Verrall [17]. 
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)(ODP),( wdiid yxdwq ϕ∝   (3.3)

where .  The parameter vectors, 1=∑d dy { }nxxxx ,...,, 21=  and, { }nyyyy ,...,, 21= , 
represent the rows (accident years) and columns (development periods) respectively of the 
loss array.  Note that the mean and variance of  equal  and ),( dwq dw yx dw yxϕ  
respectively.  ϕ  is known as the dispersion parameter. 

Within the frequentist paradigm, maximum likelihood theory (in particular the theory of 
generalized linear models) can be used to estimate the parameter vector ( )ϕθ ,, yx= .  These 
parameters in turn are used to estimate the unknown elements of the loss array: 

.  England and Verrall also demonstrate how to analytically derive confidence 
intervals around the sum of the future payment estimates.  Note that this is a complex 
derivation that only results in variance information about the distribution of future 
payments. 

dwdw yxR =,

Verrall 39 extends this frequentist model to a Bayesian model by introducing prior 
distributions on the row and column parameters x  and .  (Note that a prior distribution 
could also be placed on 

y

ϕ  but Verrall chooses to use a plug-in estimate for simplicity.) 

The data  are used to obtain a posterior distribution of : { )1,(,),...1,1( nqqq = }

)

( )yx,

∏∏∏
==

+−

=

∝
n

i
ii

n

w

in

d

ypxpyxdwqqyxp
11

1

1

)()(],|),([ODP),|,( ϕϕ . (3.4)

The posterior distribution in turn determines the distributions of the unknown elements 
of the loss array: 

∫= dxdyqyxpyxRpqRp dwdw ),|,(),,|()|( ,, ϕϕ . (3.5)

To summarize, Verrall develops both a frequentist and Bayesian  ODP model of a loss 
array.  The frequentist approach uses the data and the ODP model to generate point 
estimates of future payments and (with some labor) confidence intervals around these point 
estimates.  In the Bayesian approach, he introduces prior distributions of the ODP model 
parameters .  Bayes Theorem is applied to the known elements q  of the future 
payment array to generate the posterior distribution of 

( yx,

( )yx, .  This posterior distribution in 
turn determines the distributions of future payments { }dw,R .  For example, the adoption of a 
gamma distribution prior on each x parameter, in conjunction with the ODP conditional 
likelihood, is shown to yield a gamma posterior distribution, and a posterior mean of future 
                                                 
39 See England and Verrall [17]. 
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{ }dwR ,  that may be interpreted as a Bornhuetter-Ferguson estimate. 

(x,=θ

dwR =,

Ultimately, one would like to calculate the mean and various percentiles of the 
distribution of the total future payments ∑= dwRR , .  [Let ( )qRp  denote the distribution 
of the total future payments.] 

Unfortunately, it is typically impossible to calculate such quantities analytically.  Even 
calculation of the posterior of a single Rw,d will not usually be possible.  Because of the 
numerical difficulty involved, Bayesian methodology remained at a relative impasse for 
several decades.  However, recent developments in Monte Carlo integration have made it 
practical to approximate the mean and percentiles of the distribution of future payments 
with a high degree of accuracy.  

The basic idea of Monte Carlo integration is to generate a large sample of draws from the 
posterior distribution ( qp θ ).  This sample of draws allows one to easily approximate any 
quantity that depends on the posterior density.  To illustrate, suppose we have generated 
10,000 draws from Verrall’s posterior density ( )qyxp , .  (Reference to the dispersion 
parameter ϕ  will henceforth be suppressed.)  That is, we have a sample of 10,000 values of 

)y .  Let ,…,  denote these 10,000 estimates of )1(θ )000,10(θ θ .  For each one of these 
values  , we can readily compute each unknown value )(kθ { }dwR ,  of the loss array (recall that 

) and add them together: dywx
)(

,

k

dwR)(kR ∑= .   

In this way, we have generated 10,000 draws from the distribution of the total future 
payments.  The average value of these 10,000 draws constitutes an estimate of the future 
payments: 

Similarly, the empirical 5th and 95th percentiles of this simulated distribution { })(kR  
constitute one of many possible variability estimates. 

∫∑ ≈=
=

θθθ dqpRpRPaymentsFuture
k

k )|()|(
000,10

1 000,10

1

)(  (3.6)

The surprising ease of these calculations is due the fact that we were able to generate the 
draws ,…,  from the posterior distribution )1(θ )000,10(θ ( )qp θ .  This sampling of the 
posterior distribution is accomplished by Markov Chain Monte Carlo ( ) simulation.  

 techniques are recipes for constructing a Markov chain of random variables , 
, ,… that in the limit “forget” their arbitrary starting value  and converge to the 

stationary distribution 

MCMC

)

MCMC
)1(θ θ

)0(θ
)2( 0(θ

( qθ )p .  Two commonly used  techniques are the Hastings-MCMC
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Metropolis Sampler and the Gibbs Sampler.  Details of these  techniques will be 
omitted for brevity of exposition, but can be found in most modern introductions to 
Bayesian modeling. 

MCMC

To summarize:  one way of using Bayesian methodology to estimate the distribution of 
future payments is to begin with a frequentist model (such as the England-Verrall  ODP 
model) of one’s loss array.  One then supplements this model by assigning prior distributions 
to many or all of the parameters of the model.  Next, a  technique such as Gibbs 
Sampler can be used to generate an empirical posterior distribution of the model parameters.  
Finally, this distribution of parameters can be plugged into the model to generate the 
corresponding distribution of future payments.   In short, MCMC  integration makes it 
possible to estimate not only the expected value and variability of future payments, but the 
actual distribution of future payments.

MCMC

40 

 

3.3 Feasibility and Merits of Each Approach 

3.3.1 Analytical Approach 

There are several techniques available for model evaluation.  Some of the testing 
procedures have been suggested in Venter 41.  The first one is to test the significance of 
parameter estimates.  Secondly, residuals can be used to test the validity of model 
assumptions in various ways.  The residuals can be plotted against the development period, 
the accident year, the calendar year of emergence, or any other variable of interest.  The 
validity of model assumptions requires that the residuals appear to be randomly distributed 
around the zero line.  Any anomalous residual plot is an indication that some of the model 
assumptions are incorrect or the model is misspecified.  Thirdly, the goodness fit of the 
model can be tested by using the AIC and BIC  criteria. 

For the generalized linear model, the table also reports the scaled deviance and scaled 
Pearson chi-square, which are directly obtained from the computer-generated output.  These 
two scaled statistics, under certain regularity conditions, have a limiting chi-square 

 
40 Another example of Bayesian revision was given by Taylor, McGuire and Greenfield (2003) in an 

ASTIN Colloquium keynote address (see 
www.economics.unimelb.edu.au/actwww/wps2004/No113.pdf).  This paper dealt with loss estimation 
regression models. 

41 See Venter [72]. 
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distribution, with degrees of freedom equal to the number of observations minus the 
number of parameters estimated.  A scaled deviance close to one may be an indication of a 
good model fit.  However, the examination of the deviance for model fitness should always 
be accompanied by the examination of residuals.  As an illustrative example, Appendix B 
uses a sample of incurred loss data to estimate the variability of expected future payments 
and discusses the goodness fit of the model. 

Besides parameter uncertainties and process disturbances, model misspecification may 
exist, which should be reflected in the anomaly of the residual plots.  For instance, leaving 
out the calendar effect in the estimation could be a misspecification, considering the data 
triangle used normally spans over a considerably long period of time.  As a remedy, the data 
elements in the loss triangle can be adjusted by some appropriate measures so that the 
specification error coming from the calendar effect can be effectively removed.  If the 
calendar effect is caused by inflation, all the incremental loss data can be deflated to a 
common basis before the model is estimated.  On the other hand, some model specification 
tests (for example, the WALD statistics) can also be used in examining whether the calendar 
effect can be treated as a nuisance parameter.   

3.3.2 Bootstrap Approach 

The bootstrap was described in Section 3.2.3 in connection with an over-dispersed 
Poisson model.  It is seen there to be a numerical procedure, algebraically simple, in concept 
at least. 

The procedure may be generalized to any (non-Bayesian) model structure.42  It produces 
an estimate of the whole distribution of future payments, rather than just a small number of 
summary statistics. 

Though the procedure is conceptually simple, it can involve some practical complexities.  
For example, it assumes that all residuals are unbiased.  This may be difficult to achieve 
precisely with a suitably parsimonious model.  Small regions of bias in the triangle of 
residuals can be highly disturbing to bootstrap results. 

Difficulties can also arise when the raw observations, and therefore the residuals, are 
drawn from a long-tailed distribution.  There are no difficulties from a theoretical 

 
42 For detail, see Taylor [65], Chapter 11. 
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standpoint, provided that all residuals are equi-distributed.  In practice, however, this will 
often not be so.  Instead one may face residuals which are all long-tailed, but from somewhat 
different distributions. 

3.3.3 Marks & Chain Monte Carlo (MCMC) Approach 

As discussed in section 3.2.4, the Bayesian approach to loss estimation produces the 
distribution of future payments, not merely information about the mean and variance.  While 
it is in practice impossible to analytically derive the distribution of future payments, it is 
readily possible to approximate this distribution though MCMC simulation. 

A high-level statistical programming language for Bayesian modeling with MCMC is 
BUGS:  Bayesian Inference Using Gibbs Sampling.  The BUGS language is implemented in 
the freely available WinBUGS software package developed by the Biostatistics Unit at 
Cambridge University.  Thus, both the methodology and necessary computing environment 
are now readily available to the analyst who wishes to apply Bayesian methodology to loss 
estimation problems.  

Another merit of the Bayes/MCMC approach is that it provides an open-ended modeling 
environment in which the analyst can integrate (possible vague or qualitative) prior 
knowledge or beliefs with his or her stochastic model of the loss development process.  
Verrall’s ODP model exemplifies this.  The England-Verrall frequentist ODP model is similar 
(though not identical) to the classic chain-ladder model.  Verrall’s Bayesian extension of this 
model provides a rigorous way to incorporate one’s prior beliefs about one or more accident 
years’ ultimate losses into the ODP (chain-ladder) modeling framework.  As Verrall points 
out, his Bayesian ODP model is therefore analogous to the classic Bornhuetter-Ferguson 
technique. 

It should be emphasized that Verrall’s Bayesian ODP model is not the only Bayesian 
model of loss development currently available.  Other relevant contributions to date include 
De Alba43 , Ntzoufras and Dellaportas44 and Scollnik 45.  Nor does Verrall’s presentation 
illustrate the only way of integrating one’s prior beliefs with a model of the loss development 
process.   

 
43 See DeAlba [12]. 
44 See Ntzoufras and Dellaportas [49]. 
45 See Scollnik [56]. 
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The Bayes/MCMC loss estimation framework, based on simulation of the distribution of 
future payments, is a low cost application, providing rigorous incorporation of prior beliefs.  
Though relatively new to the actuarial community, it appears to have considerable promise. 

3.4 Categorization of Models 
There are a number of properties of future payment estimation models that have a 

bearing on the choice of procedure for evaluation of variability.  These are discussed in this 
section.  The categorization of models so arrived at here differs from those appearing in 
Sections 4.5 and 4.6, which is more concerned with their properties relating to estimation of 
the mean of the distribution of future payments. 

3.4.1 Bayesian and Non-Bayesian 

The future payment estimation model may be Bayesian or non- Bayesian.  Examples 
appear in Sections 3.2.4 and 3.2.3 respectively. 

In the case of a non-Bayesian model, variability will be estimated by reference to the 
residuals derived from the data points and the corresponding fitted values according to the 
model.  These residuals may be manipulated by analytical means, or by bootstrapping. 

The variability within a Bayesian model contains additional mathematical structure as it 
relates to the Bayesian distribution of future payments, reflecting the prior distribution as 
well as the data points.  In principle, the variance of the distribution may be derived from its 
analytical form but, as pointed out in Section 3.2.4, this will not be practical in many cases.  
The MCMC approach described in Section 3.2.4 will then be the natural one. 

3.4.2 Simple and Complex 

At a fundamental level, a loss estimation procedure is a mapping from a set of data points 
to the mean of the future payments.  Mathematically, this mapping will be quite complex, 
even for the simpler estimation procedures. 

The corresponding procedure for estimating variability is a mapping from the data points 
to the variance of the future payments, and is more complex again.  Precise evaluation of 
this variance will not be practical except in the simplest of models. 

Equation (A.16) (found in Appendix A) provides an example of an approximation in a 
specific, rather simple, case.  As illustrated there, this result requires two ingredients: 
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• Evaluation of the partial derivatives of the model’s forecasts with respect to its 
parameters; and 

• The covariance matrix associated with the estimates of those parameters. 

The difficulty in evaluation of these quantities will increase rapidly with increasing 
complexity of model structure. 

The weight of algebra in even only moderately complex models may be such as to defeat 
feasibility of this analytical approach.  This is exemplified by the method of Mack46, which 
generates a complex expression for the estimated variance of future payments calculated 
according to the simple chain ladder method.  In most cases, it may be necessary to resort to 
bootstrapping (Section 3.3.2) for estimation of variances. 

Moreover, even when the variance of future payments may be estimated analytically, it 
does not provide information on the thickness of the tails of the distribution of future 
payments.  Again, the bootstrap may prove useful in providing an estimate of the entire 
distribution of future payments. 

3.4.3 Models with Multiple Sub-Models 

Some models are composed of two or more distinct sub-models.  Examples given by 
Taylor47 include the Payments per Closed Claim48 and Projected Case Estimates models.  
The first of these, for example, comprises: 

• A model of claim closure counts; and 

• A model of sizes of closures. 

In such cases, estimation of the variability of future payments will require consideration 
of variability within each of the sub-models.  It is evident from the comment in Section 3.4.2 
that there is likely to be substantial difficulty in attempting to pursue this analytically.  The 
bootstrap is likely to provide the most practical approach. 

The bootstrap would need to be applied separately to each sub-model, and the sub-
models then combined.  In the Payments per Closed Claim example above this would 
produce say  realizations of forecast claim closure count arrays { , m },,1),,( mjdwf j …=

 
46 See Mack [37]. 
47 See Taylor [65], Chapter 4. 
48 Also referred to as Payments per Claim Finalized. 
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and  realizations of forecast size arrays {m },,1),,( mjdws j …= .  These are then combined 
to produce forecast paid loss arrays {  where 

. 
},,1), mjd …=,(wq j

),(),()( dwsdwfq jjj ⋅=,dw

j j

]Var[2
jj Y=σj

ˆ

{ }jY

jŶ
j

ˆ
kY

k }jR

()2,()1 qdwq

,( dwcYj =
[Cov wR

), kdw +,(),( dwckdwc ++++=+

([Cov c

…

)],([Var)] dwck =+

jjj Y σ)ˆ−

3.4.4 Independence of Data Observations 

Care needs to be taken to ensure that estimates of variability account correctly for any 
dependencies between data items incorporated in the model specification.  The most 
pervasive form of dependency in future payment estimation models arises in relation to 
cumulative data.  For example, since 

,() dwq ++ , (3.7)
it follows that 

,(),, dwcdw , (3.8)
when all incremental paid losses are stochastically independent. 

The bootstrap procedure described in Section 3.2.3 relies on the stochastic independence 
of the residuals that it permutes in the production of pseudo-data sets.  The residual 
corresponding to the -th observation Y  is of the form 

j YR (=  (3.9)

where Y  is the value fitted to Y  by the model and . j

Generally, the set of residuals { }jR  will not be mutually stochastically independent even 
if  is, since Y  is a function of all the .  However, if there are many observations, 
each  will depend only slightly on any one Y .  Then {  will be “nearly independent” 
and the bootstrap may be applied at least without gross violation of its assumptions. 

This will not be so, however, if the Y  represent cumulative data, e.g. .  Then, 
with an alternative but obvious labeling of observations, (3.8) implies that  
is likely to be strongly non-zero.  Direct application of the bootstrap to models of 
cumulative data will therefore usually be inappropriate. 

j )

,,d ], kdwR +
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It will often be reasonable, however, to retain the model based on cumulative data but to 
bootstrap by permuting the corresponding incremental residuals 

jdw dwcdwcdwcdwcR τ)]}1,(ˆ),(ˆ[)]1,(),({[, −−−−−= , (3.10)

where .)],([Var)]1,(),([Var2 dwqdwcdwcj =−−=τ

4. METHODS AND MODELS 

In this section we distinguish estimation models from estimation methods, and describe 
many of the estimation models in the actuarial literature. 

