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Abstract 

In this paper, we present and discuss the dynamic time varying version of trend 

estimation. These models oRen underlie the analytical functions that are used in practice 

by actuaries and economists. We also show how one of the most frequently used 

soflwares (the SAS systems) by practitioners and researchers can be used to fit the 

dynamics to data. An alternate formulation of the Ordinary Least Squares (OLS) is also 

given. Using this technique, we analyze occupational injury and illness data from 12 

countries. The results for most countries have shown an average decline. 
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I. In troduct ion  

In this paper, we estimate trends in occupational injuries and illnesses for 12 

countries using the dynamics as represented by the ordinary differential equations 

(ODEs) 1. We show that the most commonly employed models in practice are analytical 

solutions of  the basic differential equations. Differential equations are used in many 

applications in real life such as engineering. For the cases of  the linear and exponential 

trend models, we demonstrate that these models yield the same results. 

To provide further insight into the modeling and estimation of  trends, we present and 

discuss in some detail the relationship between the continuous time dynamics of the time 

series variable (injuries) and their analytical solutions. In other words, we want to 

highlight the link between the continuous time dynamics and their solutions, which are 

often used in regression analysis. Dynamic estimation, i.e., fitting models that are 

represented by equations that describe the time evolution of  the economic/actuarial 

variables, is also performed (Ussif, Sandal and Steinshamn, 2002a, b). In areas such as 

oceanography and meteorology such dynamic parameter estimation technique is called 

data assimilation (Evensen, Dee and Schroeter, 1998, Matear, 1995). We use the SAS 

dynamic estimation capability (see the SAS Institute's online documentation) which is 

not provided by most software packages (see also Ussif et al., 2002 a, b). The goal is to 

point out that such a capability exists and can be used to perform more advanced dynamic 

systems estimation. This can be used to fit nonlinear dynamic systems that arise from the 

relaxation of  the linearity assumptions often made in economics. Pesaran and Potter 

t Please note the differences in the number of observations available for each country. This should however 
note be a problem in this application. 
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(1992) in their introductory notes on nonlinear dynamics and econometrics argue that the 

rich dynamics in nonlinear models in economics be explored. 

The structure O f this paper is as follows. In the next section, we discuss the dynamic 

representation of  the models. This is followed by the estimation of  the trend coefficients 

using SAS soRware and a discussion of  the results. A technical note on the adjoint 

method is also presented. We then summarize and conclude the paper. 

Dynamic representation of the trend models 

In this section, we show how the purely linear and exponential functions of  time that 

are being used for trend estimation can be derived as solutions of  their corresponding 

continuous time dynamic equations, i.e., equations used to describe how systems change 

or evolve over time. This is important because understanding the relationships can be 

very useful to economists and researchers. It is often the case that reality necessitates the 

relaxation of  the linearity assumptions in economics giving rise to nonlinear dynamic 

systems. Analytical solutions of  these systems are in general unattainable for some 

relatively more complicated dynamics and the only method of  estimation may be the 

dynamic approach. The dynamic capability is quite rare in most soft-ware packages in part 

because conventional economic analysis has in the past focused on simpler models. 

Linear trend function: In the dynamic continuous time formulation, it is assumed that 

the absolute change with respect to time of  the series is equal to a constant. That is, the 

average growth is constant during the period. Hence, the dynamics are given by 

-•t=p, y(O)=a (1) 
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where a is the initial value of  the series. This is equivalent to assuming that d 2 y  = 0 
dt 2 ' 

where dy(O) = fl ,  y(O)= a are the initial conditions. It is quite easy to see that this 
dt 

equation has the solution 

y,  = a + p t  (2) 

which is the linear trend function in time. Thus, we can view the estimation of  the 

parameters in (1) as fitting the solution (2) to a discrete data set. Note that y( t )  and y ,  

are used interchangeably in this case. 

Exponential trend function: The dynamics in this case can be described by 

~ t  = f l  y ,  y (O )=y  o =e ~ (3) 

that is, the percent growth rate is equal to a constant or that the absolute change is 

proportional to the current value o f  the series. We denote by Yo the initial condition for 

the problem. It can be seen by inspection that this equation has the solution 

y, = exp(ct + p t) .  (4) 
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This is the familiar exponential trend function of  time used in estimating trends and 

growth rates. Its advantage is that the estimated coefficient is the average growth rate. 

The linear and exponential functions of  time are often used in economics, business, and 

finance to forecast trends. Recent advances and progress in most statistical software 

packages allow us to fit nonlinear regression equations using nonlinear least squares 

techniques without having to use, for example, logarithmic transformation. 

