
Obtaining Predictive Distributions for Reserves 
Which Incorporate Expert Opinion 

R. J. Verall 

283 



Obtaining Predictive Distributions for Reserves Which 
Incorporate Expert Opinion 

1LJ.Verrall 
Faculty of Actuarial Science and Statistics 

Cass Business School 
City University 

Abstract 
This paper shows how expert opinion can be inserted into a stochastic framework for 
claims reserving. The reserving methods used are the chain-ladder technique and 
Bornhuetter-Ferguson, and the stochastic framework follows England and Verrall 
(2062). Although stochastic models have been studied, there are 2 main obstacles to 
their more frequent use in practice: ease of implementation and adaptability to user 
needs. This paper attempts to address these obstacles by utilising Bayesian methods, 
and describing in some detail the implementation, using freely available software and 
programs supplied in the Appendix. 

Keywords 
Bayesian Statistics, Bornhuetter-Ferguson, Chain-ladder, Claims Reserving, Risk 

Address for correspondence 
Prof. R.J.Verrall, 
Faculty of Actuarial Science and Statistics, 
Cass Business School, 
City University, 
Northampton Square, 
London. EC 1V 0HB 
email: r.j.verrall@city.ac.uk 

284 



1. Introduction 

There has been a lot of attention given to stochastic reserving methods in the actuarial 
literature over recent years, of which useful summaries can be found in England and 
Verrall (2002) and Taylor (2000). The reader is strongly recommended to read 
England and Verrall (2002), which contains more details on the basic models, before 
reading this paper. There have been many useful things which have resulted from the 
recent papers on stochastic claims reserving: it is now possible to use a variety of 
methods to obtain reserve estimates, prediction intervals, predictive distributions and 
so on. It is possible to use these for assessing the reserving risk, for modelling a 
portfolio, line of business or a whole company in a dynamic financial analysis, etc. In 
short; the research published in recent years has been very successful in enhancing the 
understanding of claims reserving methods. This has been done by establishing 
stochastic approaches to models that are commpnly used for claims reserving, for 
example, the chain-ladder technique, the Hoerl curve, and other parametric and non- 
parametric models. In addition to this, the stochastic approaches have added further 
models to the range of possible approaches. To take just one example, England and 
Verrall (2000) showed how a non-parametric approach can be used to define a 
complete spectrum of models, with the chain-ladder technique at one end and the 
Hoerl curve at the other end. 

In practical terms, it appears that the stochastic approaches that have found most 
popularity are those which are the simplest to implement. To pick out two examples, 
both Mack's model (Mack, 1993) and the bootstrap (England and Verrall, 1999 and 
England, 2000) are straightforward to implement in a spreadsheet. In contrast, using 
the full statistical model requires the use of statistical soRware, with some careful 
programming. It is not surprising, therefore, that a practitioner requiring prediction 
intervals as well as reserve estimates, or simply wanting to investigate the use of a 
stochastic approach, should choose the methods which are simplest to implement. 

One aspect of reserving which has not, so far, received a great deal of attention in the 
literature is the question of intervention in the process by the actuary. In other words, 
the stochastic models have largely concentrated on providing a framework for the 
basic, standard methods. When these are used in practise, it is common to apply some 
expert knowledge or opinion to adjust the results before they are used. Examples of 
situations when intervention may be desirable is when there has been a change in the 
payment pattern, due to a change in company policy, or where legislatures have 

~'nacted benefit limitations that restrict the potential for loss development and require 
an adjustment to historical development factors. While it is possible to intervene in 
some models, the tendency is for this intervention to disrupt the assumptions made in 
the stochastic framework. For example, it is possible to change one or more of the 
residuals before applying a bootstrapping procedure, if  the observed residuals appear 
to be out of line with what might be expected. But if  this is done, the validity of the 
stochastic assumptions may be compromised. To take another example, consider the 
chain-ladder technique. This method involves the estimation of development factors, 
but is often the case that these are adjusted before being applied to obtain reserve 
estimates. If this is done, the estimates from the stochastic model are being 
abandoned, and it is not clear what effect this might have on the prediction errors. For 
example, it is possible to calculate estimation errors for any parameter estimated in a 
stochastic model, but what estimation error should be used for a parameter that is 
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simply inserted? The only way to address this properly is to use the Bayesian 
approach, and this provides an important motivation for the ideas discussed in this 
paper. 

A second area where expert knowledge is applied is when the Bornhuetter-Ferguson 
technique is used (Bomhuetter and Ferguson, 1972). This method uses the 
development factors from the chain-ladder technique, but does not apply these to the 
latest cumulative claims to estimate the outstanding claims. Instead, an estimate is 
first procured separately, using background knowledge about the claims. This is then 
used with the development factors to obtain reserve estimates. Although not originally 
formulated using a Bayesian philosophy, the Bomhuetter-Ferguson technique is quite 
clearly suited to this approach because of the basic idea of what it is trying to do: 
incorporate expert opinion. Thus, we have a second important motivation for 
considering the use of Bayesian reserving methods. These are two very important 
examples of reserving approaches commonly used, which are best modelled using 
Bayesian methods. Among previous papers to discuss Bayesian claims reserving, we 
would mention de Alba (2002) and Ntzoufras and Dellaportas (2002). 

One important property of Bayesian methods can be seen which makes them suitable 
for using when a stochastic reserving model is used: they allow us to incorporate 
expert knowledge in a natural way, overcoming any difficulties about the effect on the 
assumptions made. In this paper, we consider the use of Bayesian models for claims 
reserving in order to incorporate expert opinion into the prediction of reserves. We 
concentrate on two areas as mentioned above: the Bornhuetter-Ferguson technique 
and the insertion of prior knowledge about individual development factors in the 
chain-ladder technique. The possibility of including expert knowledge is an important 
property of Bayesian models, but there is another equally important point: the ease 
with which they can be implemented. This is due to the modem developments in 
Bayesian methodology based on so-called "Markov chain Monte Carlo" methods. It is 
difficult to emphasize enough the effect these methods have had on Bayesian 
statistics, but the books by Congdon (Congdon, 2001 and 2003) give some idea of the 
scope of the applications for which they have been used. The crucial aspect as far as 
this paper is concerned is that they are based on simulation, and therefore have some 
similarities with bootstrapping methods that, as was mentioned above, have gained in 
popularity for claims reserving. It is also important that there is software available, 
which is relatively easy to use, which allows us to implement the Bayesian models for 
claims reserving. While it is straightforward to define a Bayesian model, it is not 
always so easy to find the required posterior distributions for the parameters, and 
predictive distributions for future observations. However, this has been made much 
easier in recent years by the development of MCMC methods, and by the software 
package winBUGS (Spiegelhalter et al, 1996). This software package is freely 
available from http://www.nlrc-bsu.cam.ac.uk/bugs, and the programs for carrying out 
the Bayesian analysis for the models described in this paper are contained in the 
Appendix. 

The paper is set out as follows. In section 2, we describe the notation and basic 
methods used in this paper, and in section 3 we summarize the stochastic models used 
in the context of the chain-ladder technique. Sections 4 and 5 describe the Bayesian 
models for incorporating prior information into the reserving process. In section 6 we 
describe in some detail how to implement the Bayesian models so that the reader can 
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investigate the use o f  these models himself/herself, using the programs given in the 
Appendix. In section 7 we state some conclusions. 

2. Notation and basic methods 

To begin with, we define the notation used in this paper, and in doing so briefly 
summarize the chain-ladder technique and the Bomhuetter-Ferguson method. 
Although the methods can also be applied to other shapes o f  data, in order that the 
notation should not get too complicated we make the assumption that the data is in the 
shape o f  a triangle. Thus, without loss o f  generality, we assume that the data consist 
o f  a triangle of  incremental claims: 

c , ,  G ,  .. .  c , .  

c~, .. .  c~ .... 

