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Testing Stochastic Interest Rate Generators for Insurer Risk and Capital Models 

Gary G Venter, Guy Carpenter Instrat 

Stochastic models for interest rates are reviewed and fitting methods are discussed. Tests for the 

dynamics o f  short- term rates are based on  model fits. A method of  testing yield curve distribu- 

tions for  use in insurer asset scenario generators is introduced. This uses historical relationships 

in the conditional distributions o f  yield spreads given the short-term rate. As an illustration, this 

method  is used to test a few selected models. 
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Testing Stochastic Interest Rate Generators for Insurer Risk and Capital Models 

P&C insurers are looking to financial modeling to address how risk is diversified among assets, 

liabilities and current underwriting results. Before fast computer models, actuaries measured as- 

set risk by a few simple constants, like duration and convexity. Asset managers have their own 

collection of  risk measurement constants for hedging issues, identified by Greek letters, and so 

often referred to as "the Greeks." Appendix 1 summarizes these measures. 

These asset risk scalars typically measure the sensitivity of  the asset portfolio to changes in some 

particular risk event, such as a change in the average interest rate, or a change in the volatility of 

interest rates. With stochastic generators, however, two degrees of  specificity are added. First the 

dimension of  probability of  ilsk events is incorporated. Risk scalars show the sensitivity to a 

change but  not  the probability of that change. Second is the response to a much broader range 

of  possible risks. Complex combinations of  risk situations can occur, and stochastic modeling 

can quantify the combined risk picture. 

These added dimensions come from representing the distribution of  possible outcomes for an 

asset portfolio. Models can then combine asset outcomes with liability development and under- 

writing return outcomes to give a more comprehensive risk profile. Asset models generate a 

large variety of asset scenarios, ideally each showing up by the probability of its occurrence, and 

apply them to the asset portfolio to measure the distilbudon of  asset risk. 

Although useful and general in theory, the possible weakness of  this approach is that in practice 

the model might not capture the full range of  economic outcomes, or it could over-weight the 

chances of  some occurrences that are in fact not all that likely to happen. Thus a significant risk 

to this methodology is generating the wrong distribution of  financial events. 

This paper looks at evaluating interest rate generators by testing the distribution of yield curves. 

Empirical research on the dynamics of  the short-term rate is reviewed, then tests of  the gener- 

ated distribution of  yield curves are introduced and applied to a few models. Interest rate models 

in other areas of  finance tend to be used to price options, so they are evaluated on how well they 

can match option prices. Insurer models are more focused on the risks inherent in holding vail- 
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ous asset mixtures for  a period o f  rime, and sometimes on  trading strategies, and so realistic dis- 

tributions o f  ending yield curves and probabilities for  movements  in yields are o f  more  direct 

concerns than are opt ion prices. 

I. Models of  Interest Rates 

The primary focus here is o n  arbitrage-free models o f  interest rates. There is still some debate 

among  actuaries on  whether  this is the best approach,  and some of  this debate is summarized in 

Appendix 2, but  it is such models which will be emphasized here. The tests on  the yield curve 

distributions introduced below, however, can be used on any model that generates yield curve 

scenarios. Interest rates are further assumed to be default free. Modeling default probabilities 

adds a degree o f  complexity that is not  addressed here. 

There are a few ways to generate arbitrage-free interest rate scenarios. The method illustrated 

below models the short- term interest rate, denoted by r, directly, and uses the impfied behavior 

o f t ,  along with market  considerations, to infer the behavior  o f  longer-term rates. For  these 

models, r is usually treated as a continuously fluctuating process. This is somewhat  o f  an ap- 

proximation as actual trades occur  at discrete times, but  at scales longer than a few minutes it 

seems appropriate,  at least during trading hours. 

The most  c o m m o n  financial models for continuous processes are based on Brownian motion. A 

Brownian mot ion has a simple definition in terms o f  the probahilides o f  outcomes over time: 

the change in r f rom the current  position between time zero and time t is normally distributed 

with mean zero and variance oat for some (L In differenrial no ta t ion ,  the instantaneous change 

in r is expressed as dr  = odz.  Here  z represents a Brownian mot ion with ~=1,  and so its vari- 

ance after a time period o f  length t is just t. I f  r also has a drift (i.e., a trend) o f  bt  during time t, 

the process could be expressed as dr = bdt  + ~dz. 