The SAS software has the additional capability of  fitting dynamic systems to data 

without requiring that analytical or closed form solutions be available. This is important 

and very useful because for some relatively complicated dynamics, closed form solutions 

are often not attainable. Hence, dynamic estimation becomes the only option available. In 

dynamic estimation, the parameters of  interest are estimated by fitting the dynamic 

equations rather than their solutions. 

To illustrate the use of  the dynamic estimation capability of  SAS, we fit (see sample 

program) the dynamics represented by equation (3) and the results are compared with the 

results of  the purely exponential function in Table I. It can be observed that the results 

are consistent with those obtained using the log transformed function (shown in the log- 

linear column of  Table 1). The agreement is quite impressive both qualitatively and 

quantitatively. The dynamic estimation was performed using the procedure "proc model" 

in SAS. Included is a sample SAS program for interested readers. In static dynamic 

option, the initial data point is used as the initial condition of  the differential equation, 

while in the dynamic option; the initial condition(s) is estimated as an additional 

parameter. The nice thing about this procedure is that the dynamics are written as they are 

seen in the model equations. It is very important to understand the difference between the 
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static and dynamic options when fitting dynamic models to data. For further details, 

readers are referred to the SAS manual (www.sasonline.com). 
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Technical note 

It is the goal in this note to describe an alternative technique for estimating dynamic 

systems. The method in this section is much used in areas such as meteorology, 

oceanography, etc. (Evensen et al., 1998; Thacker, 1989). It has recently been applied to 

resource economics (see Ussif et al., 2002a-b). The approach is a data assimilation 

technique called the Adjoint Method (AM). In the AM, a loss or penalty function 

measuring the distance between the model solution and the observations is minimized. 

This is formulated in the following sections. 

The Adjoint Method 

The formulation of  the adjoint method is as follows. We minimize the penalty 

T - I  

fimction J=~ '~ (y ,  _ y ~ ) Z  subject to the dynamics in (3). Thus the statement of the 
t=O 

problem is 

T - !  

min,,, a ~-~ (y, _yO~,)2 (5) 
trio 

subject to 

~ t = p y ,  y(O)=yo =e a 

where y,, y ~  are the model solution and the observed value respectively and Yo is the 

initial condition. The model solution is the numerical approximation often obtained by 
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finite difference methods (Ussif et al., 2002b, Gerald and Wheatley, 1992). Note that, in 

determining the best fit to the data we estimate the initial condition as a parameter. It is 

important to note that the static option in SAS uses the first data point as the initial 

condition and thus does not estimate it. The problem in this example is trivial because the 

dynamics are linear. It becomes more complicated if  the dynamics are nonlinear and 

coupled, that is, a simultaneous system of  differential equations that are linked together 

through the variables (see Ussif et al., 2002b). 

The constrained optimization problem can be solved by using the calculus of  variations 

or optimal control theory. By constructing the continuous form of  the Lagrangian L using 

/a and ~. as the Lagrange multipliers, we have, 

L [y, yo, P] = - I  + ~ (y (o)  - yo) + J ~ ( %  - P y)dt. 
o d t  

(A6) 

The constrained problem (5) is now transformed into the unconstrained optimization 

problem of  finding the extreme values of  L[y, Y0, P] in (6). 

Using the calculus of  variations, we can derive the adjoint equation. Detailed derivation 

Of the adjoint equation is not given in this paper since the goal here is to present and 

formulate the problem. However, interested readers are referred to (Ussif et al., 2002 a-b 

or Evensen et al., 1998). The first order conditions are 

OL OL=O --=o, (7) 
a# a,~ 
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0L 
- - = 0 ,  (8) Oy 

Note that differentiating L with respect to /z and 2 give back the initial condition and 

the model dynamics respectively, while differentiating with respect to y results in the so- 

called adjoint equation. 

To make the analysis easier and for consistency with the continuous model dynamics, 

assume we have data continuously, i.e., the time period of  observation or reporting is 

small (e.g. on the scale of  a day or even more frequently), and also, rewriting J = J ,  then 

the Adjoint equation is 

d A = - p A + ( y - y ° ~ ' ) ,  2(T)= 0 (9) 
dt 

(gJ T 
0]~ ~ ydt (10) 

0J 
- - = -  (/2 + ~ t ( 0 ) p ) = -  (1 + p )  ,t (0), ;z = 2 ( 0 ) .  (11) 
~Vo 

The gradients of  the penalty function (10-11) are obtained by differentiating the 

Lagrangian with respect to the independent parameters (y0, P)  and are used together with 

an optimization routine (e.g. the Newton-Raphson method), to fred the minimum of  the 

penalty function. It can be shown that, one can estimate either a directly or its exponent 
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Yo =ea which is by definition the initial condition. We have chosen the latter for 

convenience and also for practical purposes since we may be able to guess the starting 

value from available data. 