C., 

This can be also written as {Co: j = 1 .. . . .  n - i + 1;i = 1 .. . . .  n }, where n is the number o f  

accident years. C o is used to denote incremental claims, and Dv is used to denote the 

cumulative claims, defined by: 

J 
v.=Zc . 

k ~ l  

One of  the methods considered in this paper is the chain-ladder technique, and the 

factors {2::j = 2 . . . . .  n}. The usual estimates o f  the development factors development 

from the standard chain-ladder technique are 

n-j+l 

ZD. 
~ j _ i=l 

E Di.j-i 

Note that we only consider forecasting claims up to the latest development year (n) so 
far observed, and no tail factors are applied. It would be possible to extend this to 
allow a tail factor, using the same methods, but no specific modelling is carried out in 
this paper o f  the shape o f  the run-offbeyond the latest development year. Thus, we 

n 

refer to cumulative claims up to development year n, Di, = ~ C a , as "ultimate 
k~l  

2 8 7  



claims". For the chain-ladder technique, the estimate of outstanding claims is 

Oi,n-i+l(~n_i+2~n_i+3...~n-|) • 

The first case we consider is when these development factor estimates are not used for 
all rows. In other words, we consider the more general case where there is a separate 
development factor in each row, 2i.j. The standard chain-ladder model sets 2~.j = 2j, 

for i = 1, 2 ..... n - i + 1; j = 1, 2,... n, but we consider allowing the more general case 

where development factors can change from row to row. Section 4 describes the 
Bayesian approach to this, allowing expert knowledge to be used to set prior 
distributions for these parameters. In this way, we will be able to intervene in the 
estimation of the development factors, or else simply leave them for the standard 
chain-ladder model to estimate. 

In section 5 we consider the Bornhuetter-Ferguson method. This method uses the 
development factors from the chain-ladder technique, but it incorporates knowledge 
about the "level" of  each row by replacing the chain-ladder estimate of outstanding 

l 
claims, D,, ,.,V_,_,+2._,_,+,...)~, -1 / by M i ^  ^ ^ 

• - Z._,+2Z._,÷3 . . . , t .  

Here, Midenotes an value for the ultimate claims for accident year i which is obtained 

using expert knowledge about the claims, for example taken from the premium 
1 

calculation. Thus, M i . ^ . replaces the latest cumulative claims for 
Z . _ , 2 & _ , + 3  . . . L  

accident year i, to which the usual chain-ladder parameters are applied to obtain the 
estimate of outstanding claims. From this, it can be seen that the difference between 
the Bornhuetter-Ferguson method and the chain-ladder technique is that the 
Bornhuetter-Ferguson technique uses an external estimate of the "level" of each row 
in the triangle, while the chain-ladder technique uses the data in that row itself. The 
Bornhuetter-Ferguson method can be formulated using a Bayesian approach, with the 
information about the external estimates for each row being used to form the prior 
distributions, as in section 5. 

This section has defined the notation used in the paper, and outlined the basic 
reserving methods which will be considered using stochastic approaches. In order to 
do this, a brief introduction to the stochastic models is needed, and this is given in 
section 3. 

3. Stochastic Models for the Chain-ladder Technique 

This section gives a brief summary of stochastic models that are related to the chain- 
ladder technique. A much fuller account may be found in England and Verrall (2002), 
and in the references in that paper and its discussion. We consider the chain-ladder 
technique, and note that it is possible to apply Bayesian methods in a similar way to 
other models. 
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There are a number o f  different approaches that can be taken to the chain-ladder 
technique, with various positivity constraints, all o f  which give the same reserve 
estimates as the chain-ladder technique. The connections between the chain-ladder 
technique and various stochastic models have been explored in a number o f  previous 
papers. For example, Mack (1993) takes a non-parametric approach and specifies only 
the first 2 moments for the cumulative claims. In Mack's  model the mean and 

variance o f  D O I D~.j_j,A, cr 2 are ,~.jDi,j_ I and o'~ Di.j_l , respectively. Estimates of  all 

the parameters are derived, and the properties o f  the model are examined. As was 
stated in the introduction, one of  the advantages o f  this approach is that the parameter 
estimates and prediction errors can be obtained just using a spreadsheet, without 
having recourse to a statistical package or any complex programming. The 
consequence o f  not specifying a distribution for the data is that there is no predictive 
distribution. Also, there are separate parameters in the variance that must also be 
estimated, separately from the estimation o f  the development factors. 

As a separate stream o f  research, models in the form o f  generalized linear models 
have also been considered. Renshaw and Verrall (1998) used an approach based on 
generalized linear models (McCullagh and Nelder, 1989) and examined the over- 
dispersed Poisson model for incremental claims: 

C U I c, a,fl,~o ~ independent over-dispersed Poisson, with mean, m0, where 

log(mo)=C+ai+f l j  and o q = f l l = O .  

The term "over-dispersed" requires some explanation. It is used here in connection 

with the Poisson distribution, and it means that if  X - Poisson (/.t), then 

Y = ~pX follows the over-dispersed Poisson distribution with E ( Y )  = q~/.t and 

V ( Y )  = q~2E(X) = q~2/.t. ~o is usually greater than 1 - hence the term "over- 

dispersed" - but this is not a necessity. It can also be used for other distributions, and 
we make use of  it for the negative binomial distribution. As with the Poisson 
distribution, the over-dispersed negative binomial distribution is defined such that if  
X ~ negative binomial then Y = ~oX follows the over-dispersed negative binomial 

distribution. Furthermore, a quasi-likelihood approach is taken so that the claims data 
are not restricted to the positive integers. 

It can be seen that this formulation has some similarities with the model o f  Kremer 
(1982), but it has a number o f  advantages. It does not necessarily break down i f  there 
are negative incremental claims values, it gives the same reserve estimates as the 
chain-ladder technique, and it has been found to be more stable than the log-normal 
model o f  Kremer. For these reasons, we concentrate on it in this paper. There are a 
number o f  ways o f  writing this model, which are useful in different context (note that 
the reserve estimates are unaffected by the way the model is written). Another way o f  
writing the over-dispersed Poisson model for the chain-ladder technique is as follows: 

n 

C U I x,y,q~ - independent over-dispersed Poisson, with mean xiyj, and Z y k  = 1. 

2 8 9  



Here x = { x l , x  2 . . . . .  x , }  and y = {Y, ,Yz  . . . . .  y,} are parameter vectors relating to the 

rows (accident years) and colunms (development years), respectively, of the run-off 
triangle. The parameter x i = E[Dm ], and so represents expected ultimate cumulative 

claims (up to the latest development year so far observed, n) for the ith accident year. 
The column parameters, Yi, can be interpreted as the proportions of ultimate claims 

which emerge in each development year. 

Although the over-dispersed Poisson models give the same reserve estimates as the 
chain-ladder technique (as long as the row and column sums of incremental claims are 
positive), the connection with the chain-ladder technique is not immediately apparent 
from this formulation of the model. For this reason, the negative binomial model was 
developed by Verrall (2000), building on the over-dispersed Poisson model. Verrall 
(2000) showed that the same predictive distribution can be obtained from a negative 
binomial model (also with the inclusion of an over-dispersion parameter). In this 
recursive approach, the incremental claims have an over-dispersed negative binomial 
distribution, with mean and variance 

( 2 j  - 1)Di.:,_ , and ¢~.j (2 s - 1)Dia-_ , , respectively. 

Again, the reserve estimates are the same as the chain-ladder technique, and the same 
positivity constraints apply as for the over-dispersed Poisson model. It is clear from 
this that the colunm sums must be positive since a negative sum would result in a 
development factor less than 1 ( 2j < 1 ), causing the variance to be negative. It is 

important to note that exactly the same predictive distribution can be obtained from 
either the Poisson or negative binomial models. Verrall (2000) also argued that the 
model could be specified either for incremental or cumulative claims, with no 
difference in the results. The negative binomial model has the advantage that the form 
of the mean is exactly the same as that which naturally arises from the chain-ladder 
technique. In fact, by adding the previous cumulative claims, an equivalent model 
forD 0 I D~.j_~, 2, 4 has an over-dispersed negative binomial distribution, with mean 

and variance 

2 . jD i j_  , and ¢~j(3.j-1)D,.i_,, respectively. 

Here the connection with the chain-ladder technique is immediately apparent because 
of the format of the mean. 

A further model, which is not considered further in this paper, is closely connected 
with Mack's model, and deals with the problem of negative incremental claims. This 
model replaces the negative binomial by a Normal distribution, whose mean is 
unchanged, but whose variance is altered to accommodate the case when 2 j  < 1. 

Preserving as much of  ,~l, j(~j - 1)DI,j_~ as possible, the variance is still proportional 

to D~a_ ~ , with the constant of proportionality depending on j ,  but a Normal 

approximation is used for the distribution of incremental claims. Thus, C o. I Dia-t ,  .£,qJ 

is approximately Normally distributed, with mean and variance 
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Dij_,(2S-1 ) and ~jD,4_,,  respectively, 

or Du I D~u_~,2,~b is approximately Normally distributed, with mean and variance 

)tjDiu_ ~ and OjDi.j_~, respectively. 