4.1 Notation 
This section uses the following notation, which is more completely described in Section 

2.2: 

),( dwc : cumulative loss from accident (or policy) year  as of age .  w d

)(),( wUnwc = : total loss from accident year  when end of triangle reached . w

),( dwR : future development after age  for accident year , i.e., = 
. 

d w

),()( dwcwU −

),( dwq : incremental loss for accident year  from w 1−d  to . d

)(df : factor applied to  to estimate ),( dwc )1,( +dwq  or other incremental 
information for period 1+d . 

)(dF : factor applied to c  to estimate  or other cumulative 
information relating to age . 

),( dw ),( nwc

d

)(wG : factor relating to accident or policy year  – capitalized to designate 
ultimate loss level. 

w

)( dwh + : factor relating to the diagonal  along which + d  is constant. k w

),( dwe : a mean zero random fluctuation which occurs at the ,  cell. w d

 

4.2 Methods 
A method is an algorithm or recipe – a series of steps that are followed to give an 
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estimate of future payments. The well-known chain ladder (CL) and Bornhuetter-Ferguson 
(BF) methods are examples. A more intricate method, suggested by Gunnar Benktander 
(GB) in the April 1976 issue of The Actuarial Review, uses a weighted average of the CL and 
BF estimates within the BF procedure. For a paid loss application, let  be the average 
proportion of ultimate claims paid through age , and U  be a prior estimate of U . 
Then the estimates of U  after observing  are: 

)(dF

d

),d
0 )(w

)(w (wc

0)](1[),()( UdFdwcwU BF ⋅−+=  (4.1) 
)(/),()( dFdwcwU CL =  (4.2) 

 
)]()}(1{)()([)](1[),()( 0 wUdFwUdFdFdwcwU CLGB ⋅−+⋅⋅−+=  

)()](1[),()( wUdFdwcwU BFGB ⋅−+=  
(4.3)

Thus the original estimate U  in BF is replaced by a weighted average of the CL 
estimated ultimate and the BF prior ultimate losses, where the weight on CL is .  This 
is the same as replacing U  with U  so is also called iterated BF. It is not hard to see 
that the expected future development from this method is a weighted average of the future 
development from the CL and BF methods, again with weight  on CL.  

0

)(dF

0 )(wBF

)(dF

CL, BF, and GB are thus three methods of future payment estimation that have been 
specified here up to the calculation of  and U . These calculations would have to be 
defined to make the methods into complete algorithms. Since they are methods, they show 
how to do the calculations but do not detail any statistical assumptions that might be tested 
or used to calculate standard errors. 

)(dF 0

 

4.3 A Method for Estimating Ranges 
One way to calculate a range around estimated ultimate losses would be to proceed as 

follows: 

1. For each age d , calculate age  to age d 1+d  loss development factors  as the 
average such factor over all accident years available and multiply these to get the age 
to ultimate factors . 

)(df

)(dF

2. For each d , sum the squared deviations of the age  individual accident year factors 
from . With  factors in the column, divide by 

d

)d(f n 1−n  to estimate the average 
squared deviation, then multiply by )1( −nn  to adjust for uncertainty about . )(df
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Call the result . Set . )(2 ds

)d

(2S

(22 dS

)

)1()( 22 −= nsns

)(2 ns

)()1( 22++ dsdF

)(dF

3. Calculate S , the estimated variance of the age-to-ultimate factor , working 
backwards from  using the formula for the variance of the product of 
two independent variates, so 

. 

(2

)(df

)(dF

)n =

)1+ )1()()( 222 ++= dSdsdS

4. Estimate the expected ultimate loss for each accident year  by multiplying c  
from the latest diagonal by  and the variance for the accident year as 

. 

w ),( dw

(),( 22 dSdwc

5. Sum the estimated accident year losses and variances over all accident years, and 
assume the sum is lognormally distributed with mean and variance equal to the 
summed means and variances. 

6. Use that lognormal distribution to estimate percentiles of outcomes of the ultimate 
losses. 

As with methods in general, this one tells you how to do the calculation, but does not 
provide any statistical assumptions that could be used to validate its reasonableness. 

Simulation could also be used as a method for calculating future payment ranges. For 
instance, Patel and Raws49 discuss an approach to this. The paper describes a procedure for 
generating future payment ranges using a combination of actuarial judgment and statistical 
simulation.  In its application, the paper assumes a company writing multiple lines of 
business over multiple accident years.  It is assumed that ultimate loss estimates have been 
generated by a variety of standard actuarial methodologies for each line of business/accident 
year.  The paper then describes how an actuary might use this range of estimates, applying 
judgment to choose a loss distribution (and the associated specifying parameters) by line of 
business/accident year.  Simulation techniques are then applied using the selected 
distributions to generate a range of future payments across all accident years/lines of 
business (i.e., a range of aggregate future payments).  The paper examines three specific 
applications of this process. 

 

 
49 See Patel and Raws [50]. 
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4.4 Models 
A model specifies statistical assumptions about the loss process, usually leaving some 

parameters to be estimated. Then estimating the parameters gives an estimate of the ultimate 
losses and some statistical properties of that estimate. There are various methods that could 
be used for estimating the parameters, such as maximum likelihood and various robust 
estimators, but unless otherwise noted, “methods” here will refer to algorithms for 
calculating loss future payments, not methods for estimating model parameters. 

Mack presents50 a loss development model to address issues of weighted averages of CL 
and BF estimators. He assumes that the payout pattern is already known with  the 
proportion of ultimate losses paid by age , and looks at how to evaluate the accuracy of 
the CL and BF estimators that use these factors and how they can best be weighted together. 
In the current notation, he defines: 

)(dF

d

)(0 wU  = prior expected value for U  with . )(w )]([)]([ 0 wUEwUE =

)(0 wU  is assumed to be independent of U , c  and . )(w ),( dw )(wR

)()](|)(/),([ dFwUwUdwcE =  (4.4)
))](1)(())[(()](|)(/),([ dFdFwUBwUwUdwcVar −= , (4.5)

where B  is assumed constant over ’s. d

))(()())(( 2 wUBwUwUA =  (4.6)

Mack suggests that  could, for example, be assumed to be a constant or a factor 
times U . Either way, the accident year’s difference in its proportion of losses paid by age 

 from the long-term average  is highest near the middle of the payout pattern, where 
 is highest. The CL estimate gets better for mature ages as the annual 

variation of the payout portion goes down and losses are grossed up by a lower factor 
. In fact, dividing the definition of 

))(( wUB

F

)(w

(1)( F−

)d

d

(F

/1

)(d

))dd

(F B  by ( ))(dF 2: 

)(/)](1))[(()](|)(/)([ dFdFwUBwUwUwUVar CL −=  (4.7)

which decreases in . )(dF

The accuracy of the BF estimate also improves over time since the factor 1  on 
 gets smaller. The expected squared error  does not change with age, 

however.  Note that   by the 

)(dF−

)(U
0U 2

0 )( UUE −
)2

0 UEU −+ )(()( 00
2

0 VarUVarEUUEUUE +=−=−

                                                 
50 See Mack [38, 42]. 
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first two assumptions.  

Mack considers credibility weighted estimators of CL and BF for  of the form: )(wR

)]()],(1[)(/),(),()][(1[),( 0 wUdwZdFdwcdwZdFdwRZ −+−= , (4.8)

which has the lowest error for any given  when  is on the last diagonal.  w d

He finds that the mean squared error (MSE) is minimized by taking 
)]()(/[)(),( wKdFdFdwZ += , where: 

))](([))(())((

))](([
)(

0 wUAEwUVarwUVar

wUAE
wK

−+
=           If 0<K , set it to 0 , so 

1=Z

(4.9)

Setting , Mack then finds the mean squared errors of 
some possible estimators as: 

))](([)](1[),( wUAEdFdwY −=

)](/)](1[1)[,()),(( wKdFdwYdwRMSE BF −+=  (4.10)
)](/),()),(( dFdwYdwRMSE CL =  (4.11)

=)),(( dwRMSE Z   
)}(/)](1[)],(1[1)(/)](1[),(){,( 22 wKdFdwZdFdFdwZdwY −−++−  (4.12)

The latter formula gives the CL and BF formulas when 1=Z  or 0 . Mack shows that the 
of the BF method is less than that for CL exactly when MSE )(( wKd )F <  for  and d  

on the latest diagonal, which gives a criterion for the best age to switch from BF to CL. 
However, the credibility estimator is better still. Mack suggests that the GB method, which 
does not use the optimal 

w

Z ’s but is easy to calculate, is better than either CL or BF in most 
practical cases. 

To apply this model, the parameters have to be estimated. U  and Var  are from 
outside data, perhaps from ratemaking. Var  could come from a historical loss ratio 
distribution. The ’s and ’s are assumed known, but as often occurs in credibility theory 
they are usually not, and could be estimated from historical loss development data. The 

’s above would then be the conditional ’s given the payout pattern, so the 
unconditional ’s would be their expectation over the distribution of the expected 
payout pattern – not the distribution of the annual payout pattern around the average, but 
the uncertainty in the average. This would probably have little effect on the relative ’s 
for the different methods, but the difference between 1  and  could 
have an effect for some distributions of . 
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This example of a method and a related model illustrates what a model provides: testable 
assumptions about the claim development process, parameters to be estimated, and a mean 
estimate and measures of deviation from the mean. This model is different from many, 
however, as the model assumptions allow future payment estimators of various forms, and 
the assumptions and the accuracy of each estimator at various ages can be calculated. Other 
models specify a claim development process and look for the best estimator meeting certain 
criteria, regardless of form. For instance, if the distributions of the observations are 
specified, the maximum likelihood estimator of the future payments might be sought. 

 

4.5 Types of Models 
Here is a structure for classifying estimation models: 

The first split is models based on individual claims histories vs. models based on triangles. 

For models based on triangles, it is possible to model a triangle as a function of itself plus 
other triangles, as examples, paid  a function of paid and incurred, or auto property damage a 
function of auto liability and auto physical damage triangles. So the first split of triangle 
models is by models of single triangles vs. models simultaneously incorporating multiple 
triangles. 

For models of single triangles an important distinction is conditional vs. unconditional 
models. For both of them, the parameters are estimated using the data in the triangle, but for 
conditional models the data in the triangle is part of the set of independent variables used in 
the expression of the model of future loss emergence, like: 

)1,()(),()1,( ++=+ dwedfdwcdwq  (4.13)
This model has one parameter for each age, as the factors are applied directly to losses. 

For unconditional models the data in the triangle is not an independent variable in the model 
equation for future development such as: 

)1,()()()1,( ++=+ dwedfwGdwq  (4.14)
This has a parameter for each age and one for each accident year as well. 

Link ratios can be expressed as a conditional model. The 1972 Bornhuetter-Ferguson 
method can be expressed as an unconditional model, where  is the expected losses for 
accident year w from pricing. Other models estimate  from the data. It is not unusual 

)(wG

)(wG

Casualty Actuarial Society Forum, Fall 2005 69 



The Analysis and Estimation of Loss & ALAE Variability 
 

to find conditional and unconditional models that will give the same estimate of the mean 
total incurred.  

Another distinction is whether or not there are diagonal terms in the model, like: 

)1,()1()(),()1,( ++++=+ dwedwhdfdwcdwq  (4.15)
or: 

)1,()1()()()1,( ++++=+ dwedwhdfwGdwq  (4.16)
Another distinction is whether or not the model is parametric.   To get future payment 

ranges in the end, we need some parametric assumption, but this is not necessarily true for 
getting estimates of standard deviations. The Mack and Murphy chain ladder models 
discussed below are expressed as non-parametric, for instance. Of course, we could always 
argue that using squared error implicitly assumes normal distributions, or at least gives us the 
same answers as assuming normal distributions, but we can still call these approaches non-
parametric. 

Models can also be distinguished by whether they have fixed parameters or varying 
parameters. Varying parameter models let you have different parameters for each accident 
year or lag, but the degree to which the parameters can change from year to year is 
constrained by some kind of parameter variance limitation. However, this is possible for any 
model, so it is not used as a categorizing variable for models but rather as a model building 
tool that can be used in various types of models. 

 

4.6 Some Estimation Models 
Once a model postulates a process that generates loss development, estimation of the 

parameters of that process will provide estimates of means and distributions of future 
payments. This is shown in some detail for a few models, but is implicit in all of them. 
Models are presented below according to the classification scheme outlined. 

4.6.1 Single Triangle Models  

4.6.1.1 Single Triangle, Conditional, Non-parametric, No Diagonal Terms 

Conditional models estimate future development conditional on the losses emerged so 
far. Basically if the expression for future development explicitly refers to emerged losses, it is 
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a conditional model. The history of development factors is not entirely clear, but they go 
back at least to Thomas F. Tarbell51 . Thomas Mack and Daniel Murphy put development 
factors into a conditional non-parametric framework in the early 1990’s. 

4.6.1.1.1 Mack’s Model 

Mack52, develops formulas for estimating the standard errors of the chain ladder future 
payment distributions.  In developing the formulas, Mack makes three key assumptions:  

1. ),()()],(),...,1,(|)1,([ dwcdfdwcwcdwcE =+ , i.e., the chain ladder model applies,  

2.  is independent of {  for v)},(),...,2,(),1,({ nvcvcvc )},(),...,2,(),1,( nwcwcwc w≠ , 
and  

3. )]([),()],(),...,1,(|)1,([ dfVardwcdwcwcdwcVar =+ . 

It’s clear from these assumptions that this formulation of the chain ladder is estimating 
future payments conditional on the triangle of observations. To calculate the estimated 
standard error of the future payment distributions, perform the following steps:  

1. Calculate the weighted average development factors:    

∑∑ +=
ww

dwcdwcdf ),()1,()(  (4.17)

2. Calculate the weighted variances of the development factors: 
2

)](),(/)1,()[,()]1/1[)]([ ∑ −+−+=
w

dfdwcdwcdwcdndfVar  (4.18)

3. Estimate the variance of an accident year future payment distribution:  
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4. Estimate the variance of the all accident years future payment distribution:  

                                                 
51 See Tarbell [59]. 
52 See Mack [37]. 
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4.6.1.1.2 Murphy’s Models 

Murphy53 describes five conditional, non-parametric chain ladder models.  After making 
certain assumptions about the error term, he applies least squares regression theory to 
estimate optimal link ratios.  One of the models allows for an intercept, but the remaining 
four are strictly multiplicative with the differences between them arising from how the error 
term relates to emerged losses.    

Three of the multiplicative models are of the form 
 where i = 0, 1 or 2. Of particular interest 

is the model defined by , namely, c .  
Dividing each side by  transforms the equation into a simple linear regression of 

 onto .  The least squares estimate of  simplifies to 

)1,(),(),()()1,( 2/ ++=+ dwedwcdwcdfdwc i

1=i ,( dw
2/1),( dwc

2/1),(/)1,( dwcdwc + 2/1),( dwc

)1,(),(),()()1 2/1 ++=+ dwedwcdwcdf

)(df

∑∑ +
ww

dwcdwc )/()1,( , the weighted average development factor.  Murphy labels this 
model WAD.  

In addition to the calculation of model parameters, Murphy shows variance estimates for 
an individual accident year and for all years combined.  In both cases, the estimated variance 
of the estimated future payment is calculated as the sum of parameter variance (the 
variability of the estimated future payment about its true mean) and process variance (the 
variability of the actual future payment about its true mean).  Both variance pieces are 
developed recursively. 

Continuing to assume the WAD model, Murphy’s method for developing a range about 
the estimated future payments for accident year  is as follows:  w

For  to , estimate: the age-to-age factor ; the expected 
cumulative losses at each future period starting with 

1+−= wnd 1−n )(df

()( cdf ),)1,( dwdwc =+ ; and the 
variance of the link ratio Var  = )]d([ f ∑w

cdMSE /)( dw ),( )d, where  is the mean (MSE

                                                 
53 See Murphy [46]. 

72 Casualty Actuarial Society Forum, Fall 2005 



The Analysis and Estimation of Loss & ALAE Variability 
 

squared error from the regression on column .  d

)2

MSE

+w

= n

)d

)][

Beginning with 1+−= wnd  and stopping at 1−= nd

)]([ df +
,( − wnw

, estimate the parameter variance 
recursively: 

. For , the formula simplifies to c  because 
.  The parameter variance for the future payments is the value when 

.   