Cox, Ingersoll and Ross (A Theo{y of the Term Structure of Interest Rates Econometr ica  53 March 

1985) provide a model  o f  the morion o f  the short-term rate that has been widely studied. In the 

CIR model,  r follows the following process: 
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dr = a(b - r)dt + srl/Mz. 

Here b is the level of mean reversion. If  r is above b, then the trend component is negative, and if r is 

below b it is positive. Thus the trend is always towards b. The speed of mean reversion is expressed by a. 

Note that the volatility depends on r itself, so higher short-term rates would be associated with higher 

volatility. Also, if r=0 there is no volatility, so the trend takes over. With r=0 the trend would be positive, 

so r would move to a positive value. The mean reversion combined with rate-dependent volatility thus 

puts a reflective barrier at r=0. 

I f  this model were discretized it could be written: 

r t - r t _ l  = a(b - rt-l) + s r t - l l /2~,  where ~ is a standard normal residual. 

This is a fairly standard autoregressive modal, so the CIR. model can be considered a continuous 

analogue of  an autoregressive model. 

Some other models of  the short rate differ from CIR only in the power of  r in the dz term. The 

Vasicek model takes the power to be zero. Another choice is taking a power of  unity. 

Most o f  the models incorporate mean reversion, but constant mean reversion is problematic. 

The rates sometimes seem to gravitate towards a temporary mean for a while, then sMft and re- 

vert towards some other. One way to account for this is to let the reversion mean b itself be sto- 

chastic. This can be done by adding a second stochastic equation to the model: 

ab = j(q - b)dt + wbl/2dzl 

Here dzl is a second, independent standard normal variate, and so b follows a mean reverting 

process gravitating towards q. Again different powers can be taken for b in the stochastic term. 

Such two factor models are popular in actuarial literature. For instance, Hibbert, Mowbray and 

Tumbull  i n ,  "A Stochastic Asset Model & Calibration for Long-Term Financial Planning Pur- 

poses," Technical Report, Barrie & Hibbert Limited, use a two factor model which generalizes 

the Vasicek model by taking b and r both to the zero powers, so they both drop out of  the sto- 

chastic terms. 

The volatility can also be stochastic. For instance, HUll, J. and A. White, 1987, '~lae Pricing of  

Options on Assets with Stochastic Volatilities," The Journal of  Finance, XLII, 2, pp. 281-300 

consider such a model. 
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Combining stochastic volatility and stochastic mean reversion, Andersen and Lurid (Working 

Paper No. 214, Northwestern University Department of  Finance) use the model: 

dr = a(b - r)dt + s rk~ l  k>0 

din s 2 = c(,p - In s2)a~ + v ~ 2  

ab = j(q - b)dt + wbl/2&3 

This model uses three standard Brownian motion processes, zl, z2, and z3. The volatility parame- 

ter s 2 now also varies over time, but via a mean reverting geometric Brownian motion process 

(i,e., Brownian motion on the log). In total there are eight parameters: a, c, j, k, p, q, v, and w and 

three varying factors r, b, and s. I t  is thus labeled a three-factor model. The power k on r in the 

stochastic term is a parameter that can be estimated. 

2. Dynamics o f  Short-Term Rates - Empiriea! Findings 

Estimation of model parameters should be distinguished from calibration to current states. The 

permanent parameters of  the models are estimated from historical data, whereas the variable fac- 

tors are re-calibrated to current yield curves to capture the latest market conditions. Different 

techniques might be used for estimation vs. calibration. 

