Credible Risk Classification

How to create risk classification systems with the maximum

price differentiation while addressing concerns of credibility.

By

Benjamin Joel Turner
 MBA, JD

Abstract

“Ratemaking accuracy often is improved by subdividing experience into groups exhibiting similar characteristics… There is a point at which partitioning divides data into groups too small to provide credible patterns.” (Statement of Principles Regarding Property and Casualty Insurance Ratemaking, adopted by the Board of Directors of the CAS, May 1988, page 3.)
This paper outlines an objective approach to creating classification systems with maximum price differentiation while addressing concerns of credibility. The formula developed in this paper will yield a numeric score, which ranks the varying classification systems as applied to a given data set. The score is capable of ranking class plans with different numbers of classes. Therefore, this formula determines “the point at which partitioning divides data into groups too small” to be of value for price differentiation in a competitive marketplace.
1. MOTIVATION

I recently was employed on a team that evaluated and offered suggestions concerning the automobile underwriting guidelines for one of the major US automobile insurers. During this process we invented new class plans and compared them to each other and to the current plan. When alternatives had the same number of classes, our team was able to determine which plan was superior; we merely determined which plan had the highest variance of the means, as detailed in Woll [1] and also in Finger [2].

When alternative class plans were compared with different numbers of classes, we were unable to agree upon an objective method for comparing the different plans. When an alternative contained “too many” groupings, or one of the groups had “few” exposures, we feared that we were losing credibility. Another approach was to test for “significance,” but we were unable to agree upon a significance level.

The goal of our team was to provide the maximum price differentiation. Companies that can successfully do so will be able to skim the cream from the total pool of potential insureds. To provide maximum price differentiation, there is a temptation to continually subdivide the book of business into an ever-increasing number of classes. However, common sense dictates that there is a point where the book is so segmented that it is no longer credible. When the book is over-segmented, its predictive power is so poor that instead of skimming the cream, the insurance company is haphazardly selecting insureds for discounts that are not truly warranted. Furthermore, a company may choose to credibility-weigh each class against the overall book mean. Due to the fact that an over-segmented book has low credibility, the complement of credibility overpowers the initial class mean, and the goal of price segmentation is thwarted. This paper is an attempt to find the point at which further segmentation is counterproductive.

2. THE METHOD

An objective way to balance the need for price differentiation (as measured by the variance of the means) with the need for credibility is to first credibility-weigh the means and then calculate the variance of the credibility-weighted means. The Nonparametric-Buhlman-Empirical-Bayes Method [3] is used to calculate the credibility (see Appendix A for formulas).

This method
 is particularly advantageous for this purpose because:

· It assumes no underlying distribution.

· It is relatively uncontroversial.

· It supplies its own complement of credibility.

· It does not require arbitrary selection of parameters.

The comparison is accomplished by computing the variance of the credibility-weighted means for each alternative plan and selecting the plan with the highest value. This method allows for direct comparison of simple plans vs. complex plans (for example a simple plan of four classes versus a complex plan with eleven classes). It is not necessary to arbitrarily designate one plan as the null hypothesis, select a confidence interval, or assume a statistical distribution.

3. A SIMPLE EXAMPLE

3.1 Introduction

Suppose there is a rating factor with four levels that are increasing in risk. These levels could be classified in the following ways: 1, 2-3-4; 1-2, 3-4; 1-2-3, 4; 1-2, 3, 4; 1, 2-3, 4; 1, 2, 3-4; 1-2-3-4; 1, 2, 3, 4. Which class plan has the most explanatory power? The standard variance of the means technique will always choose the latter class plan (four distinct classes), even if all of the levels have the same underlying mean. This method does not account for credibility, and thus will always favor the maximum number of classes.

Suppose the data in Table 3.1.1 below.

Table 3.2.1

	Class
	PolCounts

	Exposures
	Losses
	Losses/Exposures
	LossesSquared

	1
	1,140
	1,741
	1,265,754
	727
	12,882,705,642

	2
	1,000
	1,514
	1,390,038
	918
	16,157,016,292

	3
	960
	1,456
	1,359,435
	934
	15,132,695,151

	4
	1,060
	1,609
	1,846,048
	1,147
	22,805,214,328

Should each level ultimately be assigned to its own class, or would it be better to group the levels? For example, Levels 2 and 3 are quite similar in Losses per Exposure. Should they be consolidated into one class?

3.2 Calculation of Credibility

Tables 3.2.1 and 3.2.2 show how to calculate credibility for Table 3.1.1 where each level is assigned as its own class.

Table 3.2.1

	Class
	Polcounts
	Exposures
	Losses
	LossesSquared4
	Exposures^2
	Losses^2 / Exposures
	W
	Credibility

	1
	1,140
	1,741
	1,265,754
	12,882,705,642
	3,031,081
	920,237,328
	69,911,815
	0.721

	2
	1,000
	1,514
	1,390,038
	16,157,016,292
	2,292,196
	1,276,225,655
	130,779
	0.692

	3
	960
	1,456
	1,359,435
	15,132,695,151
	2,119,936
	1,269,274,395
	57,075
	0.683

	4
	1,060
	1,609
	1,846,048
	22,805,214,328
	2,588,881
	2,118,019,402
	77,811,443
	0.705

	[image: image1.wmf](

)

^2)

[BookMean]

(Exposures

)

red

LossesSqua

(

^2

lassMean

Cred.Wtd.C

BookMean

Exposures

i

i

i

i

i

´

-

-

´

=

å

å

Score

Sum
	
	6,320
	5,861,275
	66,977,631,413
	10,032,094
	
	147,911,112
	

[image: image2.wmf]Variance

Total

Variance

Credible

Explained

=

Score

“K” is calculated below.

Table 3.2.2

	Other Calculated Values

	V
	14,772,347

	A
	21,889

	[image: image3.wmf](

)

Normal

Standard

~

Deviation

Standard

Means

of

Difference

B

B

A

A

B

A

=

+

-

=

Exposures

Variance

Exposures

Variance

ClassMean

ClassMean

Z

K = V/A
	675

[image: image4.wmf]2

^

*

)

(

i

i

i

i

i

i

Exposures

Losses

Exposures

Losses

Exposures

W

å

å

-

=

[image: image5.wmf]K

Exposures

Exposures

y

Credibilit

+

=

i

i

i

Consolidation

In contrast to the illustration above, levels two and three are consolidated into one class so that there are three classes in the plan. Then the data is as in Tables 3.2.3 below.

Table 3.2.3

	Class
	PolCounts
	Exposures
	Losses
	LossesPerExposure
	LossesSquared

	1
	1,140
	1,741
	1,265,754
	727
	12,882,705,642

	2-3
	1,960
	2,970
	2,749,473
	926
	31,289,711,443

	4
	1,060
	1,609
	1,846,048
	1,147
	22,805,214,328

Using the same methodology as above, the calculation of credibility is shown in Table 3.2.4 and Table 3.2.5 below.

Table 3.2.4

	Class
	Polcounts
	Exposures
	Losses
	LossesSquared
	Losses^2 / Exposures
	Exposures^2
	W
	Credibility

	1
	1,140
	1,741
	1,265,754
	12,882,705,642
	920,237,328
	3,031,081
	69,911,815
	0.775

	2-3
	1,960
	2,970
	2,749,473
	31,289,711,443
	2,545,320,464
	8,820,900
	8,268
	0.855

	4
	1,060
	1,609
	1,846,048
	22,805,214,328
	2,118,019,402
	2,588,881
	77,811,443
	0.761

	Sum
	
	6,320
	5,861,275
	66,977,631,413
	
	14,440,862
	147,731,526
	

Table 3.2.5

	Other Calculated Values

	V
	14,768,837

	A
	29,292

	K
	504

3.3 Calculation of Score

Non-consolidated Class Plan

Once credibility has been assigned, Score is calculated thus, where “i” is the number of classes:

[image: image6.wmf][image: image7.wmf]}

{

}

{

)

(

)

(

i

i

i

i

Exposures

^2

Losses

red

LossesSqua

*

1)

nts

(PolicyCou

1

å

-

å

-

å

=

V

Table 3.3.1 shows the calculation of the numerator in Score.

Table 3.3.1

	Class
	Book Mean
	Avg. Loss per Class
	Credibility-weighted

Class Mean
	Difference
	Squared
	Multiplied by Exposures

	1
	927
	727
	783
	(144)
	20,855
	36,307,970

	2
	927
	918
	921
	(6)
	41
	62,568

	3
	927
	934
	932
	4
	18
	26,647

	4
	927
	1,147
	1,082
	155
	24,003
	38,620,138

	Sum
	
	
	
	
	
	75,017,324

The denominator is 66,977,631,413 – 6,320 * (927^2) = 61,546,672,133.

Score is 75,017,324 / 61,541,785,744 = 0.122%

Consolidated Class Plan

Table 3.3.2 shows the calculation of the numerator for the consolidated class plan.

Table 3.3.2

	Class
	Book Mean
	Avg. Loss per Class
	Credibility-weighted Class Mean
	Difference
	Squared
	Multiplied by Exposures

	1
	927
	727
	772
	(155)
	24,146
	42,037,707

	2-3
	927
	926
	926
	(1)
	2
	6,042

	4
	927
	1,147
	1,095
	167
	28,036
	45,110,265

	Sum
	
	
	
	
	
	87,154,014

The denominator is the same as in the prior example, 61,546,672,133.

Score is 87,154,014/ 61,541,785,744 = 0.142%.

(See Appendix A for a recap of the formulas.)

All Possible Class Plans

Similar calculations were performed for all of the possible class plans and are shown in Table 3.3.3:

Table 3.3.3

	Class
	Score

	1-2-3-4 (no segmentation)
	0.000%

	1-1, 2-4
	0.107%

	1-2, 3-4
	0.092%

	1-3, 4-4
	0.118%

	1-1, 2-2, 3-4
	0.104%

	1-1, 2-3, 4-4
	0.142%

	1-2, 3-3, 4-4
	0.110%

	1, 2, 3, 4
	0.122%

3.4 Interpretation of Score

The above values of Score imply that after considering credibility, the class plan called “1, 2-3, 4” has a greater ability to provide price differentiation than the class plan called “1, 2, 3, 4,” or any other class plan. Thus, in this example, three classes produce more price differentiation than four classes after adjusting for credibility.

3.5 Comparison to Hypothesis Testing

Hypothesis testing can also be used to determine if the simple example should have been grouped as 1, 2, 3, 4; 1, 2-3, 4; or any other class plan. Using the rationale identified by Salam [4], levels are divided only if they are statistically significant. For this example,
 the standard test for difference of means is used to determine statistical significance:

[image: image8.wmf]i

i

i

i

Exposures

^2

Exposures

)

Exposures

(

1)

-

Classes

of

(Number

*

V

)

W

(

å

å

-

å

-

å

=

A

Using the data from Table 3.1.1 the Z value is computed for comparison of each level. These results are in Table 3.5.1 below.

Table 3.5.1

	Levels Compared
	Difference of Means
	Standard Deviation
	Z
	P-Value

	1 vs. 2
	(191)
	102
	(1.87)
	0.031

	2 vs. 3
	(16)
	114
	(0.14)
	0.446

	3 vs. 4
	(214)
	121
	(1.77)
	0.038

In this example, the hypothesis yields the same class plan as the method of this paper (“1, 2-3, 4”). Level 1 is separated from Level 2 because the difference is significant. Likewise, Level 3 is separated from Level 4. On the other hand, Levels 2 and 3 are combined because their difference is not significant.

3.6 Analysis of the Methods

While Salam’s hypothesis testing method and the method of this paper yield the same results in this simple example, they do not always yield the same results. This is because each method has a different goal. The goal of Salam’s hypothesis testing method is to separate levels that are statistically significant. The goal of this paper’s method is to maximize explained variance while taking into account concerns of credibility.