)]]([)()][,([,()])]1,([ 2 dfVardfdwcVarVardwcddwcVar +==+
+−= wnd )]1([)1 2 +−+ wnfVar

1,([ +− wnwcVar

1−= nd

,()([ wcdfVar

1

0)] =

Beginning with 1+−= wnd  and stopping at 1−= n

)() 2+ df

d , estimate the process variance 
recursively:  

. 
This simplifies to  for 

)]1,(|),([(),((|)1,([ 2 +−+ wnwcdwcVarddwccdwcVar

)1( −nMSEc 1

)]1, =+− wnw

)1,( 2+− wnw +−= w

1

nd .  The process variance 
for the future payments is the value when −d .   

Add the parameter and process variance to find the total variance. 

Given the total variance, make an assumption about the distribution of the error term and 
derive a confidence interval.  A common assumption is that the errors are distributed 
normally so that a one-sided confidence interval at the α  level equals αtwnwR ++− )1,(  
(process variance + parameter variance)1/2 where  is from a t -distribution with the 
appropriate degrees of freedom.   

t

4.6.1.1.3 Other Conditional, Non-parametric Models 

1. Murphy also suggests adding an intercept to the chain ladder, so 

)1,(),((),()()1,( 2/ +++=+ dwedwcjdwcdfdwq i  (4.21)

2. The Mack model of credibility weighting CL and BF estimates models the ultimate 
losses conditional on the observations on the latest diagonal. It can be expressed as: 

),()]()](1[),(,(1[)(/),(),(),( nwewGdFdwcdwZdFdwcdwZnwc +−+−+= , (4.22)
where G  is the prior estimate of ultimate losses for year .  )(w w

The idea of the credibility model discussed above is to minimize the variance of . ),( nwe

3. Robbin54 and Venter55 provide another credibility model for weighting together 

                                                 
54 See Robbin [54]. 
55 See Venter [70]. 
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different estimates of claim count development and total loss development, respectively. 
Besides the CL and BF estimates of future loss emergence, they also give weight to the 
pegged estimate U , which does not update the total incurred as losses develop. A 
credibility weighting similar to Mack’s is produced, but some weight goes to the pegged 
estimate. 

),(0 dwc−

4. A credibility model is proposed by Neuhaus56. He uses the Bühlmann-Straub credibility 
model, so assumes there is a parameter W  for the accident year that determines the 
distribution. Then the assumptions are: 

1. For all d , the  are independent; Wdwq |),(

2. , so dividing by  grosses up incremental losses to 
ultimate; and 

)(]|)(/),([ WmWdfdwqE = )(df

3. . )(]|)(/),([ 2 WsWdfdwqVar =

 These lead to Var , which is different than Mack’s credibility 
model. Nonetheless, the credibility formulas turn out to be the same, although estimation of 
some parameters could be different than suggested by Mack. 

)()(]|),([ 2 WsdFWdwc =

4.6.1.2  Single Triangle, Conditional, Parametric, No Diagonal Terms 

Any of the non-parametric models could have parametric assumptions introduced. Thus 
you could have the model: 

)1,(),(),()()1,( 2/ ++=+ dwedwcdwcdfdwq i  (4.23)

and assume that e  is normal or t -distributed with mean 0, or follows a positive 
distribution shifted by its mean, like lognormal minus its mean, loglogistic minus its mean, 
etc. 

Gogol57 introduces a Bayesian estimation using lognormal distributions. He assumes: 

1.  ~ lognormal( ); and Unwc =),( 2,σµ

2. ~ lognormal(Unwc |),( 2,τν ) 

 

                                                 
56 See Neuhaus [47]. 
57 See Gogol [26]. 
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He then shows that U ~ lognormal( ), where ),(| nwc 2
11 ,σµ 1µ  and 1σ  can be estimated 

from the data. This involves a credibility weighting of chain ladder and prior estimates. 

4.6.1.3 Single Triangle, Unconditional, Non-parametric, No Diagonal Terms 

Unconditional models estimate future development as a function of parameters of the 
model, with no reference to losses emerged to date. Typically the loss history in the claims 
triangle will be used to estimate the parameters, however. 

The prototype of unconditional methods is the Bornhuetter and Ferguson.58 As a model, 
this method can be expressed as: 

),()()(),( dwedfwGdwq += , (4.24)
where  is the percentage of losses paid from age )(df 1−d  to age  and  is the 

prior estimate of ultimate losses for the year.  
d )(wG

Since  is given for each accident year, estimation of  to minimize ∑  
is just a no-constant regression, so then  is estimated as 

)(wG )(df
2

),( dwe

)(df ∑∑ w
dw /),(

w
q wG )( . 

A popular variant is to estimate G  from the triangle as well as . Strangely 
enough, such models have been given names like stochastic chain ladder, even though they 
do not estimate future development conditional on . It would be more historically 
accurate to call them stochastic BF models. One variant is: 

)(w )(df

),( dwc

)],(exp[)()(),( dwedfwGdwq = . (4.25)
Since all factors are presumably positive, taking the log gives: 

),()(ln)(ln),(ln dwedfwGdwq ++= . (4.26)
This system is actually over-determined in that adding a number x  to every  and 

subtracting it from every  would give the same estimates. To fully determine the 
system, one variable has to be set to a constant. One way to estimate the parameters is to 
minimize the sum of the squares of the e ’s separately for each row and each column 
of the triangle, which produces a system of  linear equations that can be solved for the 

’s and ’s. 

)(ln wG

)(ln df

),( dw

n2

fln Gln

It is not too much more difficult to make the error additive, so  

)],(exp[)()(),( dwedfwGdwq += . (4.27)

                                                 
58 See Bornhuetter and Ferguson [7]. 
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Then losses do not have to be positive, but solving the system (still minimizing the row 
and column squared error sums) ends up with  non-linear equations. These can be solved 
iteratively, as in the Bailey minimum bias procedure. Venter

n2
59 gives an example of this 

procedure. 

Another variant is to assume the expected values of all the accident years are at the same 
level. This might hold for a triangle of on-level loss ratios, for example. Then the model 
would be: 

),()(),( dwedGfdwq += . (4.28)
Thus, there is no dependence on  except in the error term – all the accident years are at 

the same level . Since Gf  is constant by column, the projected future incremental loss 
emergence is constant for each column. Thus, this model is sometimes called the additive 
chain ladder, although it is actually an unconditional model. Also, it is sometimes called Cape 
Cod, as a method by that name can be used to estimate  and the ’s. The minimal 
least squares solution for each column would just set Gf  to the average of the column, 
with G  arbitrary. 

w

G )(d

G

)(d

)(df

These models can all be modified by making the error term a function of the mean. One 
variation is to make the variance of the error term proportional to the mean. This can be 
done to any of the above models, e.g.,  

2/1)]()()[,()(ln)(ln),(ln dfwGdwedfwGdwc ++=  (4.29)
2/1)]()()[,()()(),( dfwGdwedfwGdwq +=  (4.30)

2/1)]()()[,()(),( dfwGdwedGfdwq +=  (4.31)

  Other powers of the mean could be used as a factor on the error term as well. 

Even though some unconditional models reproduce chain ladder estimates, they can be 
distinguished from the chain ladder in their residuals. The chain ladder estimates each 
incremental cell as a factor times the previous cumulative. The unconditional models 
estimate the same cell as a factor times a single level for the accident year. Depending on the 
data, one or the other could give a better explanation for the triangle being fitted. 

4.6.1.4 Single Triangle, Unconditional, Parametric, No Diagonal Terms 

The model  can also be parametric, with the distribution ),()()(),( dwedfwGdwq +=

 
59 See Venter [71]. 
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of  specified. For instance Hachemeister and Stanarde 60 take the case where  is 
the mean of a Poisson distribution, so  is Poisson distributed with that mean. They 
show that the MLE estimates reproduce the chain ladder future payments

)()( dfwG

,( dw

),( dwq
61. Here e  

can be considered shifted Poisson, i.e., a Poisson distribution less its mean. Another option 
would be to have e  a constant times a shifted Poisson, to change the error variance: 

)

),( dw

()( fwG )()( dfw

)(w

)( edf),( dw +=

                  

2

 ),()),( dweddwq +=  where  ~ k  [Poisson[G ] – 
] 

),( dwe

)(dfG

Renshaw and Verrall62 discuss the over-dispersed Poisson, and show that it also gives the 
same estimate as the chain ladder. Negative binomial can be used here instead of Poisson. 
Actually, any of the non-parametric unconditional models can be made parametric just by 
making a distributional assumption. A typical example is: 

),(ln)(lnln dwwGc +  where e  is normal( ). ,0 σ

This was proposed for instance in Kremer63. 

Often the unconditional parametric models assume that the incremental observations are 
independent even within an accident year. This helps with the estimation, but may be 
unrealistic. 

4.6.1.5 Adding in Diagonal Terms 

Parametric vs. non-parametric is a less significant distinction than it may appear, in that 
non-parametric models are usually fit by least squares, and so are equivalent to assuming 
normality. Conditional vs. unconditional may seem not too important in that they both 
estimate the parameters from the data, and we can set up unconditional models to reproduce 
chain ladder estimates. However, the statistical properties of the models are quite different. 
Conditional models gross up emerged losses to estimate future incurred while unconditional 
models postulate emergence as a percentage of hypothetical mean ultimates. The process of 
loss emergence is different for the two – they would be simulated differently for example – 
and the tests of goodness-of-fit of the models and the estimated variances could be quite 
                               
60 See Hachemeister and Stanard [27]. 
61 This was submitted to ASTIN Bulletin but never published, purportedly because the reviewers felt that 

the results were already well known at that time. It was published in a German textbook by Kremer in 
1985 and by Mack in an appendix in ASTIN 1991 and by others. 

62 See Renshaw and Verrall [53]. 
63 See Kremer [35]. 
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different as well. Venter64 gives an example where the fit of an unconditional model is quite a 
bit better than a fit of a conditional model to the same data. For that data the losses 
emerging are better explained as a percent of a constant ultimate than as a percent of the 
losses already emerged. Other data could give the opposite conclusion. 

A distinction that is significant both apparently and in practice is whether or not calendar 
year effects are included in the model. These could result if inflation after the loss date 
affects eventual loss payments, for example. They could also come from claim department 
activity that makes some calendar years high and others low. Calendar year terms can be 
added to both conditional and unconditional models. We use )( dwh +  as a calendar year 
effect, since  is constant on a diagonal. For example: dw +

)],(exp[)()()(),( dwedwhdfwGdwq += ; (4.32)
),()()()(),( dwedwhdfwGdwq ++= ; and (4.33)

)1,(),()1()(),()1,( 2/1 ++++=+ dwedwcdwhdfdwcdwq . (4.34)

The calendar year factors can be estimated by linear or non-linear regression. Venter65 
provides some examples. However a significant issue arises: calendar year inflation induces 
an inflation effect in both accident year and age of claim directions, so could be difficult to 
separate from them. In fact one of the early papers on calendar year effects was Taylor66. 
Although Taylor refers to some earlier works, his paper was the first look at estimating 
calendar year effects for many actuaries, and in fact models with such effects came to be 
known as separation models. Taylor’s model is basically Cape Cod plus inflation: 

),()()(),( dwedwhdGfdwq ++=  (4.35)
That is, the data is assumed to be normalized so that there are no systematic accident year 

effects except as induced by calendar year inflation. This could be extended to adding 
accident year parameters, perhaps selectively for years with significant deviation from the 
original model. 

An alternative would be to start with a general conditional or unconditional row-column 
model and add in calendar year effects for diagonals that deviate significantly from the fitted. 
This could pick up high or low diagonals that have been affected by specific issues for one 
or two years – a new computer system in the claims department for example. This would 

                                                 
64 See Venter [71]. 
65 See Venter [69]. 
66 See Taylor [17]. 
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remove the distortion such issues could produce on the parameters of the original model, for 
example. 

If the original data is adjusted for exposure changes but not price changes, the model of 
Cape Cod plus inflation could show the overall effect of calendar year price changes on the 
losses. If this in itself explains the differences across accident years, it would be evidence that 
inflation, in fact, is working in the calendar year direction. Years with high inflation, for 
example, would show up high along the whole diagonal. On the other hand, if inflation 
affects a line mainly across accident years, high inflation years would affect the accident year 
only. This distinction should show up in the residuals of the model. 

Calendar year effects present issues for squaring the triangle also. The age effects are 
quantified to the end of the square but the diagonal effects are only measured up to the last 
diagonal. If only a few specific diagonals have been picked up as unusually high or low, then 
perhaps no further projection in the calendar year direction would be called for. This would 
be a finding that future inflation does not affect open claims – all inflation effects have been 
accounted for by the accident year factors. Even in this case, however, future deviations up 
or down could affect the variance of results. 

On the other hand, if the model fitting has found significant ongoing calendar year trend, 
this should be projected in filling out the future results, both for the mean and deviation 
from the mean. The estimated trend for the latest diagonal could be the mean trend 
projected, but this could be modified by econometric analysis of expected inflation. 

4.6.1.6 Restricting Parameter Variation 

Much of the recent literature has addressed methods for reducing the number of 
parameters in a model by restricting parameter variation. The typical conditional model starts 
out with  parameters for 1−n 2/)1( −nn  data points, while the unconditional model would 
have  parameters. Cape Cod reduces this down to n by forcing all accident years to be 
the same. Adding calendar year inflation could double this. Besides reducing the degrees of 
freedom, many parameters end up being statistically insignificant. For instance, it is not 
unusual for all ages after about three to have  less than its standard error. 

1−2n

)(df

The simplest way to constrict the parameters is to force some of them to be the same. 
Perhaps none of the factors  to  are significant, but they all are close enough to 
each other that if you allow just one parameter for all those ages it will be significant. The 

)11(f )19(f
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same thing can be done with calendar years or with accident years, which would be in the 
direction of Cape Cod, but not all the way there. (A related alternative would be to force a 
trend line, so all the parameters in a given range fall on the line, using up only two degrees of 
freedom, or a curve can be used instead of a line, such as a power curve. That might also be 
convenient for projecting age factors beyond the triangle. 

An example is provided by Barnett and Zehnwirth67 who discuss the CL model with an 
accident year trend: 

)1,(),()()()(),()1,( 2/1 ++++=+ dwedwcwdbdadfdwcdwq . (4.36)

Here  represents a constant part of development plus the level of accident 
year . 

wdbda )()( +
w

There are also smoothing techniques that can be used to restrict the degree that a 
parameter can differ from the one next to it. One simple version of this was presented by 
Gerber and Jones.68 If the true parameter is changing each period by a random amount with 
variance , and the direct estimation procedure has a variance v  around the current true 
parameter, then the smoothed estimate is an update from the previous smoothed estimate 
based on a credibility weighting of the latest direct estimate and the previous smoothed 
estimate. If the credibility of the i  direct estimate is , then the  direct estimate’s 
credibility satisfies 1

a

th

/(Z
iZ thi )1( +

)/11/ 1 vaZ ii ++=+

1

, while the smoothed estimate from period i  
gets weight 1  to produce the smoothed estimate for period +− iZ 1+i . Here Z  starts at 1, 
since there is no previous smoothing for the first point, and goes down to a limit of 

,where . 2/ vJ =)J4/( 2J + 2/1 J− a /

This is a simple example of a credibility smoothing procedure called the Kalman filter, 
and is also related to exponential smoothing. This filter and a generalization of it aimed at 
generalized linear models are discussed in Taylor, McGuire and Greenfield69. 

