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Abstract 

This paper presents a loss development model in which exposure period 

dependence is fundamental to the structure of the model. The basic idea is that 

an exposure period, such as an accident year or policy year, gives rise to a 

particular distribution of accident date lags, where the accident date lag is the 

time elapsed from the start of the exposure pedod till the accident date. The 

paper shows how to derive the density of the accident date lag from a familiar 

parallelogram diagram. A fairly general theory of development is then presented 

and simplified under certain conditions to arrive at a total development random 

variable whose cumulative distribution is related to the usual percent of ultimate 

development curve. After presenting the theory, the paper tums to practical 

applications. Simulation is used to generate consistent pattems for different 

exposure pedods. A convenient accident period development formula is derived 

and then used to fit and convert factors. The average date of loss approximation 

is generalized. To summarize, this paper will demonstrate that modeling loss 

development with exposure dependent percent of ultimate curves is a 

theoretically sound procedure with many practical uses. 
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I .  INTRODUCTION 

A key step in the usual procedure for modeling a loss development pattern is to 

fit formulas to empirical age-to-age or age-to-ultimate factors. Having a fitted 

formula is useful because it provides an easy way to smooth the bumps found in 

most series of empirical factors. Also, if the fit is to age-to-ultimate factors, the 

formula usually provides a convenient way to interpolate the factors. 

While the fitting is convenient and practical, it can hardly be said to have a 

substantive conceptual foundation. A formula is chosen because it is easy to 

compute and because it nicely fits the age-to-age factors. It is not derived from 

more basic assumptions in the sense that nothing is specifically built in to reflect 

that it is being fitted to data that represent ratios of loss for a particular exposure 

period as of given evaluation ages. 

While a formula serves perfectly well for smoothing, it may not suffice, in and of 

itself, to handle other applications such as tail factor extrapolation, early age 

extrapolation or conversion of the factors from one exposure basis to another. 

Tail factor extrapolation is needed to get age-to-ultimate factors after a fit is 

obtained to age-to-age factors. Yet, an age-to-age factor formula may not 

immediately lead to the extrapolation. To obtain the desired age-to-ultimate 

factors the actuary may have to derive the product of an infinite series, make cut- 

off assumptions, or use a computerized numerical algorithm. 
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In early age extrapolation, the actuary is seeking factors at an evaluation age 

younger than the earliest evaluation age associated with the fitted factors. For 

example, the actuary may have accident year age-to-ultimate factors for 

evaluations at 12, 24, 36... months, yet may need to have factors at 6, 18, 30, 

... months. The problem is that the back extrapolation of a formula fit may or may 

not yield plausible results at earlier ages (i.e. the factor at 6 months). Some 

additional techniques may be needed to get reasonable factors at these ages. 

Finally with regard to conversion, the actuary may have fitted accident year 

factors, but may want to have policy year factors. Yet a good fit to accident year 

factors may not directly lead to a good fit to the corresponding policy year factors. 

Actuaries have usually dealt with this conversion problem by using an average 

date of loss adjustment. Under this adjustment, the development factor for one 

type of exposure period at a given evaluation age is estimated by the 

development factor for the original type of exposure period at an adjusted 

evaluation age. The adjustment is equal to the difference in the 'average dates of 

loss for the different exposure periods. While this adjustment works well at 

mature ages after all exposures are earned, it goes awry at immature evaluation 

ages. 

The conclusion i s that fitting with general formulas is a useful and flexible 

approach that must often be supplemented for extrapolation and conversion 
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applications. The supplemental procedures may not be too difficult to implement. 

So, in the end, from a practical perspective, not too much should be made of the 

need to introduce them. However, it would be more convenient to have a model 

of loss development that would automatically handle extrapolation and 

conversion. Such a model would not start with a formula for age-to-age factors, 

but would instead be based on percent of ultimate or age-to-ultimate curves 

having an explicit dependence on the underlying exposure period. 

Models such as this have been previously proposed. Yet they have not been 

widely adopted. Why? We speculate the reluctance stems from two essential 

areas of concern. First, there may be questions about the theoretical 

underpinnings of such models. Second, there may be doubts about whether the 

proposed models are practical. 

In order to address these concerns, we will present a general, yet accessible, 

conceptual foundation for exposure dependent percent of ultimate models. We 

will start by relating an exposure period, such as an accident year or policy year, 

to an associated distribution of accident date lags. The accident date lag for a 

claim is defined as the length of time from the start of the exposure period to the 

accident date. We will show that the familiar parallelogram or rectangle diagram 

representation of an exposure period can be readily converted into a graph of the 

density of this accident date lag random variable. The cumulative distribution of 

the accident date lag may be identified with the percent of premium earned to 
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date assuming the earning of premium corresponds exactly to the exposure to 

loss. We will argue that under certain conditions the percent of ultimate loss 

development curve may be expressed as the cumulative distribution of the sum 

of the accident date lag random variable plus another random variable that 

summarizes the claims process. The claims process in this context includes the 

delay between the accident date and report date, as well as the changes in the 

valuation of a claim and the time lags between these valuation changes. 

Perhaps the key insight underlying this construction is that exposure dependence 

can be isolated in the accident lag distribution. 

We will then turn to applications. We will use the model to simulate patterns for 

different exposure periods, derive a convenient accident period development 

formula, fit and convert patterns, extend the average date of loss approximation, 

and approximate a converted pattern as the weighted sum of shifted versions of 

the original pattern. In the end we will hope to have shown that exposure 

dependent percent of ultimate models are not only pleasing to the theorist, but 

also useful to the practical actuary. 
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2. EXPOSURE MODELING 

We start by establishing the key concept that an exposure period is defined by a 

distribution of accident date lags, where an accident date lag is the length of time 

from the start of an exposure period until an accident occurs. 

To state this mathematically, define: 

• W = Exposure Random Variable = Accident Date Lag 

= accident date - date of start of exposure period (2.1) 

We identify the cumulative distribution of W with the percentage of exposure 

earned to date and sometimes write: 

Fw(w) = ETDw(w) (2.2) 

The assumption here is that the earning of premium corresponds exactly with 

exposure to accidents so that the percent of premium earned as of a given date 

equals the expected percent of accidents that have occurred by that date. 
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It is easy to define the accident date lag distributions for the most commonly 

encountered exposure periods. For an accident year under the usual uniformity 

assumptions, the exposure random variable is a uniform random variable. 

fAy(W)={10 for0<W<lotherwise (2.3a) 

FAy(W) = { 1 f o r 0 < w < l  
for w > 1 (2.3b) 

The policy year exposure random variable has density that increases linearly for 

one year and then decreases linearly for the second year. 

w f o r 0 < w < l  
fpy(W)= 2 - w  for 1_<w<2 

0 otherwise 

(2.4a) 

-~ for 

Fpy(w) = |(1 1 - ( 2 -  

r 

0 < w < l  

for l < w  < 2 

w_>2 

(2.4b) 
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Though it may appear initially a bit different, this view of an exposure period as 

being synonymous with a distribution of accident date lags is equivalent to the 

standard actuarial approach involving rectangles and parallelograms. It is 

generally straightforward to convert these geometric objects into the density of 

the exposure random variable defined here. The idea is to collapse the 

parallelogram down towards the "x-axis" and then normalize so that the area 

under the curve is unity. 

For example, consider how the policy year parallelogram in Figures 1 can be 

collapsed to yield the policy year density shown in Figure 2. 

Figure 1 

Policy Year Parallelogram 

0.00 0 .25  0 .50  0 .75  1 .00 1.25 1.50 1.75 2.00 

age(yrs) 
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Figure 2 

Policy Year Density 

0.00 0.25 0.50 0.75 1.00 1 .25  1.50 1,75 2.00 
age(yrs) 

Similarly the policy quarter parallelogram in Figures 3 is readily converted to the 

policy quarter density shown in Figure 4. The policy quarter density is typical of 

policy periods: the density starts with an exposure growth triangle, then reaches 

an exposure plateau, and finally ends with an exposure decay triangle 

Figure 3 

Policy Quarter Parallelogram 

0.00 0.25 0.50 0.75 1.00 1.25 

age(yrs) 
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Figure 4 

Policy Quarter Density 

/ 
0.00 0.25 0.50 0.75 

age(yrs) 
1.00 1.25 

To summarize, the accident date lag for an exposure period is a random variable 

that captures differences between different types of exposure periods. The 

density of this random variable may be easily constructed from the parallelogram 

diagrams with which actuaries are familiar. To put it in other words, we start our 

exposure dependent development model by characterizing different exposure 

periods by their Earned to Date functions. 

3. MODELING THE CLAIMS PROCESS 

Next we model the development of a claim after the original accident has 

occurred. We model this development with a series of paired random variables, 

where each pair in the series describes a step in the claims development 

process. Each pair consists of: 
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• a time lag random variable that measures the time since the previous 

step and, 

• an amount change random variable that equals the change in the value of 

the claim at that step. 

After the accident has occurred, the first step in the claim process is that the 

claim is reported. The length of time between the accident date and report date 

is called the report lag. If we are interested in development of case incurred 

losses, the amount change variables will measure changes in the case incurred 

loss. If we are looking at paid development, the amount changes will equal 

payments made a various points in time as defined by the lags. 