Explained variance of credibility-weighted means, “Score,” measures the squared difference between each class and the overall book mean. Score is a function of three factors:

(1) The difference between the class means;

(2) The number of classes; and

(3) The credibility of each class.

[image: image9.wmf](

)

^2)

[BookMean]

(Exposures

)

red

LossesSqua

(

^2

lassMean

Cred.Wtd.C

BookMean

Exposures

i

i

i

i

i

´

-

-

´

=

å

å

Score

An increase in any of these factors will also increase Score. This can be seen by expressing Score as:

(The proof is in Appendix B.)

As Factor 1 (the difference between the class means) increases, by definition, Score will increase. As Factor 2 (the number of classes) increases, Score increases because an increase in number of classes results in a greater square of the difference of class means. Factor 3 (the credibility of each class) also increases Score, as seen by the formula above.

[image: image10.wmf])}

Exposures

^2

Losses

(

{(C

*

}

1)

nts

(PolicyCou

1

{

i

i

i

å

-

-

å

=

V

The key to the method of this paper is that although an increase in the number of classes increases Score via Factor 2, an increase in number of classes will also decrease credibility and thus decrease Score via Factor 3. Levels should be combined into one class or split into separate classes based on whether the positive effect from Factor 2 is greater than the negative effect from Factor 3. This can be illustrated through the example of this section. From Tables 3.2.4 and 3.2.1, the average credibility of the consolidated class plan is 81% while the non-consolidated class plan has an average credibility of 70%. In this example, this drop in credibility decreases Score more than the increase from a greater number of classes.

[image: image11.wmf]i

i

i

i

Exposures

^2

Exposures

)

Exposures

(

1)

-

Classes

of

(Number

*

V

)

W

(

å

å

-

å

-

å

=

A

[image: image12.wmf]

)

Exposures

ij

(

)/

Losses

ij

(

=

ij

ij

å

å

BookMean

[image: image13.wmf](

)

^2)

[BookMean]

(Exposures

)

red

LossesSqua

(

^2

lassMean

Cred.Wtd.C

BookMean

Exposures

i

i

i

i

i

´

-

-

´

=

å

å

Score

The method can also be illustrated graphically. Chart 3.1 shows the credibility-weighted class means. While plan “1, 2, 3, 4” has more classes, plan “1, 2-3, 4” has a greater spread. In this example, the method of this paper determined that plan “1, 2-3, 4” had a greater variance and thus a greater ability to provide price differentiation. Chart 3.2, below, shows the credibility-weighted class means for each class plan tested.

[image: image14.wmf](

)

^2)

[BookMean]

(Exposures

)

red

LossesSqua

(

^2

BookMean}

*

)

y

Credibilit

-

(1

Exposures

 /

Losses

*

y

Credibilit

{

BookMean

Exposures

i

i

i

i

i

i

i

i

´

-

+

-

´

=

å

å

Score

This paper’s method is a natural choice for the determination of class plans. If the company’s goal is to provide maximum price differentiation through risk classification, then the company will divide its book into an ever-increasing number of classes. As class size diminishes so will credibility. As credibility decreases, the company will choose to credibility-weigh each class against the entire book. At some point, the drop in credibility actually causes the price differentiation to decrease as each class’s mean is overpowered by the complement of credibility. The method in this paper yields the point at which further subdivision will actually decrease price differentiation, as defined by the variance of class means. Therefore, this paper’s method creates the maximum amount of price differentiation, given that a company credibility-weighs its small classes.

4. SIMULATION OF A SIMPLE EXAMPLE

As stated earlier, this paper’s method and hypothesis testing (Salam) will not always yield the same results. A simulation was done to compare the results of the two methods.

Let the losses follow a binomial distribution for frequency and a gamma distribution for severity. Let the levels be distributed according to Table 4.1 and impose a deductible of $5,000 and a limit of $100,000.
Table 4.1

	
	Frequency
	Severity
	E(Loss)
	Exposures

	Level
	P(Accident)
	Alpha
	Beta
	
	

	1
	0.06
	10
	1000
	600
	1,000

	2
	0.08
	10
	1100
	880
	1,000

	3
	0.08
	10
	1100
	880
	1,000

	4
	0.12
	10
	1200
	1440
	1,000

A simulation was performed. 1,000 exposures and policy counts were generated per level. Using the method of this paper, each possible class plan (1, 2-3-4; 1-2, 3-4; 1-2-3, 4; 1-2, 3, 4; 1, 2-3, 4; 1, 2, 3-4; 1, 2, 3, 4; 1-2-3-4) was scored, and the class plan with the highest score was selected (see Appendix E for the simulation program). Additionally, using hypothesis testing in a manner similar to that suggested by Salam,
 a class plan was selected. This simulation was then repeated one hundred times. Appendix C displays the results. Tables 4.2 and 4.3, below, summarize the results.

Table 4.2 – Results of Simulation

	Pivot Table
	
	
	
	
	
	
	

	Count of Attempt
	Hypothesis Method (Salam)
	
	
	

	Turner Method
	1-2-3-4
	1-1,2-4
	1-3,4-4
	1-1,2-3,4-4
	1-2,3-3,4-4
	1,2,3,4
	Grand Total

	1-2-3-4
	
	
	
	
	
	
	 0

	1-1,2-4
	
	
	
	
	
	
	 0

	1-3,4-4
	
	
	10
	
	
	
	10

	1-1,2-3,4-4
	1
	6
	15
	40
	
	
	62

	1-2,3-3,4-4
	3
	
	7
	
	2
	
	12

	1,2,3,4
	
	
	1
	14
	
	1
	16

	Grand Total
	4
	6
	33
	54
	2
	1
	100

Table 4.3 – Summary of Simulation

	
	Did Turner Method Choose “1, 2-3, 4”?
	Did Hypothesis Testing Choose “1, 2-3, 4”?
	Do Turner and Hypothesis Testing Agree?

	Yes
	62
	54
	53

	No
	38
	46
	47

Some may be surprised that the hypothesis method chose the theoretically correct plan of “1, 2-3, 4” in only 54% of the simulations; however, the nature of a 95% confidence interval must be properly understood. Using the hypothesis method, if the two levels have the same underlying mean, the procedure will not segment the levels 95% of the time. This test is done between levels 1 and 2; 2 and 3; and 3 and 4. There are three places for this test to go wrong, and the hypothesis method makes no claims about Type II errors—failure to segment when segmentation should occur. The hypothesis method is a negative method, only providing segmentation between any two levels when, given its underlying assumptions, a segmentation would be warranted 95 of 100 times. The hypothesis method is similar to the legal standard of “innocent until proven guilty,” except it is “no segmentation until segmentation is proven beyond a reasonable doubt.” Therefore, this method prefers less segmentation, a potential disadvantage for a company seeking to maximize price differentiation.

The method of this paper yields the highest explained variance of the credibility-weighted means. In this particular example, it selected the theoretically correct class plan in 62% of the simulations, a 15% improvement over the hypothesis testing method. Also note that in four of the simulations the hypothesis method chose “1-2-3-4” (no segmentation) and in thirty-nine of the simulations chose only two classes. In contrast, the method of this paper never chose “1-2-3-4” (no segmentation) and chose a plan with two classes in only ten of the simulations. In this example, this paper’s method preferred more segmentation, a potential advantage for a company that is seeking to maximize price differentiation.

The hypothesis method and the method of this paper are useful under different circumstances. The hypothesis method is valuable when societal or business demands create a strong bias in favor of the null hypothesis, which is no segmentation. A recent example of this is the use of credit scores to predict personal automobile accidents. Government bodies were disturbed that people with low credit scores would be charged higher premiums. In this instance, the hypothesis method would be of value because society would demand proof beyond a reasonable doubt before it would allow credit scores to determine automobile premiums. On the other hand, the method of this paper is particularly valuable when considering rating variables that are universally accepted. The use of radius of operation in commercial automobile exemplifies a relatively uncontroversial rating variable. With this variable, the question posed to the actuary will not be whether to use this variable but how many partitions should be made.

5. HOW TO PERFORM THIS METHOD ON YOUR DATA—A COMPLEX EXAMPLE

5.1 Introduction to the Example

Suppose a company began writing a specialty product a few years ago at a set rate. Now that the company has a few years of business, it wishes to establish underwriting classes based on various characteristics it has tracked. Principally, it has monitored location, radius of operation, and whether the business is owner-operated. The task is to find the best classification system for price segmentation.

5.2 Data Preparation

Ultimately the data must be summarized by every factor to be included in the study. The fields that must be summed are exposures, policy counts, losses per policy, and the square of losses per policy divided by exposures per policy.

If using a transactional database, the data must first be summarized by policy id. For a summary database, the records must contain policy level information; otherwise, a preceding database must be accessed to obtain policy level information.

The database must contain at the policy level each factor to be included in the study along with exposures, policy counts (both exposures and policy counts may be “1” per policy), and losses. Then one more field is added for each policy and is set equal to the square of that policy’s losses divided by that policy’s exposures. This field is entitled “LossesSquared.”

At this point the data is formatted something like Table 5.2.1:

Table 5.2.1

	Policy ID
	Location
	Radius
	Owner Operated
	Counts
	Exposures
	Losses
	LossesSquared

	77854A5
	Rural
	Over 10 miles
	Yes
	1
	1
	0
	0

	77943A5
	Suburban
	Less than 10 miles
	Yes
	1
	2
	3,000
	4,500,000

	78949A6
	Urban
	Over 10 miles
	No
	1
	1
	0
	0

	78951A6
	Urban
	Less than 10 miles
	Yes
	1
	1
	4,000
	16,000,000

Now that losses have been squared per policy, policy level data is no longer needed. The next step is to summarize by all of the factors in the study and sum exposures, policy counts (which may be the same as exposures), losses, and losses per policy squared. At this point the data should look something like Table 5.2.2:

Table 5.2.2

	Location
	Radius
	Owner Operated
	Polcounts
	Exposures
	Losses
	LossesSquared

	City
	Less than 10 miles
	Yes
	 1,250
	 1,563
	1,092,799
	 13,345,632,591

	Suburban
	Less than 10 miles
	Yes
	 1,535
	 1,919
	733,418
	 8,147,186,304

	Rural
	Less than 10 miles
	Yes
	 1,014
	 1,268
	 593,773
	6,724,286,005

	City
	Over 10 Miles
	Yes
	 207
	 259
	 295,748
	 3,479,777,226

	Suburban
	Over 10 Miles
	Yes
	 1,272
	 1,591
	 886,662
	 10,558,821,934

	Rural
	Over 10 Miles
	Yes
	 810
	 1,013
	 427,466
	 4,777,629,538

	City
	Less than 10 miles
	No
	 2,412
	 3,016
	 3,443,920
	 39,503,485,208

	Suburban
	Less than 10 miles
	No
	 1,232
	 1,541
	 1,687,092
	 19,948,652,768

	Rural
	Less than 10 miles
	No
	 1,405
	 1,757
	 2,174,428
	 26,350,261,440

	City
	Over 10 Miles
	No
	 2,105
	 2,632
	10,316,789
	 135,036,132,799

	Suburban
	Over 10 Miles
	No
	 1,890
	 2,363
	 3,088,961
	 35,940,106,619

	Rural
	Over 10 Miles
	No
	 430
	 538
	 871,625
	 11,051,938,151

5.3 Sort

Next the data must be sorted from “lowest risk” to “highest risk.” To do this, losses are simply sorted based on losses per exposure.
 Table 5.3.1 shows the data from this example sorted from lowest risk to highest risk.