The variances  and v  do not have to be constant. For example, if the regression 
diagnostics suggest that the parameter has changed a lot from one period to the next, a high 
value of the change variance  can be postulated at that point, which would give high 
credibility to the direct estimate of the parameter and low weight to the previous smoothed 
estimate. Also smoothing can work in two directions – past and future. The smoothing 

a

a

                                                 
67 See Barnett and Zehnwirth [2]. 
68 See Gerber and Jones [23]. 
69 See Taylor, McGuire and Greenfield [67]. 
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could be reversed at the last point and continue backward as if it was still going forward, and 
even reverse again at the beginning, etc. Whenever the process stops, the smoothed 
estimates are the final estimates of the parameters. 

Zehnwirth and Barnett use parameter restrictions like these in a family of models that 
basically adds calendar year trend to Kremer’s lognormal model. The main idea is to have 
parameters to model effects in each of the three directions (accident year, age of 
development, and calendar year). The model uses logarithms of incremental data.  This 
postulates that trends are linear on a logarithmic scale and are easier to discern in 
incremental data. Also the incremental data at each period is the new information that needs 
to be modeled, where the cumulative losses are a mixture of new and old information.  

The following modeling schema was presented at the 2002 CLRS.70  In our notation: 

),()()()(),(ln
21

dwejhifwGdwq
dw

j

d

i

+++= ∑∑
+

==

. (4.37)

Here  is the level of accident year ,  is the single period development, and 
 is the increase in calendar year cost levels in one year. This is called a modeling 

schemata and not a model because it would be inappropriate to just estimate the G , , and 
 parameters by MLE. There is multi-collinearity between the calendar year and accident 

year effects, so direct estimation would not be meaningful. It may be reasonable, however, to 
have constant or gradually changing trends within some time frames, perhaps with jumps to 
new levels when regime change takes place. A process of model identification, estimation, 
and validation is needed to find meaningful parameters that work together to model the data 
triangle within this schema. The model is not fully specified until the parameter restrictions 
have been established. 

)(wG w )(if

)( jh

h

f

The age  factor could be represented as  instead of the sum of the individual 
’s up to age d , but doing it this way makes a difference in the application of parameter 

restrictions. For instance,  could be constant for several consecutive ages, which would 
(assuming a negative trend) represent an exponential decline in payments before application 
of calendar year trend. If the triangle ends with a constant value of  for the last few 
ages, this could be projected beyond the triangle to continue the pattern.  

d )(dF

)(if

)(if

)(if

Similarly  could be used to represent the sum of the  up to )( dwH + )( jh dw + . This 

                                                 
70 It is available at www.casact.org/coneduc/clrs/2002/handouts/barnett1.pdf. 
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would be a cumulative factor, but again it is probably more intuitive to apply parameter 
restrictions to the individual annual trends .   )( jh

(w +

)(ddq

Another way of framing this scheme would be to make the parameters average trend 
factors: 

),()())()(),(ln dwedwrdddqwpdwq ++++= , (4.38)
where  is the average development age trend through age ; the development age 

trend represents the expected change from one development age to another. 
)(dq d

)( tdwr =+  is the average diagonal (payment year) trend; the payment year trend 
represents the mean of the (random) trend between payment year 1−w  and . If the data 
is inflation adjusted for price or wage inflation, then the trends along the payment year 
usually represent social inflation, and e(w,d), the error term, is distributed normal( 0 ). 

w

2,σ

In any of these setups, before a general framework for the model is decided upon, a 
preliminary analysis can be performed on the loss array to determine the existence of trends.  
It is difficult to determine the existence of trends separately in each of the three directions. A 
preliminary determination of existence of trends in any particular direction can be 
established by fitting a single development factor model such as: 

),(),(ln dwepdwq ++= , (4.39)
where  is constant across accident years and )(wp 0)( =+ dwr . 

To estimate the observed log incremental losses and then charting and examining 
residuals sorted by development year, accident year, payment year, and fitted values. If there 
is a trend in a particular direction, it will be shown by the distribution of residuals by that 
direction.  Then based on the results of this preliminary analysis the original scheme 
described by Zehnwirth and Barnett can be further specified depending on the observed 
trends in any particular direction. 

The accident year trend and the development age trend are essentially considered 
independent of each other, as their trend vectors are orthogonal. However, the payment year 
trend vector is not orthogonal to either the accident year direction or the development year 
direction. That is, a trend in the payment year direction is also projected onto the 
development age and accident year directions. Similarly, accident year trends are projected 
onto payment year trends. The relationship between the three directions is as follows: 

diagonal (payment year) trend = accident year trend + development age trend. 

82 Casualty Actuarial Society Forum, Fall 2005 



The Analysis and Estimation of Loss & ALAE Variability 
 

The model scheme with cumulative trends can be re-expressed as: 

),()]()([)]()([),(ln dwedwrdqddwwrwpdwq ++++++= . (4.40)
The components in braces can be considered accident year and age components, but due 

to the calendar year trend, the accident year level at a cell depends on the time since the 
accident, and the average development at any age is affected by accident year. This shows 
that the calendar year trend )( dwr +  projects in both other directions. 

The proposed model can also be modified if the loss triangle array being modeled 
exhibits different trends during different periods of time. In such a scenario we could divide 
the data into blocks of time periods so that each block of data exhibits homogeneous trends 
and then model each of these blocks of data separately or have additional parameters to 
model differing trends for different time periods. 

Modeling log incremental puts certain limitations on the model, such as incremental 
amounts being estimated cannot be 0 or negative. As a result, this model may be suitable for 
modeling paid and case reserve amounts instead of paid and incurred amounts, which adds 
the advantage of possibly being able to test case reserve adequacy if it is thought to be 
changing. 

An additional issue associated with multi-parameter models such as the one described 
above is the multi-collinearity between independent variables described above. One way to 
get around this issue is to use the Kalman filter or exponential smoothing to restrict the 
parameters. 

Other methods of smoothing could be used such as cubic splines.  England and Verrall71 
give a framework for some parametric unconditional models using spine smoothing: 

),()],([ dwmdwqE = and (4.41)
idwkmdwqVar ),()],([ = , (4.42)

where the distribution of q  is either normal, Poisson, gamma, or inverse gaussian for 
 = 0, 1, 2, 3 respectively. 

),( dw

i

)(ln)()()(),(ln dsdswscbdwdwm ddw +++++= . (4.43)

 

Here the ’s denote smoothing functions. With no smoothing there is a parameter for s

                                                 
71 See England and Verrall [17]. 
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each accident year and age. With infinite smoothing there is one parameter for all accident 
years combined and age factors are forced to fall on a curve that is a linear combination of 

 and  (i.e., a so-called Hoerl curve). The degree of smoothing can be controlled 
separately for  and . 
d dln

w d

(q

+w t)h(

∑d
w(G

∑f (

This is a framework for models that fall into the category of generalized linear models. It 
does not include truly non-linear models like: 

),()()()(), dwedwhdfwGdw ++= . (4.44)
However, such models are not difficult to fit with modern search techniques, even with e  

following a t -distribution, log- t , or other distributions not in the i  = 0 to 3 list. The model 
can also be fit non-parametrically to minimize the squared-error sums of each row, column, 
and diagonal of the triangle by the iterative procedure of Bailey minimum bias. Given 
starting values for the parameters, the iterative equations for the next values are: 

∑∑ =+=+
==

tdwtdw
dfwGdfwGdwqd 22 )()(/)()(),( ; (4.45)

∑ ++=
d

dfdwhdfdwhdwq 22 )()(/)()(),() ; and (4.46)

∑ ++=
ww

wGdwhwGdwhdwqd 22 )()(/)()(),() . (4.47)

Convergence is usually fairly fast. Thus, with a large enough triangle this model has 
problems neither with the non-linearity nor with the degrees of freedom. One problem it 
does have is that inflation is being measured with both accident year and calendar year 
parameters, whose effects overlap. Another is that many of the parameters will not be 
significant. Thus some parameter restriction methods will usually have to be employed. A 
starting point might be to use a single value of  for all years, then look at the residuals to 
see if more G ’s are needed. 

G

With smoothing procedures like filters there is an issue of how many parameters are in 
the model, so the degrees of freedom can be computed. One suggestion, for instance 
proposed by Ye72, is to define the generalized degrees of freedom used up (i.e., number of 
parameters in the model) as the sum over all the observations of the derivative of the fitted 
value at that observation with respect to the observation. This can be approximated, for 
instance, by making a small change at an observation and seeing how much the fitted point 
changes, and repeating for all observations. As an example, suppose you fit a cubic 
polynomial to four points. The polynomial will go through all four.  Changing any of the 

 
72 See Ye [80]. 
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points by a small amount will change the fitted values by the same amount, so the sum of 
the derivatives will be four. Thus, all degrees of freedom are used up. One way to think of 
this is that each data point gets a degree of freedom initially, which gives it power to pull the 
model towards itself. If it can completely control the model, so any change in the point 
changes the fitted value by the same amount, the model has used up its entire degree of 
freedom. If it can only pull the fitted value by half of the change, the model has only used ½ 
of its degree of freedom, etc. 

4.6.2 Multiple Triangle Models 

The initial multiple triangle models were just splits of one set of loss data into frequency 
and severity components. For instance, Fisher and Lange73 use a report year approach to 
develop claim payout patterns and size of claim by settlement date. 

Some more recent innovations were presented at the 2003 ASTIN Colloquium. For 
instance, Quarg74 showed that the paid to incurred ratio at any point in development 
contains information relevant to future development in both the paid and incurred triangles. 
Conversely, if paid is high compared to incurred, then higher incurred and/or lower paid 
development is likely. If incurred is high compared to paid, then higher paid and/or lower 
incurred development is likely. Thomas Mack in his discussion of this paper suggested 
multiple regression models for both paid and incurred. Using subscripts P  and I  to denote 
paid and incurred, such a model is: 

)1,(),()(),()()1,( +++=+ dwedwcdfdwcdfdwq IPPIIIII ; and (4.48)
)1,(),()(),()()1,( +++=+ dwedwcdfdwcdfdwq PPPPIIPP . (4.49)

All the ’s would be expected to be positive, since higher paid leads to higher future 
incurred and higher incurred leads to higher future paid. 

f

Correlation in development between lines of business can be handled similarly. If lines 
tend to develop in a correlated fashion, then information from one line can improve the 
estimates from another. The above multiple regression model could be used, where instead 
of paid and incurred, the triangles would represent different lines of business. Another paper 
at the 2003 ASTIN Colloquium which discussed correlation issues is Gillet and Serra75 . 

                                                 
73 See Fisher and Lange [19]. 
74 See Quarg [51]. 
75 See Gillet and Serra [25]. 
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4.6.3 Models of Individual Claims Histories 

Modeling individual claim development can give an alternative view to future payment 
estimation by triangles of sums of claims, but it can also help with layer pricing, net reserves 
after reinsurance, and distributions of ultimate claims. Models proposed include the 
transition matrix model and conditional distributions.  

4.6.3.1 Transition Matrix 

The transition matrix method was introduced by Hachemeister76. A follow up paper by 
Hesselager77 also discusses this method. The method is pretty simple but a good deal of 
individual claims data is needed. Claims are put into categories that include size ranges, status 
as to open, closed, unreported, percentage paid, etc. Then probabilities are calculated of 
claims in one category moving to another category at the next evaluation. These probabilities 
can be arranged in a matrix based on the combination of starting and ending categories. 
Then the vector of claims by category can be multiplied by this matrix to get the vector of 
claims by category at the next evaluation. Applying this many times can get to ultimate – 
although different matrices at different stages of development may be needed. Several 
companies that have tried this approach seem to feel it works well. 

4.6.3.2 Conditional Development 

Conditional development, broadly speaking, tries to find the conditional distribution of 
sizes a claim may have given what we know about it today.  

NCCI uses a variation of this method for excess pricing studies. They have a large 
number of claims that are not reported after age five, so they need a 5th to ultimate 
development procedure that includes the spread in claim sizes that takes place during this 
development. In a study of a sample of claims with a longer history available, they use 
maximum likelihood to fit a distribution to the individual claim development factors for 
future development for claims open at 5th. For claims that close by the later evaluation, the 
development factor is known so the contribution to the likelihood function from that claim 
is the probability density at its development factor. For claims that are still open, all we know 
for sure is that the development factor is greater than the ratio of the latest paid to date 

                                                 
76 See Hachemeister [28]. 
77 See Hesselager [32]. 
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amount to the incurred amount at 5th for the claim. So the contribution to the likelihood 
function for such a claim is 1  , where )(xF− x  is the paid-now-to-old-incurred ratio. 

NCCI concluded in one study that for 5th to ultimate an inverse gamma distribution with 
CV of 90% best modeled the development factor distribution. Rumor has it that recent 
studies have suggested a lower CV, perhaps as low as 40%, but it is not publicly known if the 
development dates are comparable between studies. To apply this approach, in general we 
would need to model other reports than 5th. Presumably the losses spread more when they 
are less developed. Perhaps an inverse gamma could be used with a CV that reduces for 
more mature losses. 

Another problem with this method is that it does not use the latest incurred information 
on open claims. One way to do this would be to replace the open claim by a number of 
claims that range from the paid amount on upward, and scale the log likelihood function so 
that all of these together represent a single claim. The California workers’ compensation 
rating bureau uses the current incurred development factor for open claims as the censorship 
point, which is not strictly what we know, but it does reflect the latest estimate and could be 
a reasonable approximation. 

Some published papers that discuss conditional development include Taylor, McGuire 
and Greenfield 78 mentioned above and Norberg’s79 papers. Also a major study of French 
motor vehicle claims found that claims development varies by claim size, with a Weibull 
distribution giving a good approximation to the conditional development given the claim 
size. 

Taylor et. al. model claim severity by a fairly heavy-tailed claim distribution where the 
mean claim size is conditioned on the time of claim occurrence, the time of settlement, and 
operational time, which is the proportion of total claims that closed before it did. Inflation is 
modeled both as a function of accident date and settlement date, and the mean claim size 
effects in both directions are also functions of the order of settlement. This allows 
development to vary by claims characteristics, but does not provide for a single claim 
developing into a range, which is what is desired for estimation of ultimate severity 
distributions. 

                                                 
78 See Taylor, McGuire and Greenfield [67]. 
79 See Norbeg [48]. 
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5. COMPARE, CONTRAST AND DISCUSS RESULTS 

This section is an illustration of how we might evaluate the techniques discussed in 
Section 4. It is important to appreciate that the results of any evaluation will depend on the 
data used. A technique is only “good” with respect to particular data. A technique is “useful” 
if there is a wide range of data for which it is “good”. To decide whether a technique is 
useful, it must be evaluated on a large number of typical datasets, which is outside of the 
scope of this paper. Certainly there are no published studies of this type, and there is only 
anecdotal evidence on what features of models are important.  

We have chosen two techniques to illustrate the application of the evaluation criteria of 
Section 3.1: the estimated range (ER) method of Section 4.3 and the over-dispersed Poisson 
model (ODP) of Section 4.6.1.4. The (ODP) model is a special case of the generalized linear 
model with log link function described in Section 3.2.2. An example of its application is 
given in Appendix B.  Other techniques are mentioned in passing but are not systematically 
evaluated. 

5.1 Criteria for Selecting an Appropriate Modeling Technique 

5.1.1 Criterion 1:  Aims of the Analysis 

Most of the techniques discussed in Section 4 will provide at least the mean and standard 
error of the distribution of ultimate losses or future payments. The ER method and the ODP 
model both do this. In addition, the ER method allows us to estimate the percentiles of 
these distributions. The ODP model has no explicit distribution associated with it, so a 
distributional assumption would be required to estimate percentiles. Distribution-free 
models such as Mack’s model in Section 4.6.1.1.1 produce only means and standard errors, 
but if percentiles are required, distributional assumptions can be added, as in Murphy’s 
models of Section 4.6.1.1.2. 

As discussed in Section 3.2.2, the standard error must include both process variance and 
parameter uncertainty. For a model, it is usually clear how this should be done (although it 
may be necessary to make some simplifications for computational convenience). For a 
method, however, the only way to verify that the calculation of the standard error is correct 
is to check an equivalent model, or to validate it on a large number of triangles.  

In the case of the  ER method, there is good reason to believe that it may understate the 
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parameter uncertainty of the total – there is an allowance in the standard errors of the 
individual development factors for parameter uncertainty, but there is no allowance for 
correlation between the accident years resulting from parameter uncertainty. This is likely to 
be important when the expected future payments are large for several accident years and the 
triangle is relatively small (so the parameter uncertainty may be large).  