To describe this in general mathematical terms, we define: 

• M = Number of steps (3.1) 

• AV(i) = Process lag at the i th step (3.2a) 

= the time between (i-1) st step and the i th step 

(where the 1 st step is the report lag) 

• V(i) = Total lag since the claim occurred = &V(1)+ AV(2)...+ t~V(i) (3.2b) 

• ~A(i) = Change in the amount of a claim at the i t" step (3.3a) 

• A(i) = Claim amount after the i th step = ,~u~(1)+ ~ (2 ) . . .+  ~,( i )  (3.3b) 

Diagrams can be helpful in understanding the definitions of these variables. 

Figure 5 depicts the lag variables in a claim count development model 
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Figure 5 

Count Development as the Sum of 
Exposure Plus Report Lag 

W= V(1)= 
exposure lag report lag 

I¢ - I . ,  . I  
v I ~ v I 

start of accident claim report 
exposure date date 

period 

Figure 6 shows the lag and amount change variables for the claim reporting and 

first revaluation stages of a claim. 

Figure 6 

Report and First Revaluation Stages 

1 AA(2) 

I ~(1) 
W AV(1) &V(2) 

start of accident claim report claim 
exposure date • date revaluation 

pedod date 
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We now use the time lags to define a function, B(t), which is the claim amount 

expressed as a function of the time, t, that has elapsed since the accident. 

t 0 i f t<V(1)  
B(t)= A(i) if V ( i )< t<V( i+ l ) f o r i= l , 2 , . . .M-1  

~.A(M) if V(M)_<t 
(3.4) 

Now we define P(t) as the ratio of the expected value of B(t) over the expected 

ultimate value of B. 

P(t)- E[B(t)] 
E[B(oo)] (3.5) 

While the diagrams can be drawn for as many transitions as necessary, it is 

clear that the final evaluation of E[B(t)] could become fairly messy. One would 

need assumptions on the distribution of the number of revaluations a claim will 

undergo. One would also need assumptions about the distributions of the lags 

and the amount changes. Further, in general, the number of steps, the length of 

the lags, and the amount of the changes might not be independent of one 

another. Rather than try to evaluate all full model in detail, we will first attempt 

to simplify it. 
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As preparation for simplifying the model, we first note that in the general case 

some of the amount change variables could well be negative or even have a 

negative expectation. We have allowed this because we want a model that 

could handle negative development such as can arise from downward reserve 

revaluations, closing of claims without payment, salvage and subrogation, and 

other factors. 

However, if we now restrict the model and assume that all of the amount change 

variables must be non-negative, it will follow that B(t) is an increasing function of 

t and that E[B(t)] is increasing as well. We can therefore conclude that P(t) is an 

increasing function between zero and unity that tends to unity as time 

approaches infinity. Thus P(t) is the cumulative distribution of some random 

variable. We call this random variable the Process Lag and denote it as S. 

Sometimes we may write Fs(t) in place of P(t). Observe that S effectively 

summarizes the amount change and step lag random variables that describe the 

development of claims after their accident dates. It is the existence of this 

single Process Lag that allows us to simplify the model. 

Before going further with our simplified model, we first observe that under these 

definitions the Report Lag (from accident date to report date) is included in the 

Process Lag. We also observe that the Process Lag distribution defined here is 

equivalent to the percent of ultimate loss development pattern for loss on an 
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exposure of infinitesimal duration as given in Robbin and Homer [4] and similar 

functions defined in Brosius [1], Philbrick [3], and Wiser [6]. 

4. EXPOSURE DEPENDENT DEVELOPMENT 

We now add the Accident Date Lag to the Process Lag to obtain the Total Lag 

for exposure period loss development. 

Define: 

• Tw = Total Lag = W+S (4.1) 

We may view T as the difference between the start of the exposure period and 

the date a unit of loss is posted on the books. The term, "unit of loss", is here 

meant to be a general term that could apply to claim counts reported, loss dollars 

incurred, loss dollars paid or other quantities that actuaries display in triangles. 

The random variables are shown in the diagram in Figure 7. 
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Figure 7 

S imp l i f i ed  Loss Development as the Sum of Exposure Plus Process Lag 

w s 

I" "[" "[ 
start of exposure accident date a unit of 

period date loss is 
posted 

In principle, the claims reporting and settlement process should not depend on 

how the claims are grouped into exposure period buckets. We formalize this by 

assuming that W and S are independent. As necessary, we index the total lag 

distribution, T, by W to indicate its dependence on the exposures. 

We next make the critical observation that the cumulative distribution of Tw is the 

same as the percent of ultimate curve for losses arising from the exposures 

specified by W. Let PCTw(t) denote the expected percent of ultimate for losses 

arising from exposures given by accident date lag W as of time, t, since the start 

of the exposure period. Our observation is mathematically expressed by the 

equation: 

PCT w (t) = Fw, s (t) = FTw Ct) (4.3) 
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For example, in a claim reporting model, let N(t) be the number of claims 

reported as of time, t, and let N(ult) be the ultimate number of claims. The report 

date measured from the start of the exposure period can be regarded as a 

sample of the random variable, Tw. It follows that N(t) will be binomially 

distributed with parameters, N(ult) and FT.(t ) . Thus E[N(t)] = N(ult) FTw(t ) and it 

follows that PCTw(t) = FT. (t). For example, if the percent of ultimate curve is at 

60% as of a particular evaluation age, then if we look at the total report lags for a 

sufficiently large set of claims, we will find that 60% of these lags are less than or 

equal to the given evaluation age. 

In general, the loss development factor from age t to ultimate is given as the 

inverse of the percent of ultimate. We can thus relate standard age-to-ultimate 

factors to the inverse of the cumulative distribution of the Total Lag: 

1 1 
AULDFw(t ) = - -  (4.4) 

PCTw(t) FT. (t) 

Assuming W and S are independent, it is known that the cumulative distribution 

of their sum is given as a convolution integral. Thus we can write: 

t t 

FT. (t) = j'dw fw (w)-F s (t - w) = J'dw fw (w). P(t - w) 
0 0 

(4.5) 
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This is equivalent to percent of ultimate loss development formulas seen in the 

literature ( Robbin and Homer [4], Brosius[1], and Philbrick [3] ). What we have 

done here is base the formula on well-defined random variables. The derivation 

is based on the assumption the underlying amount change random variables 

were all non-negative. Later, we will relax this assumption, but for now we see 

that it is critical, for it allows us to summarize all the changes a claim undergoes 

with a single process random variable 

Next, we will use our Exposure Lag plus summarized Process Lag model to 

directly simulate loss development patterns. 

5. S IMULATION 

A big advantage in having a development model based on process and exposure 

random variables is that we may simulate these variables and thereby generate 

loss development patterns. Given any non-negative random variable as a model 

for S and a particular exposure period with accident lag random variable, W, we 

can use simulation models to quickly generate a few thousand samples of S and 

W. With these, we can compute the cumulative distribution of T=S+W at various 

evaluation ages. By retaining our original set of simulated process lags and 
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using a different exposure random variable, we can see how the development 

pattern changes in response to a change in the underlying exposures. 

Exhibit 1 provides a small sample demonstration of the procedure. The accident 

year and policy year patterns shown in the exhibit were generated from the 

sample of 20 random trials listed in Sheet 2 of Exhibit 1. The Process was 

assumed to follow a Pareto distribution with shape parameter equal to 2.0. 

Given the extremely small sample size, it is no surprise these simulated patterns 

differ significantly from the true patterns displayed in the exhibit. The small 

sample size was used so the reader could follow the computation of the percent 

of ultimate from the simulated values. Much larger samples would be required in 

any real application. The formulas for the true patterns are shown in Appendix A. 

A more realistic sample size of 2,000 was used to generate the simulated 

patterns displayed in Exhibit 2. These fit the true formula-generated patterns 

quite nicely. 

When applying this simulation technique to actual problems, the required sample 

size ought to be large enough to guarantee that the simulated percent of ultimate 

values or incremental percentages are highly likely to fall within a desired 

tolerance. A binomial test can be applied using the normal approximation to the 

binomial in order to estimate this requisite sample size. Simulations run with that 

sample size will still typically yield age-to-age patterns with small statistical 

fluctuations. To get a smoother curve requires a larger sample size. 
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In practice, if we have a model for the Process Lag that generates simulated 

factors that closely match given accident year factors, we can reuse the 

simulated values of the process variable to generate the factors for another 

exposure period. To do this we simply add each previously simulated process 

lag to a simulated accident lag for the other exposure period. Since the 

simulated Total Lag for the accident year already fits the accident year pattern, 

the simulated Total Lag for the other exposure period should also be reasonably 

close to its true value. 

Simulation provides a powerful all-purpose tool for solving problems using the 

exposure dependent model. It may be especially useful when trying to estimate 

development patters for an irregular exposure period. For example, we could 

use simulation to estimate development patterns on a risks attaching reinsurance 

contract covering a mix of 3 month and 12 month term policies where the 

contract was cut-off so that it only covers accidents occurring during the first 12 

months. We will next derive a formula for accident period development and use 

it as the basis for other application techniques. 

6. A SIMPLE ACCIDENT PERIOD DEVELOPMENT FORMULA 
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Though the convolution integral formula 4.5 may initially look forbidding, it 

reduces to a quite tractable formula when applied to accident period exposures. 