Table 5.3.1

	Location
	Radius
	Owner Operated
	Polcounts
	Exposures
	Losses
	LossesSquared
	Losses / Exposure

	Suburban
	Less than 10 miles
	Yes
	 1,535
	 1,919
	 733,418
	 8,147,186,304
	 382

	Rural
	Over 10 Miles
	Yes
	 810
	 1,013
	 427,466
	 4,777,629,538
	 422

	Rural
	Less than 10 miles
	Yes
	 1,014
	 1,268
	 593,773
	 6,724,286,005
	 468

	Suburban
	Over 10 Miles
	Yes
	 1,272
	 1,591
	 886,662
	 10,558,821,934
	 557

	City
	Less than 10 miles
	Yes
	 1,250
	 1,563
	 1,092,799
	 13,345,632,591
	 699

	Suburban
	Less than 10 miles
	No
	 1,232
	 1,541
	 1,687,092
	 19,948,652,768
	 1,095

	City
	Less than 10 miles
	No
	 2,412
	 3,016
	 3,443,920
	 39,503,485,208
	 1,142

	City
	Over 10 Miles
	Yes
	 207
	 259
	 295,748
	 3,479,777,226
	 1,142

	Rural
	Less than 10 miles
	No
	 1,405
	 1,757
	 2,174,428
	 26,350,261,440
	 1,238

	Suburban
	Over 10 Miles
	No
	 1,890
	 2,363
	 3,088,961
	 35,940,106,619
	 1,307

	Rural
	Over 10 Miles
	No
	 430
	 538
	 871,625
	 11,051,938,151
	 1,620

	City
	Over 10 Miles
	No
	 2,105
	 2,632
	 10,316,789
	 135,036,132,799
	 3,920

Once the risks are ranked, the verbal identifiers are discarded in favor of reliance simply on the rankings. A key is used to match the rankings back to the verbal identifiers. Table 5.3.2 shows the key while Table 5.3.3 shows data by rank. Table 5.3.3 is ready to be used as input for the computer program in Appendix D.

Table 5.3.2

	Index1
	Location
	Radius
	Owner Operated

	1
	Suburban
	Less than 10 miles
	Yes

	2
	Rural
	Over 10 Miles
	Yes

	3
	Rural
	Less than 10 miles
	Yes

	4
	Suburban
	Over 10 Miles
	Yes

	5
	City
	Less than 10 miles
	Yes

	6
	Suburban
	Less than 10 miles
	No

	7
	City
	Less than 10 miles
	No

	8
	City
	Over 10 Miles
	Yes

	9
	Rural
	Less than 10 miles
	No

	10
	Suburban
	Over 10 Miles
	No

	11
	Rural
	Over 10 Miles
	No

	12
	City
	Over 10 Miles
	No

Table 5.3.3

	Index1
	Polcounts
	Exposures
	Losses
	LossesSquared

	1
	 1,535
	 1,919
	 733,418
	 8,147,186,304

	2
	 810
	 1,013
	 427,466
	 4,777,629,538

	3
	 1,014
	 1,268
	 593,773
	 6,724,286,005

	4
	 1,272
	 1,591
	 886,662
	 10,558,821,934

	5
	 1,250
	 1,563
	 1,092,799
	 13,345,632,591

	6
	 1,232
	 1,541
	 1,687,092
	 19,948,652,768

	7
	 2,412
	 3,016
	 3,443,920
	 39,503,485,208

	8
	 207
	 259
	 295,748
	 3,479,777,226

	9
	 1,405
	 1,757
	 2,174,428
	 26,350,261,440

	10
	 1,890
	 2,363
	 3,088,961
	 35,940,106,619

	11
	 430
	 538
	 871,625
	 11,051,938,151

	12
	 2,105
	 2,632
	 10,316,789
	 135,036,132,799

5.4 Produce a Score for Each Possible Class Plan
The data shown in Table 5.3.3 is imported into an Access Database. The program in the Appendix is then run after it has been modified to meet the needs of the particular study. The program iterates over every possible combination where the levels follow the rank established in the field Index1. Because Index1 is ranked from least to most risky, the program does not need to iterate through combinations that do not follow the ranking. For example, the program needs not attempt to create a class plan such as “Class 1 = 1,2,11,12, and Class 2=3,4,5,6,7,8,9,10” because there is no possibility that such a class plan could produce the highest Score.

Table 5.4.1, below, shows the results of the computer program. All 2,048 possible class plans were analyzed. In order to conserve space, only the best five and worst five class plans are shown.

Table 5.4.1

	Class Plans
	Score

	1-4, 5-5,6-8,9-10,11-11,12-12
	8.10%

	1-3, 4-4,5-5,6-8,9-10,11-11,12-12
	8.10%

	1-4, 5-5,6-8,9-9,10-10,11-11,12-12
	8.10%

	1-3, 4-4,5-5,6-8,9-9,10-10,11-11,12-12
	8.10%

	1-3, 4-5,6-8,9-10,11-11,12-12
	8.10%

	The intermediate 2,038 Class Plans are omitted.

	1-1, 2-2,3-3,4-12
	1.49%

	1-2, 3-12
	1.02%

	1-1, 2-2,3-12
	1.00%

	1-1, 2-12
	0.64%

	1-12 (no segmentation)
	0.00%

The worst class plan is “1-12” (no segmentation) while the best class plan is “1-4, 5-5,6-8,9-10,11-11,12-12.” Note that the better class plans have over five times the explanatory power of the poorer plans. This demonstrates the advantage of using a technique such as the one in this paper. Also note that the better class plans had between six and eight classes, not twelve. This shows that dividing the book into all available levels does not necessarily yield the highest price segmentation after considering credibility. Finally, note that the best five plans had similar Scores. Any of the five would probably make acceptable class plans, and a selection could be made from these based on business convenience.

Assuming that the class plan of “1-4, 5-5,6-8,9-10,11-11,12-12” (the plan with the highest Score) is selected, the next step is to develop the underwriting description of the class plan. According to the key (Table 5.3.2), the underwriting guidelines should be as in Table 5.4.2 below.

Table 5.4.2

	Index
	Underwriting Class
	Location
	Radius
	Owner Operated

	1
	A
	Less than 10 miles
	Suburban
	Yes

	2
	A
	Over 10 Miles
	Rural
	Yes

	3
	A
	Less than 10 miles
	Rural
	Yes

	4
	A
	Over 10 Miles
	Suburban
	Yes

	5
	B
	Less than 10 miles
	City
	Yes

	6
	C
	Less than 10 miles
	Suburban
	No

	7
	C
	Less than 10 miles
	City
	No

	8
	C
	Over 10 Miles
	City
	Yes

	9
	D
	Less than 10 miles
	Rural
	No

	10
	D
	Over 10 Miles
	Suburban
	No

	11
	E
	Over 10 Miles
	Rural
	No

	12
	F
	Over 10 Miles
	City
	No

This can be explained in an underwriting manual as Table 5.4.3

Table 5.4.3

	Underwriting Class
	Guidelines

	A
	Owner Operated-Suburban or Rural

	B
	Owner Operated-City-Less than 10 Miles

	C
	Owner Operated-City-More than 10 Miles; or, Not Owner Operated-City or Suburban-Less than 10 Miles

	D
	Not Owner Operated-Rural-Less than 10 Miles or Suburban-Over 10 Miles

	E
	Not Owner Operated-Rural-Over 10 Miles

	F
	Not Owner Operated-City-Over 10 Miles

7. CONCLUSION

Actuaries are called upon to create risk classification systems. In an effort to skim the cream, companies often desire plans with the maximum price differentiation. Common sense dictates that at some point, too much refinement is counterproductive. This paper introduces one method for determining the point at which further segmentation defeats the purpose of price segmentation. A simulation of this method versus hypothesis testing is shown, and the results are encouraging. Finally, this paper demonstrates how one can perform such an analysis on his or her data and provides sample code to assist in the process.

APPENDIX A

Definitions:

Number of Classes = Number of underwriting classes

PolicyCounti = Policy count in underwriting class i

Exposures = All exposures

Exposuresi = Exposures per class i

Exposuresij = Exposures per policy j in class i

Losses = All losses

Lossesi = Losses per class i

Lossesij = Losses per policy j in class i

LossesSquaredij = (Losses per policy j in class i)^2 / Exposuresij
LossesSquaredi = LossesSquaredij per class i

Formulas

To maximize the credible explanatory power, maximize “Score” below.

C = (i(j(Lossesij^2 / Exposuresij) = (i(j(LossesSquaredij) = (i (LossesSquaredi)

[image: image15.wmf](

)

^2)

[BookMean]

(Exposures

)

red

LossesSqua

(

^2

BookMean

*

y

Credibilit

Exposures

 /

Losses

*

y

Credibilit

Exposures

i

i

i

i

i

i

i

i

´

-

+

-

´

=

å

å

Score

[image: image16.wmf]^2)

[BookMean]

(Exposures

)

red

LossesSqua

(

^2

Exposures

 /

Losses

-

BookMean

(

*

^2

)

ty

(Credibili

Exposures

i

i

i

)

i

i

i

i

´

-

´

=

å

å

Score

[image: image17.wmf]Constant

^2

Exposures

 /

Losses

-

BookMean

(

*

^2

)

ty

(Credibili

Exposures

i

)

i

i

i

i

å

´

=

Score

K = V/A

Credibilityi = [Exposuresi / (Exposuresi + K)] {From 5.76 at Klugman [3]}

[image: image18.wmf]Constant

^2

)

ClassMean

-

BookMean

(

*

^2

)

ty

(Credibili

Exposures

i

i

i

i

å

´

=

Score

Cred.Wtd.ClassMeani = Credibilityi * Lossesi / Exposuresi + (1 - Credibilityi)* BookMean

[image: image19.wmf]Constant

^2

)

ClassMean

-

BookMean

(

*

^2

)

ty

(Credibili

Exposures

i

i

i

i

å

´

=

Score

APPENDIX B

[image: image20.wmf]Chart 3.1: Credibility-

weighted Class Means

750

850

950

1050

1150

[image: image21.wmf]Chart 3.2: Credibility-weighted Class Means

750

850

950

1050

1150

1-2,3-4

 .092%

1,2,3-4

 .104%

1,2-4

 .107%

1-2,3,4

 .110%

1-3,4

 .118%

1,2,3,4

 .122%

1,2-3,4

 .144%

1-4

 .000%

Plan

Score

Cred.Wtd.ClassMeani = Credibilityi * Lossesi / Exposuresi + (1 - Credibilityi)* BookMean

[image: image22.wmf]2

^

*

)

(

i

i

i

i

i

i

Exposures

Losses

Exposures

Losses

Exposures

å

å

-

=

W

The formula below is produced by substituting {1} into {2}:

[image: image23.wmf](

)

^2)

[BookMean]

(Exposures

)

red

LossesSqua

(

^2

lassMean

Cred.Wtd.C

BookMean

Exposures

i

i

i

i

i

´

-

-

´

=

å

å

Score

[image: image24.wmf]}

{

}

{

)

(

)

(

i

i

i

i

Exposures

^2

Losses

red

LossesSqua

*

1)

nts

(PolicyCou

1

å

-

å

-

å

=

V

This can be simplified to:

[image: image25.wmf](

)

^2)

[BookMean]

(Exposures

)

red

LossesSqua

(

^2

lassMean

Cred.Wtd.C

BookMean

Exposures

i

i

i

i

i

´

-

-

´

=

å

å

Score

Which further simplifies to:

By noting that the denominator is a constant, the formula becomes:

[image: image26.wmf]2

^

*

)

(

i

i

i

i

i

i

Exposures

Losses

Exposures

Losses

Exposures

W

å

å

-

=

Finally, by noting that “Lossesi / Exposuresi” is merely the mean for each class:

[image: image27.wmf](

)

^2)

[BookMean]

(Exposures

)

red

LossesSqua

(

^2

BookMean

*

y

Credibilit

Exposures

 /

Losses

*

y

Credibilit

Exposures

i

i

i

i

i

i

i

i

´

-

+

-

´

=

å

å

Score

APPENDIX C

	Attempt
	Turner Method
	Hypothesis Method (Salam)
	Turner "Correct"?
	Hypothesis Testing "Correct"?
	Do Score and Turner Agree?