It is particularly important to test distributional assumptions (see Criterion 14) if estimates 
of percentiles are required. This is not possible for methods (unless there is an equivalent 
model), which means there is considerable risk in relying on a method like the ER to 
estimate percentiles.  

5.1.2 Criterion 2: Data Availability 

Both the ER method and the ODP model require only a triangle of data.  

Zero or negative data may create issues for the ODP model (there are similar issues with 
all models that contain logs of means or of data). The ODP model is unable to estimate its 
full set of parameters when any of the row or column sums is zero or negative. Some 
software packages may not allow any data to be zero or negative, so those values would have 
to be omitted altogether from the calculation (this is done in the example in Appendix B). 

In that case, there are several possible assumptions we could make for these missing 
parameters (usually they are development year parameters). For example, we could assume 
that the mean and variance of the corresponding incrementals are zero (which corresponds 
to the chain ladder estimates). Alternatively, we could take the more conservative approach 
of setting the missing parameters to the lowest or last development year parameter. The 
example in Appendix B, which is based on incurred loss data, uses the last development year 
parameter in place of missing development year parameters. Zero or negative values are less 
likely to occur in paid loss data and so will be less of an issue. Figure 5.5 illustrates the 
sensitivity of parameter estimates to the treatment of negatives and zeroes. 

The quality of the available data should always be considered. If only one triangle is 
available, this is not an issue, but when more than one triangle is available, a careful 
assessment should be made of whether one or the other appears to give more reliable 
forecasts.  

When there is enough paid loss data available to give an adequate estimate of the losses in 
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the later development periods, it may be the case that the predictive quality of the paid loss 
data is better than that of the incurred loss data, as they are not influenced by the subjectivity 
(changing company policy, individual preferences) that can affect case reserve estimates.  In 
addition, some actuaries have suggested that the use of distributions of future payments for 
risk analysis (e.g., risk based capital) should focus on paid loss data in order to keep the 
subjectivity of case reserve estimates from biasing the risk measure.80  If a method requires 
projections of the number of claims closed, for example, it should be checked that their 
stability has not been affected by changes within the company. 

5.1.3 Criterion 3: Non-Data Specific Modeling Technique Evaluation 

To validate a technique against historical data, we would need many sets of data where 
the “rectangle” had already been completed. Each value of actual ultimate losses for the 
rectangle would correspond to a percentile of the forecast distribution for the method 
applied to the upper triangle. The distribution of these percentiles over many datasets should 
be a sample from a uniform distribution on [0%,100%]. As far as we are aware, no such 
validation has been published, for any of the methods or models of Section 4. An example 
of how to validate a single dataset is provided in the discussion of Criterion 16 below 
(Section 5.3.4). 

An alternative is to use simulated data. This of course only tells us how the technique 
behaves on data resembling the simulated data, but it may still be useful in identifying 
deficiencies of a model and their practical impact. 

With a method such as the ER, it is not possible to test the assumptions against what is 
known about the process generating the data, as there are no explicit assumptions. However, 
of the models in Section 4, the closest to this method would be Murphy’s model with i , 
as this model’s estimates of ratios are based on averaging the individual ratios. Then 
assessing the reasonability of this method/model would include evaluating the assumptions 
of Murphy’s model. 

2=

The ODP model assumes (as do many of the Section 4 models) that the pattern of 
development is the same in all accident years, that there is no or constant inflation, and there 
is no dependence between accident years. Past experience may have shown whether these 

 
80 For example, see Shapland [58], p. 336 and the definition of Risk in Section 2. 
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assumptions are, or are not, usually satisfied. 

Another test of the assumptions of a model for loss data is its behavior under scaling and 
inflation. Clearly if loss data is multiplied by 1000, the forecast probability distribution 
should be scaled by the same multiplier (this would not be true of count data, however). For 
example, the Poisson generalized linear model (i.e., without the over-dispersion factor) does 
not scale, so it should not be used for loss data, although it may be appropriate for count 
data. Similarly, if the loss data is inflated by 10% per annum, the forecast probability 
distribution should be inflated by the same rate. The ODP model does not satisfy this 
property. 

5.1.4 Criterion 4: Cost/Benefit Considerations 

Like most methods, the ER method has a low cost, because it can be implemented 
relatively easily in a spreadsheet. It is possible that appropriate diagnostics could be designed 
that would indicate when the method could safely be used, but we are not aware of any 
available at present. It appears that the standard errors of individual accident year totals may 
be reasonable if the underlying estimation method for ratios is sound (which of course needs 
to be verified). However, the standard error of the total of all accident years may be 
significantly underestimated due to the potential for parameter uncertainty or inflation 
correlating over accident years. 

The ODP model (and related generalized linear models) is sufficiently complicated for its 
implementation in a spreadsheet to require careful validation against a statistical package. 
Because it may be numerically unstable in some cases, it would be unwise to rely on a “do-it-
yourself” implementation, so specialist statistical software is probably required. Some 
learning time and customization of the software (for example, to calculate standard errors of 
distributions of future payments) would be necessary unless purpose-built software was 
purchased. The usual form of the ODP model does not allow the modeling of superimposed 
inflation and is over-parameterized, although it could be extended to remedy these defects 
(see Criterion 18). 
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5.2 Overall Model Reasonability Checks 

5.2.1 Criterion 5: Coefficient of Variation by Year 

For the ER method, the requirement that the coefficient of variation (CV) of the liabilities 
is generally smaller for later accident periods means  should be an 
increasing function of . Some algebra shows that this will be the case when , 

 and  is “small enough.” 

]1)(/[)(2 −dFdS

d

)

1)( >df

1)1( >+dF (2 ds

In the example of Appendix B (incurred loss data with 40 periods, denoted below as 
IL40), many of the later development factors are less than one. Note that in all examples of 
the application of ER we will use arithmetic averages to calculate ratios, as this is the most 
logical match to this method. For the last seven accident periods,  and 

. For these periods, CV for accident liability totals decreases with increasing 
accident period, as this criterion says should generally be the case. For the corresponding 
paid loss data (denoted below as PL40), there are two periods where  is large enough 
to make the CV not monotonically decreasing (see Figure 5.1). It is likely that the analyst 
would consider these large discontinuities implausible, casting doubt on the reasonability of 
this model for this data. 

1)( >df

1)1( >+dF
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Figure 5.1 Coefficient of variation of liabilities versus accident quarter for the estimated 

range method applied to the paid loss data PL40  

The results of applying both the ER method and ODP model to the data in Taylor and 
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Ashe81 (denoted below as TA83) are shown in Figure 5.2. This data has relatively stable 
exposures from year to year, so it would be expected to satisfy this check. However, the CV 
increases with increasing accident year for both techniques in some periods. It appears that 
this is due to over-parameterization in the case of the ODP model (see Criterion 18). 
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Figure 5.2 Coefficient of variation of liabilities versus accident year for the estimated 
range method and the over-dispersed Poisson model applied to the Taylor/Ashe 82data  

5.2.2 Criterion 6: Standard Error by Year 

For the ER method, the requirement that the standard error is generally largest for later 
accident periods means that  should be greater than )(),( dSdwc )1()1,1( ++− dSdwc . 
This will certainly be the case if )1,1( +− dwc  ≤ , and this is likely to hold if 
the underlying exposures are relatively stable from year to year.  

),()( dwcdf

This is the case for the ER method with the IL40 and PL40 data – the standard error 
always increases if the ultimate increases, and sometimes it increases even when the ultimate 
decreases, particularly in the later accident periods when the variability in the corresponding 
development period is larger. It is also the case for the TA83 data, which has a more uniform 
exposure – it has monotonically increasing standard errors for both techniques (see Figure 
5.3). 

                                                 
81 See Taylor and Ashe  [63]. 
82 See Taylor and Ashe [63]. 
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Figure 5.3 Standard error versus accident year for the estimated range method and over-

dispersed Poisson model applied to the Taylor/Ashe data  

5.2.3 Criterion 7: Overall Coefficient of Variation 

The requirement that the CV of total liabilities be smaller than for any accident period 
does not hold when one period has a very large CV of liabilities compared to the other 
periods. This can happen with the ER method when one development period has a higher 
variability in its development factors than the others. For example, this requirement does not 
hold when the ER method is applied to the PL40 data, where the CV of the last accident 
period is very high (see Figure 5.1). 

On the other hand, if one period has a very small CV compared to the other periods, this 
requirement may fail. For example, the earliest accident periods of the IL40 data have a CV 
of zero under the ER method, so the CV of the total liabilities is larger than this. 

If the periods with zero or negative CV are excluded, this criterion holds when the ER 
method is applied to the IL40 data. This criterion also holds for both the ER method and 
the ODP model when they are applied to the TA83 data (see Figure 5.2). 

5.2.4 Criterion 8: Overall Standard Error 

The requirement that the standard error of the total be larger than for any accident period 
will always hold for the ER method, as the variance of the total is the sum of the individual 
variances. Figure 5.3 shows that it holds when the ODP model is applied to the TA83 data. 
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5.2.5 Criterion 9: Correlated Standard Error & Coefficient of Variation 

There is no description for the ER method and the ODP model of how the results of 
different triangles should be combined, so it is not possible to test this criterion for these 
techniques. 

5.2.6 Criterion 10: Reasonability of Model Parameters and Development 
Patterns 

As the ER method only relates to the calculation of standard errors, there is little that 
“common sense” can say about its results, other than that they should behave according to 
the criteria above and that the CV would be expected to vary smoothly between accident 
years. A pattern such as that shown in Figure 5.1 appears to violate reasonability. It is a result 
of the fact that the estimate of the standard error in this method is very sensitive to outliers. 
For example, a single high value in accident quarter 1Q1998, development quarter 17, 
produces a high standard error in the accident quarter totals from 3Q1999 onwards. Several 
low values in the first development quarter are the main reason for the very high standard 
error in the last accident quarter, 2Q2003. 

The parameters for the ODP model are easiest to assess for reasonability as fitted values, 
either on the original $ scale, or on the log scale. The accident period parameters for the 
ODP model fitted to the PL40 data are shown in Figure 5.4 on the $ scale. The factor of two 
between the last two parameters is surprising, as the actual data value for the last accident 
quarter is only 40% higher than the average of the previous four values in the same 
development period. However, the fitted value in the last accident period is always equal to 
the actual value when using the ODP model, so the last fitted value is obliged to be 333.  
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Figure 5.4 Fitted values ($ scale) for the first development quarter versus accident 

quarter for the over-dispersed Poisson model applied to the PL40 data  

 

The corresponding development period parameters are shown in Figure 5.5, this time on 
a log scale, so that the smaller values can be seen clearly. Between development periods 5 
and 15 there is a reasonably linear trend, corresponding to an exponential decay. After that, 
it would appear that the parameters are just “noise”, and this is verified by comparing the 
parameter estimates with their standard errors. This is not surprising, as there is very little 
data greater than zero after development period 17. In fact, there is no data greater than zero 
at all in periods 26-28 and 30-39. The assumption was made that the parameter in those 
development periods should be set to the last parameter that could be estimated. From 
Figure 5.5, it appears that this will over-estimate the forecast in those periods, so an 
alternative assumption might give a better result.  

It is possible to include negative and zero values in the estimation provided that the sum 
for the development period is positive. The dashed line in Figure 5.5 shows that this has a 
significant effect on some of the estimates. It would appear that the linear trend from 
development period 5 extends as far as development period 25, after which the data is 
essentially zero. It seems likely that it would be possible to find an adequately fitting model 
with fewer parameters (see Criterion 18). 
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Figure 5.5 Fitted values (log scale) for the first accident quarter versus development 

quarter for the over-dispersed Poisson model applied to the PL40 data  

5.2.7 Criterion 11: Consistency of Simulated Data with Actual Data 

Without a model, it is not possible to simulate data, so this check can only be done on the  
ER method if a corresponding model is specified. The way the variance of the loss 
development factors is calculated in the ER method suggests the following underlying 
model: for any given pair of development periods, the individual accident year factors are 
randomly chosen from some distribution with a variance that does not depend on the 
accident year. This is precisely Murphy’s model with 2=i . The usual assumption is that the 
distribution is normal. With these assumptions, it is possible to create simulated data, 
although it is possible that negative ratios will occasionally be generated if the variance is 
large. 

Three triangles were simulated as follows: 

1. Ratios were generated for each pair of development periods and each accident period, 
using the mean and standard deviation of the ratios fitted to the last 10 accident 
quarters of the PL40 data (PL10). 

2. These ratios were multiplied into the first development period data for PL10. 

Then a simple model was fitted to each of these triangles and the original PL10 data. This 
model was fitted to the logs of the data, had one parameter for each development period, 
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and a single trend parameter in the calendar direction. The residuals from this model are 
plotted against accident period in Figure 5.6. It is clear that the original data (bottom left) has 
different properties than the simulated data. In the simulated data, random variation in the 
second development period is propagated and amplified in the later development periods. In 
the real data, this does not happen. It appears that the chain ladder assumptions are not 
appropriate for this data. 

 

 
Figure 5.6 Residuals plotted against accident quarter for three sets of simulated data and 

one of real data (PL10) 

There is a difficulty with testing this criterion on the ODP model – we need to assume 
some distributional form for the errors to perform the simulation. Either normal or negative 
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binomial would be reasonable choices, but it is possible that the data might follow some 
other over-dispersed Poisson distribution. Some differences between the real and simulated 
data could be due to differences in this error distribution. 

5.2.8 Criterion 12: Model Completeness and Consistency 

If additional information is incorporated, the model prediction may be improved. For 
example, if there is a relevant index of inflation available, the plots of residuals versus 
calendar period, suggested under Criterion 15, could be compared with and without inflation 
adjustment, to see if one or the other appears more like a random sample. This could be 
useful for models like the ODP  that have no parameters in the calendar direction. Similarly, 
an exposure measure, such as number of policies, may be used to normalize the data. Plots 
of residuals versus accident period may indicate whether this gives any improvement.  

Prior information may be useful when there is a large amount of uncertainty in any aspect 
of the model parameter estimates. For example, if the triangle must be projected to future 
development periods, information from other similar triangles may be used in conjunction 
with information within the triangle. However, the prior information should always be 
appropriately weighted by its uncertainty compared to the uncertainty of the estimate from 
the triangle.  

There is no obvious way to integrate other information into the results of the ER 

method. Consistency of assumptions for future development trends with the trends in the 
data could be difficult to determine for both the ER method and the ODP model, as neither 
explicitly estimate trends. However, it would be possible to use the estimated levels for later 
development periods to fit a parametric curve and to project that curve into future 
development periods. It is less clear how to estimate the uncertainty associated with that 
projection. 

 

5.3 Model Goodness-of-Fit and Prediction Error Evaluation 

5.3.1 Criterion 13: Validity of Link Ratios 

If  the ER method is used in conjunction with link ratios, it would be advisable to apply 
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tests for the validity of link ratios, such as those in Barnett and Zehnwirth83 and Venter84.  As 
an illustration, we will apply some of these tests to the Murphy model with  applied to 
the IL10 data. 

2=i

Venter’s second test compares this model with some alternative models. The plot on the 
left in Figure 5.7 shows that there appears to be a linear relationship between the incremental 
in the second development period and the cumulative in the first development period, as 
expected under Murphy’s model. However, the plot on the right shows that there is also a 
linear relationship between the incremental in the second development period and the 
accident period. Statistically, the second relationship provides a better fit to this data. This 
suggests that there may be a better alternative model to link ratios, at least for this 
development period. 

Incr.(1) vs Cum.(0)
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Figure 5.7 Incrementals in the second development period of the IL10 data plotted 

against the cumulative in the first development period (left) and the accident quarter (right) 

Venter’s fourth and sixth tests relate to patterns in the residuals against accident period 
and calendar period respectively. The residuals do not appear to be random (see Figure 5.8), 
particularly when plotted against accident period – the residuals are mostly greater than zero 
in the latest six accident quarters, so the actual data is nearly always higher than the fitted 
values from the model. This suggests that this is not a good model for this data. 