For a uniform accident period of duration, D, the cumulative distribution and 

density of the accident lag variable, W, are given as: 

FA(o)(w) = D for 0 < w < D 

fA(o)(w) = I for 0 < w < D 
D 

(6.1a) 

(6.1b) 

Here for clarity we have written A(D) instead of W when subscripting the 

cumulative distribution and density. The cumulative distribution for the loss 

development pattern generated from a uniform accident period is thus given as: 

min(t.D) 4 min(t,D) 4 

FT,,o,(t)= l' d w ' . F s ( t - w ) =  ! dWD. (1 -Os( t -w) )  
X D 

(6.2) 

where G denotes the tail probability. 

We simplify this percent of ultimate formula using the fact that the integral of the 

tail probability is the limited expected value: 

If t<D: 
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t t I" 1 G s ( t _ w ) : t _ l t l d U G s ( U ) t  E[S;t] 
FT"~'(t) = D -  oJdw D" u u ~  D D (6.3a) 

Ift>D: 

O D 
= - - -  dw 1- ~ t  j'duGs(u ) FTA,o,(t) D ! 1 .Gs ( t_w)  = 1 t 

= 1 E[S;t ] -E[S;t-D] 
D 

(6.3b) 

In these formulas, E[S;s] is the limited expected value of S at s. Limited 

expected value formulas for many distributions are given in various books on loss 

distributions and statistics [2]. With 6.3, we can then use any one of these to 

generate consistent accident period curves for accident periods of different 

duration. 

7. CURVE FITTING AND CONVERSION 

The accident period development formula can be readily applied to fitting 

accident year-by-year data. After fitting some data, we will then use the formula 

to generate the associated accident quarter-by-quarter development pattern. 
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We will fit age-to-age factors using three different parametric distributions: the 

Pareto, the Gamma and a two-parameter form of the Burr. The limited expected 

value functions are as follows: 

Pareto: E[S;s]=p../1- / ,~__.(~_~1) ]"-') (7.1) 

Gamma: E[S;s]=~-F(sI~+ 1,--~ )+s ' (1 -F (s l c t ' ~ ) )  " c ¢  (7.2) 

I /, -.(z~ -ll°t 
Two Parameter Burr: E[S;s] = s- 1+/-~) / (7.3) 

We have parameterized all of these so they have two parameters: la, the mean, 

and ~, the shape. It is the experience of the author that numerical fitting routines 

often work better if the mean is isolated as a single parameter. The reader can 

find sources (see Hogg and Klugman, [2]) for all of these except for the two- 

parameter form of the Burr. To illustrate how accident year percent of ultimate 

values would be derived for this modified Burr distribution, let ot =! and la = 2. We 

compute E[S;1] = 2/3, E[S;2] = 1, and E[S;3] = 3"(1+3/2) -1 = 6/5. Using formula 

7.3, this yields percent of ultimate values of 33.10%, 66.7%, and 80.0% at the 

end of the first three years respectively. 
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Next, we use these limited expected value formulas to derive age-to-age factors 

and fit them to one set of age-to-age factor data shown in the Sherman's paper 

[5]. The results are shown in Exhibit 3. The fits were obtained so as to minimize 

the sum of square errors in the running back-products of the age-to-age factors. 

Other fitting criteria could be used, but this one is easy to program. Also, it 

naturally assigns more weight to the shape of the tail of the available data and 

seems more forgiving if there happens to be a strange factor or two in the data. 

Sherman's fit with a power curve is shown for comparison. Reviewing our 

results, we see the Burr fit is good, the Pareto fit is fair, and the Gamma fit is not 

good. Perhaps the Gamma would fare better with a different fitting criterion, or 

perhaps this curve form just does not fit the data. In any event, the Burr fit is 

arguably as good as that obtained by Sherman using the power curve. However, 

the conclusion from the example is not that the Two-parameter Burr fits better 

than the power curve or that the exposure dependent percent of ultimate model 

does a better job of fitting the factors. It merely demonstrates that the exposure 

dependent model is practical and can produce good fits. In real applications, it 

would be advisable to look at more than three curves and to try different fitting 

criteria. 

While the exposure dependent model has no advantage over pure curve 

formulas in fitting a given set of development factors, some advantages come to 

light after the fit is obtained. Suppose we have just fitted accident year-by-year 

age-to-age factors. With our model, we automatically get the resulting age-to- 
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ultimate factors. With a power curve or other age-to-age formula, one may have 

to posit an arbitrary cut-off age. This difficulty arises because the product of the 

infinite series of formula generated age-to-age factors may be infinite or at least 

difficult to compute. The root of the problem stems from viewing the age-to-age 

factors as a series of numbers, instead of deriving them from a percent of 

ultimate curve, as was done in our model. Second, with our model, interpolation 

is easy. One can simply compute limited expected values at requisite 

intermediate ages and use them to compute the percent of ultimate curve at the 

desired evaluation ages. With the pure curve fitting approaches, interpolation 

may entail rebalancing and refitting procedures [5]. Another advantage of our 

model is that we can quickly generate the associated accident quarter-by-quarter 

factors. These are shown in Exhibit 4 for the Burr fit in our example. The pure 

curve fitting methods run into difficulty with this problem [5], whereas our model 

handles it with ease precisely because dependence on the exposure period is 

built in from the start. 

8. AVERAGE MATURITY OF LOSS APPROXIMATION 

Next we generalize and extend the usual average date of loss approximation so 

that it handles immature evaluation ages. We call the generalization the 

Average Maturity of Loss Approximation. Under the average date of loss 

approximation, loss development for one exposure period as of a given 
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evaluation age is estimated by the development for another exposure period at 

an adjusted age. The adjustment is equal to the difference between the average 

dates of loss for the two exposure periods. 

To express this mathematically, let W be an exposure random variable and 

define ~w =E[W] as its average date of loss. Given another exposure random 

variable, W*, we define the average date of loss approximation of VV* using W 

via: 

PCT* (t*) = PCT(t* +~w - I~w -) (8.1) 

Here PCT denotes the percent of ultimate loss. 

For example, if W represents uniform accident year exposure and W* is the 

exposure variable for a policy year, then p.w =6 months, p.w- = 12 months and we 

approximate the policy year using the accident year factor at the age six months 

earlier. For evaluation ages greater than two years, the approximation has some 

error but is not unreasonable. It becomes fairly accurate at ages above three 

years. However, for ages less than two years, the logic of the fixed six-month 

shift breaks down and for ages below six months the shift fails to yield an answer 

at all. 
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Following Robbin and Homer [4], we extend the approximation so that it works at 

immature ages by first defining the conditional average date of loss, p.w(t) =E[WI 

W< t]. We next the define the average maturity of loss, mw(t), via: 

mw(t) = t -  pw(t). (8.2) 

A loss that occurred at the average date of loss has developed, as of time t, for a 

period equal to the average maturity. For example, an accident year as of 8 

months has a conditional average date of loss equal to 4 months and an average 

maturity of loss also equal to 4 months. Using 2.2 we can show a policy year as 

of 12 months has an average date of loss equal to 8 months and an average 

maturity equal to 4 months. This can be seen geometrically by observing that the 

policy year density forms an upward sloping triangle over the first 12 months. 

The average for a triangle occurs 2/3 of the way along its base. The picture is 

shown in Figure 8. 
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Figure 8 

Conditional Policy Year Density 

0.000 0.250 0.500 ~ 0.750 
age(yrs) 

Average 

1 .ooo 

In general, we approximate: 

PCT * (t*) = PCT(t)  ETD * ( t * )  
ETD(t)  

where mw(t) = mw*(t*). 

(8.3) 

In words, we first find the date, t, at which W has the same average maturity as 

VV* does at t*. We call "t" the evaluation age of equivalent maturity. The percent 

of ultimate loss curve for W at the evaluation age of equivalent maturity is then 

used to approximate the percent of ultimate for W* at t*, where the denominators 

in the formula adjust for differences in the exposures earned to date. Applying 

8.3, we would for example approximate the policy year as of 12 months using the 
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using the accident year as 8 months and the multiplying by ½ and dividing by 

8/12. So if the accident year percent of ultimate as of 8 months was 40%, the 

policy year percent of ultimate as of 12 months would be estimated as 40%*(3/4) 

= 30%. The corresponding age-to-ultimate factors would be 2.5 and 3.3. 

To show why this approximation works, we first follow Robbin and Homer [4] and 

expand the percent of ultimate convolution formula, 4.5, using the Taylor series 

expansion of the process distribution. For notational brevity, we will drop 

subscripts at times during the derivations; for instance writing p.(t) in place of 

p.w(t). We expand up to second order as follows: 

P(t - w) = P(t - p_(t) + la(t) - w) = P(m(t) + la(t) - w) = 

P(m(t)) + (-1). (la(t) - w). P'(m(t)) + ½ (l~(t) - w) 2. P" (5) 

where 0<5 <m(t) 

(8.4) 

Note that p.(t) has been defined so that the integral of the first order term times 

the exposure density vanishes over the interval from 0 to t. If we now only use 

the expansion up to first order and plug 8.4 into 4.5, we obtain the approximation: 

PCT(t) = FT, ' (t) = ETDw(t). P(m(t)) (8.5) 

The approximation says that the percent of ultimate loss pattern as of time t for 

exposures given by W is equal to the percent earned to date times the 
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cumulative distribution of the process distribution as of the conditional average 

maturity. We see that P(m(t)) approximates the percent of ultimate for the 

exposures earned to date. If we now write the approximation 8.5 for W* and 

have t such that mw(t) = rnw~(t*), it is then a small rearrangement of terms to 

arrive at our average maturity of loss approximation as shown in 8.3. 