	1
	1,2,3,4
	1-1,2-3,4-4
	No
	Yes
	No

	2
	1-2,3-3,4-4
	No Segmentation
	No
	No
	No

	3
	1,2,3,4
	1-1,2-3,4-4
	No
	Yes
	No

	4
	1-2,3-3,4-4
	1-3,4-4
	No
	No
	No

	5
	1-2,3-3,4-4
	1-3,4-4
	No
	No
	No

	6
	1-1,2-3,4-4
	1-1,2-3,4-4
	Yes
	Yes
	Yes

	7
	1-1,2-3,4-4
	1-3,4-4
	Yes
	No
	No

	8
	1-1,2-3,4-4
	1-3,4-4
	Yes
	No
	No

	9
	1-1,2-3,4-4
	1-1,2-3,4-4
	Yes
	Yes
	Yes

	10
	1-1,2-3,4-4
	1-3,4-4
	Yes
	No
	No

	11
	1-1,2-3,4-4
	1-1,2-3,4-4
	Yes
	Yes
	Yes

	12
	1-2,3-3,4-4
	1-2,3-3,4-4
	No
	No
	Yes

	13
	1,2,3,4
	1,2,3,4
	No
	No
	Yes

	14
	1-1,2-3,4-4
	1-3,4-4
	Yes
	No
	No

	15
	1-1,2-3,4-4
	1-1,2-3,4-4
	Yes
	Yes
	Yes

	16
	1-1,2-3,4-4
	1-1,2-3,4-4
	Yes
	Yes
	Yes

	17
	1-1,2-3,4-4
	1-3,4-4
	Yes
	No
	No

	18
	1-1,2-3,4-4
	1-1,2-3,4-4
	Yes
	Yes
	Yes

	19
	1-2,3-3,4-4
	1-3,4-4
	No
	No
	No

	20
	1-1,2-3,4-4
	1-1,2-3,4-4
	Yes
	Yes
	Yes

	21
	1-3,4-4
	1-3,4-4
	No
	No
	Yes

	22
	1-1,2-3,4-4
	1-1,2-3,4-4
	Yes
	Yes
	Yes

	23
	1-1,2-3,4-4
	1-1,2-3,4-4
	Yes
	Yes
	Yes

	24
	1-1,2-3,4-4
	1-1,2-3,4-4
	Yes
	Yes
	Yes

	25
	1-1,2-3,4-4
	1-3,4-4
	Yes
	No
	No

	26
	1-1,2-3,4-4
	1-1,2-3,4-4
	Yes
	Yes
	Yes

	27
	1-1,2-3,4-4
	1-1,2-3,4-4
	Yes
	Yes
	Yes

	28
	1-1,2-3,4-4
	1-3,4-4
	Yes
	No
	No

	29
	1-1,2-3,4-4
	1-1,2-3,4-4
	Yes
	Yes
	Yes

	30
	1-3,4-4
	1-3,4-4
	No
	No
	Yes

	31
	1-3,4-4
	1-3,4-4
	No
	No
	Yes

	32
	1-1,2-3,4-4
	1-1,2-3,4-4
	Yes
	Yes
	Yes

	33
	1-1,2-3,4-4
	1-1,2-3,4-4
	Yes
	Yes
	Yes

	34
	1-1,2-3,4-4
	1-1,2-3,4-4
	Yes
	Yes
	Yes

	35
	1,2,3,4
	1-1,2-3,4-4
	No
	Yes
	No

	36
	1-3,4-4
	1-3,4-4
	No
	No
	Yes

	37
	1,2,3,4
	1-1,2-3,4-4
	No
	Yes
	No

	38
	1-2,3-3,4-4
	No Segmentation
	No
	No
	No

	39
	1-3,4-4
	1-3,4-4
	No
	No
	Yes

	40
	1-2,3-3,4-4
	1-3,4-4
	No
	No
	No

	41
	1-3,4-4
	1-3,4-4
	No
	No
	Yes

	42
	1-1,2-3,4-4
	1-1,2-3,4-4
	Yes
	Yes
	Yes

	43
	1-1,2-3,4-4
	1-1,2-4
	Yes
	No
	No

	44
	1-1,2-3,4-4
	1-1,2-3,4-4
	Yes
	Yes
	Yes

	45
	1,2,3,4
	1-1,2-3,4-4
	No
	Yes
	No

	46
	1-1,2-3,4-4
	1-1,2-3,4-4
	Yes
	Yes
	Yes

	47
	1-1,2-3,4-4
	1-1,2-4
	Yes
	No
	No

	48
	1-1,2-3,4-4
	1-1,2-3,4-4
	Yes
	Yes
	Yes

	49
	1-1,2-3,4-4
	1-1,2-3,4-4
	Yes
	Yes
	Yes

	50
	1-1,2-3,4-4
	1-1,2-4
	Yes
	No
	No

	51
	1-1,2-3,4-4
	1-3,4-4
	Yes
	No
	No

	52
	1,2,3,4
	1-1,2-3,4-4
	No
	Yes
	No

	53
	1-3,4-4
	1-3,4-4
	No
	No
	Yes

	54
	1,2,3,4
	1-1,2-3,4-4
	No
	Yes
	No

	55
	1-1,2-3,4-4
	1-3,4-4
	Yes
	No
	No

	56
	1,2,3,4
	1-1,2-3,4-4
	No
	Yes
	No

	57
	1-1,2-3,4-4
	No Segmentation
	Yes
	No
	No

	58
	1-1,2-3,4-4
	1-1,2-4
	Yes
	No
	No

	59
	1-2,3-3,4-4
	1-3,4-4
	No
	No
	No

	60
	1-2,3-3,4-4
	1-3,4-4
	No
	No
	No

	61
	1-1,2-3,4-4
	1-1,2-3,4-4
	Yes
	Yes
	Yes

	62
	1-2,3-3,4-4
	No Segmentation
	No
	No
	No

	63
	1-2,3-3,4-4
	1-3,4-4
	No
	No
	No

	64
	1-1,2-3,4-4
	1-1,2-3,4-4
	Yes
	Yes
	Yes

	65
	1,2,3,4
	1-1,2-3,4-4
	No
	Yes
	No

	66
	1-1,2-3,4-4
	1-3,4-4
	Yes
	No
	No

	67
	1-1,2-3,4-4
	1-1,2-3,4-4
	Yes
	Yes
	Yes

	68
	1-1,2-3,4-4
	1-1,2-4
	Yes
	No
	No

	69
	1-3,4-4
	1-3,4-4
	No
	No
	Yes

	70
	1,2,3,4
	1-3,4-4
	No
	No
	No

	71
	1-1,2-3,4-4
	1-3,4-4
	Yes
	No
	No

	72
	1-1,2-3,4-4
	1-1,2-3,4-4
	Yes
	Yes
	Yes

	73
	1-1,2-3,4-4
	1-1,2-3,4-4
	Yes
	Yes
	Yes

	74
	1-1,2-3,4-4
	1-1,2-3,4-4
	Yes
	Yes
	Yes

	75
	1-3,4-4
	1-3,4-4
	No
	No
	Yes

	76
	1-1,2-3,4-4
	1-1,2-3,4-4
	Yes
	Yes
	Yes

	77
	1-1,2-3,4-4
	1-1,2-3,4-4
	Yes
	Yes
	Yes

	78
	1-1,2-3,4-4
	1-1,2-4
	Yes
	No
	No

	79
	1,2,3,4
	1-1,2-3,4-4
	No
	Yes
	No

	80
	1,2,3,4
	1-1,2-3,4-4
	No
	Yes
	No

	81
	1-1,2-3,4-4
	1-1,2-3,4-4
	Yes
	Yes
	Yes

	82
	1-3,4-4
	1-3,4-4
	No
	No
	Yes

	83
	1-1,2-3,4-4
	1-3,4-4
	Yes
	No
	No

	84
	1-1,2-3,4-4
	1-1,2-3,4-4
	Yes
	Yes
	Yes

	85
	1-1,2-3,4-4
	1-1,2-3,4-4
	Yes
	Yes
	Yes

	86
	1-1,2-3,4-4
	1-1,2-3,4-4
	Yes
	Yes
	Yes

	87
	1-2,3-3,4-4
	1-2,3-3,4-4
	No
	No
	Yes

	88
	1-1,2-3,4-4
	1-3,4-4
	Yes
	No
	No

	89
	1-1,2-3,4-4
	1-1,2-3,4-4
	Yes
	Yes
	Yes

	90
	1,2,3,4
	1-1,2-3,4-4
	No
	Yes
	No

	91
	1-1,2-3,4-4
	1-1,2-3,4-4
	Yes
	Yes
	Yes

	92
	1-1,2-3,4-4
	1-1,2-3,4-4
	Yes
	Yes
	Yes

	93
	1-1,2-3,4-4
	1-3,4-4
	Yes
	No
	No

	94
	1-1,2-3,4-4
	1-3,4-4
	Yes
	No
	No

	95
	1-1,2-3,4-4
	1-1,2-3,4-4
	Yes
	Yes
	Yes

	96
	1,2,3,4
	1-1,2-3,4-4
	No
	Yes
	No

	97
	1-1,2-3,4-4
	1-1,2-3,4-4
	Yes
	Yes
	Yes

	98
	1,2,3,4
	1-1,2-3,4-4
	No
	Yes
	No

	99
	1-1,2-3,4-4
	1-1,2-3,4-4
	Yes
	Yes
	Yes

	100
	1-1,2-3,4-4
	1-1,2-3,4-4
	Yes
	Yes
	Yes

APPENDIX D (Computer Program – Up to 12 Possible Classes)

Below are the steps to running the program, followed by the Program:

1) Paste your data, formatted like Table 5.3.3, into a Microsoft Access Database. Call the Table “Data.”

2) Close Microsoft Access. (To avoid sharing violations)

3) Open Microsoft Excel. Click Tools -> Macros -> Visual Basic Editor. Once you are within the Visual Basic Editor, click “Insert Module.”

4) Make sure the module has nothing written in it. (Sometimes Microsoft Excel inserts in default settings.)

5) Paste the program into the module.

6) Click Tools-> References -> Microsoft DAO 3.6 Object Library. Put a checkmark next to it and click “ok.”

7) Make modifications A and B within the program.

8) Run the program by placing your cursor within the subroutine called “PerformAnalysis,” and click Run -> Run Sub/User Form.

9) Wait for the message box which says “Completed.”

10) Open the Microsoft Access Database and check out the table “Iterations.” It shows the score for each iteration, in the order it was iterated. Copy this table into Excel and sort by score descending. An iteration with a high Score should be selected.

The program is below:

Dim cols As New Collection

 Dim colTiers As New Collection ' Create a Collection object.

 Dim SQL, Guy, TaBler As String

 Dim namer

 Dim dber

 Dim Alpha, Beta, P, NumberToGenerate As Double

 Dim Exposures, Losses, LossesSquared As Double

 Dim Deductible, Limit As Double

 Dim Index1 As Double

 Dim NumberofFactors As Double

 Dim countExcel As Integer

 Dim iter1

Sub PerformAnalysis()

' MODIFICATION A - CHANGE THE NAME OF THE DATABASE BELOW TO MATCH YOUR DATABASE.