Multi-factor Brownian motion models can be difficult to estimate. Some single-factor models, 

such as CIR, can be can be integrated out to form a time series, which can be estimated by 

maximum likelihood. In the case of  CIR, the conditional distribution of  the short rate at time 

t+T given the rate at time t follows a non-central chi-squared distribution: 

f(rt+TI rt) -- ce-U-V(v/u)q/2Iq(2(uv)l/2), where 

c = 2as-2 / (1-e -aT) ,  q=-1 +2abs -2, u=crt  e-aT, v=crt+ T and lq is the modified Bessel func- 

tion of  the first kind, order q, Iq(2Z)= ~-k=0~176 where factorial offinte- 

gers is defined by the gamma function 

This is not usually possible for multi-factor models, where the volaflity and other factors can 

change stochastically. Further, the short-term rate is observed, or is closely related to observed 

rates for very short terms, but the other factors, like the reverting mean and the volatility scalar, 
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are not  typically observed. Thus fitting techniques that match models to data will not be applica- 

ble for these factors. 

A few fitting techniques have been developed for stochastic processes. The general topic of  

what these techniques are and how they work is beyond the scope of  this paper, but one method 

which has been used successfully - the efficient method of  moments (EMM) - is briefly dis- 

cussed below. This method was introduced by Gallant, A. and Tauchen, G.: 1996, Which mo- 

ments to match?, Econometric Theory 12, 657-681, and they provide further analysis in 1999, 

The relative efficiency of  method of  moments estimators, Journal of  Econometrics 92 (1999) 

14%172. However the opm'nal methodology for estimating models of  this type is far from set- 

tied. 

In any case, E/VIM is a special case of  G/vIM, the generalized method of moments. A generalized 

moment is any quantity that can be averaged over a data set, such as (3/x)ln x. GMM fits a 

model by matching the modeled and empirical generalized moments for some selection of  gen- 

eralized moments. EMM is a particular choice of  generalized moments that has some favorable 

statistical properties when used to fit stochastic models. 

EMM for a particular data set starts by finding the best time series model, called the auxiliary 

model, that can be fit to that data. I f  the auxiliary model is fit by maximum likelihood, then the 

scores of  that model (i.e., the first partial derivatives of  the log-likelihood function with respect 

to each model parameter)wiU be zero at the MLE estimates. These score functions can be 

viewed as generalized moments, which are all zero when averaged over the data. The fitted value 

of  the scores of  the auxiliary model might be hard to calculate for the stochastic model, but they 

can be approximated numerically by simulating a large sample from the stochastic model, and 

computing the scores of  the auxiliary model for that sample. The parameters of  the stochastic 

model can then be adjusted to match these moments, i.e., until all the scores approximate zero 

for the generated data. 

The result of  this technique is a parameterized stochastic model whose simulated values have all 

the same dynamics as the data, as far as anyone can tell by fitting time-series models to both. 

With this fitting done, the modeled factors then can be calibrated to current economic condi- 
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tions to provide a basis for simulating future possible outcomes. 

Andersen and Lund (AL) did an empirical study of  short-term rate dynamics by EMM-fitting 

their above model to four decades of  US Treasury notes, incorporating data from the 1950's 

through the 1990's. Their results provide empirical background to evaluate other models as well. 

AL estimate k as about 0.55, which supports the power of  1/2 in the CIR model. In fact the AL 

model with this parameter is close to the CIR model at any instant of  time, but the CIR parame- 

ters are subject to change over time. Other models with k=0 or k=l  appear to be disindicated 

for US data by this result. 

The period 1979-81 had high rates and high volatility, and studies that emphasize this period 

have found the power of  tA on r too low. There has been some debate about whether or not to 

exclude this period in fitting models. These results happened, so they can happen, but it was an 

unusual confluence of  conditions not likely to be repeated. By taking a longer period which 

incorporates this interval AL do not exclude it but reduce its influence. 

All parameters in the AL model were statistically significant. This implies that dependence of  the 

volatility on r is not enough to capture the changes in volatility of  interest rates. There have been 

periods of  high volatility with low interest rates, for example. Thus the one and two-factor mod- 

els without stochastic volatility appear to be insufficient to capture US interest rate dynamics. 

3. Generating Yield Curves 

The modeled dynamics of  the short-term rate can produce implied yield curves. This is done by 

modeling the prices of  zero-coupon bonds with different maturities, from which the implied in- 

terest rates can be backed out. P(I'), the current price of  a bond paying $1 at maturity T, can be 

calculated as the risk adjusted discounted expected value of  $1 using the continuously evolving 

interest rate r from the short-term model. Here "expected value" indicates that the discounted 

mean is calculated over all possible paths for r. This can be expressed as: 

P(T) = E'[exp(-[rtdt)], 

where rt is the interest rate at time t, the integral is over the time period 0 to T, and E* is the risk- 
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adjusted expected value of  the discounted value over all paths r can take. 