As for Mack 's  model, there is now another set of  parameters in the variance that 
needs to be estimated. 

For each of  these models, the mean square error of  prediction can be obtained, 
allowing the construction of  prediction intervals, for example. Claims reserving is a 
predictive process: given the data, we try to predict future claims. These models apply 
to all the data, both observed and future observations. The estimation is based on the 
observed data, and we require predictive distributions for the future observation. 
We use the expected value of  the distribution of  future claims as the prediction. 
When considering variability, attention is focused on the root mean squared error of  
prediction (RMSEP), also known as the prediction error. To explain what this is, we 
consider, for simplicity, a random variable, y, and a predicted value ) .  The mean 
squared error of  prediction (MSEP) is the expected square difference between the 

actual outcome and the predicted value, EI(y-.~)21' and can be written as follows: 

El(y-  ~)2 ]= E[((y - E [yD-  (.~ - E[yD) 21. 

In order to obtain an estimate of  this, it is necessary to plug-in ) instead o fy  in the 
final expectation. Then the MSEP can be expanded as follows: 

El(Y- ~)~ ]~ El(Y- ELY]) 2 ] -  2E[(y - E[y])(~ - EL~])] + E [ ( ~ -  ED3]) 2 ], 

Assuming future observations are independent of  past observations, the middle term is 
zero, and 

E[(y - ~)2 ]~ E[(y - ELY])21+ El03 - ED3])2 ]. 

In words, this is 

prediction variance = process variance + estimation variance. 

It is important to understand the difference between the prediction error and the 
standard error. Strictly, the standard error is the square root of  the estimation variance. 
The prediction error is concerned with the variability of  a forecast, taking account of  
uncertainty in parameter estimation and also of  the inherent variability in the data 
being forecast. Further details of  this can be found in England and Verrall (2002). 

Using non-Bayesian methods, these two components - the process variance and the 
estimation variance - are estimated separately, and section 7 of  England and Verrall 
(2002) goes into a lot of  detail about this. The direct calculation of  these quantities 
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can be a tricky process, and this is one of the reasons for the popularity of the 
bootstrap. The bootstrap uses a fairly simple simulation approach to obtain simulated 
estimates of the prediction variance in a spreadsheet. Fortunately, the same 
advantages apply to the Bayesian methods: the full predictive distribution can be 
found using simulation methods, and the RMSEP can be obtained directly by 
calculating its standard deviation. In addition, it is preferable to have the full 
predictive distribution, rather than just the first 2 moments, which is another 
advantage of Bayesian methods. 

The purpose of this paper is to show how expert opinion, from sources other than the 
specific data set under consideration, can be incorporated into the predictive 
distributions of the reserves. We use the approach of generalized linear models 
outlined in this section, concentrating on the over-dispersed Poisson and negative 
binomial models. We begin with considering how it is possible to intervene in the 
development factors for the chain-ladder technique in section 4, and then consider the 
Bomhuetter-Ferguson method in section 5. 

4. Incorporating expert opinion about the development factors 

In this section, a Bayesian model is specified which allows the practitioner to 
intervene in the estimation of the development factors for the chain-ladder technique. 
There are a number of ways in which this could be used, and we describe some 
possibilities in this section. It is expected that a practitioner would be able to extend 
these to cover situations which, although not specifically covered here, would also be 
useful. The cases considered here are the intervention in a development factor in a 
particular row particular, and the choice of how many years of data to use in the 
estimation. The reasons for intervening in these ways could be that there is 
information that the settlement pattern has changed, making it inappropriate to use the 
same development factor for each row. 

For the first case, what may happen in practice is that a development factor in a 
particular row is simply changed. Thus, although the same development parameters 
(and hence run-offpattern) is usually applied for all accident years, if  there is some 
exogenous information that indicates that this is not appropriate, the practitioner may 
decide to apply a different development factor (or set of factors) in some, or all, rows. 

In the second case, it is common to look at, say, 5-year volume weighted averages in 
calculating the development factors, rather than using all the available data in the 
triangle. The Bayesian methods make this particularly easy to do, and are flexible 
enough to allow many possibilities. 

We use the negative binomial model described in section 3, with different 
development factors in each row. This is the model for the data, and we then specify 
prior distributions for the development factors. In this way, we can choose prior 
distributions that reproduce the chain-ladder results, or we can intervene and use prior 
distributions based on external knowledge. The model for incremental claims, 
C,71Di.j-~, 2, 4 ,  is an over-dispersed negative binomial distribution, with mean and 

variance 
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(2i, j -1)Dij_ , and ~,~.j (21j -1)D;j_,, respectively. 

We next need to define prior distributions for the development factors, 2lj .  It is 

possible to set some of these equal to each other (within each column) in order to 
revert !o the standard chain-ladder model. This is done by setting 

2 ; j=37 for i=l,2,.. . ,n-i+l;j=l,2,.. .n 

and defining vague prior distributions for 2j ( j  = 1,2,...n). This was the approach 

taken in section 8.4 of England and Verrall (2002) and is very similar to that taken by 
de Alba (2002). This can provide a very straightforward method to obtain prediction 
errors and predictive distributions for the chain-ladder technique. 

However, we really want to move away from the basic chain-ladder technique, and 
construct Bayesian prior distributions that encompass the expert opinion about the 
development parameters. Suppose, for example, that we have a 10 × 10 triangle. We 
consider the 2 possibilities for incorporating expert knowledge described above. 

To illustrate the first case, suppose that there is information that implies that the 
second development factor (from column 2 to column 3) should be given the value 2, 
for rows 8, 9,and 10, and that there is no indication that the other parameters should 
be treated differently from the standard chain-ladder technique. An approPriate way to 
treat this would be to specify 

)tij =2j  for i=1,2 ..... n-i+l;j=l,3,4,... ,n 

2;.~ = ~  for i=1,2 ..... 7 

&.2 = ~ ,2  = &0.2 

The means and variances of the prior distributions of the parameters are chosen to 
reflect the expert opinion: 

As. 2 has a prior distribution with mean 2 and variance W, where Wis set to reflect the 

strength of the prior information 

2j have prior distributions with a large variances. 

For the second case, we divide the data into two parts using the prior distributions. To 
do this, we set 

'~i.j = ~'j for i = n- i -3 ,n  - i - 2 , n - i - l , n - i , n - i + l  

Aia =3.) for i=1,2 ..... n - i - 4  
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and give both 2y and 2) prior distributions with large variances so that they are 

estimated from the data. Adjustments to the specification are made in the later 
development years, where there are less than 5 rows. For these columns there is just 
one development parameter, 2.i. 

The specific form of the prior distribution (gamma, log-normal, etc) is usually chosen 
so that the numerical procedures in winBUGS work as well as possible. 

These models are used as illustrations of the possibilities for incorporating expert 
knowledge about the development pattern, but it is (of course) possible to specify 
many other prior distributions. In Appendix 1, the winBUGS code is supplied, which 
can be cut and pasted directly in order to examine these methods. Section 6 contains a 
number of examples including the ones described in this section. 

5. A B a y e s i a n  m o d e l  f o r  t h e  B o r n h u e t t e r - F e r g u s o n  m e t h o d .  

In this section, we show how the Bomhuetter-Ferguson method can be considered in a 
Bayesian context, using the approach of Verrall (2004). For further background on the 
Bornhuetter-Ferguson method, see Mack (2000). 

In section 3, the over-dispersed Poisson model was defined as follows. 
n 

C o. I x ,  y ,  cp ~ independent over-dispersed Poisson, with mean x i y j ,  and  ~ Y k  = 1, 
k = l  

and in the Bayesian context, we also require prior distributions for the parameters. 
The Bornhuetter-Ferguson method assumes that there is expert opinion about the level 
of each row, and we therefore concentrate first on the specification of prior 
distributions for these. The most convenient form to use is gamma distributions: 

x i I ctr,flr ~ independent r(ar,p,). 