 Set dber = OpenDatabase("C:\Documents and Settings\Benjamin Turner\My Documents\Turner Score\aug23c.mdb")

Call PerformScoreAnalysis

MsgBox "Completed."

End Sub

Sub PerformScoreAnalysis()

 SQL = "create table Iterations (Title text, Score double)"

dber.Execute (SQL)

 SQL = "select * into standard from data"

dber.Execute (SQL)

 SQL = "alter table standard add column index2 integer"

dber.Execute (SQL)
' MODIFICATION B - CHANGE THE NUMBER OF FACTORS TO THE NUMBER OF POSSIBLE CLASSES.

 ' IN THE SIMPLE EXAMPLE THIS WAS 4 AND IN THE COMPLEX EXAMPLE THIS WAS 12.

 ' THIS PROGRAM CAN HANDLE 2 TO 12 POSSIBLE POTENTIAL CLASSES.

 ' SOMEONE FAMILIAR WITH EXCEL MACROS COULD MODIFY THIS PROGRAM TO DO MORE THAN 12 CLASSES OR COULD CONTACT THE AUTHOR TO OBTAIN A VERSION THAT HANDLES MORE THAN 12 CLASSES

NumberofFactors = 12

Call OneClass

If NumberofFactors > 2 Then Call TwoClasses

If NumberofFactors > 3 Then Call ThreeClasses

If NumberofFactors > 4 Then Call FourClasses

If NumberofFactors > 5 Then Call FiveClasses

If NumberofFactors > 6 Then Call SixClasses

If NumberofFactors > 7 Then Call SevenClasses

If NumberofFactors > 8 Then Call EightClasses

If NumberofFactors > 9 Then Call NineClasses

If NumberofFactors > 10 Then Call TenClasses

If NumberofFactors > 11 Then Call ElevenClasses

Call AllClasses

End Sub

Sub OneClass()

'Only one class

 SQL = "insert into iterations (title, score) values ('No Segmentation',0.000000000000000001)"

dber.Execute (SQL)

'End only one class

End Sub

Sub AllClasses()

'All classes

 SQL = "update standard set index2 = index1"

 namer = "1"

 For i = 2 To NumberofFactors

 namer = namer & "," & i

 Next

 dber.Execute (SQL)

 Call GetScore

 'End All classes

End Sub

Sub TwoClasses()

'Two Classes

For i1 = 1 To NumberofFactors - 1

 SQL = "update standard set index2 = 1 where index1 between 1 and " & i1

 dber.Execute (SQL)

 SQL = "update standard set index2 = 2 where index1 between " & i1 + 1 & " and " & NumberofFactors

 dber.Execute (SQL)

 namer = "1-" & i1 & ", " & i1 + 1 & "-" & NumberofFactors

 Call GetScore

Next

'End Two classes

End Sub

Sub ThreeClasses()

'Three Classes

For i1 = 1 To NumberofFactors - 2

For i2 = i1 + 1 To NumberofFactors - 1

 SQL = "update standard set index2 = 1 where index1 between 1 and " & i1

 dber.Execute (SQL)

 SQL = "update standard set index2 = 2 where index1 between " & i1 + 1 & " and " & i2

 dber.Execute (SQL)

 SQL = "update standard set index2 = 3 where index1 between " & i2 + 1 & " and " & NumberofFactors

 dber.Execute (SQL)

 namer = "1-" & i1 & ", " & i1 + 1 & "-" & i2 & "," & i2 + 1 & "-" & NumberofFactors

 Call GetScore

Next

Next

' end three classes

End Sub

Sub FourClasses()

'Four Classes

For i1 = 1 To NumberofFactors - 3

For i2 = i1 + 1 To NumberofFactors - 2

For i3 = i2 + 1 To NumberofFactors - 1

 SQL = "update standard set index2 = 1 where index1 between 1 and " & i1

 dber.Execute (SQL)

 SQL = "update standard set index2 = 2 where index1 between " & i1 + 1 & " and " & i2

 dber.Execute (SQL)

 SQL = "update standard set index2 = 3 where index1 between " & i2 + 1 & " and " & i3

 dber.Execute (SQL)

 SQL = "update standard set index2 = 4 where index1 between " & i3 + 1 & " and " & NumberofFactors

 dber.Execute (SQL)

 namer = "1-" & i1 & ", " & i1 + 1 & "-" & i2 & "," & i2 + 1 & "-" & i3 & "," & i3 + 1 & "-" & NumberofFactors

 Call GetScore

Next

Next

Next

' end Four classes

End Sub

Sub FiveClasses()

'Five Classes

For i1 = 1 To NumberofFactors - 4

For i2 = i1 + 1 To NumberofFactors - 3

For i3 = i2 + 1 To NumberofFactors - 2

For i4 = i3 + 1 To NumberofFactors - 1

 SQL = "update standard set index2 = 1 where index1 between 1 and " & i1

 dber.Execute (SQL)

 SQL = "update standard set index2 = 2 where index1 between " & i1 + 1 & " and " & i2

 dber.Execute (SQL)

 SQL = "update standard set index2 = 3 where index1 between " & i2 + 1 & " and " & i3

 dber.Execute (SQL)

 SQL = "update standard set index2 = 4 where index1 between " & i3 + 1 & " and " & i4

 dber.Execute (SQL)

 SQL = "update standard set index2 = 5 where index1 between " & i4 + 1 & " and " & NumberofFactors

 dber.Execute (SQL)

 namer = "1-" & i1 & ", " & i1 + 1 & "-" & i2 & "," & i2 + 1 & "-" & i3 & "," & i3 + 1 & "-" & i4 & "," & i4 + 1 & "-" & NumberofFactors

 Call GetScore

Next

Next

Next

Next

' end Five classes

End Sub

Sub SixClasses()

For i1 = 1 To NumberofFactors - 5

For i2 = i1 + 1 To NumberofFactors - 4

For i3 = i2 + 1 To NumberofFactors - 3

For i4 = i3 + 1 To NumberofFactors - 2

For i5 = i4 + 1 To NumberofFactors - 1

 SQL = "update standard set index2 = 1 where index1 between 1 and " & i1

 dber.Execute (SQL)

 SQL = "update standard set index2 = 2 where index1 between " & i1 + 1 & " and " & i2

 dber.Execute (SQL)

 SQL = "update standard set index2 = 3 where index1 between " & i2 + 1 & " and " & i3

 dber.Execute (SQL)

 SQL = "update standard set index2 = 4 where index1 between " & i3 + 1 & " and " & i4

 dber.Execute (SQL)

 SQL = "update standard set index2 = 5 where index1 between " & i4 + 1 & " and " & i5

 dber.Execute (SQL)

 SQL = "update standard set index2 = 6 where index1 between " & i5 + 1 & " and " & NumberofFactors

 dber.Execute (SQL)

 namer = "1-" & i1 & ", " & i1 + 1 & "-" & i2 & "," & i2 + 1 & "-" & i3 & "," & i3 + 1 & "-" & i4

 namer = namer & "," & i4 + 1 & "-" & i5 & "," & i5 + 1 & "-" & NumberofFactors

 Call GetScore

Next

Next

Next

Next

Next

End Sub

Sub SevenClasses()

For i1 = 1 To NumberofFactors - 6

For i2 = i1 + 1 To NumberofFactors - 5

For i3 = i2 + 1 To NumberofFactors - 4

For i4 = i3 + 1 To NumberofFactors - 3

For i5 = i4 + 1 To NumberofFactors - 2

For i6 = i5 + 1 To NumberofFactors - 1

 SQL = "update standard set index2 = 1 where index1 between 1 and " & i1

 dber.Execute (SQL)

 SQL = "update standard set index2 = 2 where index1 between " & i1 + 1 & " and " & i2

 dber.Execute (SQL)

 SQL = "update standard set index2 = 3 where index1 between " & i2 + 1 & " and " & i3

 dber.Execute (SQL)

 SQL = "update standard set index2 = 4 where index1 between " & i3 + 1 & " and " & i4

 dber.Execute (SQL)

 SQL = "update standard set index2 = 5 where index1 between " & i4 + 1 & " and " & i5

 dber.Execute (SQL)

 SQL = "update standard set index2 = 6 where index1 between " & i5 + 1 & " and " & i6

 dber.Execute (SQL)

 SQL = "update standard set index2 = 7 where index1 between " & i6 + 1 & " and " & NumberofFactors

 dber.Execute (SQL)

 namer = "1-" & i1 & ", " & i1 + 1 & "-" & i2 & "," & i2 + 1 & "-" & i3 & "," & i3 + 1 & "-" & i4

 namer = namer & "," & i4 + 1 & "-" & i5

 namer = namer & "," & i5 + 1 & "-" & i6

 namer = namer & "," & i6 + 1 & "-" & NumberofFactors

 Call GetScore

Next

Next

Next

Next

Next

Next

End Sub

Sub EightClasses()

For i1 = 1 To NumberofFactors - 7

For i2 = i1 + 1 To NumberofFactors - 6

For i3 = i2 + 1 To NumberofFactors - 5

For i4 = i3 + 1 To NumberofFactors - 4

For i5 = i4 + 1 To NumberofFactors - 3

For i6 = i5 + 1 To NumberofFactors - 2

For i7 = i6 + 1 To NumberofFactors - 1

 SQL = "update standard set index2 = 1 where index1 between 1 and " & i1

 dber.Execute (SQL)

 SQL = "update standard set index2 = 2 where index1 between " & i1 + 1 & " and " & i2

 dber.Execute (SQL)

 SQL = "update standard set index2 = 3 where index1 between " & i2 + 1 & " and " & i3

 dber.Execute (SQL)

 SQL = "update standard set index2 = 4 where index1 between " & i3 + 1 & " and " & i4

 dber.Execute (SQL)

 SQL = "update standard set index2 = 5 where index1 between " & i4 + 1 & " and " & i5

 dber.Execute (SQL)

 SQL = "update standard set index2 = 6 where index1 between " & i5 + 1 & " and " & i6

 dber.Execute (SQL)

 SQL = "update standard set index2 = 7 where index1 between " & i6 + 1 & " and " & i7

 dber.Execute (SQL)

 SQL = "update standard set index2 = 8 where index1 between " & i7 + 1 & " and " & NumberofFactors

 dber.Execute (SQL)

 namer = "1-" & i1 & ", " & i1 + 1 & "-" & i2 & "," & i2 + 1 & "-" & i3 & "," & i3 + 1 & "-" & i4

 namer = namer & "," & i4 + 1 & "-" & i5

 namer = namer & "," & i5 + 1 & "-" & i6

 namer = namer & "," & i6 + 1 & "-" & i7

 namer = namer & "," & i7 + 1 & "-" & NumberofFactors

 Call GetScore

Next

Next

Next

Next

Next

Next

Next

End Sub

Sub NineClasses()

For i1 = 1 To NumberofFactors - 8

For i2 = i1 + 1 To NumberofFactors - 7

For i3 = i2 + 1 To NumberofFactors - 6

For i4 = i3 + 1 To NumberofFactors - 5

For i5 = i4 + 1 To NumberofFactors - 4

For i6 = i5 + 1 To NumberofFactors - 3

For i7 = i6 + 1 To NumberofFactors - 2

For i8 = i7 + 1 To NumberofFactors - 1

 SQL = "update standard set index2 = 1 where index1 between 1 and " & i1

 dber.Execute (SQL)

 SQL = "update standard set index2 = 2 where index1 between " & i1 + 1 & " and " & i2

 dber.Execute (SQL)

 SQL = "update standard set index2 = 3 where index1 between " & i2 + 1 & " and " & i3

 dber.Execute (SQL)