I f  E were not risk adjusted, the expectation that gives P(T) could be approximated by simulating 

many instances of  the r process to time T over small increments and then discounting back over 

each increment. The risk-adjusted expected value is obtained instead by using a risk-adjusted 

process to simulate the r's. This process is like the original process except that it tends to gener- 

ate higher r's over time. These higher rates usually produce an upward-sloping yield curve. 

What is the risk adjusted process for r that with this procedure will generate the yield curves? I f  

you write the price at time t for a bond maturing at time T as a Brownian motion with drift u 

and volatility v, i.e., 

eV(~a 3 = u(~a3,~ + v(t,a3,~ 

then it can be shown (Vasicek 1977) that the drift u can be expressed as a function of  the risk- 

free rate r #, the volatility v and a quantity L called the market price of  risk, by: 

u(t,T) = r#P(t,T)+ ~(t,r)v(t,T) 

Thus the value of  the bond grows by the risk-free rate plus the product of the bond's volatility 

with the market price of  risk, plus the stochastic term v(t,T)dz. The market price of risk k(t,r) 

does not depend on the maturity date T, but it could depend on the interest rate r and the cur- 

rent time t. 

The market price of  risk in the bond price process is the link that specifies the risk-adjustment to 

the interest rate process that will generate the bond prices as the discounted expected value. As 

for the bond price process, only the drift of the interest rate process needs to be risk-adjusted, 

and the adjustment is to add the market price of risk times a function of  the volatility of  the in- 

terest rate process. For instance, AL suggest using the following adjusted process to simulate the 

interest rates in the bond price calculation: 

dr = a ( b -  r +JL1rs)dt + srkdzl k>0 

din s 2 = c(p - In s2)dt + vdz2 

db = j(q - b+~,3b)dt + wbl/2atz3 

This adds terms to the drift of  the first and third equations but not the second, as AL feel there 
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is little price effect o f  stochastic volatility. The risk-price factors ~t~ 1 and ~3 can be calibrated to 

the current  field curve along with r, s, and b. These factors do not  depend on  T, so are held con- 

stant throughout  any simulated yield curve calculation, but  they can change stochastically when a 

new yield curve is calculated f rom a new time 0. 

In the AL model  you have to actually simulate the dynamics o f  the risk-adjusted process to get 

the yield curves. However,  in the case o f  the CIR model, a d o s e d  form solution exists which 

simplifies the calculation. The  yield rate for  a zero coupon  bond  o f  maturity T is given by: 

Y(T) = A(T) + rB(T) where: 

A(T) = -2(ab/s2T)lnC(T) - 2aby / s2  

B('r) = [1 - C(T)]/yT 

C(T) = (1 + xyeT/x  - xy)-I 

x = [(a- ~,)2 + 2s2]-,/2 

y = (a -  L + l /x) /2 .  

Note  that the only occurrence o f  r is in the Y equation, so Y is a linear function o f  r - but not  o f  

course o f T .  The linearity will come into play when we look at the distribution o f  Y across the 

generated scenarios. Since all the yield rates for different maturities are linear functions o f  r, they 

will also be linear functions o f  each other. 

4. Historical Distributions of Yield Curves 

To develop tests o f  distributions o f  yield curves, it is necessary to find some properties o f  these 

distributions which remain fairly constant  over time. As it is difficult to describe properties o f  

the distribution o f  the entire curve, the focus will be on the distribution o f  yield spreads, i.e., the 

differences between yields. 

For  a property to test the models against, however,  the historical distribution o f  a given field 

spread is not  necessarily all that germane.  When  short-term rates are high, the yield curve tends 

to get compressed or even inverted, so spreads get low or  even negative. This is related to the 

mean reversion o f  the short- term rate. Over  time it tends to move hack towards its long-term 
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average, though with a large random deviation. Thus when it is high, a downward movement is 

anticipated, which produces lower long-term rates and thus negative yield spreads. I f  the period 

being projected by the model is not likely to have such high short-term rates, the yield spreads 

will be higher in the model than in the history. 