There is a wide range of possible choices for the parameters of these prior 
distributions, a i and fir. It is easiest to consider the mean and variance of the gamma 

ai ai Mr distribution, y and --fl/~, respectively. These can be written as M r and -~--r' from 

which it can be seen that, for a given choice of M r , the variance can be altered by 

changing the value of/3,.  To consider a simple example, suppose it has been decided 

that M r = 1000. The table below shows how the value of fl~ affects the variance of 

the prior distribution, while M~ is kept constant. 

al ~i Mi Mi 
P, 

10000 10 1000 100 
1000 1 1000 lO00 
100 0.1 1000 10000 
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Clearly, choosing a larger value of  fli implies we are more sure about the value of  

M~, and choosing a smaller value means we are less sure. 

We now consider the effect o f  using these prior distributions on the model for the 
data. Recall that, for the chain-ladder technique, the mean of  the distribution of  

incremental claims may be written as (2 j  - 1)D~.j_~. It can shown that the equivalent 

mean for the Bayesian model is 

1 

j - I  
y'y, 

where Zo = k=~ J-~ 

fli~+ ZY* 
k=l 

This can be seen to be in the form o f  a credibility formula, and is a trade-off between 

the chain-ladder (().j - 1) Dij_ , ) and the Bomhuetter-Ferguson 

((2j  - l ) M i  1 ). The credibility factor, Z0., governs the trade-offbetween the 
~j~.j+, ...~.. 

prior mean and the data. We can influence the balance of  this trade-off through the 
choice o f  fl~. In line with the discussion above, the larger the value of  fl~ the closer 

we get to the Bomhuetter-Ferguson method, and the smaller the value of  fl~, the 

closer we get to the chain-ladder technique. In this way, we can use different 
specifications of  the prior distributions for the row parameters in order to use the 
chain-ladder technique, the Bornhuetter-Ferguson method, or for a complete spectrum 
of  methods between these two extremes. If  we choose to use prior distributions with 
large variances, we do not influence the parameter estimates and the result will be the 
same as (or extremely close to) the chain-ladder technique. I f  we use very small 
variances, we are saying that we are very sure what the parameter values should be 
and the results will be the same as (or very close to) the Bornhuetter-Ferguson 
method. Thus, we can use these methods within a stochastic framework, and we can 
also consider using the whole range o f  models that lie between these two. 

We have yet to consider the estimation of  the column parameters, other than to point 
out at the Bomhuetter-Ferguson method, being deterministic, simply plugs in the 
chain-ladder parameter estimates. We now consider this issue in more detail, and 
define a Bayesian approach to the Bomhuetter-Ferguson method. One option is to 
simply use plug-in estimates, obtained, for example, from the straightforward chain- 
ladder technique. This is the approach used in the  deterministic application o f  the 
Bomhuetter-Ferguson method, but it is not suitable here since we would prefer a 
stochastic approach. A better option is to define improper prior distributions for the 
column parameters, and estimate the column parameters first, before applying prior 
distributions for the row parameters and estimating these. This second option allows 
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us to take into account the fact that the column parameters have been estimated when 
calculating the prediction errors, predictive distribution, etc. It is not required to 
include any information about the column parameters, and hence we use improper 
gamma distributions for the column parameters, and derive the posterior distributions 
of these using a standard Bayesian prior-posterior analysis. The result of this is a 
distribution which looks similar to the negative binomial model for the chain-ladder 
technique, but which is recursive in i instead of j :  

C o. ICe.j, C2.j ..... C~_~j, x, ~0 ~ over-dispersed negative binomial, with mean 
i - I  

(r,-1) y 
m = l  

- I  - 

Comparing this to the mean of the chain-ladder model, (2: -l)Di.,_ , : (2j -1 )~4  Cj.,, 
m=l 

it can be seen that they are identical in form, with the recursion either being across the 
rows, or down the columns. 

In the context of the Bornhuetter-Ferguson method, we now have the stochastic 
version of this model. The Bornhuetter-Ferguson method inserts values for the 
expected ultimate claims in each row, x/, in the form of the values, M~. In the 

Bayesian context, prior distributions will be defined for the parameters x/, as 

discussed above. However, the model has been reparameterised, with a new set of 
parameters, yg. Hence, it is necessary to define the relationship between the new 

parameters, Yi, and the original parameters, x~. This is given in the equation below, 

which can be used to find values of y; from the values of xi given in the prior 

distributions. 

k=n-i+2 I 
)'i = CI" ,_, + 1 

U r, 

The Bornhuetter-Ferguson technique can be reproduced by using strong prior 
information for the row parameters, x, and the chain-ladder technique can be 
reproduced by using improper priors for the row parameters. In other words, the 
Bornhuetter-Ferguson technique assumes that we are completely sure about the values 
of the row parameters, and their prior distributions have very small variances, while 
the chain-ladder technique assumes there is no information and has very large 
variances. 

This has now defined a stochastic version of the Borrthuetter-Ferguson technique. 
Since the column parameters (the development factors) are dealt with first, using 
improper prior distributions, their estimates will be those implied by the chain-ladder 
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technique. Prior information can be defined in terms of distributions for the 
parameters xi, which can then be converted into values for the parameters y~, and this 
is implemented in section 6. 

6. I m p l e m e n t a t i o n  

This section explains how the Bayesian models can be implemented, using the 
software package winBUGS (Spiegelhalter et al, 1996) which is available from 
http://www.mrc-bsu.cam.ac, uk/bugs. The programs used in these illustrations are 
contained in the Appendix. 

The data set we consider in this section is taken from Taylor and Ashe (1983), and has 
also been used in a number of previous papers on stochastic reserving. The 
incremental claims data is given in table 1, together with the chain-ladder results for 
comparison purposes. 

Table 1. Data from Taylor and Ashe (1983) with the chain-ladder estimates 

357,848 766,940 610,542 482,940 527,326 574,398 
352,118 884,021 933,894 1,183.289 445,745 320,996 
290,507 1,001,799 926.219 1,016,654 750,816 146,923 
310,608 1.108,250 776,189 1,562,400 272,482 352,053 
443,160 693,190 991,983 769.488 504,851 470,639 

396,132 937,085 847,498 805,037 705,960 
440,832 847,631 1,131,398 1.063,269 
359.480 1,061,648 1,443,370 

376,686 986.608 
344,014 

Chain-ladder development factors: 
3.4906 1.7473 1.4574 

Chain-ladder reserve estimates: 
2 94,634 

3 469.511 

4 709.638 
5 984,889 
6 1,419,459 
7 2.177,641 

8 3,920,301 
9 4.278,972 

10 4,625,811 

146,342 139,950 227.229 
527.804 266,172 425.046 

495,992 280.405 
206,286 

1.1739 1.1038 1.0863 1.0539 1.0766 1.0177 

Overall 18,680,856 

67,948 
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Before looking at the uses of the Bayesian models, we should discuss the nuisance 
parameter 4.  In a full Bayesian analysis, we should also give this a prior distribution 
and estimate it along with the other parameters. However, for ease of implementation 
we instead use a plug-in estimate, in line with the approach taken in classical methods 
(in England and Verrall, 2002, for example). The value used is that obtained from the 
straightforward application of the over-dispersed Poisson model, estimating the row 
and column parameters using maximum likelihood estimation (it is possible to use S- 
Plus or excel for this). 

6.1 Using the Software 

Before considering the results from the programs in any detail, we first describe how 
to set up the software and run one of the programs from scratch. An excellent 
reference in the context of actuarial modelling is Skollnik (2001). Table 1 shows the 
standard chain-ladder results, and in this section we will implement the model 
described in section 5, but use the assumptions of the chain-ladder technique, rather 
than the Bomhuetter-Ferguson method. This means that we will use large variances 
for the prior distributions for the ultimate claims in each row, implying that there is no 
prior knowledge about them, and hence the results we obtain should be close to the 
chain-ladder results. Thus, we will first reproduce the results which can also be 
obtained using non-Bayesian methods (see England and Verrall, 2002, for more 
details of the non-Bayesian methods). Alter going through this example in detail, the 
remainder of this section will show how the Bayesian models incorporating prior 
knowledge described in sections 4 and 5 can be implemented, and illustrate the effect 
that the choice of prior distributions can have. 

The steps necessary for implementing the chain-ladder technique in winBUGS are 
lised below. 

1. Go to the web site, download the latest version of the sot~care and install it on 
a pc. 

2. Go back to the web site and register, and you will be sent a copy of the key to 
unlock the software. Follow the instructions in the email for unlocking the 
soltware. 