In Exhibit 5 an average maturity of loss approximation for policy year 

development is computed based on accident year factors. The first sheet of the 

exhibit shows the derivation of the conditional policy year average date of loss 

and average maturity of loss at quarterly evaluations. To simplify the 

calculations, the derivation is done using the exposure growth and decay 

triangles for the policy year density. The first sheet also shows the accident year 

evaluation age of equivalent maturity. Then in the second sheet the accident 

year percent of ultimate and age-to-ultimate factors at the original evaluation 

ages are shown. This is for information and comparison purposes only. The 

subsequent derivation of the average maturity approximation makes no use of 

them. As shown in the second sheet of Exhibit 5, accident year factors are 

posted for the ages of equivalent maturity. These are then multiplied by the 

appropriate Earned to Date ratios to obtain the Average Maturity Approximation. 

Finally, the approximation is compared against the true policy year factors. The 

accident year factors and the true policy year factors were generated used a 

Pareto Process with shape equal to 2.0. In actual applications, one should not 

develop policy year losses evaluated at ages below one year as the data is too 
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immature and the corresponding factors are so large that results are too unstable 

to be reliable. Note that after two years the approximation reduces to a six- 

month shift as per the usual Average Date of Loss Approximation. 

To summarize, there are two key aspects of the Average Maturity Approximation. 

First, it adjusts evaluation dates so losses for the two exposure periods have the 

same conditional average maturity. Second, it adjusts for differences in 

exposures earned to date, This second adjustment is critical when dealing with 

immature exposures. Because exposure dependence is built into our model, 

this earned to date exposure adjustment falls out naturally from the basic 

equations. 

Next we turn to another approximation techniques in which a desired pattern is 

estimated using a weighted average of the shifted accident period patterns. 

9. MULTI-SHIFTED ACCIDENT PERIOD APPROXIMATION 

The idea here is that if we can approximate an exposure period random variable 

as the weighted average of shifted accident period distributions, then we could 

approximate its development pattern as a weighted average of shifted accident 

period patterns. Since we have a convenient formula that allows us to evaluate 
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an accident period pattern at arbitrary ages, we will then arrive at a practical way 

to approximate the development pattern for the original exposure period. After 

explaining the technique in mathematical terms, we will use it to approximate a 

policy year pattern as a weighted sum of shifted accident quarter patterns. 

Let A(Di, ci) be the exposure random variable for an accident period of duration, 

D=, which begins at time c~. Given a process random variable, S, we can write 

the resulting percent of ultimate, T, as: 

max(0, (t - C D )  ) - E[S;t - 

Fr('CD'c)l(t) = l l  E [ S : t - c ] - D t S ; t - D - c ]  

i f t -c_<D 

i f t - c > D  

(9.1) 

Now take a finite sequence, (A(DI,c0, A(D2, c2 ) ..... A(Dm, cm ) ) of such shifted 

uniform random variables, and corresponding weights, (Pl, P2 ..... Prn) that sum 

to unity. Define the mixed multi-shifted exposure random variable, W as follows: 

m 

Fw(W) = ~"~. Pi .min(1,max(0,w-ci))/D i (9.2) 
i=1 

Given a process random variable, S, the percent of ultimate, T, based on the 

mixed exposures, W, can be written as: 
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rn 
FT[A(e.~).o(t ) = ~= p,. FT(A(DI,c ,))(t) (9.3) 

While these formulas may look terribly complicated, they are very easy to apply 

in practice. When the durations are all the same and the shifts follow a simple 

pattern, one can typically generate the pattern for the common duration and then 

"copy and paste" to apply (9.3). Generating the basic pattern involves taking 

limited expected values; so that step is not too difficult either. 

The conclusion is that if we can approximate a given exposure random variable 

as a weighted average of shifted accident period variables, then we can 

approximate the loss development pattern for the given exposures. In Exhibit 6 

we approximate a policy year as the weighted average of five shifted accident 

year patterns. The weights are: (1/8,1/4, 1/4, 1/4,1/8) and the shifts are: 

(0,1,2,3,4,5) quarters. While the fit against the true pattern is not exact, it is 

nonetheless fairly good and we could refine it further by using thirteen accident 

months with monthly shifts. Note the multi-shift approximation does not 

inherently fall apart at early ages. 
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10. MIXING AND NEGATIVE DEVELOPMENT 

So far we have used a single Process to describe the underlying multi-step 

development of claims. While we have proved such a single summary process 

exists when all the amount changes are non-negative, in practice it may still be 

useful to regard the single process as a mix of two or more processes. For 

example, if we know there are two types of claims in our data, one type that 

develops quickly and the other type more slowly, it may be best to try a model 

with two processes. Exhibit 7 shows the accident year pattern resulting from a 

mix of two Gammas, one short-tailed and the other long-tailed. 

Also, in all we have done so far, it has been assumed that incremental 

development must always be non-negative. We now extend the model to 

handle negative development. For clarity, we will consider a model for the 

development of the number of non-zero claims. Negative development occurs 

when a claim is closed without payment. We count the number of non-zero 

claims as the difference between the total number of claims reported less the 

number closed without payment. 

Let N be the ultimate total number reported, CNP the number closed without 

payment, and define M as the ultimate number of non-zero claims. Thus M=N- 
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CNP. For each of the CNP claims, we define a closing lag, U, as the difference 

between when the claim was reported and when it was closed without payment. 

Given values of the exposure lag, W, the reporting process lag, S, and the closed 

without pay lag, U, a claim will be counted as a non-zero claim as of time t if t is 

between W+S and W+S+U.. 

The percent of ultimate for the number of non-zero claims is given as: 

N ( t ) -  CNP(t) 
PCTM(t) = E[-M~] = E[ -N--L-~-~ 1 (10.1) 

If N and CNP are assumed fixed for the moment, it follows that N(t)-CNP(t) is the 

sum of two binomially distributed random variables with parameters : 

• (N-CNP, Fw.s(t)) (10.2a) 

• (CNP, Fw.s(t)-Fw.s.u(t)) (10.2b) 

Thus 

E[M(t)]= (N -CNP) Fw.s(t))+CNP(Fw+s(t)- Fw÷s.u(t)) 

= N Fw.s(t) - CNP Fw÷s÷u(t) (10.3) 
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Let r denote the expected ratio at ultimate of the number of claims closed without 

over the total number of claims ever reported. Then for any reasonably large 

number of claims we can approximate the percent of ultimate curve as follows: 

P C T M ( t ) = E I - ~ ]  =EIN(t)-CNP(t) ]=L N -CNP J Fw+s(t)-rFw÷s*u(t)l-r (10.4) 

In Exhibit 8 we use patterns based on a Gamma base process with a Gamma 

decrementing process. 

Finally, in Exhibit 9 we generate patterns from a mix of two processes, one of 

which undergoes negative development. The resulting shape of the 

development curve is fairly complex with age-to-age factors above unity, then 

below unity, then back above unity till they taper off in the tail. Yet loss data 

sometimes exhibits this type of behavior. This could happen when reserves on 

some claims are taken down as quick settlements are made, but the remaining 

claims slowly develop upwards over many years. 

11. CONCLUSION 

It is useful to end with a brief review of what we have done. First we have 

established a conceptual foundation by identifying exposure with a distribution of 

accident date lags and then viewing total lag as the sum of exposure and 
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process lag random variables. The single process lag was obtained as a 

simplified summary of a more general multi-step model of non-negative amount 

changes and step lags. We were able to connect our model with standard 

actuarial descriptions of loss development by proving the percent of ultimate 

development curve is synonymous with the cumulative distribution of the total lag 

random variable. Having separated exposure from process, we were able to 

vary the exposure to obtain exposure dependent development curves. Just 

having a random variable model of loss development was shown to be useful, 

because it allowed us to simulate loss development patterns. A key result was 

the derivation of an accident period loss development formula in terms of limited 

expected values. Because the formula is readily programmable for a large 

number of distributions, we were able to use it in fitting accident year factors, 

generating accident quarter factors, and computing multi-shift approximations. 

Adding in mixed processes and negative development allowed us to structure a 

model that can reflect our knowledge of the claims process and capture more 

complex patterns of development. 

Hopefully, the reader now has a solid understanding of the conceptual foundation 

of exposure dependent modeling of loss development patterns and has seen that 

it may be put to good practical use. Future research along these lines will likely 

yield new insights and techniques. 
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APPENDIX 

Accident Year and Policy Year Percent of Ultimate Formulas 

for a Pareto Process with Shape Equal to 2.0 

Let S be a Pareto distribution with scale parameter, ~, and shape parameter 

equal to 2.0. Then 

It follows that: 

(A.1) 

For t<D 

t-E[S;t] l f t  ~.t ~ t / (X+t ) -~ .  1 I f  t 2 ) 
FT"°~(t)= O = D r , - ~ - ~ ) = D t  ~ + t  )=-D~,-~+t) 

For t >D 

'TP,<o, ( t )  = 1 -- E[S; t] - E [S ; t  - D]  
D 

X= 1 1(" z t  Z( t -D )~= l_ ( (Z+ t ) ( r+ t_D)  ) 
= -D t ;~+ t  Z + t - D )  

(A.2a) 

(A.2b) 

For an accident year, D=I, and we get: 
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For t<l,  

F,,y (t) = ~ (A.3a) 

For t >1, 

FTA Y ( t )= 1-((~. + t)(-~-+ t_  1)- 1 (A.3b) 

For a policy year, we first consider the exposures from the first calendar year. 