An alternative is looking at the conditional distribution of  the yield spreads given the short-term 

rate. Over time, these conditional yield-spread distributions are more consistent than the uncon- 

ditional distributions of  yield spreads. The conditional distributions themselves do change in cer- 

tain ways over time, however, but there are some consistencies remaining. 
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The graph below shows the US treasury three-year to ten-year yield spread as a function of the 

three-month rate for a 40+ year period. This period is divided up into five sub-periods, which 

were selected to maintain somewhat consistent relationships between the spread and the short- 

term rate. From the 60's to the early 80's, the short-term rates increased (sub-periods I - 3), 

then came back down after that (4 and 5). Each sub-period shows a negative slope for the 

spread as a function of the short-term rate, with the slopes in the range of-0.2  to -0.3. For the 

entire forty year period, there still seems to be a negative relationship between the short-term 

rate and the spreads, but the slope is much flatter. 
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This behavior suggests that it would not be appropriate to use the conditional distribution from 

the entire period as a test of  a scenario generator, especially if  it is generating scenarios for a ho- 

rizon of  a few years. Over a several-year period the steeper slopes as in the historical sub-periods 

would be more likely to prevail. For a model projecting a few years into the future, the yield 

spreads would be expected to vary across scenarios, with generally lower spreads expected in 

those scenarios with higher short-term rates. From the historical record, it would be reasonable 

to expect a basically linear relauonship, with a fair amount of  spread around a slope in the range 

o f -0 .2  to -0.3. This could be tested by graphing the scenarios generated by the model to see if  

they were generally consistent with this pattern. 

The graph below shows the same thing for the five-year to ten-year spreads as a function of  the 

three-month rate. The main difference is that the relationship of  the spread to the short-term 

rate is less dramatic, with sub-period slopes about half what they are for the 10 - 3 spread. 
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The three-year to five-year spreads show similar slopes to the I0 - 5 case, except for the latest period, 

which has a much flatter slope. The short-term rates in the last period have stayed in a fairly narrow range, 

however, making it harder to estimate the slope. In any case, relying more on the latest observations, it 

would seem that models producing a somewhat flatter slope in the near future should be reasonable. 
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The one-year to three-year spreads above show something different. Here the trend was below 

-0.2 in the 60's and 70's, around -0.11 in the 80's to mid-90's, and actually insignificant in the 

last period. Thus a flat relationship might be most appropriate in a short-horizon model. 

660 



O3 
g: 

0.025 

0.020 

0.015 

0.010 

0.005 

0.000 

-0.005 

-0.010 

-0.015 

-0.020 

1 1960-1968 0.005458-0.07695"x 

2 1968-1979 0.01049-0.1267"x 

3 1979-1986 0.02172-0.2177"x 

4 1986-1995 0.007352- 0.08951"x 

5 1995-2001 0.001918- 0.01321"x 

5 3 

2 ~ 2 ~ ,  = g t 4 2 2  3 
1 1 2 ,~-1 ~1= 2" 2 3 

1 2 I 11~2L 2244A ~ ~ 3 3 

" 5 r.9 2 . ~  2 3:~ 3 "k .  3 3 

2 

3 

I I I I I I I I 

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 

R3M 

[] 

The three-month to one-year spread shows even more of  a break from the pattern of the longer 

spreads. Here the slope appears to be steeper when the short-term rates are higher, and the 

spreads can easily be negative. The slope is less in sub-period 5 than 1, and less in 4 than 2, sug- 

gesting that for a given short-term rate the slopes are less than they used to be. Thus a signifi- 

cant negative trend would not be expected for the near future, although a fair amount of ran- 

domness would still be anticipated. 
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5. Testing Models Against Historical Distributions 

Models can be tested against the historical patterns by comparing the conditional distribution of  

yield spreads across the scenarios to the historical patterns to see if  the patterns that have been 

produced historically are produced by the models. Initially two models will be compared. Both 

are produced by Guy Carpenter's proprietary scenario generator Global Asset Realization Proc- 

essor, or GARP. They are both based on the AL specification for the short-term rate generator, 

but they differ in the treatment of  the market price of  risk. The CIR model will be included also. 