3. Once you have a fully functioning version of winBUGS on a pc, you can run 
the programs in the Appendix. Open winBUGS and click on "File" in the top 
toolbar, and then "New" in the pop-down list. This will open a new window. 

4. Copy the program in (i) of the Appendix, including the word "model" at the 
top and all the data at the bottom, right down to where it the next subsection 
begins at (ii). The last line is 0,0,0,0,0,0,0,0,0)) Paste all of this into the new 
window in winBUGS. 

5. In winBUGS select "Model" in the toolbar at the top and "Specification" in 
the pop-down list. This opens a new window called "Specification Tool". 

6. Highlight the word "model" at the top of the program, and then click "check 
model" in the Specification Tool window. If all is well, it will say "model is 
syntactically correct" in the bottom lefi comer. 

7. Now move down in the window containing the program until you get to 
#DATA. Highlight the word "list" immediately below that, and click "load 
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data" in the Specification Tool window. It should say "data loaded" in the 
bottom left comer. 

8. Click "compile" in the Specification Tool window. After a few seconds, it 
should say "model complied" in the bottom left comer. 

9. Now move down in the window containing the program until you get to 
#INITIAL VALUES. Highlight the word "list" immediately below that, and 
click "load inits" in the Specification Tool window. It should say "model is 
initialised" in the bottom left comer. 

10. Select "Model" in the toolbar at the top and "Update" in the pop-down list. 
This opens a new window called "Update Tool". The number of iterations in 
the simulation process can be changed in this window, by changing the figure 
next to "updates". Just at the moment, 1000 is sufficient, so just click on 
"update". This runs 1000 simulations without storing the results. This may 
take a few minutes: don't be concerned if nothing appears to be happening! 
When it is complete, a message appears in the bottom left comer saying how 
long the updates took (for my laptop it was 221 seconds). 

11. Select "Inference" in the toolbar at the top and "Samples" in the pop-down 
list. This opens a new window called "Sample Monitor Tool". We want to 
look at the row totals and overall total, which have been defined as a vector R 
and Total in the program. In the Sample Monitor Tool window, click in the 
box to the right of the word "node", and type R. Then click on "set". Repeat 
for Total, noting that it is case sensitive. 

12. Return to the Update Tool Window and click on Update to perform 1000 
simulations. This should be quicker (6 seconds for my laptop). This time the 
values of R and Total will be stored. 

13. Return to the Sample Monitor Tool window, type * in the box to the right of 
the word "node", and click "stats". This will give a new window with 
something like the results below. This completes the steps necessary for fitting 
the Bayesian model. 

node mean sd MC error2.5% median 97.5% start sample 
R[2] 92750.0 110600.0 2963.0 779.2 56320.0 412800.0 1001 1000 
R[3]  473900.0223100.06424.0 1.52E+5 4.4E+5 1.011E+61001 1000 
R[4] 7.05E+5 2.58E+5 9085.0 307600.0 674500.0 1.288E+61001 1000 
R[5] 985800.0 304600.0 8127.0 467600.0 960600.0 1.667E+61001 1000 
R[6] 1.417E+6378300.0 13430.0 768500.0 1.399E+62.217E+61001 1000 
R[7]  2.174E+65.19t::+5 16850.0 1.271E+62.132E+63.233E+61001 1000 
RI8 ] 3.925E+6 776900.0 28100.0 2.585E+6 3.885E+6 S.555E+61001 1000 
R[9] 4.284E+61.066E+6 36840.0 2.464E+64.207E+66.731E+61001 1000 
R[10] 4.641E+62.002E+661630.0 1.73E+6 4.407E+69.345E+61001 1000 
Total 1.87E+7 3.056E+6101600.0 1.314E+71.861E+72.554E+71001 1000 

The columns headed mean and sd give the predicted reserves and prediction errors, 
and these values can be compared with the chain-ladder results above. Since this is a 
simulation process, the results will depend on the prior distributions, the initial values 
and the number of iterations carried out. The prior distributions in the program had 
reasonably large variances so the results should be close to the chain-ladder results. 
More simulations should be used in steps 10 and 12 (we use 10,000 in the illustrations 
below), and the prior variances could be increased. Using this number of simulations 
gives the results shown in Table 2. 
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Table 2. Chain-ladder results. The Prediction Error is equal to the Bayesian Standard 
Deviation 

Chain- 
ladder Bayesian Bayesian Prediction 

Reserve Mean Standard Error 
Deviation (%) 

Year 2 94,634 94,440 111,100 118% 
Year3 469,511 471,400 219,400 47% 
Year 4 709,638 716,300 263,600 37% 
Year 5 984,889 991,600 308,100 31% 
Year6 1,419,459 1,424,000 374,700 26% 
Year 7 2,177,641 2,186,000 497,200 23% 
Year 8 3,920,301 3,935,000 791,000 20% 
Year9 4,278,972 4,315,000 1,068,000 25% 

Year 10 4,625,811 4,671,000 2,013,000 43% 

Overall 18,680,856 18,800,000 2,975,000 16% 

However, the results certainly confirm that we can reproduce the chain-ladder results, 
and produce the prediction errors. It is also possible to obtain other information about 
the model from winBUGS. For example, it is possible to produce full predictive 
distributions, using "density" in the Sample Monitor Tool window. 

We have now described one implementation of a Bayesian model using winBUGS. In 
the rest of this section, we consider the Bayesian models described in sections 4 and 
5, in order to consider how expert opinion can be incorporated into the predictive 
distribution of reserves. In each case, the programs are available in the Appendix, and 
the results can be reproduced using steps 3 to 13, above. It should be noted that this is 
a simulation-based program, so that the results obtained may not match exactly the 
results given below. However, there should be no significant differences, with the 
differences that there are being due to simulation error. 

6.2 Intervention in the chain-ladder technique 
We now consider using a prior distribution to intervene in some of the parameters of 
the chain-ladder model, instead of using prior distributions with large variances which 
just reproduce the chain-ladder estimates. The implementation is set up in section (ii) 
of the Appendix, and the program can be cut and pasted into winBUGS and run 
following steps 3 onwards, above. 
We consider 2 cases, as discussed in section 4. For the first ease, we assume that there 
is information that implies that the second development factor (from column 2 to 
column 3) should be given the value 1.5, for rows 7, 8, 9,and 10, and that there is no 
indication that the other parameters should be treated differently from the standard 
chain-ladder technique. In order to implement this, the parameter for the second 
development factor for rows 7-10 is given a prior distribution with mean 1.5. We then 
look at two different choices for the prior variance for this parameter. Using a large 
variance means that the parameter is estimated separately from the other rows, but 
using the data without letting the prior mean influence it too greatly. We then use a 
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standard deviation of 0.1 for the prior distribution, so that the prior mean has a greater 
influence. 

We consider first the estimate of the second development factor. The chain ladder 
estimate is 1.7473 and the individual development factors for the triangle are shown 
in table 3. The rows for the second development factor that are modelled separately 
are shown in italics. The estimate using the Bayesian models is 1.68 for rows 1-6. 
When a large variance is used for the prior distribution of the development factor for 
rows 7-10, the estimate using the Bayesian model is 1.971. With the smaller variance 
for this prior distribution, the estimate is 1.673, and has been drawn down towards the 
prior mean of 1.5. This clearly shows how the prior distributions can be used to 
influence the parameter estimates. 

Table 3. Individual development factors 
3.143 1.543 1.278 1.238 1.209 
3.511 1.755 1.545 1.133 1.084 
4.448 1.717 1.458 1.232 1.037 
4.568 1.547 1.712 1.073 1.087 
2.564 1.873 1.362 1.174 1.138 
3.366 1.636 1.369 1.236 
2.923 1.878 1.439 
3.953 2.016 
3.619 

1.044 1.040 1.063 
1.128 1.057 1.086 
1.120 1.061 
1.047 

1.018 

The effect on the reserve estimates is shown in table 4, which compares the reserves 
and prediction errors for the two cases outlined above with the results for the chain- 
ladder model (which could be produced using the program in 6.1 on this set of data). 
The chain-ladder figures are slightly different from those given in table 2 because this 
is a simulation method. 