 SQL = "update standard set index2 = 4 where index1 between " & i3 + 1 & " and " & i4

 dber.Execute (SQL)

 SQL = "update standard set index2 = 5 where index1 between " & i4 + 1 & " and " & i5

 dber.Execute (SQL)

 SQL = "update standard set index2 = 6 where index1 between " & i5 + 1 & " and " & i6

 dber.Execute (SQL)

 SQL = "update standard set index2 = 7 where index1 between " & i6 + 1 & " and " & i7

 dber.Execute (SQL)

 SQL = "update standard set index2 = 8 where index1 between " & i7 + 1 & " and " & i8

 dber.Execute (SQL)

 SQL = "update standard set index2 = 9 where index1 between " & i8 + 1 & " and " & NumberofFactors

 dber.Execute (SQL)

 namer = "1-" & i1 & ", " & i1 + 1 & "-" & i2 & "," & i2 + 1 & "-" & i3 & "," & i3 + 1 & "-" & i4

 namer = namer & "," & i4 + 1 & "-" & i5

 namer = namer & "," & i5 + 1 & "-" & i6

 namer = namer & "," & i6 + 1 & "-" & i7

 namer = namer & "," & i7 + 1 & "-" & i8

 namer = namer & "," & i8 + 1 & "-" & NumberofFactors

 Call GetScore

Next

Next

Next

Next

Next

Next

Next

Next

End Sub

Sub TenClasses()

For i1 = 1 To NumberofFactors - 9

For i2 = i1 + 1 To NumberofFactors - 8

For i3 = i2 + 1 To NumberofFactors - 7

For i4 = i3 + 1 To NumberofFactors - 6

For i5 = i4 + 1 To NumberofFactors - 5

For i6 = i5 + 1 To NumberofFactors - 4

For i7 = i6 + 1 To NumberofFactors - 3

For i8 = i7 + 1 To NumberofFactors - 2

For i9 = i8 + 1 To NumberofFactors - 1

 SQL = "update standard set index2 = 1 where index1 between 1 and " & i1

 dber.Execute (SQL)

 SQL = "update standard set index2 = 2 where index1 between " & i1 + 1 & " and " & i2

 dber.Execute (SQL)

 SQL = "update standard set index2 = 3 where index1 between " & i2 + 1 & " and " & i3

 dber.Execute (SQL)

 SQL = "update standard set index2 = 4 where index1 between " & i3 + 1 & " and " & i4

 dber.Execute (SQL)

 SQL = "update standard set index2 = 5 where index1 between " & i4 + 1 & " and " & i5

 dber.Execute (SQL)

 SQL = "update standard set index2 = 6 where index1 between " & i5 + 1 & " and " & i6

 dber.Execute (SQL)

 SQL = "update standard set index2 = 7 where index1 between " & i6 + 1 & " and " & i7

 dber.Execute (SQL)

 SQL = "update standard set index2 = 8 where index1 between " & i7 + 1 & " and " & i8

 dber.Execute (SQL)

 SQL = "update standard set index2 = 9 where index1 between " & i8 + 1 & " and " & i9

 dber.Execute (SQL)

 SQL = "update standard set index2 = 10 where index1 between " & i9 + 1 & " and " & NumberofFactors

 dber.Execute (SQL)

 namer = "1-" & i1 & ", " & i1 + 1 & "-" & i2 & "," & i2 + 1 & "-" & i3 & "," & i3 + 1 & "-" & i4

 namer = namer & "," & i4 + 1 & "-" & i5

 namer = namer & "," & i5 + 1 & "-" & i6

 namer = namer & "," & i6 + 1 & "-" & i7

 namer = namer & "," & i7 + 1 & "-" & i8

 namer = namer & "," & i8 + 1 & "-" & i9

 namer = namer & "," & i9 + 1 & "-" & NumberofFactors

 Call GetScore

Next

Next

Next

Next

Next

Next

Next

Next

Next

End Sub

Sub ElevenClasses()

For i1 = 1 To NumberofFactors - 10

For i2 = i1 + 1 To NumberofFactors - 9

For i3 = i2 + 1 To NumberofFactors - 8

For i4 = i3 + 1 To NumberofFactors - 7

For i5 = i4 + 1 To NumberofFactors - 6

For i6 = i5 + 1 To NumberofFactors - 5

For i7 = i6 + 1 To NumberofFactors - 4

For i8 = i7 + 1 To NumberofFactors - 3

For i9 = i8 + 1 To NumberofFactors - 2

For i10 = i9 + 1 To NumberofFactors - 1

 SQL = "update standard set index2 = 1 where index1 between 1 and " & i1

 dber.Execute (SQL)

 SQL = "update standard set index2 = 2 where index1 between " & i1 + 1 & " and " & i2

 dber.Execute (SQL)

 SQL = "update standard set index2 = 3 where index1 between " & i2 + 1 & " and " & i3

 dber.Execute (SQL)

 SQL = "update standard set index2 = 4 where index1 between " & i3 + 1 & " and " & i4

 dber.Execute (SQL)

 SQL = "update standard set index2 = 5 where index1 between " & i4 + 1 & " and " & i5

 dber.Execute (SQL)

 SQL = "update standard set index2 = 6 where index1 between " & i5 + 1 & " and " & i6

 dber.Execute (SQL)

 SQL = "update standard set index2 = 7 where index1 between " & i6 + 1 & " and " & i7

 dber.Execute (SQL)

 SQL = "update standard set index2 = 8 where index1 between " & i7 + 1 & " and " & i8

 dber.Execute (SQL)

 SQL = "update standard set index2 = 9 where index1 between " & i8 + 1 & " and " & i9

 dber.Execute (SQL)

 SQL = "update standard set index2 = 10 where index1 between " & i9 + 1 & " and " & i10

 dber.Execute (SQL)

 SQL = "update standard set index2 = 11 where index1 between " & i10 + 1 & " and " & NumberofFactors

 dber.Execute (SQL)

 namer = "1-" & i1 & ", " & i1 + 1 & "-" & i2 & "," & i2 + 1 & "-" & i3 & "," & i3 + 1 & "-" & i4

 namer = namer & "," & i4 + 1 & "-" & i5

 namer = namer & "," & i5 + 1 & "-" & i6

 namer = namer & "," & i6 + 1 & "-" & i7

 namer = namer & "," & i7 + 1 & "-" & i8

 namer = namer & "," & i8 + 1 & "-" & i9

 namer = namer & "," & i9 + 1 & "-" & i10

 namer = namer & "," & i10 + 1 & "-" & NumberofFactors

 Call GetScore

Next

Next

Next

Next

Next

Next

Next

Next

Next

Next

End Sub

Sub GetScore()

TaBler = "Groupings"

 SQL = "select index2, sum(polcounts) as polcountsT, sum(exposures) as exposuresT,"

 SQL = SQL & " sum(losses) as lossesT, sum(lossesSquared) as lossesSquaredT"

 SQL = SQL & " into groupings from standard group by index2"

 dber.Execute (SQL)

SQL = "select * into Work1 from " & TaBler

 dber.Execute (SQL)

 Dim cols As New Collection

cols.Add Item:="AA", Key:="1"

cols.Add Item:="BB", Key:="2"

cols.Add Item:="CC", Key:="3"

cols.Add Item:="DD", Key:="4"

cols.Add Item:="EE", Key:="5"

cols.Add Item:="FF", Key:="6"

cols.Add Item:="GG", Key:="7"

cols.Add Item:="HH", Key:="8"

cols.Add Item:="II", Key:="9"

For Each Column In cols

 SQL = "alter table Work1"

 SQL = SQL & " add " & Column & " double "

 dber.Execute (SQL)

Next

 SQL = "update work1 set AA = PolCountsT - 1"

dber.Execute (SQL)

 SQL = "update work1 set BB = LossesT*LossesT/ExposuresT"

dber.Execute (SQL)

 SQL = "update work1 set DD = 1"

dber.Execute (SQL)

 SQL = "update work1 set EE = ExposuresT*ExposuresT"

dber.Execute (SQL)

 SQL = "select sum(ExposuresT) as E, sum(LossesT) as L, sum(LossesSquaredT) as C"

 SQL = SQL & ", sum(DD) as DDsm, sum(EE) as EEsm, "

' Set V

 SQL = SQL & " (1/sum(AA))*(sum(LossesSquaredT)- sum(BB)) as v"

 SQL = SQL & " into Work2 from Work1"

dber.Execute (SQL)

 SQL = "update work1, work2 set work1.CC = work1.ExposuresT"

 SQL = SQL & "*(work1.LossesT/work1.ExposuresT - work2.L/work2.E)"

 SQL = SQL & "*(work1.LossesT/work1.ExposuresT - work2.L/work2.E)"

'The last line is to square the parenthetic expression

dber.Execute (SQL)

 SQL = "Alter table work2 add CCsm double"

dber.Execute (SQL)

 SQL = "select sum(work1.CC) As CCsm into work3 from work1"

dber.Execute (SQL)

 SQL = "Alter table work2 add a double"

dber.Execute (SQL)

' "a" is the name of the field

 SQL = "update work2, work3 "

 SQL = SQL & " set work2.a="

 SQL = SQL & "(work3.CCsm-work2.v*(work2.DDsm-1))"

 SQL = SQL & "/(work2.E-(1/work2.E)*work2.EEsm)"

dber.Execute (SQL)

 SQL = "select v/a as k into work4 from work2"

dber.Execute (SQL)

 SQL = "update work1, work4 set work1.ff = work1.ExposuresT/(work1.ExposuresT + work4.k)"

dber.Execute (SQL)

 SQL = "update work1, work2 set work1.ff = 0 where work2.a < 0"

dber.Execute (SQL)

 SQL = "select sum(lossesT)/sum(exposuresT) as U into work5 from work1"

dber.Execute (SQL)

 SQL = "update work1, work5 set work1.hh= work1.ff*work1.LossesT/work1.ExposuresT "

 SQL = SQL & " + (1-work1.ff) * work5.u"

dber.Execute (SQL)

 SQL = "update work1, work5 set work1.ii = work1.ExposuresT * "

 SQL = SQL & "(work1.hh - work5.u) * (work1.hh - work5.u)"

dber.Execute (SQL)

 SQL = "select sum(LossesSquaredT)/sum(ExposuresT) - (sum(LossesT)/sum(ExposuresT))*(sum(LossesT)/sum(ExposuresT)) "

 SQL = SQL & " as const into Work6 from work1"

dber.Execute (SQL)

 SQL = "select sum(ii)/sum(ExposuresT) as Score into Results from work1"

dber.Execute (SQL)

 SQL = "update Results, work6 set Results.score = Results.score / work6.const"

dber.Execute (SQL)

 SQL = "Alter table Results add title text"

dber.Execute (SQL)

 SQL = "update results set title = '" & namer & "'"

dber.Execute (SQL)

 SQL = "insert into iterations select * from results"

dber.Execute (SQL)

For i = 1 To 6

 SQL = "drop table work" & i

dber.Execute (SQL)

Next i

 SQL = "drop table Results"

dber.Execute (SQL)

 SQL = "drop table " & TaBler

dber.Execute (SQL)

End Sub

APPENDIX E (Simulation Computer Program – This is the program that generated the data for Section 4.)

Note. This program is not necessary to perform the analysis. It is provided for those who would like to see the simulation program.

Below are the steps to running the program, followed by the Program:

1) Install the program in Appendix C, but do not place any data into Access.

2) Make sure that you make Modification B, setting “NumberofFactors” equal to 4.

3) Paste this program, Appendix D, below the code from Appendix C. (Make sure that you paste this program in the same module as the program from Appendix C; otherwise is will not run.)

4) Make modification C within the program.