We derive: 

For t<l,  

F,~,(t) = .~dw w. 1- = t ' _  ~ d u ( t - u ) . ~ )  (A.4) 
2 ~ ~.Z+u) 

After several integrations by parts and various standard manipulations, this 

reduces to: 

t 2 
FT,y, (t) = ~ + X2 In(1 + t /~.)-  ;~t (A.5) 

Again restricting our attention for the moment to only those exposures earned in 

the first year of the policy year but now looking at evaluations exceeding unity, 

we derive the percent of ultimate: 

For t>l,  

After various standard manipulations, this simplifies to: 
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For t>l,  

F, .~, ( t )= l+~Zln(  X+t  ) ~.= (A.7) 
k.;~ + t -  1) X + t - 1  

Now we turn our attention to policy exposures earned in the second calendar 

year. We first consider evaluation dates in the second year and derive: 

For 1<t<2 

This reduces to: 

For 1<t<2, 

FT.y,(t) = .~dw(2-w). 1- 
(A.9) 

- 1-(2-t)22 ~ ' 2 1 n / - ~  ) (~.+t-2);~(t-1)Z+t_l 

Again considering only policy year exposures earned in the second year, but now 

looking at evaluation dates beyond two years, we derive: 

For t>2, 

F,~,(t) = ~ d w ( 2 - w ) .  1- 
(A.IO) 

1/_-2, (_~+ u/2 = - -  du(2+u-t). 2 

After some rather tedious but straightforward manipulations, this simplifies to: 
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For t>2, 

1 ;L 2 X2 in~" X + t - l ~  (A.11) 
FT'~(t) 2 ~,+t-1 ~ X + t - 2 )  

Now we finally have all the pieces to evaluate the policy year percent of ultimate. 

For example, at t=3, we would add together A.7 plus A.11 to get: 

(3)=1+Z21n('Z+3~__.. Z 2 . 1 Z 2 F-r,~, (3) + FT 
"~ 2 t ,X+2) X+2 2 ;L+2 

=1_Z21n( <X+2~ .) 
[,(;L + 2) 2 -1) 

~21n("z+2) 
k Z + l ]  

(A.12) 

With the scale equal to 1.5, we obtain: 

FT.~(3)=I--2.251nl (3"5)2 I=.80839 
1(3.5)" -1) (A. 13) 
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Sample Simulation of Exposure Dependent Development 
Development Patterns Generated from Random Trails 

20 = Number of Random Trials 

Exhibit 1 
Sheet 1 

4~ 

Exposure;. ~W Exposure: W 
Accident Year Policy.Year 

Formula Simulated Simulated 
Evaluation Pct of Formula Pct of Simulated Formula Formula Pct of Simulated AU 

Age Ultimate AU LDF Ultimate AU LDF Pct of Ultimate AU LDF Ultimate LDF 
0.250 
0.500 
0.750 
1.000 
1.250 
1,500 
1.750 
2,000 
2,250 
2.500 
2.750 
3,000 
3.250 
3,500 
3,750 
4,000 
4,250 
4.500 
4.750 
5.000 

3.57% 28.000 0.00% #DIV/0! 
12.50% 8,000 5.00% 20.000 
25.00% 4.000 15.00% 6,667 
40.00% 2.500 25.00% 4.000 
53.25% 1.878 55.00% 1,818 
62.50% 1.600 65.00% 1.538 
69.23% 1.444 65.00% 1.538 
74.29% 1.346 70.00% 1.429 
78.18% 1.279 70.00% 1.429 
81.25% 1.231 75.00% 1.333 
83.71% 1.195 75.00% 1.333 
85.71% 1.167 80.00% 1,250 
87.37% 1.145 95.00% 1.053 
88.75% 1.127 95.00% 1,053 
89.92% 1.112 95.00% 1.053 
90.91% 1.100 95.00% 1.053 
91.76% 1.090 100.00% 1.000 
92.50% 1.081 100.00% 1.000 
93.14% 1.074 100.00% 1.000 
93.71% 1,067 100.00% 1.000 

0.31% 323.726 0.00% #DIV/0! 
2.23% 44.874 0.00% #DIV/0! 
6.85% 14.589 5.00% 20.000 

14.94% 6.695 5.00% 20,000 
26.39% 3.790 15.00% 6,667 
39.00% 2.564 25.00% 4,000 
50.88% 1.965 45.00% 2.222 
60.77% 1.646 65.00% 1.538 
68.09% 1.469 65.00% 1.538 
73.50% 1.361 70.00% 1.429 
77.62% 1.288 70.00% 1.429 
80.84% 1.237 70.00% 1.429 
83.40% 1.199 75.00% 1.333 
85.48% 1.170 85.00% 1,176 
87,19% 1.147 95.00% 1,053 
88.61% 1.129 95.00% 1,053 
89.80% 1.114 95.00% 1.053 
90.82% 1.101 95.00% 1.053 
91.68% 1.091 100.00% 1.000 
92.44% 1.082 100.00% 1.000 



Sample Simulat ion o f  Exposure  Dependent  Development-  Trial L is t ing 
20 Random trials 

Exhibit 1 
Sheet 2 

L~h 

Proccss:s::!:~:;~:~:::f:i~:::~i.: 

Mean 1.5000 
Shape 2.0000 

Process 
Random Simulated 

Trial I Number S 
11 0.9203 3.8131 
2i 0.7438 1.4634 
31 0.8923 3.0703 
4 0.3144 0,3116 
5 0.3636 0.3803 
8 0.3508 0.3617 
7 0,3905 0.4213 
8 0.8627 2.8795 
9 0.1185 0.0976 

10 0.8309 2.1480 
11 0.7886 1.7623 
12 0.8543 2.4298 
13 i 0.3334 0,3372 
14 0.3494 0.3597 
15! 0.7848 1.7332 
i i  0.4073 ~ 0.4484 
17 0.2008 0.1779 

0.3040 0.2980 
19 0.5301 0.6882 
20 0.1742 0.1506 

Average 0.5267 1.1666 

Exposure .E.xposure: W, :? ..i .:ii, : , 
Generator Accident:Year ~ ~ : - 

Exposure 
Random Simulated Total Lag 
Number W T=S+W 

Exposure: W 
Policy Year 

Simulated 
W 

0.4196 
0,0127 
0.0396 
0,8249 
0.7865 
0.0799 
0.8603 
0.1994 
0.9674 
0.7681 
0.1612 
0,7724 
0,2267 
0.4011 
0.7657 
0.8111 
0.8887 
0.5561 
0.6978 
0.7604 

0.5500 

0.4196 
0.0127 
0.0396 
0.8249 
0.7865 
0.0799 
0.8603 
0.1994 
0.9674 
0,7681 
0.1612 
0.7724 
0.2267 
0.4011 
0.7657 
0.8111 
0.8887 
0,5561 
0,6978 
0,7604 

0.5500 

4.2326 0.9160 
1.4761 0.1594 
3.1099 0.2813 
1.1366 1.4083 
1.1668 1.3465 
0.4416 0,3997 
1,2816 1.4714 
3,0790 0.6316 
1,0650 1.7445 
2.9162 1.3190 
1,9235 0.5679 
3.2022 1,3254 
0.5639 0.6733 
0,7608 0.8957 
2.4989 1.3154 
1,2594 1.3853 
1.0666 1.5283 
0.8541 1.0578 
1.3860 1.2226 
0.9110 1,3077 

1,7166 1.0479 

Total Lag 
T=S+W 
4.7291 
1.6228 
3.3516 
1.7199 
1.7268 
0.7614 
1.8927 
3.5111 
1.8422 
3.4671 
2.3301 
3.7551 
1.0105 
1.2554 
3.0486 
1.8337 
1.7062 
1.3557 
1.9108 
1.4584 

2.2145 



Simulation of Exposure Dependent Development 

Development Patterns Generated from Random Trails 
2000 -- Number of Random Trials 

Exhibit 2 

c~ 

Evaluation 
Age 

0.250 
0.500 
0.750 
1.000 
1.250 
1.500 
1.750 
2.000 
2.250 
2.500 
2.750 
3.000 
3.250 
3.500 
3.750 
4.000 
4.250 
4.500 
4.750 
5.000 