Table 4. Reserves and prediction errors for the chain-ladder and Bayesian models 

Chain-ladder Large variance Small variance 
Reserve Prediction Reserve Prediction Reserve Prediction 

Error (%) Error (%) Error (%) 
Year2 97,910 115% 95,920 116% 95,380 117% 
Year 3 471,200 46% 475,700 46% 470,500 47% 
Year4 711,100 38% 721,700 37% 714,400 37% 
Year 5 989,200 31% 996,800 31% 994,700 31% 
Year 6 1,424,000 27% 1,429,000 26% 1,428,000 27% 
Year 7 2,187,000 23% 2,196,000 23% 2,185,000 23% 
Year 8 3,930,000 20% 3,937,000 20% 3,932,000 20% 
Year 9 4,307,000 24% 4,998,000 27% 4,044,000 25% 

Year 10 4,674,000 43% 5,337,000 44% 4,496,000 43% 
Overall 18,790,000 16% 20,190,000 17% 18,360,000 16% 

301 



It is interesting to note that, in this case, the intervention has not had a marked effect 
on the prediction errors (in percentage terms). However, the prediction errors 
themselves have changed considerably, and this indicates that it is important to think 
of the prediction error as a percentage of the prediction. Other prior distributions 
could have a greater effect on the percentage prediction error. 

The second case we consider is when we use only the most recent data for the 
estimation of each development factor. For the last 3 development factors, all the data 
is used because there is no more than 3 years for each. For the other development 
factors, only the 3 most recent years are used. The estimates of  the development 
factors are shown in table 5. The estimates of the first development factor are not 
affected by the change in the model (the small differences could be due to simulation 
error or the changes elsewhere). For the other development factors, the estimates can 
be seen to be affected by the model assumptions. 

Table 5. Development factors using 3 most recent years data separately 
3.143 1.543 1.278 
3.511 1.755 1.545 
4.448 1.717 1.458 
4.568 1.547 1.712 
2.564 1.873 1.362 
3.366 1.636 1.369 
2.923 1.878 1.439 
3.953 2.016 
3.619 

1.238 1.209 1.044 1.040 
1.133 1.084 1.128 1.057 
1.232 1.037 1.120 1.061 
1.073 1.087 1.047 
1.174 1.138 
1.236 

1.063 
1.086 

Earlier rows 3.575 1.688 1 . 5 1 3  1.197 1.139 1.045 
Recent rows 3.579 1.852 1 . 3 9 3  1 . 1 5 5  1 . 0 8 5  1.099 1.054 1.076 

All rows 3.527 1.751 1.46 1 . 1 7 5  1.104 1.087 1.054 1.076 

1.018 

1.018 

1.018 

The effect of using only the latest 3 years in the estimation of the development factors 
in the forecasting of outstanding claims can be seen in table 6. 

Table 6 Reserve estimates using 3 most recent years data 
Chain-ladder Bayesian Model 

.Reserve Prediction Reserve Prediction 

Year 2 
Year 3 
Year 4 
Year 5 
Year 6 
Year 7 
Year 8 
Year 9 
Year 10 
Overall 

Error (%) Error (%) 
97,910 115% 94,860 115% 

471,200 46% 469,300 46% 
711,100 38% 712,900 37% 
989,200 31% 1,042,000 30% 

1,424,000 27% 1,393,000 27% 
2,187,000 23% 2,058,000 24% 
3,930,000 20% 3,468,000 22% 
4,307,000 24% 4,230,000 27% 
4,674,000 43% 4,711,000 47% 

18,790,000 16% 18,180,000 18% 
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In this case, the effect on the reserves is not particularly great. The prediction errors 
have increased for most years, although the effect is not great on these either. The 
importance of the Bayesian method is to actually be able to assess the effect of using 
different sets of data on the uncertainty of the outcome. 

6.3 The Bornhuetter-Ferguson method 

In this section, we consider intervention on the level of each row, using the 
Bomhuetter-Ferguson method. We consider two examples. The first uses small 
variances for the prior distributions of the row parameters, thus reproducing the 
Bornhuetter-Ferguson method. The second example uses less strong prior 
information, and produces results that lie between the Bomhuetter-Ferguson method 
and the chain-ladder technique. We use the negative binomial model for the data that 
was described in section 5, and the winBUGS code for this is given in Appendix 2 (i). 
Section 6.1 used this method with large variances for the prior, thereby reproducing 
the chain-ladder technique. 

First we consider the Bomhuetter-Ferguson method, exactly as it usually applied. For 
this, we begin by use prior distributions for the row parameters which all have 
standard deviation 1000 (which is small compared with the means), and whose means 
a r e ;  

x 2 x3 x 4 x5 x6 x7 xs x9 x~o 

5,500,000 5,500,000 5,500,000 5,500,000 5,500,000 6,000,000 6,000,000 6,000,000 6,000,000 

The Bornhuetter-Ferguson estimates of outstanding claims, and the results from the 
Bayesian model are shown in table 7. 

Table 7. Negative binomial model: Bayesian model with precise priors for all rows: 
mean and prediction error of reserves. 

Bayesian Bayesian Bayesian Bornhuetter- 

Mean Prediction Prediction Ferguson 

Reserve Error Error % Reserve 

Year 2 95,680 111,100 1 116% 95,788 

Year 3 482,500 211,900 44% 480,088 
J 

Year 4 736,400 250,100 34% 736,708 

Year 5 1,118,000 296,500 27% 1,114,999 

Year 6 1,533,000 339,700 22% 1,527,444 

Year 7 2,305,000 410,300 18% 2,308,139 

Year 8 3,474,000 497,500 14% 3,466,839 

Year 9 4,547,000 555,000 12% 4,550,270 

Year 10 5,587,000 610,900 11% 5,584,677 

Overall 19,880,000 1,854,000 9% 19,864,951 
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In this case, it can be seen that the results are very close to those of the Bornhuetter- 
Ferguson technique. Thus, if it is desired to use the Bornhuetter-Ferguson method 
within this stochastic framework, this is the approach that should be used. The added 
information which is available are the prediction errors. Further, it is possible to 
generate predictive distributions rather than just the mean and prediction error. 

The Bomhuetter-Ferguson technique assumes that there is strong prior information 
about the row parameters, so that the standard deviations of the prior distributions 
used in this example are small. The other end of the spectrum is constituted by the 
chain-ladder technique, when large standard deviations are used for the prior 
distributions. Between these two extremes is a whole range of possible models, which 
can be specified by using different standard deviations. We now illustrate the results 
when less strongly informative prior distributions are used for the row parameters. We 
use the same prior means as above, but this time use a standard deviation of 
1,000,000. We are incorporating prior belief about the ultimate claims for each year, 
but allowing for uncertainty in this information. The associated reserve results are 
shown in Table 8. Notice that the reserves are between the chain-ladder and 
Bomhuetter-Ferguson results. Notice also that the precision of the prior has 
influenced the prediction errors, but to a lesser extent. This provides an extra level of 
flexibility, to choose a range of models in a continuous spectrum between the chain- 
ladder technique and Bornhuetter-Ferguson. 

Table 8. 
and prediction error of reserves. 

Year 2 

Year 3 

Year 4 

Year 5 

Year 6 

Year 7 

Year 8 

Year 9 

Year 10 

Overall 

Negative binomial model: Bayesian model with informative priors: mean 

Bayesian Bayesian 

Mean Prediction 

Reserve Error 

94,660 111,500 

470 400 218 800 

717 100 265 900 

994 900 308 900 

1,431000 376 800 

2,198 000 488 900 

3,839 000 727 200 

4,417,000 865 500 

5,390,000 1,080,000 

19,550,000 2,252,000 

Bayesian Bomhuetter- Chain- 

Prediction Ferguson Ladder 

Error % Reserve Reserve 

118% 95,788 94,634 

47% 480,088 469,511 

37% 736,708 709,638 

31% 1,114,999 984,889 

26% 1,527,444 1,419,459 

22% 2,308,139 2,177,641 

19% 3,466,839 3,920,301 

20% 4,550,270 4,278,972 

20% 5,584,677 4,625,811 

12% 19,864,951 18,680,856 
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7. Conclusions 

This paper has shown how expert opinion, separate from the reserving data, can be 
incorporated into the prediction intervals for a stochastic model. The advantages of a 
stochastic approach are that statistics associated with the predictive distribution are 
also available, rather than just a point estimate. In fact, it is possible to produce the 
full predictive distribution, rather than just the first two moments. As was emphasized 
by England and Verrall (2002), the full predictive distribution contains a lot more 
information than just its mean and standard deviation, and it is a great advantage to be 
able to look at this distribution. As an illustration of this, figure I shows the predictive 
distribution of outstanding claims for the final example considered above, in section 
6.3, table 5. 