5) Run the program by placing your cursor within the subroutine called “PerformRandomAnalysis,” and click Run -> Run Sub/User Form.

6) Wait for the message box that says “Completed”.

7) Open the Microsoft Access Database and check out the table “Answers” and “Results Summary.”

8) If you wish to compare versus the “Hypothesis Testing” method, use the data outputted to Excel.

The program is below:

Sub PerformRandomDataAnalysis()

'MODIFICATION C: CHANGE THE NAME OF THE DATABASE.

 Set dber = OpenDatabase("C:\Documents and Settings\Benjamin Turner\My Documents\Turner Score\sept1a.mdb")

countExcel = 2

 SQL = "create table Answers (Title text, Score double, Attempt integer)"

dber.Execute (SQL)

'answers2h

 SQL = "create table Answers2h (Title text, Score double, Attempt integer)"

dber.Execute (SQL)

'end answers2h

 Sheets.Add

 Range("A1").Select

 ActiveCell.FormulaR1C1 = "Attempt"

 Range("B1").Select

 ActiveCell.FormulaR1C1 = "Group"

 Range("C1").Select

 ActiveCell.FormulaR1C1 = "Count"

 Range("D1").Select

 ActiveCell.FormulaR1C1 = "Exposures"

 Range("E1").Select

 ActiveCell.FormulaR1C1 = "Losses"

 Range("F1").Select

 ActiveCell.FormulaR1C1 = "LossesSquared"

 Range("G1").Select

 ActiveCell.FormulaR1C1 = "Variance"

 Range("H1").Select

 ActiveCell.FormulaR1C1 = "Sqrt"

 Range("I1").Select

 ActiveCell.FormulaR1C1 = "E(x)"

 Range("J1").Select

 ActiveCell.FormulaR1C1 = "Z"

 Range("L1").Select

 ActiveCell.FormulaR1C1 = "Normal"

 Range("M1").Select

 ActiveCell.FormulaR1C1 = "Z Test"

For iter1 = 1 To 100

Call randomNumbers

Call PerformScoreAnalysis

'close out of this iteration.

 SQL = "drop table Data"

dber.Execute (SQL)

 SQL = "drop table Standard"

dber.Execute (SQL)

 SQL = "insert into answers"

 SQL = SQL & " select * from iterations"

 SQL = SQL & " where score in (select max(score) from iterations)"

dber.Execute (SQL)

 SQL = " update answers set attempt = " & iter1 & " where attempt is null"

dber.Execute (SQL)

'answers2h

 SQL = "insert into answers2h"

 SQL = SQL & " select * from iterations"

 SQL = SQL & " where score in (select max(score) from iterations)"

dber.Execute (SQL)

 SQL = "insert into answers2h "

 SQL = SQL & " SELECT *"

 SQL = SQL & " FROM iterations"

 SQL = SQL & " WHERE score in (select max(score) from iterations"

 SQL = SQL & " where score not in (select max(score) from iterations));"

dber.Execute (SQL)

 SQL = " update answers2h set attempt = " & iter1 & " where attempt is null"

dber.Execute (SQL)

'end answers2h

 SQL = "drop table iterations"

dber.Execute (SQL)

'end iteration

Next iter1

 SQL = "SELECT title, count(title) as total"

 SQL = SQL & " into ResultsSummary FROM Answers"

 SQL = SQL & " group by title"

dber.Execute (SQL)

MsgBox "Completed"

End Sub

Sub randomNumbers()

 SQL = "create table Data (Index1 long, polcounts long, Exposures long, Losses double, LossesSquared double)"

 dber.Execute (SQL)

 Deductible = 5000

 Limit = 100000

 NumberEquals = 1000

 Alpha = 10

 moder = 1

Index1 = 1

 P = 0.08

 Beta = 900 * moder

 NumberToGenerate = Excel.WorksheetFunction.Round(NumberEquals * 1.14, 0)

 Call randomGenerate

Index1 = 2

 P = 0.09

 Beta = 1000 * moder

 NumberToGenerate = NumberEquals

 Call randomGenerate

Index1 = 3

 P = 0.09

 Beta = 1000 * moder

 NumberToGenerate = Excel.WorksheetFunction.Round(NumberEquals * 0.96, 0)

 Call randomGenerate

Index1 = 4

 P = 0.1

 Beta = 1100 * moder

 NumberToGenerate = Excel.WorksheetFunction.Round(NumberEquals * 1.06, 0)

 Call randomGenerate

'Index1 = 5

' P = 0.08

' Beta = 1100 * moder

' NumberToGenerate = NumberEquals

' Call randomGenerate

'

'Index1 = 6

' P = 0.08

' Beta = 1100 * moder

' NumberToGenerate = NumberEquals

' Call randomGenerate

'

'Index1 = 7

' P = 0.08

' Beta = 1100 * moder

' NumberToGenerate = NumberEquals

' Call randomGenerate

'

'Index1 = 8

' P = 0.08

' Beta = 1100 * moder

' NumberToGenerate = NumberEquals

' Call randomGenerate

'

'Index1 = 9

' P = 0.13

' Beta = 1400 * moder

' NumberToGenerate = NumberEquals

' Call randomGenerate

End Sub

Sub randomGenerate()

 'random process

 Exposures = 0

 polcounts = 0

 Losses = 0

 LossesSquared = 0

For i = 1 To NumberToGenerate

If i < 0.43 * NumberToGenerate + 0.1 * Rnd() * NumberToGenerate Then

 b = Rnd()

 If b < P Then

 Frequency = 1

 Else: Frequency = 0

 End If

 a = Rnd()

 Loss = Excel.WorksheetFunction.GammaInv(a, Alpha, Beta)

 Loss = Frequency * Excel.WorksheetFunction.Round(Loss, 0)

 If Loss < Deductible Then

 Loss = 0

 End If

 If Loss > Limit Then

 Loss = Limit

 End If

 LossSquare = Loss ^ 2

 Losses = Losses + Loss

 LossesSquared = LossesSquared + LossSquare

 Exposures = Exposures + 1

 polcounts = polcounts + 1

Else

 b = Rnd()

 If b < P Then

 Frequency = 1

 Else: Frequency = 0

 End If

 a = Rnd()

 Loss = Excel.WorksheetFunction.GammaInv(a, Alpha, Beta)

 Loss = Frequency * Excel.WorksheetFunction.Round(Loss, 0)

 If Loss < Deductible Then

 Loss = 0

 End If

 If Loss > Limit Then

 Loss = Limit

 End If

 LossSquare = Loss ^ 2

 Losses = Losses + Loss

 LossesSquared = LossesSquared + LossSquare

 Exposures = Exposures + 1

 polcounts = polcounts + 1

 b = Rnd()

 If b < P Then

 Frequency = 1

 Else: Frequency = 0

 End If

 a = Rnd()

 Loss = Excel.WorksheetFunction.GammaInv(a, Alpha, Beta)

 Loss = Frequency * Excel.WorksheetFunction.Round(Loss, 0)

 If Loss < Deductible Then

 Loss = 0

 End If

 If Loss > Limit Then

 Loss = Limit

 End If

 LossSquare = Loss ^ 2

 Losses = Losses + Loss

 LossesSquared = LossesSquared + LossSquare

 Exposures = Exposures + 1

End If

Next

 SQL = "insert into data (index1, polcounts, exposures, losses, LossesSquared) values ("

 SQL = SQL & Index1 & "," & polcounts & "," & Exposures & "," & Losses & "," & LossesSquared & ")"

 dber.Execute (SQL)

'start excel output -- this is so you can see the numbers generated.

countExcel = countExcel + 1

Range("a" & countExcel).Value = iter1

Range("b" & countExcel).Value = Index1

Range("c" & countExcel).Value = polcounts

Range("d" & countExcel).Value = Exposures

Range("e" & countExcel).Value = Losses

Range("f" & countExcel).Value = LossesSquared

Range("g" & countExcel).Value = "=RC[-1]/RC[-3]-(RC[-2]/RC[-3])^2"

Range("h" & countExcel).Value = "=IF(R[1]C[-6]>RC[-6],SQRT(RC[-1]/RC[-4]+R[1]C[-1]/R[1]C[-4]),"""")"

Range("i" & countExcel).Value = "=RC[-4]/RC[-5]"

Range("j" & countExcel).Value = "=IF(R[1]C[-8]>RC[-8],(RC[-1]-R[1]C[-1])/RC[-2],"""")"

Range("k" & countExcel).Value = "=IF(R[1]C[-9]>RC[-9],NORMSDIST(RC[-1]),"""")"

Range("l" & countExcel).Value = "=IF(R[1]C[-10]>RC[-10],IF(RC[-1]>0.5,1-RC[-1],RC[-1]),"""")"

Range("m" & countExcel).Value = "=IF(R[1]C[-11]>RC[-11],IF(RC[-1]<0.05,""Significant"",""""),"""")"

'end excel output

 'end random process

End Sub

REFERENCES

[1] Richard G. Woll, “A Study of Risk Assessment,” Proceedings of the Casualty Actuarial Society, Casualty Actuarial Society (1979) Vol. LXVI at Page 84 (Casualty Actuarial Society: Arlington, Virginia), See Http://www.casact.org/pubs/proceed/proceed79/index.htm
[2] R.J. Finger, “Risk Classification,” Foundations of Casualty Actuarial Science (Fourth Edition) Pages 308-318 (Casualty Actuarial Society: Arlington, Virginia), See Http://www.casact.org/admissions/syllabus/2003/ch6.pdf
[3] Stuart A Klugman, Harry H. Panjer, Gordon E. Willmot, Loss Models: From Data to Decisions Pages 464-471; (Wiley-Interscience Publication, John Wiley & Sons, Inc. 1998)

[4] Romel G. Salam, “Reinventing Risk Classification--A Set Theory Approach,” Ratemaking Call Papers, Casualty Actuarial Society (2002.) See Http://www.casact.org/pubs/forum/02wforum/02wftoc.htm
� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

{1}

{2}

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Excel.Chart.8 \s ���

� EMBED Excel.Sheet.8 ���

1,2-3,4

.144%

1,2,3,4

.122%

Plan

Score

� EMBED Equation.3 ���

� Benjamin_Turner@hotmail.com, (In order to avoid my filter, the subject must contain the word “actuary”)

� When credibility is low, this method yields a negative value, which practitioners are advised to set to zero. This aspect of the method is useful because it allows for a balance between credibility and explanatory power. When credibility is low it will be set to zero, at which point explanatory power, as measured by the variance of the credibility-weighted means, will also be zero.

� This will always denote the count of the policies.

� For each policy the losses are squared and then divided by the exposures of that policy. The results are summed up by level.

� Note that a separate data run is not necessary. If the data contains the field called “LossesSquared,” the levels can be consolidated or divided at will, and credibility can be recalculated.

� Note that Credibility for Class 1 and Class 4 is higher in the consolidated plan even though the number of exposures for these Classes is the same.

� Some may be concerned that Score is such a low percentage, but this evinces the importance of insurance. If a class plan could yield a Score of 100%, then the future would be entirely predictable, and insurance would be unnecessary.

� Salam suggested using his method on frequency where frequency was Poisson and using a particular formula proved by him. The example of this paper is a pure premium, so the Standard Normal test is used.

� Salam suggested using his method on frequency where frequency was Poisson and using a particular formula proved by him. For this paper losses were tested using the standard hypothesis testing formula described above. Z > 1.96 was used to test for significance.