Exposure: W 
Accident Year 

Exposure: W 
Policy Year 

Formula Simulated 
Pct of Formula Pct of 

Ultimate AU LDF Ultimate 
Simulated 

AU LDF 
Formula Pct of 

Ultimate 
Formula 
AU LDF 

Simulated 
Pct of Simulated AU 

Ultimate LDF 

3.57% 28.000 3.95% 25.316 
12.50% 8.000 12.60% 8.000 
25.00% 4.000 24.70% 4.049 
40.00% 2.500 40.35% 2.478 
53.25% 1.878 52.55% 1.903 
62.50% 1.600 62.30% 1.605 
69.23% 1.444 69.35% 1.442 
74.29% 1.346 74.15% 1.349 
78.18% 1.279 78.05% 1.281 
81.25% 1.231 81.15% 1.232 
83.71% 1.195 83.85% 1.193 
85.71% 1.167 85.45% 1.170 
87.37% 1.145 87.05% 1.149 
88.75% 1.127 88.60% 1.129 
89.92% 1.112 90.00% 1.111 
90.91% 1.100 90.75% 1.102 
91.76% 1.090 91.60% 1.092 
92.50% 1.081 92.45% 1.082 
93.14% 1.074 93.15% 1.074 
93.71% 1.067 93.80% 1.066 

0.31% 323.726 0.40% 250.000 
2.23% 44.874 2.60% 38.462 
6.85% 14.589 7.60% 13.158 

14.94% 6.695 15.15% 6.601 
26.39% 3.790 25.95% 3.854 
39.00% 2.564 39.70% 2.519 
50.88% 1.965 50.65% 1.974 
60.77% 1.646 60.20% 1.661 
68.09% 1.469 67.60% 1.479 
73.50% 1.361 73.40% 1.362 
77.62% 1.288 77.80% 1.285 
80.84% 1.237 80.90% 1.23( 
83.40% 1.199 83.40% 1.199 
85.48% 1.170 64.85% 1.179 
87.19% 1.147 87.15% 1.147 
88.61% 1.129 88.40% 1.131 
89.80% 1.114 89.75% 1.114 
90.82% 1.101 90.75% 1.102 
91.68% 1.091 91.50% 1.093 
92.44% 1.082 92.40% 1.082 



A c c i d e n t  Y e a r  - A A  L D F  F i t t i n g  S u m m a r y  

Exhibit 3 
Sheet 1 

.. j  

F i t t ed  A A L D F  

Age Given Sherman 
(year) AA LDF Gamma Pareto Burr Power Curve 

1 1.920 

2 1.228 

3 t .098 

4 1.051 

5 1.036 

6 1.025 

7 1.019 

8 1.014 

9 1.011 

10 1.009 

11 1.008 

1.884 1.960 1.924 1.889 

1.238 1.205 1.216 1.224 

1.115 1.094 1.101 1.100 

1.064 1.054 1.059 1.056 

1.039 1.036 1.038 1.03{ 

1.024 1.025 1.026 1.025 

1.016 1.019 1.019 1.016 

1.010 1.015 1.014 1.014 

1,007 1.012 1.011 1.011 

1.004 1.009 1.009 1.009 

1.003 1.008 1.007 1,008 



A c c i d e n t  Y e a r  - A A  LDF f i t t i ng  

Process Gamma I 
. Distribution 

Mean 1,7731 I 
IShape 0.6416 I 
[Scale 2.7636J 

Fitting Criteria 

Minimize Square Error 
Error Difference in AALDF Back Product 

ISquare Error 0.0030 

Exhibit 3 
Sheet 2 

4~ 
4:= 
oo 

,Fit t ing 

Age Given Fitted Fitted Fitted Fitted Error in Back Fitted Back 
(year) AA LDF LEV % of UIt AU LDF AA LDF AA LDF Product Product Error 

1 1.9200 0.6757 32.43% 3.0831 1.8843 -0.0357 3.0698 3.0638 -0.006C 

2 t.2280 1.0645 61.12% 1.6362 1.2379 0.0099 1.5988 1.6259 0.0271 

3 1.0980 1.3079 75.66% 1.3218 1.1145 0.0165 1.3020 1.3135 0.0115 

4 1.0510 1.4647 84.32% 1.1859 1.0643 0.0133 1.1858 1.1785 -0.0073 

5 1.0360 1.5672 89.74% 1.1143 1.0388 0.0028 1.1282 1.1073 -0.020! 

6 1.0250 1.6350 93.22% 1.0727 1.0243 -0.0007 1.0890 1.0660 -0.023' 

7 1.0190 1.6801 95.49% 1.0472 1.0156 -0.0034 1.0625 1.0407 -0.0218 

8 1.0140 1.7103 96.98% 1.0311 1.0102 -0.0038 1.0427 1.0247 -0.0180 

9 1.01t0 1.7306 97.97% 1.0207 1.0067 -0.0043 1.0283 1.0143 -0.0140 

10 1.0090 1.7442 98.63% 1.0139 1.0045 -0.0045 1.0171 1.0075 -0.0096 

11 1.0080 1.7535 99.08% 1.0093 1.0030 -0.0050 1.0080 1.0030 -0.0050 

12 1.7598 99.37% 



A c c i d e n t  Y e a r  - A A  LDF  F i t t i ng  

Distributlon l Pa~retd 

1 
Mean 64.8752 I 
Shape 1.01641 

I • Fitting Criteria 

IMinimize Square Error 
IError Difference in AALDF Back Product 
~Square Error 0.00094 ' 

Exhibit 3 
Sheet 3 

~Fittinu ~ . . . . . . . . .  

Age Given Fitted Fitted 
(year) AA LDF LEV % of UIt 

Fitted Fitted Error in Back Fitted Back 
AU LDF AA LDF AA LDF Product . Product 

1 1.9200 0.7015 29.85% 

2 1.2280 1.1165 58.51% 

3 1.0980 1.4115 70.50% 

4 1.0810 1.6404 77.11% 

5 1.0360 1.8273 81.31% 

6 1.0250 1.9852 84.21% 

7 1.0190 2.1218 86.34% 

8 1.0140 2.2422 87.96% 

9 1.0110 2.3498 89.24% 

10 1.0090 2.4470 90.28% 

11 1.0080 2.5357 91.13% 

12 2.6172 91.85% 

3.3506 

1.7091 

1.4185 

1.2968 

1.2299 

1.1875 

1.1583 

1.1369 

1.1206 

1.1077 

1.0973 

1.9604 0.0404 3.0698 3.0775 

1.2049 -0.0231 1.5988 1.5698 

1.0939 -0.0041 1.3020 1.3029 

1.0544 0.0034 1.1858 1.1911 

1.0357 -0.0003 1.1282 1.1296 

1.0252 0.0002 1.0890 1.0907 

1.0188 -0.0002 1.0525 1.0638 

1.0146 0.0006 1.0427 1.0442 

1.0116 0.0006 1.0283 1.0292 

1.0095 0.0005 1.0171 1.0174 

1.0079 -0.0001 ,1.0080 1.0079 

Error 

0.0078 

-0.0290 

0.0009 

0.0054 

0.0014 

0.0017 

0.0014 

0.0016 

0.0010 

0.0003 

-0.0001 



A c c i d e n t  Y e a r  - A A  LDF f i t t i ng  

pro c~s.Sj.. BU~ 
Distribution . 

Mean 3.2549 
IShape 0.8505 

I 
. 

Fittln~l Criteria 

IMinimize Square Error 
IError Difference in AALDF Back Product 
ISquare Error 0.00082 

Exhibit 3 
Sheet 4 

¢= 

C~ 

Fittln~f 

Age Given Fitted Fitted 
(year) AA LDF LEV % of UIt 

1 1.9200 0.6927 30.73% 

2 1.2280 1.1014 59.13% 

3 1o0980 1.3822 71.92% 

4 t .05t0 1.5899 79.22% 

5 1.0360 1.7512 83.87% 

6 t.0280 1.8806 87.05% 

7 1.0190 1.9872 89.34% 

8 1.0140 2.0768 91.05% 

9 1.0110 2.1532 92.36% 

10 1.0090 2.2194 93.39% 

11 1.0080 2.2772 94.22% 

12 2.3283 94.89% 

Fitted Fitted Error in AA Back Fitted Back 
AU LDF AA LDF LDF Product Product 

3.2540 1.9240 0.0040 3.0698 3.0878 

1.6913 1.2164 -0.0116 1.5988 1.6049 

1.3904 1.1015 0.0035 1.3020 1.3193 

1.2622 1.0587 0.0077 1.1858 1.1978 

1.1923 1.0379 0.0019 1.1282 1.1314 

1.1487 1.0263 0.0013 1.0890 1.0900 

1.1193 1.0191 0.0001 1.0625 1.0622 

1,0984 1.0144 0.0004 1.0427 1.0423 

1,0828 1.0112 0,0002 1.0283 1.0275 

1.0708 1.0089 -0.0001 1.0171 1.0161 

1.0614 1.0072 -0,0008 1.0080 1.0072 

Error 

0.0180 

0.0061 

0.0174 

0.0120 

0.0031 

0.0010 

-0.0003 

-0.0004 

-O.O00E 

-0.001C 

-0.000~ 



Acc iden t  Quar ter  by Quar te r  - LDF Genera t ion  

Process. ' Burr 
Dls t i 1bu t lon  ' : , 

Mean 3.2549 
Shape 0.8505 

Exhibit 4 

AQ by Q LDF Generated by  LEV Formula 
Age 

(year) LEV % of UIt A U LDF AA LDI 

0.250 0.2205 11.80% 8.4716 2.3132 
0.500 0.4022 27.30% 3.6624 1.3881 
0.750 0.5575 37.90% 2.6384 1.2114 
1.000 0.6927 45.92% 2.1779 1.1378 
1.250 0.8121 52.24% 1.9141 1.0984 
1.500 0.9186 57.38% 1.7426 1.0743 
1.750 1.0145 61.65% 1.6222 1.0582 
2.000 1.1014 65.23% 1.5329 1.0469 
2.250 1.1807 68.29% 1.4642 1.0386 
2.500 1.2533 70.93% 1.4098 1.0324 
2.750 1,3203 73.23% 1.3656 1.0275 
3.000 1.3822 75.24% 1.3291 1.0236 
3.250 1.4396 77.02% 1.2984 1.0205 
3.500 1.4931 78.60% 1.2723 1.0179 
3.750 1.5431 80.01% 1.2499 1.0158 
4.000 1.5899 81.27% 1.2304 1.0140 
4.250 1.6339 82,41% 1.2134 1.0125 
4.500 1.6753 83.45% 1.1983 1.0113 
4.750 1.7143 84.39% 1.1850 1.0102 
5.000 1.7512 85.25% 1.1731 1.0092 
5.250 1.7861 86.03% 1.1624 1.0084 
5.500 1.8192 86.75% 1.1527 1.0076 
5,750 1.8507 87.41% 1,1440 1.0070 
6.000 1.8806 88.02% 1.1361 