Figure 1. Distribution of reserve for Bomhuetter-Ferguson estimation 
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A further possibility for including expert knowledge within a stochastic framework 
applies when the Bomhuetter-Ferguson technique is used. This is an adaptation of the 
method used in sections 5 and 6.3, whereby the reserve is specified rather than the 
ultimate claims, u i . The reserve value can be used to infer a value for ul, from which 

the stochastic version of the Bornhetter-Ferguson method can be applied. 

We have concentrated on two important situations, which we believe are the most 
common situations when expert opinion is used. However, the same approach could 
also be taken in other situations and for other modelling methods, such as the Hoed 
curve (for example). This would allow us to add tail factors to the models considered 
in this paper. This paper has been more concerned with the general approach rather 
than specific reserving methods. However, we do acknowledge that methods based on 
the chain-ladder set-up are very commonly used and we hope therefore that, by using 
this framework, we enable actuaries to appreciate the suggestions made in this paper, 
and experiment with the programs supplied. 
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Appendix 
The code for winBUGS is shown below for the models used in section 6. This can be 
cut and pasted directly into winBUGS. Anything to the right o f " # "  is ignored, so the 
code can be changed by adding and removing this at the start of  a line. 

(i) This section contains the code for the Bornhuetter-Ferguson method in section 5, 
which was used for the illustrations in sections 6.1 and 6.3. 

model 
{ 
# Model for Data 

for(i  in 1 : 4 5 )  { 
Z[i] <- Y[i]/1000 
pC[i]<-D[i]/1000 

# Zeros trick 
zeros[i]<- 0 
zeros[i] - dpois(phi[i]) 
phi[i]<- (-pC[i]*log(1/(1 +g[row[i]]))-Z[i]*log(g[row[i]]/(1 +g[row[i]])))/scale 

} 
# Cumulate down the columns: 

DD[3]<-DD[1]+Y[46] 
for( i in 1 : 2 ) {DD[4+i]<-DD[4+i-3]+Y[49+i-3]} 
for( i in 1 : 3 ) {DD[7+i]<-DD[7+i-4]+Y[52+i-4]} 
for( i in 1 : 4 ) {DD[11+i]<-DD[I 1+i-5]+Y[56+i-5]} 
for( i in 1 : 5 ) {DD[16+i]<-DD[16+i-6]+Y[61+i-6]} 
for( i in 1 : 6 ) {DD[22+i]<-DD[22+i-7]+Y[67+i-7]} 
for( i in 1 : 7 ) {DD[29+i]<-DD[29+i-8]+Y[74+i-8]} 
for( i in 1 : 8 ) {DD[37+i]<-DD[37+i-9]+Y[82+i-9]} 

# Needed for the denominator in definition of  gammas 
E[3]<-E[1 ]*gamma[ 1 ] 
for( i in 1 : 2 ) {E[4+i]<-E[4+i-3]*gamma[2]} 
for( i in 1 : 3 ) {E[7+i]<-E[7+i-4]*gamma[3]} 
for( i in 1 : 4 ) {E[1 l+i]<-E[1 l+i-5]*gamma[4]} 
for( i in 1 : 5 ) {E[16+i]<-E[16+i-6]*gamma[5]} 
for( i in 1 : 6 ) {E[22+i]<-E[22+i-7]*ganuna[6]} 
for( i in 1 : 7 ) {E[29+i]<-E[29+i-8]*ganuna[7]} 
for( i in 1 : 8 ) {E[37+i]<-E[37+i-9]*gamma[8]} 

EC[1]<-E[1]/1000 
EC[2]<-sum(E[2:3])/1000 
EC[3]<-sum(E[4:6])/1000 
EC[4]<-sum(E[7:10])/1000 
EC[5]<-sum(E[ 11:15])/1000 
EC[6]<-sum(E[ 16:21 ])/1000 
EC[7]<-sum(E[22:28])/1000 
EC[8]<-sum(E[29:36])/1000 
EC[9]<-sum(E[37:45])/1000 

# Model for future observations 
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for( i in 46 : 90 ) { 
al [i]<- max(0.01,a[row[i]]*DD[i-45]/(1000*scale)) 
bl[i]<- 1/(ganuna[row[i]]* 1000*scale) 
Z[i]---dgamma(al [i],b 1 [i]) 
Y[i]<-Z[i] 
fit[i]<-Y[i] 

} 
scale<-52.8615 
#Convert row parameters to gamma using (5.6) 

for (k in 1:9) { 
gamma[k]<- l+g[k] 
g[k]<-u[k]/EC[k] 
a[k]<-g[k]/gamma[k] 

} 
# Prior distributions for row parameters. 

for (k in 1:9) { 
u[k]--dgamma(au[k],bu[k]) 
au[k]<-bu[k]*(ultm[k+ 1 ]*(1-1/tIk])) 
bu[k]<-(ultm[k+l]*(1-1/tIk]))/pow(ultsd[k+l],2) 

} 
# The prior distribution can be changed by changing the data input values for the 
# vectors ultm and ultsd 

# Row totals and overall reserve 
R[1] <- 0 
R[2] <- fit[46] 
R[3] <- sum(fit[47:48]) 
R[4] <- sum(fit[49:51]) 
R[5] <- sum(fit[52:55]) 
R[6] <- sum(fit[56:60]) 
R[7] <- sum(fit[61:66]) 
R[8] <- sum(fit[67:73]) 
R[9] <- sum(fit[74:81]) 
R[10] <- sum(fit[82:90]) 
Total <- sum(R[2:l 0]) 
} 

# DATA 
list( 
rowe(I,1,1,1,1,1,1,1,1, 
2,2,2,2,2,2,2,2, 
3,3,3,3,3,3,3,4,4, 
4,4,4,4,5,5,5,5,5, 
6,6,6,6,7,7,7,8, 
8,9,1,2,2,3,3,3,4,4,4, 
4,5,5,5,5,5,6,6,6,6,6,6, 
7,7,7,7,7,7,7,8,8,8,8,8, 
8,8,8,9,9,9,9,9,9,9,9, 
9), 
Y~(352118,884021,933894,1183289,~5745,320996,527804,266172,425046, 
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290507,1001799,926219,1016654,750816,146923,495992,280405, 
310608,1108250,776189,1562400,272482,352053,206286, 
443160,693190,991983,769488,504851,470639, 
396132,937085,847498,805037,705960, 
440832,847631,1131398,1063269, 
359480,1061648,1443370, 
376686,986608, 
344014, 
NA, 
NA,NA, 
NA,NA,NA, 
NA,NA,NA,NA, 
NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA,NA,NA,NA), 

D=c(357848,766940,610542,482940,527326,574398,146342,139950,227229, 
709966,1650961,1544436,1666229,973071,895394,674146,406122, 
1000473,2652760,2470655,2682883,1723887,1042317,1170138, 
1311081,3761010,3246844,4245283,1996369,1394370, 
1754241,4454200,4238827,5014771,2501220, 
2150373,5391285,5086325,5819808, 
2591205,6238916,6217723, 
2950685,7300564, 
3327371, 
NA, 
NA,NA, 
NA,NA,NA, 
NA,NA,NA,NA, 
NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA,NA,NA,NA), 

DD=c(67948, 
652275,NA, 
686527,NA,NA, 
1376424,NA,NA,NA, 
1865009,NA,NA,NA,NA, 
3207180,NA,NA,NA,NA,NA, 
6883077,NA,NA,NA,NA,NA,NA, 
7661093,NA,NA,NA,NA,NA,NA,NA, 
8287172,NA,NA,NA,NA,NA,NA,NA,NA), 

E=c(67948, 
652275,NA, 
686527,NA,NA, 
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1376424,NA,NA,NA, 
1865009,NA,NA,NA,NA, 
3207180,NA,NA,NA,NA,NA, 
6883077,NA,NA,NA,NA,NA,NA, 
7661093,NA,NA,NA,NA,NA,NA,NA, 
8287172,NA,NA,NA,NA,NA,NA,NA,NA), 

f----c(1.017724725, 1.095636823, 1.154663551, 1.254275641, 1.384498969, 
1.625196481,2.368582213,4.138701016, 14.44657687), 
ultm=c(NA,5500,5500,5500,5500,5500,6000, 6000, 6000, 6000), 
ultsd=-c(NA,10000,10000,10000,10000,10000,10000,10000,10000,10000)) 