                                                 
83 See Barnett and Zehnwirth [1]. 
84 See Venter [71]. 
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Figure 5.8 Residuals from the Murphy model with i=2 applied to the IL10 data plotted 

against the accident quarter (left) and the calendar quarter (right) 

5.3.2 Criterion 14: Standardization of Residuals 

Q-Q plots are used to assess whether data has a particular distribution. The sorted data is 
plotted against the distribution values at the corresponding percentiles. If the data follows 
the selected distribution, then the plot will be approximately a straight line (the extreme 
points are expected to have more variability than points toward the center). A plot that is 
bent down on the left and bent up on the right means that the data have a longer tail than 
the distribution. 

This criterion cannot be applied to the ER method, unless we use some corresponding 
model such as Murphy’s model with 2=i . When this model is applied to the last ten 
quarters of the IL40 data, the normality of the residuals is reasonable. However, the full IL40 
data gives the Q-Q plot in Figure 5.9, indicating that the tails of the distribution of the 
residuals are much heavier than would be expected if they were normally distributed. This 
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may be indicating a lack of fit of the model – the residual plots should be checked carefully 
for patterns. 

 
Figure 5.9 Normal Q-Q plot for the residuals when Murphy’s model with i=2 is applied 

to the IL40 data 

It is also problematic to apply this criterion to the ODP model, as there is no explicit 
distributional assumption for the residuals. Some possible choices are the normal 
distribution or the negative binomial. The negative binomial presents difficulties in doing the 
usual Q-Q plot as the shape of the distribution can change with the mean, so the percentile 
corresponding to a “standardized” residual depends on the mean. The normal Q-Q plot in 
Figure 5.10 for the ODP model applied to the PL40 data indicates that the residuals are far 
from normality. The highest point corresponds to accident quarter 1Q1998, development 
quarter 17. It has a standardized residual of 12, having an actual value of 560 and a fitted 
distribution with mean 51 and standard error of 43. Under any reasonable distribution this 
will be an outlier. The model should be refitted with this point removed. 
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Figure 5.10 Normal Q-Q plot for the residuals from the over-dispersed Poisson model 

applied to the PL40 data 

A lack of normality may be an indication that the variance assumption in the model does 
not hold for this data. A plot of residuals against fitted values is a good test of this 
assumption. Figure 5.11 shows this plot, with an estimate of the standard deviation of the 
residuals shown as dashed lines. This estimate is about one for the lower fitted values, as 
would be expected of standardized residuals, but increases to about 1.5 at the larger values. 
This suggests that the assumption of the ODP model that the variance is proportional to the 
mean may not be satisfied by this data. 
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Figure 5.11 Residuals vs. fitted values from the over-dispersed Poisson model applied to 

the PL40 data (residuals larger than 3 not displayed); dashed lines indicate estimated standard 
deviation 
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5.3.3 Criterion 15: Analysis of Residual Patterns 

This test cannot be applied to the ER method, unless we use some corresponding model 
such as Murphy’s model with . When this model is applied to the last 10 quarters of the 
IL40 data, there is an interesting pattern in the residuals plotted against accident quarter. On 
average, the fitted values are higher than the actual in the early accident quarters, but lower 
than the actual in the later accident quarters (see Figure 5.12). This pattern suggests that the 
assumption that the development pattern is the same in all accident periods may be 
incorrect, and the model may under-forecast in the later accident quarters, where most of the 
remaining IBNR is found. 

2=i
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Figure 5.12 Residuals vs. accident quarter from the Murphy model with i=2 applied to the 

IL40 data; the black line indicates the average of the residuals in each period 

 

Plots of residuals against calendar quarters should be examined to see if there is evidence 
for any calendar period effects. When the ODP model is applied to the PL40 data, there is 
some suggestion of changing calendar period trends in the residual plot in Figure 5.13. If 
there is relevant economic inflation data available, the triangle should be adjusted by that 
inflation and the adjusted triangle’s residuals should be plotted again. If there are still 
patterns in the residuals, some further tests are needed. Either the patterns could be 
statistically tested directly, or a model could be fitted that accounts for those patterns and 
tested to see if it has statistically a better fit than the original model (see Criterion 17). 

104 Casualty Actuarial Society Forum, Fall 2005 



The Analysis and Estimation of Loss & ALAE Variability 
 

PL40 - Res vs Cal Qtr

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

0 10 20 30 40

 
Figure 5.13 Residuals vs. calendar quarter from the over-dispersed Poisson model applied 
to the PL40 data; the black line indicates the average of the residuals in each period; residuals 

with magnitude greater than 3 are not displayed 

 

5.3.4 Criterion 16: Prediction Error and Out-of-Sample Data 

This is the “gold standard” of the criteria – evaluating a model against data not used in 
the model selection and fitting. A model that satisfies all the other criteria may still fail this 
test, as the past is not always a good predictor of the future.  

The first 10 accident quarters of the PL40 data was used to validate the ER method using 
Murphy’s model with i  and the ODP model. The forecast means of the two models for 
each future development and accident period are plotted against the actual values in Figure 
5.14. The very high values for the ER method are all in the last accident quarter and are due 
to a very large estimated ratio between the first two development periods. The ODP model is 
less sensitive to individual high ratios, which in this case are due to two small values in the 
first development period. In all other accident quarters, there is very little difference between 
the forecast means of the two models. 

2=
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Figure 5.14 Forecast vs. actual values for the Murphy model with i=2 (left) and the over-

dispersed Poisson model (right), applied to the first 10 quarters of the PL40 data 

Even if the model continues to hold in the future, the actual values will not match the 
forecast mean due to process and parameter uncertainty, so we should take this uncertainty 
into account when comparing forecast and actual values. For the ODP model, all the actual 
values lie within two standard errors of the forecast mean.  

We can also compare the actual total with the forecast distribution to see how plausible 
the actual value is as a sample from the distribution. For this example, the actual total is 
14,400. The forecast distribution for the ER method is lognormal with mean 35,851 and 
standard error 38,474, so the actual value is 0.6 standard errors below the mean, a plausible 
27th percentile of the distribution. The forecast distribution for the ODP model has a mean 

106 Casualty Actuarial Society Forum, Fall 2005 



The Analysis and Estimation of Loss & ALAE Variability 
 

of 20,786 and standard error of 4,445, so the actual value is 1.4 standard errors below the 
mean. The type of the distribution is unspecified, but if we assume normality, the actual 
value is the 8th percentile of the forecast distribution. 

Other tests can be done on the prediction errors. Do they follow the expected probability 
distribution, for example, does a Q-Q plot indicate they are normally distributed? Do they 
have any structure when plotted against development period, accident period, calendar 
period or fitted value? 

5.3.5 Criterion 17: Goodness-of-Fit Measures 

To use this criterion, we need a sufficiently flexible family of models to compare. Clearly 
it is pointless comparing models that are not a good fit to the data, so the residual plots of 
Criterion 15 should appear reasonably random for each of the models. Residuals of models 
with a small number of parameters (for example, a single parameter for the accident 
direction, or a two or three parameter curve for the development direction) should be 
examined very closely, and compared with more generously parameterized models. 

It should be noted that the  AIC and BIC measures are intended to be used to compare 
models in the same “family”. If models have different variances on the same observation, 
their AIC/BIC are not comparable. In particular, you should not use the AIC/BIC to 
compare models that have had different outliers removed, or have significantly different 
assumptions about the variances of the error terms. 

The different measures of goodness-of-fit will often choose different models. The other 
criteria should also be applied and may suggest that one is better than the others on grounds 
other than strict goodness-of-fit. However, particularly when process variability is low, there 
may be several models that all qualify as “good”. The range of forecasts from these good 
models gives some measure of model uncertainty. Allowance should be made for this 
uncertainty in the spread of the forecast distribution, either informally, or formally by model 
averaging techniques based on the statistical and common sense likelihood of the various 
models. 

The application of goodness-of-fit measures is illustrated under Criterion 18 where the 
ODP model is compared with variations of that model that use fewer parameters. This test 
cannot be applied to the ER method, unless we assume some underlying model. 
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5.3.6 Criterion 18: Ockham’s Razor and the Principle of Parsimony 

Applying the principle of parsimony also requires a sufficiently flexible family of models, 
but in this case the flexibility must extend to allowing models with a small number of 
parameters. One approach is to use smoothing, as in Verrall85 , where a smoothing parameter 
controls the effective number of parameters. Another approach is to use a flexible family of 
parameterized curves, such as the piecewise linear or constant curves used by Zehnwirth86. 
This approach has the advantage that it is easy to add parameters in the calendar direction as 
well as in the development and accident direction. 

A simple first check of whether a model may be over-parameterized is to look at the ratio 
between the parameter estimates and their standard errors (we will refer to this as the t -
value of the parameter). A formal statistical test can be done (such as an -test), but as a 
rough rule-of-thumb, if this ratio is less than two, the parameter is not significantly different 
from zero and can probably be omitted. For example, in Table 3 of Appendix B, some of 
the accident parameters and most of the development parameters are not significantly 
different from zero. 

F

Often models can be parameterized in many different ways, and some ways will make it 
easier to spot the “redundant” parameters. The tests for non-significance should be based on 
what we know about the way the loss process behaves. For example, Figure 5.4 shows that 
the fitted values in the accident direction for this data tend to be more or less constant for a 
number of periods with occasional jumps up. It would make sense to test whether the level 
had changed between adjacent periods, and, if not, to use the same parameter for those 
periods. On the other hand, Figure 5.5 shows that many of the fitted values in the 
development direction lie more or less on a single trend line. It would make sense to test 
whether this trend had changed between adjacent periods, and, if not, to use the same trend 
for those periods. This kind of parameterization, with the addition of trends in the calendar 
direction, is described in Zehnwirth87, for the linear regression model applied to the logs of 
the data. The associated design matrix is described in Barnett and Zehnwirth88 . 

This parameterization was applied to the ODP model on the IL10 data. When all 18 
parameters are fitted, the standard errors are large (of a similar size to those for the 
                                                 
85 See Verrall [73]. 
86 See Zehnwirth [81]. 
87 See Zehnwirth [81]. 
88 See Barnett and Zehnwirth [1]. 
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parameter estimates in Appendix B, Table 3, 10 Accident Quarters, which use the same data 
but an alternative parameterization). As a result, many of the t -values are less than two – for 
nine of the ten parameters in the accident direction and for four of the eight parameters in 
the development direction. A more parsimonious model can be obtained by removing 
parameters until some goodness-of-fit measure is minimized.  

A simple way of choosing the next parameter to remove is to choose the one with the 
smallest absolute t-value. Following this procedure, slightly different models are obtained 
using different goodness-of-fit measures – the Adjusted  gives a model with eight 
parameters, the “maximum absolute -value > 2” gives a model with seven parameters and 
the “ -test 

SSE

t

F p -value > 0.05” gives six parameters. The AIC and BIC do not seem to be 
useful – they continue to decrease until there are only two parameters left, at which stage the 
fit of the model is clearly poor. 

The various models can be compared visually by plotting the fitted values in the accident 
and development directions. Figure 5.15 shows the fitted values in the accident direction (for 
development quarter 1), for three models. The original ODP model has ten accident 
parameters (one for each accident period). The minimum Adjusted SSE model has four 
accident parameters (one for the first five quarters, one for the next two, one for the next 
two and one for the last quarter). The -test model has three accident parameters (one for 
the first five quarters, one for the next two, one for the last three quarters). Figure 5.16 
shows the fitted values in the development direction (for the first accident quarter) for the 
same models. 

F

The accident parameter estimates from the parsimonious models are very similar to the 
ODP model accident parameter estimates, except for the last accident parameter, where the 
ODP model estimates this value from a single observation. The development parameter 
estimates from the parsimonious models differ more from the ODP model estimates, 
particularly in the later development periods, where the ODP model has to estimate four 
parameters from just eight observations. 
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Figure 5.15 Fitted values in the accident direction from the variants of the over-dispersed 

Poisson model, applied to the IL10 data  
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Figure 5.16 Fitted values in the development direction from the variants of the over-

dispersed Poisson model, applied to the IL10 data  
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The standard errors of the fitted values are lower on the parsimonious models. For the 
original ODP model, the forecast standard error of the total is 2,996. For the Adjusted SSE 
model, it is 2,446. The mean of the total may also be significantly different on the 
parsimonious models to the over-parameterized model. On average, they should give more 
reliable forecasts. In this case, for the original ODP model, the forecast mean of the total is 
24,053. For the Adjusted  SSE model, it is 21,997, and for the F-test model, it is 20,948.  

There are two main reasons why these forecasts are lower. These models fit an 
exponential decline to the data from development quarter five to nine, which gives lower 
forecasts in development periods nine and ten. This would seem to be more in accord with 
common sense. The -test model fits a single parameter to the last three accident quarters, 
which gives a lower forecast in the last accident quarter. As this forecast is based on a 
number of observations, instead of a single observation in the original ODP model, it is less 
sensitive to random process variation. 

F

The plot of residuals against calendar period appears to have some trend structure. With 
the parsimonious models, it is possible to add parameters in the calendar direction and test 
whether they improve the model according to the goodness-of-fit criteria. In fact, it seems 
that a better model for this data may be one that has a single accident level, three 
development parameters and one calendar parameter. Under this model, the calendar trend 
is zero in the first four quarters, then is 9.5% ± 1.1% after 4Q2001. Actuarial knowledge 
may indicate whether or not this is plausible. 

Murphy’s model does not have a parameterization that lends itself to significance tests 
between development periods. Often the incremental payments increase or decrease by an 
approximately constant percentage for some development periods, so a “natural” parameter 
might be this percentage change. Then this parameter could be tested for changes between 
pairs of development periods. Similarly, inflationary effects act as an approximately constant 
percentage change on incremental payments in the calendar direction. There is no obvious 
way to test this under Murphy’s model as cumulating the payments disguises the changes in 
inflation. There is no parameter corresponding to accident periods, so there is no way to test 
for the difference between accident periods. 

5.3.7 Criterion 19: Predictive Variability 

The probability distribution of the future payment estimate is provided by the ER 
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method, although it is not based on any model, so its validity cannot be tested. The ODP 
model does not provide a probability distribution, unless some assumption is made about 
the distribution of the errors. Both provide an estimate of the standard deviation of the 
future payment estimate, although the ER method may not make an adequate allowance for 
parameter uncertainty in many cases. Care must also be taken with the ODP model when a 
statistical package is used to estimate the standard deviation of forecast values, as the “built-
in” estimates may not include process variability. 

5.3.8 Criterion 20: Model Validation 

The process of validation using within-sample data is similar to the process in Criterion 
16 of using out-of-sample data. It is particularly useful in determining if the most recent data 
is indicating changes – perhaps a flattening of the tail of the development pattern or a recent 
increase in superimposed inflation. These changes might suggest that the future could be 
more uncertain than the model indicates. The absence of such changes in the most recent 
data will increase our confidence in the model forecast. 

 

5.4 Summary 
The process of determining forecast distributions consists of a number of steps: 

1. Choose a family of models that is suitable for your purpose and sufficiently flexible to 
model all the features in the data (criteria 1-4). 

2. Identify the members of that family that provide an adequate fit to the data (criteria 
14-15). 

3. Select the “best” models. Are the models reasonable (criteria 5-8, 10)? Do they 
validate well (criteria 16, 20)? Are simulated datasets similar to the real data (criterion 
11)? Are the models parsimonious (criteria 13, 17-18)? 

4. Utilize any other information that would improve the model estimates (criterion 12). 

5. Decide what assumptions are reasonable for the future, bearing in mind what the data 
says about the past (criterion 12). 

6. Produce forecasts that incorporate model uncertainty, parameter uncertainty and 
process variability (criterion 19). 
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6. FUTURE RESEARCH 

The CAS Working Party on Quantifying Variability in Reserve Estimates has identified a 
number of areas in which the reserving actuary would benefit from future research. 

These areas are described below: 

•  Latent Liabilities; 

•  Correlation of Multiple Segments; 

•  Making Use of External Information; 

•  Adjusting Data for Operational Changes; and 

•  Making Use of Individual Claim Detail. 

These five topics are described individually in the sections below.  It is hoped that each of 
these topics can be viewed as a Request for Proposal (RFP) for research papers. 