Average Maturity of Loss Approximation of Policy Year Development Based on Accident Year 

Exhibit 5 
Sheet 1 

t~ 

I DeHvation o f  PY AverageMatur i ty and A Y Ageo fEqu iva len t  Maturity 
Exposure Exposure Exposure Exposure 

Evaluation Growth Growth Decay Decay PY 
Age Triangle Triangle Triangle Triangle PY ETD PY Average Average 

t* Prob Avg Date Prob Avg Date ETD*(t*) Date of Loss Maturity 

A Y Age of 
Equivalent 

Maturity A Y ETD 
t ETD(t) 

0.250 3.125% 0.167 0.000% 1.000 3.125% 0.167 0.083 
0.500 12.500% 0.333 0.000% 1.000 12,500% 0.333 0.167 
0.750 28.125% 0.500 0.000% 1.000 28.125% 0.500 0.250 
1.000 50.000% 0.667 0.000% 1.000 50.000% 0.667 0.333 
1.250 50.000% 0.667 21.875% 1.119 71.875% 0.804 0.446 
1.500 50.000% 0.667 37.500% 1.222 87.500% 0.905 0.595 
1.750 50.000% 0.667 46.875% 1.300 96.875% 0.973 0.777 
2.000 50.000% 0.667 50.000% 1.333 100.000% 1.000 1.000 
2.250 50.000% 0.667 50.000% 1.333 100.000% 1.000 1.250 
2.500 50.000% 0.667 50.000% 1.333 100.000% 1,000 1.500 
2.750 50.000% 0.667 50.000% 1.333 100,000% 1.000 1.750 
3.000 50.000% 0.667 50.000% 1.333 100.000% 1.000 2.000 
3.250 50.000% 0.667 50.000% 1.333 100.000% 1.000 2.250 
3.500 50.000% 0.667 50.000% 1.333 100.000% 1,000 2.500 
3.750 50.000% 0.667 50.000% 1.333 100.000% 1.000 2.750 
4.000 50.000% , 0.667 50.000% 1.333 100.000% 1.000 3.000 
4.250 50.000% 0.667 50,000% 1.333 100.000% 1.000 3.250 
4.500 50.000% 0.667 50.000% 1.333 100.000% 1.000 3,500 
4.750 50.000% 0.667 50.000% 1,333 100.000% 1.000 3.750 
5.000 50.000% 0.667 50.000% 1.333 100.000% 1.000 4.000 

0.167 16,667% 
0.333 33.333% 
0.500 50,000% 
0.667 66.667% 
0.891 89.130% 
1.095 100.000% 
1.277 100.000% 
1.500 100.000% 
1.750 100.000% 
2.000 100.000% 
2.250 100.000% 
2.500 100.000% 
2.750 100,000% 
3.000 100.000% 
3.250 100.000% 
3.500 100.000% 
3.750 100.000% 
4.000 100.000% 
4.250 100.000% 
4.500 100.000% 



Average Matudty  o f  Loss Approx imat ion  o f  Pol icy Year Deve lopment  Based on Acc ident  Year  

Exhibit 5 
Sheet 2 

Derivation of PY AU LDF Approximation 
AY 

Age of 
Evaluation A Y Equivalent 

Age PY ETD PCT of UL T A Y Maturity 
t* ETD*(r) PCT(t*) A U LDF(t') t 

0.250 3.125% 3.57% 28.000 
0.500 12.500% 12.50% 8.000 
0.750 28.125% 25.00% 4.000 
1.000 5 0 . 0 0 0 %  40.00% 2.500 
1.250 7 1 . 8 7 5 %  53.25% 1.878 
1.500 8 7 . 5 0 0 %  62,50% 1.600 
1.750 9 6 . 8 7 5 %  69.23% 1.444 
2.000 100.000% 74.29% 1.346 
2.250 100.000% 78.18% 1.279 
2,500 100.000% 81.25% 1.231 
2.750 100.000% 83.71% 1.195 
3.000 100.000% 85.71% 1.167 
3.250 100.000% 87.37% 1.145 
3.500 100.000% 88.75% 1.127 
3.750 100.000% 89.92% 1.112 
4.000 100.000% 90.91% 1.100 
4.250 100.000% 91.76% 1.090 
4.500 100.000% 92.50% 1.081 
4.750 100.000% 93.14% 1.074 
5.000 100.000% 93.71% 1.067 

AY 
AYETD PCTofULT AY 

ETD(t) PCT(t) AU LDF(t) 
0,167 16.667% 1.67% 60.000 
0.333 33.333% 6.06% 16.500 
0,500 50.000% 12.50% 8.000 
0.667 66.667% 20.51% 4.875 
0.891 89.130% 33.22% 3.010 
1.095 100.000% 45.65% 2.190 
1,277 100.000% 54.40% 1.838 
1,500 100.000% 62.50% 1.600 
1.750 100.000% 69.23% 1.444 
2.000 100000% 74.29% 1.346 
2,250 100.000% 78.18% 1.279 
2,500 100.000% 81.25% 1.231 
2.750 100.000% 83.71% 1.195 
3.000 100 .000% 85.71% 1.167 
3.250 100 .000% 87.37% 1.145 
3300 100.000% 88.75% 1.127 
3,750 100.000% 89.92% 1.112 
4,000 100.000% 90.91% 1.100 
4.250 100.000% 91.76% 1.090 
4300 100.000% 92.50% 1.081 

PY 
Avg Maturity 

Approx 
PCT of UL T 

0.31% 
2.27% 
7.03% 

15.38% 
26.79% 
39.95% 
52.70% 
62.50% 
69.23% 
74.29% 
78.18% 
81,25% 
83.71% 
85.71% 
87.37% 
88.75% 
89.92% 
90.91% 
91.76% 
9230% 

PY 
A v9 Maturity 

Approx 
AU LDF 
320.000 

44.000 
14.222 
6.500 
3.733 
2.503 
1.898 
1.600 
1.444 
1.348 
1.279 
1.231 
1.195 
1.167 
1.145 
1.127 
1.112 
1.100 
1.090 
1.081 

PY 
True 

AU LDF 
323.726 
44.874 
14.589 
6.695 
3.790 
2.564 
1.965 
1.646 
1.469 
1.361 
1.288 
1.237 
1.199 
1.170 
1.147 
1.129 
1.114 
1.101 
1.091 
1.082 

Error 
-3.726 
-0.874 
-0.366 
-0.195 
-0.057 
-0.061 
-0.068 
-0.046 
-0.024 
-0.014 
-0.009 
-0.006 
-0.004 
-0.003 
-0.002 
-0.002 
-0,001 
-0.001 
-0.001 
-0.001 



Multi-shifted Approximation of Policy Year 
Using 5 Shifted Accident Years 

Exhibit 6 

L/1 

Exposure=:. W Exposure: W Policy Year 
AcCident Year, Policy Year Multi-shifted Approximation 

Formula Formula 
Evaluation Pct of Formula Pct of Formula 

Age Ultimate AU LDF Ultimate A U LDF Pct of UIt AU LDF 

Shift 
Weight 

0.000 
0.125 

Pet of 
Ultimate 

0.250 0.500 0.750 1.00C 
0.250 0.250 0.250 0.12~ 

Pet of Pct of Pct of Pct oJ 
Ultimate Utt/mate Ultimate U~mate 

0.250 3.57% 28.006 
0.500 12,50% 8.00C 
0.7501 25.00% 4.00C 
1.0001 40.00% 2.500 
1,250 53.25% 1.878 
1.500 62.50% 1.606 
1.7501 69.23% 1.444 
2.000 74.29% 1,346 
2.250 78.16% 1.279 
2.500 81,25% 1.231 
2.7501 83.71% 1.195 
3.000 85.71% 1,167 
3.250 87,37% 1.145 
3.500 88.75% 1.127 
3.750 i 89.92% 1.112 
4.000 90.91% 1,100 
4.250 91.76% 1.090 
4.500 i 92.50% 1.081 
4,750 93.14% 1.074 
5.000 93.71% 1.067 