The market price of risk has to be a deterministic function across all maturities to guarantee arbi- 

trage-free yield curves at a given time. But it can change stochastically when generating scenarios 

for the yield curves at another time period. Allowing the market price of  risk to change stochas- 

tically produces somewhat more variability among the field curves generated. In one model, the 

constant lambda model, the two AL market price of  risk parameters are held constant across all 

simulations. In the variable lambda model, on the other hand, stochastic changes are generated 

from one period to the next. How best to do that is a subiect of ongoing research. The variable 

lambda model tested here is one of  many possible models of this type and has not been opti- 

mized for this test. I t  probably introduces a bit too much variability into the market-price of  risk. 

The market price of  risk parameters, as well as the current values of the three factors r, b, and s 

are calibrated to the current yield curve to get starting values for the simulations. For this exam- 

ple, a yield curve from May 2001 was used for calibration. The parameters are selected that gen- 

erate a current yield curve that most  closely matches the selected target curve. Then yield curves 

are simulated at various projected periods. For periods in the near future, the curves would not 

be expected to be too much different from the current curves. But going out a few years pro- 

duces a wider variety of  yield curve scenarios. In this case the sets of curves generated for year 

end 2004 are used in the distributional tests. This seems like a long enough projection period to 

expect to see the kind of  variability that exists in the sub-periods historically. 

Models can be tested for the conditional distributions of  all of the yield spreads. First examined 

is the three-year to five-year spread. Recall that the slope for this was about -0.05 in the latest 

sub-period, but ranged from -0.11 to -0.16 in earlier segments. The graphs below show the rela- 

tionship for the simulated spreads under the two models. The constant lambda model shows a 
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slope of about -0.09, vs. -0.1 for the variable lambda, which are both reasonable. There is a dif- 

ference apparent in the spread around the trend line, with the constant lambda model showing 

little spread, and the variable lambda showing a good deal more, which is more compatible with 

the historical data. 
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For the CIR model it was shown above that any yield spread is a linear function of the three- 

month rate. Although this model does have a fair amount of  flexibility in determining the slope 

of  that relationship, there will be no variability possible around the trend line. Graphically this 

would look narrow like the constant lambda case, only more so. This suggests that the CIR 

model will necessarily produce a restricted set of yield curve scenarios, and these will not have all 

the variability present in historical yield curves. Thus yield curve scenarios will not be present in 

proportion to their probability of occurring, contrary to the criteria established above for DFA 

asset generators. 

The table below summarizes the historical and modeled slopes and the residual standard errors 

from the trend lines for the sub-periods and models considered. 

R10 3 R10 5 115 3 

Period 1 

Period 2 

Period 3 

Period 4 

Period 5 

Constant  

Variable ~L 

Period I se 

Period 2 se 

Period 3 se 

Period 4 se 

Period 5 se 

Constant  ~L se 

Variable ~. se 

R 3 1  R 1 3 M O  

(0.2720) (0.1380) (0.1340) (0.2158) (0.0769) 

(0.2526) (0.1351) (0.1175) (0.2544) (0.1267) 

(0.2225) (0.1170) (0.1055) (0.1066) (0.2177) 

(0.2957) (0.1393) (0.1564) (0.1100) (0.0895) 

(0.2050) (0.1524) (0.0526) 0.0170" (0.0132)* 

(0.2489) (0.1635) (0.0853) (0.0721) 0.0299 

(0.2960) (0.1987) (0.0973) (0.0615) 0.0475 

0.0013 0.0009 0.0006 0.0013 0.0019 

0.0031 0.0022 0.0013 0.0037 0.0030 

0.0026 0.0013 0.0017 0.0070 0.0051 

0.0022 0.0012 0.0012 0.0024 0.0029 

0.0020 0.0013 0.0009 0.0028 0.0028 

0.0008 0.0005 0.0004 0.0013 0.0023 

0.0042 0.0028 0.0015 0.0021 0.0028 

* Not significantly different from zero 

These results indicate that the constant lambda model tends to produce too little variability 

around the trend, whereas this formulation of the variable lambda model produces perhaps too 

much in the longer spreads. This suggests that allowing somewhat less variability in the stochas- 

tic processes that generates the market prices of risk could lead to still more realistic models. 