 

6.1 Latent Liabilities 

6.1.1 Statement of the Problem 

The nature of US casualty insurance creates exposure to types of claims that do not fit 
into standard loss development techniques.  These exposures may be for coverages not seen 
in historical loss experience, and are subject to lengthy litigation.  These include: 

•  Asbestos; 

•  Environmental Pollution; 

•  Mass Tort Events; and 

•  Toxic Mold and Construction Defect. 

The exposures are often described as “latent” because the insured and insurer may have 
been unaware of the potential for losses at the time that the original policy was issued.   A 
common element of these latent exposures is that recognition of the loss is more likely to 
take place on a calendar year basis.  The assumption underlying most development triangle 
methods is that each accident year will show a similar pattern of loss emergence; this 
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assumption is patently untrue for latent exposures. 

6.1.2 Estimation Techniques Used 

Because traditional casualty loss development techniques are not applicable for latent 
exposures, other approaches are needed.   In broad terms, two types of approaches are taken 
to estimating future loss emergence: “bottom-up” approaches and “top-down” approaches. 

6.1.2.1 Bottom-Up Approaches 

A bottom-up approach begins with a detailed review of individual contracts that the 
insurance company has written historically.  For example, for asbestos liability estimation 
this begins with a listing of all the policies that either have had or can have claims made 
against them, along with their historical experience.  The historical policies can be grouped 
into categories or “tiers” according to the relative likelihood of claims being made.  For the 
most exposed (tier 1) policies, the insurance company may simply set a reserve equal to the 
available aggregate limit.  For policies with less likelihood of claims, a reserve is set 
judgmentally at some percent of the available limits. 

This bottom-up approach may be applied on a sample of policies, with the results 
extrapolated to the total population of policies written historically.  A rigorous description 
for the asbestos example is given in Cross and Doucette89 . 

6.1.2.2 Top-Down Approaches 

Rather than working with a sample of detailed policy information and extrapolating to the 
company level, a “top-down” approach instead begins with an industry-wide estimate and 
attempts to determine the insurance company’s share of the total. 

The most naïve top-down approach is “survival analysis”, which simply calculates the 
number of years until the carried reserve would be exhausted if losses were paid at the 
current rate.  The survival ratio is typically the total carried reserve divided by the average 
annual payment of the latest three-year period.  Survival analysis is not strictly an estimation 
method, but rather a key benchmark statistic for comparing relative adequacy against peer 
companies. 

 
89 See Cross and Doucette [11]. 
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More sophisticated methods involve taking an industry estimate for the type of latent 
claim, and allocating it to the insurance company based on market share of premium for the 
years of maximum exposure.  The market share may include different percents based on 
such things as state mix, mono-line versus package business, and reinsurance versus direct 
insurance. 

6.1.3 The Challenge for Estimating Variability 

Given this brief description of the challenge in making a point estimate for the future 
payments for latent liabilities, the challenges for estimating variability are apparent. 

Estimating latent liabilities relies on judgment at many steps, rather than on a pure 
statistical model.  High and low selections can be made based on using more or less 
optimism in the selection process, but it is not at all clear how the resulting numbers 
correspond to a statistical distribution of outcomes, or to the “confidence level” associated 
with the assumptions. 

6.1.4 Papers Describing these Techniques 

Current papers describing these techniques include: Bhagavatula, Brown and Murphy90 ; 
Bouska91; Cross and Doucette92; Diamantoukos93 ; and Madigan and Metzner94. 

 

6.2 Correlation of Multiple Segments 

6.2.1 Statement of the Problem 

Techniques discussed in this paper provide various means for estimating the distribution 
of ultimate unpaid losses, which correspond to an individual segment of relatively 
homogenous claims.  One can estimate the marginal distributions for all segments that 
comprise the complete set for a given insurance company.  What remains for the actuary 
performing this analysis is a means to combine the various analyses into a single aggregate 

 
90 See Bhagavataula, Brown and Murphy [3]. 
91 See Bouska [8]. 
92 See Cross and Doucette [11]. 
93 See Diamantoukos [13]. 
94 See Madigan and Metzner [44]. 
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future payment distribution that provides management with a statistical picture of future 
payment variability in total.  The question may be posed as such: how do outcomes for 
individual segments relate to each other?  For example, if personal auto liability payments 
run off requiring more money than was anticipated, would we expect commercial auto 
liability payments to be more likely to exhibit the same ”adverse” development? 

There are really two parts to this question.  First, we would like to measure the strength 
of correlation between pairs of segments.  The result would be a matrix of correlation 
coefficients.  Second, the correlation must be incorporated into a structure that defines the 
aggregate future payment distribution. 

6.2.2 Description of Approaches Published and In Use 

We will discuss various published approaches to both parts of the question. 

6.2.2.1 Single Triangle Approach 

The simplest approach bypasses the first step.  We may combine the loss development 
data for individual segments into a single set of data for all claims.  Then the same variability 
estimation techniques can be applied to the aggregate data.  This approach assumes that the 
mix of business is constant over the historical period.  To illustrate the potential problem of 
this naïve analysis, imagine a company that had written primarily long-tailed insurance until 
five years ago, at which time the company shifted its emphasis toward short-tailed lines.  All 
of the development history for ages at which no further development is expected for the 
short-tailed business is drawn from long-tailed business.  Just as a future payment indication 
itself is not selected this way, a variability analysis will be similarly distorted by non-constant 
business mix. 

6.2.2.2 Pair-wise Correlation Approach 

A second method also ignores the question of explicitly measuring correlation 
coefficients.  An assumption that correlation between two triangles is fully exhibited in the 
matched accident/development year increments can be readily incorporated into the 
bootstrap methodology.95  One defines a model for the loss development triangle of each 
segment, and resamples repeatedly from the residual history of each triangle.  For each 

 
95 See Kirschner, Kerley and Isaacs [33]. 
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resample, the residuals corresponding to the same accident/development increments in each 
triangle are selected, so that the correlation contained in the pair-wise realization of the 
triangles’ development is captured.  The sum of ultimate unpaid losses can be compiled over 
the trials of the bootstrap process to compute a range of estimated future payments.  
Correlation between triangles could be measured explicitly, but is not necessary because the 
aggregate future payment distribution is created in the simulation. 

6.2.2.3 An Approach Based on Common Trend Factors 

The construction of log-linear decay models also provides the actuary with information 
useful for measuring correlation and aggregating future payment distributions.96  The model 
created for each segment includes additive parameters in log-space which capture trends of 
an incremental paid loss triangle over up to three directions: accident year, development 
year, and calendar year.  Where parameters are fitted for the same purpose in the models of 
more than one segment, the fitting errors of those parameters may be used to induce 
correlation in a simulation of simultaneous future payment runoff.  Brehm93 has suggested 
that the vectors of calendar year parameters themselves can be used to measure correlation, 
since inflation is a common effect on all segments.  The actuary in this case believes that 
how future payment runoff responds to inflation in the future is the primary source of multi-
line correlation.      

6.2.2.4 Hindsight Approach 

An ad hoc method for measuring correlation coefficients involves inspecting hindsight 
future payment estimates by accident year in a development triangle97.  One begins with 
future payment indications that have been deduced from a survey of the results of multiple 
estimation methods, then finds the implied future payment estimates which would have been 
estimated at every point of the development history had the current information been 
available.  The result is a collection of alternate future payment indications that incorporate 
all available information, but are sensitive to the unique payout of individual accident years.  
Correlation coefficients can be measured across lines by condensing the triangles of 
hindsight future payment indications into vectors of alternate viewpoints of overall liabilities 
for each line that are sensitive to the loss development history.     

 
96 See Brehm [6]. 
97 See Hayne [31]. 
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6.2.2.5 Underwriting Cycle Approach 

Another method to measure future payment correlation coefficients that has been 
suggested relies on the underwriting cycle, or prospective correlation.  Because many lines of 
business are affected by the same market pressures on underwriting and case-reserving, one 
can measure the correlation in ultimate loss ratios by year and make the leap that those 
coefficients also apply to reserves.  This method has not been explored in detail in the 
literature. 

6.2.3 Final Step in Combining Lines of Business 

Once the actuary has designed a correlation matrix between marginal future payment 
distributions, a model of the aggregate future payment distribution is required that is 
consistent with both the correlation structure and the marginal probabilities.  Two well 
documented methods available are the normal copula algorithm98 and the Iman-Conover 
method. Mildenhall99 has compared the two methods thoroughly. 

While many suggestions have been made regarding reasonable approaches to the question 
of measuring correlation between segments, little has been written regarding implementation 
of the suggestions and testing them with actual or simulated data.  For example, some 
actuaries have indicated that the correlation coefficients measured from a pair-wise 
bootstrapping approach are slight, but we have yet to see hard evidence in the literature.  
There is room both for the testing of the proposed approaches and for exploration of new 
or revised approaches.  With an understanding of copulas and the Iman-Conover method, 
the actuary is equipped with the tools to aggregate future payment risks, but the 
quantification of correlation that drives the aggregation still demands study and innovation.       

6.2.4 Papers Describing these Approaches 

Current papers describing these approaches include Brehm100; Gillet and Serra101; 
Hayne102; and Kirschner, Kerley and Isaacs103. 

                                                 
98 See Wang [76]. 
99 See Mildenhall [45]. 
 
100 See Brehm[6]. 
101 See Gillet and Serra [25]. 
102 See Hayne [31]. 
103 See Kirschner, Kerley and Isaacs [33]. 
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6.3 Making Use of External Information 

6.3.1 Statement of the Problem 

The reserving actuary is often faced with the problem that the data set available for 
setting reserves is not sufficiently robust to estimate a distribution of future payments.  
There may be a number of reasons for this. 

One reason may be that the subject business has only been in place for one or two years, 
and there is no historical pattern for use in deriving a development pattern.  In this case, a 
development pattern from some external source is used.  The external data may be from 
industry sources such as consolidated Schedule P, or rating bureaus such as ISO or NCCI; it 
may also come from competitor companies or other business segments that are judged to be 
similar. 

If the business is very immature, a loss development factor approach may not be reliable, 
and so the reserve is set based on an expected loss ratio (ELR) from a rate filing or from 
industry averages. 

A second reason for using external data may be that the data has too small a volume of 
loss experience historically, even though the business has been written for a long period.  
Excess and Umbrella books may fall into this category.  Again, this may require the use of 
external sources for development patterns or expected loss ratios. 

6.3.2 The Challenge for Estimating Variability 

The essence of the problem is that no single model, in combination with the available 
data, is viewed as sufficient to set a reserve.  The carried reserve is judgmentally selected 
after a review of multiple data sources and models.  How can we estimate a variance for a 
reserve that we cannot assume results from a statistical model? 

6.3.3 Papers Describing these Approaches 

Current papers describing these approaches include: Halliwell 104; Robbin105; and Verrall 
106. 

                                                 
104 See Halliwell [29]. 
105 See Robbin [54]. 
106 See Verrall [75]. 
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6.4 Adjusting for Operational Changes 

6.4.1 Statement of the Problem 

Loss development techniques based on triangles are typically used with an assumption 
that the same patterns in the past will be repeated in the future, or that at least the historical 
pattern is changing in a predictable manner.  This assumption is often violated in reality.  
Some cases in which the relevance of a historical pattern is questionable include: 

• Changes in settlement practices, claims-handling, etc., including: 

¾ Improvements in cellular and mobile technology allowing for faster 
recognition of claims as well as allowing adjusters to evaluate the settlement 
value of claims more quickly; 

¾ Improvements in fraud detection; and 

¾ Other claims initiatives. 

• Changes in operations due to a merger or acquisition 

• Retroactive changes to workers’ compensation benefits 

• Changes in tort law and/or a company’s willingness to litigate certain claims, often 
driven by “size of loss” or “type of claim” criteria 

This problem may be addressed by adjusting the historical data “as if” the new conditions 
had been in place.  Other authors suggest using historical data up to some critical point in 
the past and using that to restate the more recent diagonals. Claims initiatives also present 
some dilemmas for the reserving actuary. These cannot always be summarized to changes in 
settlement patterns or changes in case reserve adequacy. Often more sophisticated methods 
may be called for in the adjusting of data triangles.  

When these changes are made, how does it affect the variance structure? Articles have 
been written to address how to determine when incurred and paid projections would be 
improved by adjusting the data triangles and also address how to make those adjustments. 
However, few authors address how this will affect the estimate of the range of results. We 
would encourage research both into adjusting for operational changes and assessing how this 
could affect the variance of the resulting distribution of results. 
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6.4.2 Papers Describing Techniques for Adjusting Historical Data 

Some of the basic methods for adjusting the data triangles or the development factors 
that they generate and current papers include: 

• Use of re-stated historical results; 107 108 109 110  

• Adjusting historical results for factors other than those addressed in the Berquist-
Sherman type papers (including various claims initiatives);111: 

• Preserving the historical results but restating the most recent diagonals and using a 
frequency-severity approach;  112. 

• Using regression techniques to restate both paid and incurred chain ladder factors 
simultaneously;113 and 

• If operational changes have led to speed up or slow down in claims payment 
patterns, then the mean claim amounts can be modeled as a function of operational 
time (percentage of claims closed) using generalized linear models. 114, 115 

6.5 Making Use of Individual Claim Detail 

6.5.1 Statement of the Problem 

Loss development models typically work with data in a “triangle” format, or perhaps in 
multiple triangles including loss dollars and counts. The methods for calculating 
development factors from triangles were designed to be simple enough to be accomplished 
with pencil and paper.  The chain ladder technique is the most widely used technique in 
estimating future payments. This method is based on very restrictive model conditions which 
are quite commonly breached in practice. The underlying data need to be corrected for 
multiple trends, superimposed inflation, seasonal effects and many other factors. It is very 
difficult to quantify these factors within the chain-ladder paradigm. Should we instead be 

                                                 
107 See Berquist and Sherman [5]. 
108 See Thorne [69]. 
109 See Fleming & Mayer [20]. 
110 See Duvall [14]. 
111 See Halpert, Weinstein and Gonwa [30]. 
112 See Ghezzi [24]. 
113 See Quarg and Mack [52]. 
114 See Wright [78]. 
115 See Wright [79]. 
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looking at techniques that look at transaction histories at an individual claim level? 

With advances in computer power, it is now possible to analyze individual claim level 
transactions to estimate future payments. Working with individual claims, we can take care 
of multiple trends, inflation, seasonal effects, accident quarter effects and other factors in a 
more direct way. We also have additional flexibility in using interaction terms and choice of 
error distribution. The stochastic framework also allows us to objectively compare candidate 
models and to validate the model that was selected. This method also provides the actuaries 
enhanced understanding of their data.  

Future research questions that are of interest are: 

• What level of data is best used for this analysis? Should we use individual claim level 
data? Or should we summarize the data to a more manageable size? 

• What are the best ways to quantify multiple trends, inflation, seasonal effects and 
other such effects? 

• What predictive variables are best used for this purpose? What interaction terms are 
most useful? Should individual claim characteristics play a role here? 

• How do we explain the models to regulators? Would a model based on individual 
claim data be too difficult to explain?  

6.5.2  Papers Describing these Techniques 

Current papers describing these techniques include: England and Verrall [18]; Mack and 
Venter [43]; Taylor [64]; Taylor and McGuire [68]; and Weissner [77]. 

7. CAVEATS AND LIMITATIONS 

7.1 Understanding the Nature of the Problem 
Recent commentary by rating agencies on reserving actuaries make it important that we 

clearly define what this paper provides and what is does not provide so that there is no 
misunderstanding. 

7.1.1 Future Payments are Uncertain 

As such, the probability that the actual ultimate amount will agree with any single estimate 
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is zero.  We know that the estimate will differ from the actual amount and the question is, 
“what is the degree of variability present in the estimate at this time?” 

7.1.2 The Estimate is at a Point in Time 

Users of liability estimates need to understand that every estimate is an estimate of future 
payments (and thus current liabilities) using the information available at a given point in 
time.  For a given block of historical exposures at a given point in time, the actual value of 
the liabilities will emerge in the future as actual payments are made.  As those future 
payments are made, future estimates of those liabilities will become more certain as less of 
the future payments remain to be estimated.  

7.1.3 The Actual Future Payments are Currently Unknown 

Given that we know that ultimate future payments will differ from any prior point 
estimate of them, we as actuaries would like to provide the users of our product a 
quantification of the variability of the estimate; that is, potentially how much could it 
differ and what are the different probabilities at different levels of variability? 