These values for the ultsd will give the chain-ladder results. To obtain the 
Bornhuetter-Ferguson results, replace the last line with the following line: 
ultsd=c(NA, l , l , l , l , l , l , l , l , 1 ) )  
The other illustration in section 6.3 uses: 
ultsd=c(NA, 1000,1000,1000,1000,1000,1000,1000,1000,1000)) 

#INITIAL VALUES 
list(u = c(5500, 5500, 5500, 5500, 5500, 6000, 6000, 6000, 6000), 
Z=c(NA,NA,NA,NA,NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA, 
NA,NA,NA,NA, 
NA,NA,NA, 
NA,NA, 
NA, 
0, 
0,0, 
0,0,0, 
0,0,0,0, 
0,0,0,0,0, 
0,0,0,0,0,0, 
0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0,0)) 

(i) Code for the model in section 4, which was used for the illustrations in section 6.2. 

model 

#Model for data: 
for( i in 1 : 4 5 )  { 

Z[i] <- Y[i]/(scale* 1000) 
pC[i]<-D[i]/(scale* 1000) 
C[i]<-Z[i]+pC[i] 

zeros[i]<- 0 
zeros[i] - dpois(phi[i]) 
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phi[i]<-(loggam(Z[i]+ 1)+loggam(pC[i])-loggam(C[i])- 
pC[i]*log(pl [row[i],col[i]])-Z[i]*log(1-p 1 [row[i],col[i]])) 

} 

for( i in 
for( i in 
for( i in 
for( i in 
for( i in 
for( i in 
for( i in 

DD[3]<-DD[2]+Y[47] 
1 : 2 ) {DD[4+i]<-DD[4+i-1]+Y[49+i-1]} 
1 : 3 ) {DD[7+i]<-DD[7+i-1]+Y[52+i-1]} 
1 : 4 ) {DD[11+i]<-DD[I l+i-1]+Y[56+i-1]} 
1 : 5 ) {DD[16+i]<-DD[16+i-1]+Y[61+i-1]} 
1 : 6 ) {DD[22+i]<-DD[22+i-1]+Y[67+i-1]} 
1 : 7 ) {DD[29+i]<-DD[29+i-1]+Y[74+i-1]} 
1 : 8 ) {DD[37+i]<-DD[37+i-I]+Y[82+i-1]} 

#Model for future observations 
for( i in 46 : 90 ) { 

al [i]<- max(0.01 ,(1 -pl [row[i],col[i]])*DD[i-45]/(1000*scale)) 
b 1 [i]<- p 1 [row[i],col[i]]/(1000*scale) 
Z[i]---dgamma(al [i],b 1 [i]) 
Y[i]<-Z[i] 

} 
scale <- 52.8615 

# Set up the parameters of the negative binomial model. 
for (k in 1:9) { 

p[k]<-l/lambda[k] 
lambda[k]<-exp(g[k])+ 1 
g[k]---dnorm(0.5,1.0E-6) 

} 
# Choose one of the folllowing (1,2 or 3) and delete the "#" at the start of each line 
before running. 

# 1. Vague Priors: Chain-ladder model 
# for (j in 1:9) { 
# for(i in 1:10) {pl[i,j]<-p[j]} 
# } 

# 2. Intervention in second development factor. 
# for(i in 1:10) {pl[i,1]<-p[l]} 
# for(i in 1:6) {pl[i,2]<-p[2]} 
# pl [7,2]<-p82 
# pl [8,2]<-p82 
# pl [9,2]<-p82 
# pl [10,2]<-p82 
# for (j in 3:9) { 
# for(i in 1:10) {pl[ij]<-p[j]} 
# } 
# lambda82<-g82+l 
# p82<- 1/lambda82 
# Use one of the following 2 lines: 
# g82.--dgamma(0.005,0.01) #This is a prior with a large variance 
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# g82-dgamma(25,50) #This is a prior with a small variance 

#3. Using latest 3 years for estimation of development factors. 
# for (j in 1:6) { 
# for (i in l:(7-j)) {pl[iJ]<-op[j]} 
# for (i in (8-j):10) {pl[ij]<-p[j]} 
# } 
# for (j in 7:9) { 
# for (i in 1:10) {pl[ij]<-p[j]} 
# } 
# for (k in 1:6) { 
# op[k]<- l/olambda[k] 
# olambda[k]<-exp(og[k])+ 1 
# og[k]--<lnorm(0.5,1.0E-6) 
# } 

# Row totals and overall reserve 
R[I] <- 0 
R[21 <- Y[46] 
R[3] <- sum(Y[47:48]) 
R[4] <- sum(Y[49:51 ]) 
R[5] <- sum(Y[52:551) 
R[6] <- sum(Y[56:60]) 
R[7] <- sum(Y[61:66]) 
R[8] <- sum(Y[67:73]) 
R[9] <- sum(Y[74:81]) 
R[ 10] <- sum(Y[82:90]) 
Total <- sum(R[2:10]) 

# DATA 
list( 
row-~(1,1,1,1,1,1,1,1,1, 
2,2,2,2,2,2,2,2, 
3,3,3,3,3,3,3,4,4, 
4,4,4,4,5,5,5,5,5, 
6,6,6,6,7,7,7,8, 
8,9,2,3,3,4,4, 
4,5,5,5,5,6,6,6,6,6, 
7,7,7,7,7,7,8,8,8,8, 
8,8,8,9,9,9,9,9,9,9, 
9,10,10,10,10,10,10,10,10,10), 
coI~(1,2,3,4,5,6,7,8,9, 
1,2,3,4,5,6,7,8, 
1,2,3,4,5,6,7,1,2,3, 
4,5,6,1,2,3,4,5,1, 
2,3,4,1,2,3,1, 
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2,1,9,8,9,7,8,9, 
6,7,8,9,5,6,7,8,9,4, 
5,6,7,8,9,3,4,5,6,7, 
8,9,2,3,4,5,6,7,8,9, 
1,2,3,4,5,6,7,8,9), 
Y=e( 
766940,610542,482940,527326,574398,146342,139950,227229,67948, 
884021,933894,1183289,445745,320996,527804,266172,425046, 
1001799,926219,1016654,750816,146923,495992,280405, 
1108250,776189,1562400,272482,352053,206286, 
693190,991983,769488,504851,470639, 
937085,847498,805037,705960, 
847631,1131398,1063269, 
1061648,1443370, 
986608, 
NA, 
NA,NA, 
NA,NA,NA, 
NA,NA,NA,NA, 
NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA,NA,NA,NA), 
D=c( 
357848,1124788,1735330,2218270,2745596,3319994,3466336,3606286,3833515, 
352118,1236139,2170033,3353322,3799067,4120063,4647867,4914039, 
290507,1292306,2218525,3235179,3985995,4132918,4628910, 
310608,1418858,2195047,3757447,4029929,4381982, 
443160,1136350,2128333,2897821,3402672, 
396132,1333217,2180715,2985752, 
440832,1288463,2419861, 
359480,1421128, 
376686, 
NA, 
NA,NA, 
NA,NA,NA, 
NA,NA,NA,NA, 
NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA,NA,NA,NA), 
DD---c(5339085, 
4909315,NA, 
4588268,NA,NA, 
3873311,NA,NA,NA, 
3691712,NA,NA,NA,NA, 
3483130,NA,NA,NA,NA,NA, 
2864498,NA,NA,NA,NA,NA,NA, 
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1363294,NA,NA,NA,NA,NA,NA,NA, 
344014,NA,NA,NA,NA,NA,NA,NA,NA)) 

#INITIAL VALUES 
This is what is used for 1. 

For 2, replace the first line by 
list(g=c(0,0,0,0,0,0,0,0,0), g82=0.5, 

For 3, replace the first line by 
list(g--c(0,0,0,0,0,0,0,0,0), og=c(0,0,0,0,0,0), 

list(g=c(0,0,0,0,0,0,0,0,0), 
Z=c(N A,N A,N A,N A,N A,N A,N A,N A,N A, 
NA,NA,NA,NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA, 
NA,NA,NA,NA, 
NA,NA,NA, 
NA,NA, 
NA, 
0, 
0,0, 
0,0,0, 
0,0,0,0, 
0,0,0,0,0, 
0,0,0,0,0,0, 
0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0,0)) 
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