664 



6. Testing Residual Distributions 

The conditional distributions o f  the generated yield spreads given the short- term rate have been 

tested against the slopes and standard errors o f  histotical data. What  about  the actual distribu- 

tions o f  the residuals a round the trend lines? Are these the same historically and for the gener- 

ated scenarios? This was tested by fitting t-distributions to the residuals f rom the model and the 

combined set o f  residuals f rom the historical periods. The graphs below show QQ-plots ,  which 

graph the percentiles o f  the residuals against the same percentiles o f  the fitted t's. 
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T h e  10 - 3 constant  and variable l ambda  residuals look a lot like the data except  in the left tail, 

where  the constant  l ambda  diverges. T h e  t-distribution with 33 degrees o f  f r eedom was fit here. 
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T h e  3 - 1 year residuals were  done  excluding per iod 3, which  was unusual. 
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n o  

3 -  1 yearv~able  
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�9 Fo r  the 3 - 1 spreads the variable lambda model  provided residuals distributed similarly to those 

f rom the data, when  compared  to the t with 13 degrees o f  freedom. 
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I y e a r -  3 mon  

O 

I i I ~ i I 

-8 -4 -2 0 2 4 

Again for the I year - 3 month spread residuals, the data and the variable lambda model compare simi- 

larly to the t-13 fit, where the constant lambda is a little different. 
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Conclusion 

Many models of  interest rates have been proposed. For one survey, see R. Rebonato (1997) "In- 

terest Rate Option Models,"John Wiley NY. Models of the dynamics of  the short-term rate ap- 

parendy need to incorporate mean reversion, stochastic changes in mean reversion over time, 

mean sensitive volatility, proportional approximately to the square-root of  the mean, and sto- 

chastic volatility as well. 

Testing the conditional distribution of  various yield spreads, given the short-term rate appears to 

be a reasonable way to see i f a  model is generating a realistic distribution of  yield curves. The 

unconditional distribution of  generated yield spreads would not necessarily be comparable to the 

historical distribution, because different spreads are associated with different short-term rates, 

and the simulation might not be generating a distribution of  short-term rates that matches the 

historical record, due to the particular economic conditions that prevail at the time of  the simula- 

tion. The slopes of  the conditional fitted lines are fairly consistent over different historical peri- 

ods. 

As with most  tests of  distributional issues, this one is not a formulaic system that gives a strict 

"yes /no"  answer to a model's output. But it does provide a realm of  reasonable results so you 

can give an opinion of  the "probably ok /p robab ly  not" type. For example, having no variability 

around the conditional trend line would seem to be too limiting. Slopes that are much steeper 

than historical would also seem disindicated, as would distributions of  residuals around the 

slopes that differ substantially from the t-distributions fit. Even though these tests are not strict, 

better results could be sought than those of  any of  the models tested. 

An application issue is how much variability you should have for projection periods of  different 

lengths. When projecting out four or five years, a conditional distribution similar to those of  the 

historical sub-periods might be appropriate. However there is some chance of  entering a new 

realm - i.e., changing sub-periods - over that much time. In all the sub-periods graphed, chang- 

ing to an adjacent sub-period would tend to flatten the conditional trend. 
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Appendix  I - Scalar Measures of  Response 

A number of  risk measures have been devised to look at the effect on an investment holding or 

portfolio of  a small change in some quantity. For example, Macaulay duration measures the 

change in the value of  a portfolio due to a change in the armualized average yield to maturity. I t  

can be expressed as the weighted average of  the times to each cash flow of  the portfolio, where 

the weights are the cash flow amounts discounted at the average yield. Thus duration is ex- 

pressed in units of  time. (Duration measures value per interest rate, but as interest rate is value 

per time, duration is time.) One way to produce a given change in the average yield to maturity is 

to shift the entire yield curve by the same amount, so duration is often described as the sensitiv- 

ity of  the portfolio to a parallel shift in the curve. 