7.1.4 State of The Art in 2004 

Given this intent, this paper represents a depiction of the “state of the art” circa 2004, of 
the means of producing the quantification of variability.  It is not all inclusive and what we 
are doing is changing almost daily as new methods are being worked on, written about and 
evaluated.  This paper likely could be updated at periodic intervals, perhaps once every five 
years. 

 

7.2 General Items of Future Payment Uncertainty 
The limitations mentioned in this paper do not specifically address the standard elements 

of the estimation process that create uncertainty in the future payment estimate.  Future 
payment estimates and estimates of their distributions are forecasts of the future and are 
generally based on specific assumptions regarding the future which are often based on past 
performance.  There are no guarantees that future events will correspond to these 
assumptions.  Some specific assumptions about the future that future payment models often 
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make include the following: 

• Data quality, availability, homogeneity and credibility; 

• Emergence patterns, settlement patterns, development patterns;   

• Frequency and severity of claims; 

• Limits or reinsurance; 

• Policy form or deductible levels; 

• Salvage and subrogation or collateral sources; and 

• Company operations. 

 

7.3 Reference to Specific Papers 
The limitations mentioned in this paper do not specifically include any limitations 

mentioned in the papers that have been surveyed, but these are implicitly present.  As such, 
all limitations and conditions included in the original papers are implicitly carried forward 
into this paper. 

 

7.4 Predictive Value of the Past 
As with the nature of most actuarial work, one of our biggest limitations is using past 

history to predict the future.  We are only as good as our assumptions of the future state and 
our ability to estimate the likelihood of that future state (Bayesian approach).  This includes 
the distribution of future payments as well as the point estimate. 

 

7.5 Model Uncertainty 
Our biggest source of uncertainty is the model uncertainty:   

• Do we have the right model or models? 

• Have we parameterized the model correctly? 

• How sensitive is the model and its variables and what does the sensitivity of each 
variable imply for the distribution of future payments. 
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7.6 Defining the Asymptotic Value 
Who on September 10th could have imagined the events of September 11th ?  The fact of 

the matter is that is impossible to quantify the entire width of the distribution and to account 
for extreme and unimaginable events. 

 

7.7 Quantification is Not Elimination 
The fact that we can measure and quantify uncertainty does not eliminate it.  Therefore, 

management must employ the estimates we provide with other tools to mitigate this 
uncertainty.  These tools include but are not limited to: 

• Insurance; 

• Reinsurance; and 

• Hedging, etc. 

 

7.8 What to Book 
What to do with the estimate of variability is beyond the scope of this paper.   We are 

opening a lot of doors by creating the ability to estimate the distribution of future payments.  
That being said, we are not stating an opinion as to what level within that distribution should 
be booked.  Assuming a reasonable distribution can be estimated, what to book becomes an 
issue for various professional organizations concerned with financial statements such as the 
AAA, AICPA, SEC, IRS, etc.   It is possible that different professional organizations might 
reach different conclusions as to the question of what to book, but the actuarial profession 
should provide leadership and wisdom to the debate. 
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Abbreviations and notations 
The abbreviations and notations used in the paper are as follows: 
AIC, Akaike Information Criteria 
APD, automobile physical damage  
BIC, Bayesian Information Criteria 
BF, Bornhuetter-Ferguson 
BUGS, Bayesian Inference Using Gibbs Sampling 
CL, Chain Ladder 
CV, coefficient of variation 
ELR, Expected Loss Ratio 
EPV, Expected Process Variance 
GB, Gunnar-Benktander 
GLM, generalized linear models  
MCMC, Markov Chain Monte Carlo 
MSEP, Mean Squared Error of Prediction 
ODP, Over-Dispersed Poisson 
OLS, Ordinary Least Squares 
VHM, Variance of Hypothetical Mean  
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Appendix A. Calculation of Variances of Future Payments Through Approximation 

This appendix describes the calculation for each type of variance of future payments 
( , Var  and Var ) through the delta method.  Specifically, the 
discussion will first present the calculation formulas for the parameter variance and their 
simplified versions for the generalized linear models with logarithmic link function, then the 
process variance calculation for the over-dispersed Poisson model, and summarize at the 
end. 

)],(ˆ[Varf dwq ,*)](ˆ[f wq (*,*)]ˆ[f q

1. The calculation of  for each future incremental payment.  By the first-order 
approximation or the delta method, the parameter variance can be estimated, and 
specifically, in matrix form, is: 
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where  is the model parameter, and kp K  is the number of parameters.  Notice that q  
is the incremental loss function for development period  and accident year .  For the 
generalized linear model with logarithmic link function, or 
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α  is an accident year-specific parameter and β  is a development year-specific parameter, 
(A.1) can be simplified to 
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where, dwwd c βαη ++=ˆ .  The value of ]ˆ[Var wdη  is calculated by using the variance-
covariance matrix of the model parameters, which can be directly obtained from the 
computer output.  For the nonlinear model, kpdwq ∂∂ /),(ˆ  can be complicated to compute, 
as  may take complicated functional forms.   )d,(ˆ wq

For the over-dispersed Poisson model, the process variance is simply  

wdmdwq φ=)],([Var . (A.3)

The formula for calculating Var  is summarized as )],(ˆ[f dwq
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2. The calculation of  for future payments in a particular accident year.  
The parameter variance of the future payment estimate for accident year  is calculated as:  
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The first term on the right hand side of the above equation, ∑
∆∈ wd

dwq )],(ˆVar[ , can be 

obtained from the calculation of ; the computation of the second term, 

however, is not straightforward.  Again using the delta method, the second term is 

approximated as: 
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or in matrix form,  
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In the case of generalized linear models with logarithmic link function, the formula for 
parameter variance is simplified to: 
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where  is the number of development years left for accident year , and wJ w ),Cov(
21 wdwd ηη  

is the variance-covariance matrix of wdη , the elements of which are computed from the 
variance-covariance matrix of the model parameters.   

For the over-dispersed model, the process variance for the accident year future payment 
estimate is the product of the accident year future payment estimate and the scale parameter 
which tends to capture over-dispersion, or mathematically, 
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In summary,  
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In plain English, the calculation of the variance of the distribution of accident year future 

payments should take into account any correlations between the predicted values for 
different development periods of the same accident year, besides the variance of each of the 
individual predicted values. 

3. The calculation of Var  for total future payments for all accident years 
combined.  The parameter variance of the total future payment estimate for all accident years 
combined should add in the covariance terms that account for the correlation between the 
predicted values of different accident years.  Mathematically, it is 
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Similar to the results in (A.6), the calculation of the second term is approximated as: 
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or,  

[ ]
��
��	�

�� 
�� 	�
�
�	�

1

22

,
,

1

11

,
,

2211

),(ˆ
),Cov(

),(ˆ
)],(ˆ),,(ˆCov[

21

21

21

21

21

21

21

×
×

≠
∆∈
∆∈

×≠
∆∈
∆∈









∂

∂
⋅⋅








∂

∂
= ∑∑

K

T

k
KK

kk

ww
ww
dd

K

k

ww
ww
dd p

dwq
pp

p

dwq
dwqdwq . (A.13)

For the generalized linear model, a simplified formula for calculating the parameter 
variance is: 
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where  is the total number of incremental losses in the future loss triangle (the lower 

triangle).   

∑
w

wJ

Again for the over-dispersed model, the process variance for the total future payment 
estimate for all accident years combined is simply 
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In summary, the formula for calculating Var  is: (*,*)]ˆ[f q
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(A.16)
In words, the variance of the distribution of the total future payments is the sum of the 

variances for each accident year future payment estimate and the covariances between 
accident year future payment estimates. 
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Appendix B. An Example of Estimating Future Payment Variability 

This appendix provides an illustrative example for the estimation of future payment 
variability.  A sample of triangle data set contains gross incurred losses for 40 accident 
quarters (AQ) and 40 development quarters.  The data relate to bodily injury coverage in 
auto insurance.   

Future payment is modeled in both generalized linear and non-linear models.  Here are 
some specific assumptions made in the estimation.  First, for the nonlinear model,  

)],|(),|([ 1 ωθωθ ddwwd tGtGUm −⋅= + , (B.1)

where U  is the ultimate loss for accident year , and w w ),|( ωθdtG  is the loss emergence 
function, which is assumed to be a loglogistic function and has the following form  

ωω θ
ωθ

ω

+
=

d

d
d

t

t
tG ),|( . (B.2)

Also in model estimation, the chain ladder estimation method has been used116, which 
implies that the loss emergence pattern has been assumed to be constant over the years.  
This could be problematic, considering the changes in case reserve adequacy and in the rate 
of settlement of claims over time.117 Considering the possibility of time varying of risk 
parameters, the 40-AQ triangle is divided into two smaller triangles, each of which only 
contains the most recent 18 and 10 accident quarters, respectively.  In the estimation, for this 
particular data set, it is reasonable to assume that all incurred losses have fully developed 
after 40 calendar quarters, or tail factors are ignored after 40 quarters’ development.  For the 
two smaller triangles, the tail factors are also assumed to be zero here; that is, no loss 
development occurs after 18 and 10 accident quarters, respectively.  In practice, appropriate 
tail factors should be chosen if losses in the oldest accident period have not fully developed.  
Second, the estimation of the GLM model assumes logarithmic link function and Poisson 
distribution form.   

The estimation and model evaluation results presented below are obtained for each of the 
three data sets.  All the calculations are programmed in SAS/IML.  As the example is used 
only for illustrative purposes, exemplifying the estimation results and the procedures for 

                                                 
116For the nonlinear model, there are 42 parameters in total (the ultimate loss for each of the 40 accident 

quarters, θ  and ω ) that have been estimated. 
117 See Berquist and Sherman [5]. 
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model evaluation, the tables and figures will not be discussed in detail. 

Table 1 shows the estimates of the means and standard errors of the distribution of 
future payments for each accident quarter.  The standard error for each accident quarter’s 
future payment distribution, which is composed of process variance and parameter variance, 
is calculated using the approach described in Appendix A.  Several observations are worthy 
of note.  First, the standard errors are larger for more recent accident quarters, since a 
smaller percentage of losses has emerged. Thus, more uncertainty is associated with these 
quarters.  However, the standard error as a percentage of the mean increases as the accident 
quarter ages.  This may show that the company’s bodily injury line is short-tailed, and 
outstanding liabilities after several quarters’ development become very small.  Second, for 
the recent accident quarters, the percentage standard errors calculated from the nonlinear 
model are larger than the corresponding ones from the GLM model.  For instance, if using 
the 40-AQ gross incurred loss triangle to estimate the most recent 10 accident quarters, the 
nonlinear model yields the percentage standard errors that are generally 10%-20% larger 
when compared with the GLM model. This can be explained by considering that the GLM 
model is virtually a specific and simplified version of the nonlinear model.  Taking 
logarithms on both sides of  would essentially give the GLM, except that in the 
estimation of the nonlinear model, the loss emergence pattern is specifically modeled as a 
random variable, while for that of the GLM, it is treated as parameters to be directly 
estimated.  Third, for a shorter development period (or equivalently, for the cases where 
fewer accident and development quarters are used in the estimation), the point estimates for 
future losses are much higher for each accident quarter.  This is due to the fact that many of 
the incremental payments become negative for higher development quarters in the data set.

dwwd yxm =
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Table 1. Estimated Future Losses and Prediction Errors (PEs): GLM and Nonlinear Models

40 Accident Quarters          
(1993Q3 - 2003Q2)

18 Accident Quarters         
(1999Q1 - 2003Q2)

10 Accident Quarters         
(2001Q1 - 2003Q2)

AQ Est. Future 
Loss

PE PE % Est. 
Future 
Loss

PE PE % Est. Future 
Loss

PE PE %

GLM:
1999Q3 125 122 98% 10 34 328%
1999Q4 146 133 91% 29 58 201%
2000Q1 151 133 88% 39 65 168%
2000Q2 182 145 80% 58 84 146%
2000Q3 219 154 70% 102 108 106%
2000Q4 268 165 62% 103 108 106%
2001Q1 356 177 50% 121 114 94%
2001Q2 439 196 45% 213 149 70% 304 175 57%
2001Q3 501 201 40% 329 176 54% 553 271 49%
2001Q4 736 241 33% 545 226 41% 855 336 39%
2002Q1 968 272 28% 833 278 33% 1099 371 34%
2002Q2 1381 325 24% 1236 341 28% 1611 445 28%
2002Q3 2042 400 20% 1897 429 23% 2476 555 22%
2002Q4 2835 479 17% 2580 511 20% 3191 642 20%
2003Q1 4113 592 14% 4007 660 16% 4680 780 17%
2003Q2 7383 867 12% 8018 1049 13% 9285 1208 13%

Nonlinear Model:
1999Q3 184 168 91% 233 214 92%
1999Q4 215 182 85% 272 232 85%
2000Q1 217 183 84% 275 233 85%
2000Q2 246 196 79% 311 248 80%
2000Q3 289 213 73% 364 270 74%
2000Q4 308 220 71% 388 279 72%
2001Q1 324 226 70% 406 287 71%
2001Q2 393 250 64% 493 317 64% 977 404 41%
2001Q3 427 261 61% 533 332 62% 1032 418 40%
2001Q4 545 297 55% 679 378 56% 1280 470 37%
2002Q1 650 326 50% 806 416 52% 1473 512 35%
2002Q2 864 380 44% 1068 486 45% 1879 593 32%
2002Q3 1238 462 37% 1523 592 39% 2560 717 28%
2002Q4 1945 592 30% 2377 763 32% 3768 915 24%
2003Q1 3013 764 25% 3649 987 27% 5325 1147 22%
2003Q2 6439 1252 19% 7683 1626 21% 9731 1749 18%
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Table 2. Comparison of Estimated AQ Ultimate Losses: GLM and Nonlinear Model

AQ
GLM   

Estimates
Nonlinear 
Estimates

GLM   
Estimates

Nonlinear 
Estimates

GLM   
Estimates

Nonlinear 
Estimates

1999Q3 10434 10493 10319 10542
1999Q4 11245 11314 11128 11371
2000Q1 10480 10546 10367 10604
2000Q2 10846 10910 10722 10975
2000Q3 11579 11649 11462 11724
2000Q4 11136 11176 10971 11256
2001Q1 10526 10494 10291 10576 10170 10994
2001Q2 11280 11234 11054 11334 11145 11818
2001Q3 10684 10610 10512 10716 10736 11215
2001Q4 11778 11587 11587 11721 11897 12322
2002Q1 11856 11538 11721 11694 11986 12361
2002Q2 12955 12439 12811 12643 13185 13454
2002Q3 14645 13841 14500 14126 15079 15163
2002Q4 16737 15847 16482 16279 17093 17670
2003Q1 17195 16095 17090 16731 17763 18407
2003Q2 19316 18372 19951 19616 21217 21664

Correlation 0.998 0.999 0.998

40 Accident Quarters 
(1993Q3 - 2003Q2)

18 Accident Quarters 
(1999Q1 - 2003Q2)

10 Accident Quarters 
(2001Q1 - 2003Q2)
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Table 2 compares the ultimate loss estimates for each accident quarter using GLM with 
those from the nonlinear model.  The correlation between these two sets of estimates is 
0.998, showing that the two models yield very similar ultimate loss estimates.  Table 3 
reports the parameter estimates, their standard errors, and p-values for the GLM model. 

The AIC and BIC criteria are calculated as follows, respectively, 

                                            
n

K

n

mdwq
K w d

wd ⋅
+

−
=

∑∑ 2
)

]),([
ln()AIC(

2

,    and 
 

(B.3)
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nK
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K w d

wd )ln(
)

]),([
ln()BIC(

2

⋅
+

−
=

∑∑
. 

 
(B.4)

Note that K  is the number of parameters that are estimated and n  is the total number of 
incremental losses.  Table 4 gives the calculation results for AIC and BIC for the GLM and 
nonlinear models. 
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Figures 1 and 2 plot out the scaled Pearson residuals against incremental age for each of 
the three data sets.  For the loss triangle data used in this example, most of the residual 
points are randomly scattered around the zero line for both models, and as a result, neither 
of them should be rejected based on the validity of the model assumptions.  
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