Implementation of the Algorithm 

Implementation of the adjoint technique is quite straightforward. The algorithm is 

outlined below 

• Choose the first guess for the disposable or free parameters i.e. the parameters 

that can be tuned in order to minimize the penalty function 

• Integrate the forward model (3) over the time horizon 2 

• Calculate the penalty function 

• Integrate the adjoint equation (9) and calculate the gradients (10-11)3 

• Use an iterative procedure 4 to find the minimum of the penalty function 

For this simple dynamic problem convergence of the iterative procedure to the 

absolute minimum may be possible. However, for more complex problems, i.e., highly 

nonlinear dynamics with many parameters to estimate, multiple extrema may exist and 

convergence to the absolute minimum can be difficult. Note that the problem reduces to 

solving a two point boundary value problem (Equations 3 and 9) and then calculating the 

gradients This makes it possible to calculate the gradients of several parameters 

simultaneously and more accurately compared to when using the finite difference 

methods (Huiskes, 1998). 

z This is usually done numerically since the models are much more complicated than the example used in 
this paper. 
3 See how the adjoint variable enters the gradient relationships in equations AIO-I I. 
4 This requires setting an appropriate convergence criterion for the minimization. Please see Ussif 2002b 
for example. 
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The Error-Covariance  Matrix  

While point estimates are often useful, their utility is greatly enhanced if their error 

bounds are also provided. Statistical tests can be performed and confidence intervals can 

also be constructed. When the errors in the observations are assumed to be normally 

distributed, the uncertainty in the optimal parameters is obtained by analyzing the 

Hessian matrix. The Hessian matrix is the second derivative of the penalty function with 

respect to the parameters. By differentiating J two times with respect to each of the 

parameters the Hessian matrix ( H )  is obtained as 

n= a~a aae#/ 
02J a=J I" 

02) 

The Hessian matrix is symmetric and positive definite and is often called the Fisher 

information matrix in the econometrics literature. Inverting the Hessian matrix gives the 

approximate Variance-Covariance matrix (Greene, 1997; Matear, 1995). Hence, the 

diagonal elements of the Variance-Covariance matrix are the variances, which can be 

used to construct confidence intervals for the parameters. 

The Adjoint Method is an efficient method for the minimization of the penalty 

function. It provides an efficient and reliable way of calculating the gradient(s) of the 

penalty function which allows for the simultaneous estimation of a large number of 

parameters (Huiskes, 1998; Matear, 1995). So called derivative free methods such as the 
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simplex algorithm (Nelder and Mead, 1965) can also be used to optimize the penalty 

function. Other methods of minimizing the penalty function are simulated annealing 

(Gt~ena, 1997; Matear, 1995) and the Markov Chain Monte Carlo technique (Harmon 

and Challenor, 1997). Kruger (1992) stated that, the adjoint method is about 100 times 

faster than simulated annealing. In general, the adjoint method is faster than the other 

methods. 

Conclusions 

This paper has demonstrated the utility of trend estimation using dynamic representation. 

The SAS systems have been used to fit two prototypes to data on occupational injuries 

for 12 countries. The conclusion is that such techniques are equally applicable. However, 

once the analysis becomes more complicated, this approach can be of tremendous help. 
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* S A M P L E  S A S  P R O G R A M  ***************************************** 

DATA REGDATA; 

INPUT YEAR Y; 

DATALINES; 

l 3.21 

2 4.01 

3 3.89 

* Dynamic Estimation Program: Model: dY=f ly ,  y(O)=y o * 
dt 

PROC MODEL DATA=REGDATA; 

PARMS A B;/* MODEL PARAMETERS*/ 

DERT.Y = B *Y;/* DEFINING THE EQUATION*/ 

FIT Y INITIAL=(Y=A) / TIME=YEAR DYNAMIC;/* OPTIONS*/ 

RUN; 
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Table 1. Estimated Coefficients of  the Dynamic Model and Log Linear Function. 

Country Value Value 

Canada 1970-1999 -0.0158(0.0001) -0.0145(0.0001) 

Finland 1976-1997 -0.0404(0.0001) -0.0346(0.0001) 

Japan 1990-1999 -0.0443(0.0001) -0.0440(0.0001) 

! ~ ,~ ~6~ ~' ~ ~"~' ~ ~: ~ . . . . .  ~ " ~ '  !~ ~ . . . .  ' ' ~ i~,~ ...... 

Norway 1975-1999 0.0281(0.0002) 0.0361(0.0001) 

Switzerland 1984-1998 -0.0293(0.0003) -0.0325(0.0001) 

United States 1978-1999 0.0098 (0.0019) 0.0093(0.0026) 

Table AI: Annual average trend estimates (p-values in parentheses) for 12 countries. ** the estimate for 

Mexico is suspect because, there are only 4 obse~ations with missing values in between'them. Results not 

corrected for serial correlation. 
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