Macaulay convexity is the weighted average of  the squares of the times to the cash flows, using 

the same weights as for duration. It  can be shown to be the square of  duration less the derivative 

of  duration with respect to the instantaneous average yield. 

The analysis of  derivative instruments has produced several similar measures, denoted by Greek 

letters, and so calied "the Greeks." These measure the change in the value of  a position brought 

on by the change in something else that affects value. For instance, the change in the value of  an 

option due to the change in the value of  the underlying security is called delta. 

For bond portfolios, each bond could be thought of  as a holding of a combination of  future po- 

sitions in the short-term rate, which cotild thus be considered to be the underlying security. With 

the short-term rate as the underlying security, the delta risk is the change in the value of  the 

portfolio with respect to a small change in the short-term rate. This is different than duration, as 

even though all the rates will change in response to a change in the short-term rate, they will not 

necessarily change by the same amount. This is clear in the CIR model where a change in r 

makes all the rates change, but each by its own B(I).  I f  the underlying security is taken to be the 

average yield to maturity, then delta is duration. 

Gamma risk is the change in delta due to a small change in the value of  the underlying security. 

With the short-term rate as the underlying security, in CIR gamma is zero, but for a typical asset 

or liability portfolio it will not be. Gamma is somewhat analogous to convexity, but as defined 
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here focuses on the actual short-term rate, not the average yield. 

Vega measures the change in value due to a change in the volatility of  the underlying instrument. 

The volatility of  the short-term rate Brownian motion is an element in bond pricing, so vega risk 

is present in bond portfolios. CMO's probably have a fair degree of this risk as well, as greater 

interest rate volatility can increase the probability of  pre-payment. 

Theta is just the sensitivity of  the position to a small change in the valuation date. 

Rho for any portfolio measures its change in value due to a small change in the interest rate. In 

most asset pricing models the yield curve is assumed to be constant, so rho could be considered 

to be the effect of a shift in the average yield, i.e., duration. 
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Appendix 2 - The  Arbi t rage Debate  

Most finance theory takes the impossibility of arbitrage as a given, but some actuaries use inter- 

est rate models that are not arbitrage-free. This may be just a matter of  convenience, but two 

arguments are sometimes advanced for using such models: 

1. Actual published yield curves are not always arbitrage-free 

2. It  is more important to get the statistical properties of  the set of  scenarios right than to 

avoid arbitrage. 

One problem from having arbitrage possibilities in generated scenarios is that searching for op- 

timal investment strategies would find the arbitrage strategy, and that will appear the best. It 

seems pretty unlikely, however, that a DFA model could identify truly risk-free high-profit in- 

vestment strategies that insurers could work in practice. Even if the search disallowed the arbi- 

trage strategies, their presence in the scenario set could have a distorting effect. However, a 

model that allows arbitrage only in unrealistic cases, like being able to borrow huge amounts at 

the risk-free rate, could be considered arbitrage-free in practice. 

With this in mind, the two arguments can be reviewed separately. First, there may occasionally 

be some arbitrage possibilities in published yield curves. But this does not mean that these can 

be taken advantage of  in practice. For one thing, the published curves look at trades that took 

place at slightly different times, so are not snapshots of  one moment in time. Looking at a com- 

bination of  positions in different deals that have happened recendy could yield a hypothetical 

arbitrage, but that possibility could be gone before it could be realized. A related issue is that 

some of  the deals might have to be scaled up signlficandy to get the arbitrage to work, and doing 

this could change the prices. In short, finding some historical published yield curves with hypo- 

thetical arbitrage possibilities in them is not reason enough to use a modeled set of scenarios that 

have specific arbitrage strategies built in. 

The second argument is more interesting. This paper argues for the importance of  getting the 

statistical issues right, focusing on the distribution of  yield spreads across scenarios. This does 

not appear to be in any way inconsistent with no arbitrage. Using models like AL also empha- 

sizes that the movement of  interest rates across time should be statistically correct.. Thus both 
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the statistics of changes in rates over time and the distribution of  yield spreads at each time are 

compatible with arbitrage-free scenarios. I t  would be interesting to see what other statistical is- 

sues there are that would require using scenarios with arbitrage built in. 
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