0.31% 323.726 
2.23% 44.874 
6.85% 14.589 

14.94% 6.695 
26.39% 3.790 
39.00% 2.564 
50.88% 1.965 
60.77% 1.646 
68.09% 1.469 
73.50% 1.361 
77.62% 1.268 
80.84% 1.237 
83.40% 1.199 
85.46% 1.170 
87,19% 1.147 
86,61% 1.129 
89.80% 1.114 
90.82% 1.101 
91.68% 1.091 
92.44% 1,082 

0.45% 224.000 
2.46% 40,727 
7.14% 14.000 

15.27% 6.550 
26.48% 3.777 
38.94% 2.568 
50.72% 1.972 
60.53% 1.652 
67.93% 1.472 
73.39% 1.363 
77.55% 1.290 
80.79% 1.238 
83.36% 1.200 
85.45% 1.170 
87.16% 1.147 
88,59% 1.129 
89.79% 1.114 
90.80% 1.101 
91.68% 1.091 
92.43% 1.082 

3.57% 
12.50% 
25.00% 
40.00% 
53.25% 
62.50% 
69.23% 
74.29% 
78.18% 
81.25% 
83.71% 
85.71% 
87.37% 
88.75% 
89.92% 
90.91% 
91.76% 
92.50% 
93.14% 
93.71% 

3.57% 
12.50% 
25.00% 
40.00% 
53.25% 
62.50% 
69.23% 
74.29% 
78.18% 
81.25% 
83.71% 
65.71% 
87.37% 
88.75% 
89.92% 
90.91% 
91.76% 
92.50% 
93.14% 

3.57% 
12.50% 3.57% 
25.00% 12.50% 3.57% 
40.00% 25.00% 12.50% 
53,25% 40.00% 25.00% 
62.50% 53.25% 40.00% 
69.23% 62.50% 53.25% 
74.29% 69.23% 62.60% 
78.18% 74.29% 69.23% 
81.25% 78.18% 74.29% 
83,71% 81.26% 78.18% 
85.71% 83.71% 81.25% 
87.37% 85.71% 83.71% 
88.75% 87.37% 85.71% 
89.92% 68.75% 87,37% 
90.91% 89.92% 88.75% 
91.76% 90.91% 89.92% 
92.50% 91.76% 90.91% 



A c c i d e n t  Year  - LDF G e n e r a t i o n  
M ixed  P rocesses  

Distr ibut ion ~ ,~: Gamma 
Mean 1.0000 I 
Shape 1.0000 

IScate 1.00001 

Iproo,=2• i. ii!  ii!ii  I 
IDIstributJon::. " : Gamma 
(Mean 8.0000 I 
/Shape 2.0000 I 
JScale 4.0000J 
JWei~lht 10,00% J 

Exhibit 7 

~Ji 

DerA;ation for. Total Mixed Process. o f  Development  Pattern 

Age Process1 Process1 Process2 Process2 Total Process Total Process Total Process 
(year) LEV % o f  UIt LEV % o f  UIt % o f  UIt AU LDF AA LDF 

1 0.6321 36.79% O. 9908 O. 92% 33.20% 3.0119 2.0973 
2 0.8647 76.75% 1.9347 5,61% 69.63% 1.4361 1.2007 
3 0.9502 91.45% 2,8040 13.07% 83.61% 1.1961 1.0687 
4 0.9817 96.85% 3.5854 21.85% 89.35% 1.1192 1,0303 
5 0.9933 98.84% 4.2754 31.00% 92.06% 1.0863 1.0168 
6 0.9975 99.57% 4.8762 39.93% 93.61% 1.0683 1.0115 
7 0.9991 99.84% 5.3934 48.28% 94.69% 1.0561 1.0090 
8 0.9997 99.94% 5.8346 55.88% 95.54% 1.0467 1.0074 
9 0.9999 99.98% 6.2082 62.64% 96.25% 1.0390 1.0063 

10 1.0000 99.99% 6.5225 68.57% 96.85% 1,0325 1.0053 
11 1.0000 100.00% 6.7854 73.71% 97.37% 1.0270 1.0045 
12 1.0000 100.00% 7.0043 78.11% 97,81% 1.0224 1.0038 
13 1.0000 100,00% 7.1857 81.85% 98.18% 1.0185 1.0032 
14 1.0000 100.00% 7.3357 85.01% 98.50% 1.0152 1,0027 
15 1.0000 100.00% 7.4591 87.66% 98.77% 1.0125 



Accident  Year - LDF Generat ion 
Negative Development 

P r ~  ess~: T . Gam am 
DlslPibution 
Mean 1.0000 I 
Shape 1.0000J 

(Scale 1.00001 

~ m ~ , , ~ g  . . . .  

I Distribu~on • ", Gamma 
Mean 2,0000 I 
Shape 2,0000 I 
Scale 1.0000 I 

IWeight 30.00% I 

Exhibit 8 

Process " 'Gamma I +Decrement 

M~tn 31ooo01 
Shape 3.00001 
Sca e 1.00001 

O~ 

Derivation of Development Pattern" 

Process Process + 
Age Process Process +Decrement Decrement 

(year) LEV % of UIt LEV % of UIt % of UIt AU LDF AA LDF 

1 0.6321 36,79% 0.9767 2.33% 51.55% 1.9397 1.9648 

2 0.8647 76.75% 1.7820 19A7% 101.29% 0.9872 1.0975 

3 0.9502 91.45% 2.3279 45.41% 111.17% 0,8995 0.9840 

4 0.9817 96.85% 2.6520 67.59% 109.40% 0.9141 0.9680 

5 0.9933 98.84% 2.8282 82.38% 105,90% 0.9443 0.9750 

6 0.9975 99.57% 2.9182 91.00% 103.25% 0.9685 0.9846 

7 0.9991 99,84% 2.9622 95.60% 101.66% 0.9837 0.9916 

6 0.9997 99.94% 2,9829 97.93% 100.81% 0.9920 0,9957 

g 0.9999 99.98% 2,9924 99.05% 100.38% 0.9962 0.9980 

10 1.0000 99.99% 2.9967 99.57% 100.17% 0.9983 0.9990 

11 1.0000 100.00% 2,9986 99.81% 100.08% 0.9992 0.9996 

12 1.0000 100.00% 2.9994 99.92% 100.03% 0.9997 0.9998 

13 1.0000 100.00% 2.9997 99.98% 100.01% 0.9999 0.9999 

14 1,0000 100,00% 2.9999 99.99% 100.01% 0.9999 1,0000 

15 1.0000 100,00% 3.0000 99.99% 100.00% 1.0000 



Accident Year - LDF Generation 
Mixed Processes- One with Negative Development  

Plst i fbut lon ::., :Gamm a 
Mean 1.0000 
Shape 1.0000 

iScale 1.0000] 

Dlstrlbutloii-.i : ;Gamiila 
Mean 8.0000 
Shape 2.0000 
Scale 4.0000 
We ~lht 20.00% 

Lag : . . . .  ~ ~u.on 
IMean 2.0000 I 
IShepe 2.00001 . 
IScale 1.000o I 
IWeight 30.00% I 

÷Decrembn'; i:~;~;:.. . : .  

Mean 3.0000 
Shape 3,0000 I 

iScale 1.0000 i 

Exhibit 9 

. . j  
Process1 

Process1 Process1 + After 
Age Processf Processf +Decrement Decrement Decrement Process2 Process2 Total Total Total 

(year) LEV % of Lilt LEV % of Lilt % of UIt LEV % of UIt % of Lilt AU LDF AA LDF 

1 0.6321 36.79% 0.9767 2.33% 51.55% 0.9908 0.92% 41.43% 2.4139 1.9831 
2 0.8647 76.75% 1.7820 19.47% 101.29% 1.9347 5.61% 82.16% 1.2172 1.1144 
3 0.9502 91.45% 2.3279 45.41% 111.17% 2.8040 13.07% 91.55% 1.0923 1.0036 
4 0.9817 96.85% 2.6520 67.59% 109.40% 3.5854 21.85% 91.89% 1.0883 0.9895 
5 0.9933 98.84% 2.8282 82.38% 105.90% 4.2754 31.00% 90.92% 1.0999 0.9963 
6 0.9975 99.57% 2.9182 91.00% 103,25% 4.8762 39.93% 90.58% 1.1039 1.0044 
7 0.9991 99.84% 2.9622 95.60% 101.66% 5.3934 48.28% 90.98% 1.0991 1.0092 
8 0.9997 99.94% 2.9829 97.93% 100.81% 5.8346 55.88% 91.82% 1.0891 1.0110 
9 0.9999 99.98% 2.9924 99.05% 100.38% 6.2082 62.64% 92.83% 1.0772 1.0110 

10 1.0000 99.99% 2.9967 99.57% 100,17% 6.5225 68,57% 93.85% 1.0655 1.0101 
11 1.0000 100.00% 2.9986 99.81% 100.08% 6.7854 73.71% 94.80% 1.0548 1,0089 
12 1.0000 100.00% 2.9994 99.92% 100.03% 7.0043 78.11% 95.65% 1.0455 1.0077 
13 1.0000 100.00% 2.9997 99.96% 100.01% 7.1857 81,85% 96,38% 1.0375 1.0065 
14 1.0000 100.00% 2.9999 99,99% 100.01% 7.3357 85,01% 97.01% 1.0309 1.0054 
15 1.0000 100.00% 3.0000 99.99% 100.00% 7.4591 87.66% 97.53% 1.0253 
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