� If the resulting rank order produces results that are out of line with business or regulatory constraints, a deviation from the accepted sort is warranted. The levels are placed in the order that would be acceptable from a regulatory or business standpoint. This will produce suboptimal results, but will produce the best results given the “constraints.” For example, in Table 6.3.1, the level “Rural, Less than 10 Miles, and Not Owner Operated” has a lot of losses per exposure. It may be that everyone believes this is a fluke and considers this level to be a good risk. If it would be politically impossible to put this level into a risky underwriting class, the actuary may need to arbitrarily place this row higher up in the table. In the Simple Example, this step was skipped altogether, because it was understood that the risk was increasing as the level increased.

� “^2” means “squared”

[image: image28.wmf]Variance

Total

Variance

Credible

Explained

=

Score

[image: image29.wmf][image: image30.wmf]

)

Exposures

ij

(

)/

Losses

ij

(

=

ij

ij

å

å

BookMean

[image: image31.wmf]2

^

*

)

(

i

i

i

i

i

i

Exposures

Losses

Exposures

Losses

Exposures

å

å

-

=

W

[image: image32.wmf](

)

^2)

[BookMean]

(Exposures

)

red

LossesSqua

(

^2

lassMean

Cred.Wtd.C

BookMean

Exposures

i

i

i

i

i

´

-

-

´

=

å

å

Score

[image: image33.wmf])}

Exposures

^2

Losses

(

{(C

*

}

1)

nts

(PolicyCou

1

{

i

i

i

å

-

-

å

=

V

[image: image34.wmf](

)

Normal

Standard

~

Deviation

Standard

Means

of

Difference

B

B

A

A

B

A

=

+

-

=

Exposures

Variance

Exposures

Variance

ClassMean

ClassMean

Z

[image: image35.wmf]Constant

^2

Exposures

 /

Losses

-

BookMean

(

*

^2

)

ty

(Credibili

Exposures

i

)

i

i

i

i

å

´

=

Score

[image: image36.wmf]Constant

^2

)

ClassMean

-

BookMean

(

*

^2

)

ty

(Credibili

Exposures

i

i

i

i

å

´

=

Score

[image: image37.wmf](

)

^2)

[BookMean]

(Exposures

)

red

LossesSqua

(

^2

BookMean}

*

)

y

Credibilit

-

(1

Exposures

 /

Losses

*

y

Credibilit

{

BookMean

Exposures

i

i

i

i

i

i

i

i

´

-

+

-

´

=

å

å

Score

[image: image38.wmf]^2)

[BookMean]

(Exposures

)

red

LossesSqua

(

^2

Exposures

 /

Losses

-

BookMean

(

*

^2

)

ty

(Credibili

Exposures

i

i

i

)

i

i

i

i

´

-

´

=

å

å

Score

[image: image39.wmf]Chart 3.2: Credibility-weighted Class Means

750

850

950

1050

1150

1-2,3-4

 .092%

1,2,3-4

 .104%

1,2-4

 .107%

1-2,3,4

 .110%

1-3,4

 .118%

1,2,3,4

 .122%

1,2-3,4

 .144%

1-4

 .000%

Plan

Score

[image: image40.wmf]Chart 3.1: Credibility-

weighted Class Means

750

850

950

1050

1150

[image: image41.wmf]K

Exposures

Exposures

y

Credibilit

+

=

i

i

i

[image: image42.wmf]i

i

i

i

Exposures

^2

Exposures

)

Exposures

(

1)

-

Classes

of

(Number

*

V

)

W

(

å

å

-

å

-

å

=

A

_1124214712.unknown

_1124215056.unknown

_1124215199.unknown

_1124392782.xls
Chart1

		1

		2

		2

		3

		3

		3

		4

		4

		5

		5

		5

		6

		6

		7

		7

		7

		7

		8

		8

		8

1-2,3-4
 .092%

1,2,3-4
 .104%

1,2-4
 .107%

1-2,3,4
 .110%

1-3,4
 .118%

1,2,3,4
 .122%

1,2-3,4
 .144%

1-4
 .000%

Plan
Score

Chart 3.2: Credibility-weighted Class Means

Chart 3.2: Credibility-weighted Class Means

927

835.1701282849

1024.3443668371

784.8787876228

921.0803003364

1023.6488766863

768.6355006801

996.7045438494

834.4430049222

931.7479923937

1084.134394499

858.1262423831

1103.9352377967

783.0054901797

920.9883850724

931.6949768714

1082.3445653511

772.0279838132

925.9906202132

1094.8571045593

Sheet1

								index2		polcountsT		exposuresT		lossesT		lossesSquaredT		AA		BB		CC		DD		EE		FF		GG		HH		II

				1		1-4		1																								927

				2		1		1		1140		1741		1265754		12882705642		1139		920237328.268811		69911815.0334803		1		3031081		0.7923623019				768.6355006801		43893295.3487993

				2		2-4		2		3020		4579		4595521		54094925771		3019		4612101607.65254		26581452.2763243		1		20967241		0.9093929272				996.7045438494		21982741.3084998

				3		1-2		1		2140		3255		2655792		29039721934		2139		2166891289.48203		40470900.51535		1		10595025		0.8272854419				835.1701282849		27698332.9768397

				3		3-4		2		2020		3065		3205483		37937909479		2019		3352404979.86591		42979700.2210323		1		9394225		0.8185218461				1024.3443668371		28795454.130591

		1-3,4		4		1-3		1		3100		4711		4015227		44172417085		3099		3422213513.37911		26575803.8821215		1		22193521		0.9225464044				858.1262423831		22618450.5761959

		1-3,4		4		4		2		1060		1609		1846048		22805214328		1059		2118019402.30205		77811443.1874916		1		2588881		0.8026866525				1103.9352377967		50134368.9810099

		1,2,3-4		5		1		1		1140		1741		1265754		12882705642		1139		920237328.268811		69911815.0334803		1		3031081		0.7113039045				784.8787876228		35372109.646773

		1,2,3-4		5		2		2		1000		1514		1390038		16157016292		999		1276225654.85073		130779.119379665		1		2292196		0.6817922894				921.0803003364		60791.4607834975

		1,2,3-4		5		3-4		3		2020		3065		3205483		37937909479		2019		3352404979.86591		42979700.2210323		1		9394225		0.8126486495				1023.6488766863		28383700.6566839

		1,2-3,4		6		1		1		1140		1741		1265754		12882705642		1139		920237328.268811		69911815.0334803		1		3031081		0.775432893				772.0279838132		42037706.7289426

		1,2-3,4		6		2-3		2		1960		2970		2749473		31289711443		1959		2545320463.88182		8267.620157641		1		8820900		0.8548736772				925.9906202132		6042.0512525088

		1,2-3,4		6		4		3		1060		1609		1846048		22805214328		1059		2118019402.30205		77811443.1874916		1		2588881		0.7614054025				1094.8571045593		45110264.9941868

		1-2,3,4		7		1-2		1		2140		3255		2655792		29039721934		2139		2166891289.48203		40470900.51535		1		10595025		0.8338064113				834.4430049222		28136710.902767

		1-2,3,4		7		3		2		960		1456		1359435		15132695151		959		1269274395.07212		57074.5418017328		1		2119936		0.6917574943				931.7479923937		27311.7909342403

		1-2,3,4		7		4		3		1060		1609		1846048		22805214328		1059		2118019402.30205		77811443.1874916		1		2588881		0.7126457221				1084.134394499		39517624.9679653

		1,2,3,4		8		1		1		1140		1741		1265754		12882705642		1139		920237328.268811		69911815.0334803		1		3031081		0.7206521656				783.0054901797		36307970.1295788

		1,2,3,4		8		2		2		1000		1514		1390038		16157016292		999		1276225654.85073		130779.119379665		1		2292196		0.6916819497				920.9883850724		62567.8588795366

		1,2,3,4		8		3		3		960		1456		1359435		15132695151		959		1269274395.07212		57074.5418017328		1		2119936		0.6832898518				931.6949768714		26647.2486788184

		1,2,3,4		8		4		4		1060		1609		1846048		22805214328		1059		2118019402.30205		77811443.1874916		1		2588881		0.7045067818				1082.3445653511		38620138.4731815

Sheet2

						Class		Chart 3.2: Credibility-weighted Class Means						Chart 3.2: Credibility-weighted Class Means

		1-4		1-4		1		927		0.000%		1		927

		1-2,3-4		1-2		3		835		0.092%		2		835

		1-2,3-4		3-4		3		1024		0.092%		2		1024

		1,2,3-4		1		5		785		0.104%		3		785

		1,2,3-4		2		5		921		0.104%		3		921

		1,2,3-4		3-4		5		1024		0.104%		3		1024

		1,2-4		1		2		769		0.107%		4		769

		1,2-4		2-4		2		997		0.107%		4		997

		1-2,3,4		1-2		7		834		0.110%		5		834

		1-2,3,4		3		7		932		0.110%		5		932

		1-2,3,4		4		7		1084		0.110%		5		1084

		1-3,4		1-3		4		858		0.118%		6		858

		1-3,4		4		4		1104		0.118%		6		1104

		1,2,3,4		1		8		783		0.122%		7		783

		1,2,3,4		2		8		921		0.122%		7		921

		1,2,3,4		3		8		932		0.122%		7		932

		1,2,3,4		4		8		1082		0.122%		7		1082

		1,2-3,4		1		6		772		0.142%		8		772

		1,2-3,4		2-3		6		926		0.142%		8		926

		1,2-3,4		4		6		1095		0.142%		8		1095

														769

				1-2-3-4 (No Segmentation)		0.00%

				1-1, 2-4		0.11%

				1-2, 3-4		0.09%

				1-3, 4-4		0.12%

				1-1, 2-2, 3-4		0.10%

				1-1, 2-3, 4-4		0.14%

				1-2, 3-3, 4-4		0.11%

				1, 2, 3, 4		0.12%

Sheet2

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

1-2,3-4
 .092%

1,2,3-4
 .104%

1,2-4
 .107%

1-2,3,4
 .110%

1-3,4
 .118%

1,2,3,4
 .122%

1,2-3,4
 .144%

1-4
 .000%

Plan
Score

Chart 3.2: Credibility-weighted Class Means

Chart 3.2: Credibility-weighted Class Means

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Sheet3

		

_1124430555.unknown

_1137308027.unknown

_1124392540.xls
Chart1

		1

		1

		1

		1

		2

		2

		2

Credibility-weighted Class Means

Chart 3.1: Credibility-weighted Class Means

783

921

932

1082

772

926

1095

Sheet1

		Class		Avg. Loss		Avg. Loss per Class		Credibility-weighted Avg.		Difference		Squared		Multiplied by Exposures

		1		927		727		783		-144		20,855		36,307,970

		2		927		918		921		-6		41		62,568

		3		927		934		932		4		18		26,647

		4		927		1,147		1,082		155		24,003		38,620,138

		Sum												75,017,324

		Class		Avg. Loss		Avg. Loss per Class		Credibility-weighted Avg.		Difference		Squared		Multiplied by Exposures

		1		927		727		772		-155		24,146		42,037,707

		3-Feb		927		926		926		-1		2		6,042

		4		927		1,147		1,095		167		28,036		45,110,265

		Sum												87,154,014

				Class Plan		Credibility-weighted Class Means

				1		783

				1		921

				1		932

				1		1,082

				2		772

				2		926

				2		1,095

Sheet1

		0

		0

		0

		0

		0

		0

		0

Credibility-weighted Class Means

0

0

0

0

0

0

0

Sheet2

		

1,2,3,4

1,2-3,4

1,2,3,4

1,2-3,4

Credibility-weighted Class Means

Credibility-weighted Class Means

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Sheet3

		

_1124215172.unknown

_1124215187.unknown

_1124215105.unknown

_1124214867.unknown

_1124214914.unknown

_1124214735.unknown

_1124213627.unknown

_1124214400.unknown

_1124214700.unknown

_1124214302.unknown

_1124213657.unknown

_1124201324.unknown

_1123762207.unknown

